1
|
Dizani M, Sorrentino D, Agarwal S, Stewart JM, Franco E. Protein Recruitment to Dynamic DNA-RNA Host Condensates. J Am Chem Soc 2024; 146:29344-29354. [PMID: 39418394 DOI: 10.1021/jacs.4c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We describe the design and characterization of artificial nucleic acid condensates that are engineered to recruit and locally concentrate proteins of interest in vitro. These condensates emerge from the programmed interactions of nanostructured motifs assembling from three DNA strands and one RNA strand that can include an aptamer domain for the recruitment of a target protein. Because condensates are designed to form regardless of the presence of target protein, they function as "host" compartments. As a model protein, we consider Streptavidin (SA) due to its widespread use in binding assays. In addition to demonstrating protein recruitment, we describe two approaches to control the onset of condensation and protein recruitment. The first approach uses UV irradiation, a physical stimulus that bypasses the need for exchanging molecular inputs and is particularly convenient to control condensation in emulsion droplets. The second approach uses RNA transcription, a ubiquitous biochemical reaction that is central to the development of the next generation of living materials. We then show that the combination of RNA transcription and degradation leads to an autonomous dissipative system in which host condensates and protein recruitment occur transiently and that the host condensate size as well as the time scale of the transition can be controlled by the level of RNA-degrading enzyme. We conclude by demonstrating that biotinylated beads can be recruited to SA-host condensates, which may therefore find immediate use for the physical separation of a variety of biotin-tagged components.
Collapse
Affiliation(s)
- Mahdi Dizani
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Daniela Sorrentino
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Siddharth Agarwal
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Jaimie Marie Stewart
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Elisa Franco
- Department of Mechanical & Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Beazer J, Sillars A, Beck S, Christoffersen C, Ferraz M, Mulder MT, Graham D, Karlsson H, Ljunggren S, Gill J, Freeman D. Favourable HDL composition in endurance athletes is not associated with changes in HDL in vitro antioxidant and endothelial anti-inflammatory function. Biosci Rep 2024; 44:BSR20241165. [PMID: 39344511 PMCID: PMC11499383 DOI: 10.1042/bsr20241165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Given the failure of high-density lipoprotein (HDL) raising therapies to reduce cardiovascular disease risk, attention has turned towards HDL composition and vascular protective functions. In individuals with insulin resistance, exercise interventions recover HDL function. However, the effect of exercise on HDL in otherwise healthy individuals is unknown. This cross-sectional study aimed to measure HDL composition and antioxidant/endothelial anti-inflammatory function in insulin sensitive endurance athlete and healthy control men. HDL was isolated using density gradient ultracentrifugation. HDL composition was measured using microplate assays for apolipoprotein A-I, total cholesterol content and apolipoprotein M. HDL protein composition was measured using nano-liquid chromatography tandem mass spectrometry. HDL subclass distribution was measured by native gel electrophoresis. HDL in vitro antioxidant function was measured by paraoxonase-1 activity assay and anti-inflammatory function assessed in endothelial cells. Compared with controls, endurance athlete HDL had higher apolipoprotein A-1 (1.65 ± 0.62 mg/ml vs 1.21 ± 0.34 mg/ml, P=0.028) and higher total cholesterol content (2.09 ± 0.44 mmol/L vs 1.54 ± 0.33 mmol/L, P<0.001). Proteomics revealed higher apolipoprotein A-II, A-IV and D and transthyretin in endurance athlete HDL versus controls. There was no difference observed in in vitro HDL antioxidant or anti-inflammatory functions between controls and endurance athletes. Despite a more favourable composition, endurance athlete HDL did not have higher in vitro antioxidant or anti-inflammatory function. It is possible that HDL has a ceiling of function, i.e. that healthy HDL function cannot be enhanced by endurance exercise.
Collapse
Affiliation(s)
- Jack David Beazer
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Anne Sillars
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Sally Beck
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Section 3-01-3, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark and Institute of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200 Copenhagen, Denmark
| | - Maria J. Ferraz
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Monique T. Mulder
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Jason Gill
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Dilys J. Freeman
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| |
Collapse
|
3
|
Dahmane S, Schexnaydre E, Zhang J, Rosendal E, Chotiwan N, Kumari Singh B, Yau WL, Lundmark R, Barad B, Grotjahn DA, Liese S, Carlson A, Overby A, Carlson LA. Cryo-electron tomography reveals coupled flavivirus replication, budding and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618056. [PMID: 39416041 PMCID: PMC11482891 DOI: 10.1101/2024.10.13.618056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Flaviviruses replicate their genomes in replication organelles (ROs) formed as bud-like invaginations on the endoplasmic reticulum (ER) membrane, which also functions as the site for virion assembly. While this localization is well established, it is not known to what extent viral membrane remodeling, genome replication, virion assembly, and maturation are coordinated. Here, we imaged tick-borne flavivirus replication in human cells using cryo-electron tomography. We find that the RO membrane bud is shaped by a combination of a curvature-establishing coat and the pressure from intraluminal template RNA. A protein complex at the RO base extends to an adjacent membrane, where immature virions bud. Naturally occurring furin site variants determine whether virions mature in the immediate vicinity of ROs. We further visualize replication in mouse brain tissue by cryo-electron tomography. Taken together, these findings reveal a close spatial coupling of flavivirus genome replication, budding, and maturation.
Collapse
|
4
|
Wang Y, Guo H, Lu Y, Yang W, Li T, Ji X. Crystal structure and nucleic acid binding mode of CPV NSP9: implications for viroplasm in Reovirales. Nucleic Acids Res 2024; 52:11115-11127. [PMID: 39287123 PMCID: PMC11472163 DOI: 10.1093/nar/gkae803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cytoplasmic polyhedrosis viruses (CPVs), like other members of the order Reovirales, produce viroplasms, hubs of viral assembly that shield them from host immunity. Our study investigates the potential role of NSP9, a nucleic acid-binding non-structural protein encoded by CPVs, in viroplasm biogenesis. We determined the crystal structure of the NSP9 core (NSP9ΔC), which shows a dimeric organization topologically similar to the P9-1 homodimers of plant reoviruses. The disordered C-terminal region of NSP9 facilitates oligomerization but is dispensable for nucleic acid binding. NSP9 robustly binds to single- and double-stranded nucleic acids, regardless of RNA or DNA origin. Mutagenesis studies further confirmed that the dimeric form of NSP9 is critical for nucleic acid binding due to positively charged residues that form a tunnel during homodimerization. Gel migration assays reveal a unique nucleic acid binding pattern, with the sequential appearance of two distinct complexes dependent on protein concentration. The similar gel migration pattern shared by NSP9 and rotavirus NSP3, coupled with its structural resemblance to P9-1, hints at a potential role in translational regulation or viral genome packaging, which may be linked to viroplasm. This study advances our understanding of viroplasm biogenesis and Reovirales replication, providing insights into potential antiviral drug targets.
Collapse
Affiliation(s)
- Yeda Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Hangtian Guo
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Yuhao Lu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Wanbin Yang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Tinghan Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China
| |
Collapse
|
5
|
Chajwa R, Flaum E, Bidle KD, Van Mooy B, Prakash M. Hidden comet tails of marine snow impede ocean-based carbon sequestration. Science 2024; 386:eadl5767. [PMID: 39388567 DOI: 10.1126/science.adl5767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/21/2024] [Indexed: 10/12/2024]
Abstract
Gravity-driven sinking of "marine snow" sequesters carbon in the ocean, constituting a key biological pump that regulates Earth's climate. A mechanistic understanding of this phenomenon is obscured by the biological richness of these aggregates and a lack of direct observation of their sedimentation physics. Utilizing a scale-free vertical tracking microscopy in a field setting, we present microhydrodynamic measurements of freshly collected marine snow aggregates from sediment traps. Our observations reveal hitherto-unknown comet-like morphology arising from fluid-structure interactions of transparent exopolymer halos around sinking aggregates. These invisible comet tails slow down individual particles, greatly increasing their residence time. Based on these findings, we constructed a reduced-order model for the Stokesian sedimentation of these mucus-embedded two-phase particles, paving the way toward a predictive understanding of marine snow.
Collapse
Affiliation(s)
- Rahul Chajwa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Eliott Flaum
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Graduate Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Kay D Bidle
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Ocean, Stanford University, Stanford, CA 94305, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Al Tahan MA, Michaelides K, Somasekharan Nair S, AlShatti S, Russell C, Al-Khattawi A. Mesoporous Silica Microparticle-Protein Complexes: Effects of Protein Size and Solvent Properties on Diffusion and Loading Efficiency. Br J Biomed Sci 2024; 81:13595. [PMID: 39445315 PMCID: PMC11496099 DOI: 10.3389/bjbs.2024.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Oral administration of protein-based therapeutics is highly desirable due to lower cost, enhanced patient compliance, and convenience. However, the harsh pH environment of the gastrointestinal tract poses significant challenges. Silica-based carriers have emerged as potential candidates for the delivery of protein molecules, owing to their tuneable surface area and pore volume. We explored the use of a commercial mesoporous silica carrier, SYLOID, for the delivery of octreotide and bovine serum albumin (BSA) using a solvent evaporation method in three different solvents. The loading of proteins into SYLOID was driven by diffusion, as described by the Stokes-Einstein equation. Various parameters were investigated, such as protein size, diffusion, and solubility. Additionally, 3D fluorescence confocal imaging was employed to identify fluorescence intensity and protein diffusion within the carrier. Our results indicated that the loading process was influenced by the molecular size of the protein as octreotide exhibited a higher recovery rate (71%) compared to BSA (32%). The methanol-based loading of octreotide showed uniform diffusion into the silica carrier, whereas water and ethanol loading resulted in the drug being concentrated on the surface, as shown by confocal imaging, and further confirmed by scanning electron microscopy (SEM). Pore volume assessment supported these findings, showing that octreotide loaded with methanol had a low pore volume (1.2 cc/g). On the other hand, BSA loading was affected by its solubility in the three solvents, its tendency to aggregate, and its low solubility in ethanol and methanol, which resulted in dispersed particle sizes of 223 and 231 μm, respectively. This reduced diffusion into the carrier, as confirmed by fluorescence intensity and diffusivity values. This study underscores the importance of protein size, solvent properties, and diffusion characteristics when using porous carriers for protein delivery. Understanding these factors allows for the development of more effective oral protein-based therapeutics by enhancing loading efficiency. This, in turn, will lead to advances in targeted drug delivery and improved patient outcomes.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Kyprianos Michaelides
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Smith Somasekharan Nair
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Shouq AlShatti
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Craig Russell
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Ali Al-Khattawi
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
7
|
Auvil N, Bier ME. Nanoelectrode Atmospheric Pressure Chemical Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2288-2296. [PMID: 38917028 PMCID: PMC11450814 DOI: 10.1021/jasms.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
A small ionization needle with an ultrasharp, ultrafine tip is introduced. It is lab-fabricated from tungsten wire and serves as a corona discharge emitter in nanoelectrode atmospheric pressure chemical ionization mass spectrometry (nAPCI-MS). Tip radii ranged from 8 to 44 nm, up to 44× smaller than the sharpest previously reported corona needle. Because of this, nAPCI was able to operate at +1.0 kV with no auxiliary counter electrode. Alternatively, at +1.2 kV, nAPCI could be enclosed in a small plastic assembly for headspace analysis with a sampling tube attachment as long as 15 m. No added heat or gas flow was necessary. The efficacy of nAPCI-MS was demonstrated through needle durability studies and direct analysis of vapors from real-world samples. Provisional identifications include ibuprofen from a pharmaceutical tablet, albuterol aerosol sprayed from a medical inhaler, cocaine from paper currency, caffeine from a fingertip, and bisphenol E from a paper receipt.
Collapse
Affiliation(s)
- Nicole
C. Auvil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mark E. Bier
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Souza LHC, Monteiro RGF, Guimarães WG, Gondim ACS, Sousa EHS, Diógenes ICN. Ellman's Assay on the Surface: Thiol Quantification of Human Cofilin-1 Protein through Surface Plasmon Resonance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20707-20714. [PMID: 39292813 PMCID: PMC11447915 DOI: 10.1021/acs.langmuir.4c02792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Oxidative stress on cysteine (Cys)-containing proteins has been associated with physiological disorders, as suggested for the human cofilin-1 (CFL-1) protein, in which the oxidized residues are likely implicated in the aggregation process of α-synuclein, leading to severe neuronal injuries. Considering the relevance of the oxidation state of cysteine, quantification of thiols may offer a guide for the development of effective therapies. This work presents, for the very first time, thiol quantification within CFL-1 in solution and on the surface following classic and adapted versions of Ellman's assay. The 1:1 stoichiometric Ellman's reaction occurs between 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB), and the free thiol of the cysteine residue, producing two 2-nitro-5-thiobenzoate (TNB2-) ions, one of which is released into the medium. While in solution, the thiol concentration was determined by the absorbance of the released TNB2-, on the surface, the mass of the attached TNB2- ion to the protein allowed the quantification by means of the multiparametric surface plasmon resonance (MP-SPR) technique. The SPR angle change after the interaction of DTNB with immobilized CFL-1 gave a surface coverage of 26.5 pmol cm-2 for the TNB2- ions (ΓTNB2-). The ratio of this value to the surface coverage of CFL-1, ΓCFL-1 = 6.5 ± 0.6 pmol cm-2 (also determined by MP-SPR), gave 4.1 as expected for this protein, i.e., CFL-1 contains four Cys residues in its native form (reduced state). A control experiment with adsorbed oxidized protein showed no SPR angle change, thus proving the reliability of adapting Ellman's assay to the surface using the MP-SPR technique. The results presented in this work provide evidence of the heterogenization of Ellman's assay, offering a novel perspective for studying thiol-containing species within proteins. This may be particularly useful to ensure further studies on drug-like molecules that can be carried out with validated oxidized or reduced CFL-1 or other analogous systems.
Collapse
Affiliation(s)
- Luiz H C Souza
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brasil
| | - Rayssa G F Monteiro
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brasil
| | - Wellinson G Guimarães
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brasil
| | - Ana C S Gondim
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brasil
| | - Eduardo H S Sousa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brasil
| | - Izaura C N Diógenes
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brasil
| |
Collapse
|
9
|
Sasidharan S, Knepper L, Ankrom E, Cucé G, Kong L, Ratajczak A, Im W, Thévenin D, Honerkamp-Smith A. Microfluidic measurement of the size and shape of lipid-anchored proteins. Biophys J 2024; 123:3478-3489. [PMID: 39228123 PMCID: PMC11480770 DOI: 10.1016/j.bpj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
The surface of a cell is crowded with membrane proteins. The size, shape, density, and mobility of extracellular surface proteins mediate cell surface accessibility to external molecules, viral particles, and other cells. However, predicting these qualities is not always straightforward, even when protein structures are known. We previously developed an experimental method for measuring flow-driven lateral transport of neutravidin bound to biotinylated lipids in supported lipid bilayers. Here, we use this method to detect hydrodynamic force applied to a series of lipid-anchored proteins with increasing size. We find that the measured force reflects both protein size and shape, making it possible to distinguish these features of intact, folded proteins in their undisturbed orientation and proximity to the lipid membrane. In addition, our results demonstrate that individual proteins are transported large distances by flow forces on the order of femtoNewtons, similar in magnitude to the shear forces resulting from blood circulation or from the swimming motion of microorganisms. Similar protein transport across living cells by hydrodynamic force may contribute to biological flow sensing.
Collapse
Affiliation(s)
| | - Leah Knepper
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Emily Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Gabriel Cucé
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Lingyang Kong
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Amanda Ratajczak
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
10
|
Morshedi Rad D, Hansen WP, Zhand S, Cranfield C, Ebrahimi Warkiani M. A hybridized mechano-electroporation technique for efficient immune cell engineering. J Adv Res 2024; 64:31-43. [PMID: 37956863 PMCID: PMC11464423 DOI: 10.1016/j.jare.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
New abstract created by yokesh. Its is unstructured paragraph.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - William P. Hansen
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Charles Cranfield
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
11
|
Ponomarenko EA, Ivanov YD, Valueva AA, Pleshakova TO, Zgoda VG, Vavilov NE, Ilgisonis EV, Lisitsa AV, Archakov AI. From Proteomics to the Analysis of Single Protein Molecules. Int J Mol Sci 2024; 25:10308. [PMID: 39408640 PMCID: PMC11476356 DOI: 10.3390/ijms251910308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Limit of detection (LoD) is a term that is used to characterize the sensitivity of an analytical method. The existing limitation of the sensitivity of analysis using modern mass spectrometry methods has been experimentally shown to be a limiting factor in the application of proteomic technologies in medicine. This article proposes a concept of a new technology that will set a new vector of development in the development of systems for solving problems of medical diagnostics and deals with theoretical and practical aspects of creating a new technology for the detection of single biomacromolecules (in particular, proteins) in biological samples. Such technology should be based on the principle of signal registration similar to that used in a Geiger counter (also known as a Geiger-Müller counter or G-M counter), a device that automatically counts the number of ionizing particles that hit it. This counter is free from probabilistic components; it registers a signal if there is at least one target molecule in the analysis chamber. Predictive medical diagnostics require technology based on methods where sensitivity allows for the detection of single marker molecules in a biological sample volume of 1-10 µL, the smallest volume of biomaterial used in laboratory diagnostics. Creation of a detector with a sensitivity of 10-18 M would allow for the detection of one molecule in 1 µL of the sample, which fundamentally makes this approach analogous to a G-M counter for solutions. To date, bioanalytical methods are limited to a sensitivity of 10-12 M (which is approximately 1 million molecules per 1 μL), which is insufficient to capture the early stages of pathological processes.
Collapse
|
12
|
Weaver AR, Rajagopal NR, Pereira RM, Koehler PG, MacIntosh AJ, Baldwin RW, Batich CD. Characteristics of a Spray-Dried Porcine Blood Meal for Aedes aegypti Mosquitoes. INSECTS 2024; 15:716. [PMID: 39336684 PMCID: PMC11432713 DOI: 10.3390/insects15090716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Research into mosquito-borne illnesses faces hurdles because feeding fresh animal blood to rear female mosquitoes presents logistical, economic, and safety challenges. In this study, a shelf-stable additive (spray-dried porcine blood; SDPB) hypothesized to supply accessible hemoglobin was evaluated within an alternative meal (AM) containing whey powder and PBS for rearing the yellow fever mosquito Aedes aegypti. LC-MS/MS proteomics, microbial assays, and particle reduction techniques confirmed and characterized the functionality of hemoglobin in SDPB, while engorgement, fecundity, egg viability, and meal stability bioassays assessed AM performance. Chemical assays supported hemoglobin as the phagostimulant in SDPB with aggregates partially solubilized in the AM that can be more accessible via particle reduction. Unpaired two-tailed t-tests indicate that the AM stimulates oogenesis (t11 = 13.6, p = 0.003) and is stable under ambient (1+ y; t12 = 0.576, p = 0.575) and aqueous (14 d; t12 = 0.515, p = 0.639) conditions without decreasing fecundity. Egg hatch rates for the ninth generation of AM-reared Ae. aegypti were 50-70+%. With further development, this meal may serve as a platform for mass rearing or studying effects of nutritional additives on mosquito fitness due to its low cost and stability. Future work may examine tuning spray drying parameters and resulting impacts on hemoglobin agglomeration and feeding.
Collapse
Affiliation(s)
- Alexander R Weaver
- Department of Chemical Engineering, University of Florida, 1030 Center Dr., Gainesville, FL 32611, USA
| | - Nagarajan R Rajagopal
- Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Drive, P.O. Box 11400, Gainesville, FL 32611, USA
| | - Roberto M Pereira
- Entomology & Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611, USA
| | - Philip G Koehler
- Entomology & Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611, USA
| | - Andrew J MacIntosh
- Department of Food Science and Human Nutrition, University of Florida, 572 Newell Dr., Gainesville, FL 32611, USA
| | - Rebecca W Baldwin
- Entomology & Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL 32611, USA
| | - Christopher D Batich
- Department of Materials Science and Engineering, University of Florida, 549 Gale Lemerand Drive, P.O. Box 11400, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Berna-Erro A, Lopez JJ, Jardin I, Sanchez-Collado J, Salido GM, Rosado JA. Differential functional role of Orai1 variants in constitutive Ca 2+ entry and calcification in luminal breast cancer cells. J Biol Chem 2024; 300:107786. [PMID: 39303919 DOI: 10.1016/j.jbc.2024.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Resting cytosolic Ca2+ concentration is tightly regulated to fine-tune Ca2+-dependent cellular functions. Luminal breast cancer cells exhibit constitutive Ca2+ entry mediated by Orai1 and the secretory pathway Ca2+-ATPase, SPCA2, which result in mammary microcalcifications that constitute a prognostic marker of mammary lesions. Two Orai1 isoforms have been identified, the full-length Orai1α, consisting of 301 amino acids, and the short variant, Orai1β, lacking the 63 or 70 N-terminal amino acids comprising residues involved in channel inactivation and binding sites with Orai1 partners. We show that only the mammalian-specific Orai1α rescues SPCA2-dependent constitutive Ca2+ entry in Orai1-KO MCF7 cells, a widely used luminal breast cancer cell line. FRET analysis and immunoprecipitation revealed that Orai1α shows a greater ability to interact with SPCA2 than Orai1β. Deletion of the first 38 amino acids in Orai1α reduced the interaction with SPCA2 to a similar extent as Orai1β, thus suggesting that the N-terminal 38 amino acids play a relevant role in Orai1α-SPCA2 interaction. Finally, Orai1α, but not Orai1β, rescue the ability of Orai1-deficient cells to form in vitro microcalcifications. These findings provide compelling evidence for a functional role of Orai1α in constitutive Ca2+ entry in MCF7 cells, which might be a target to prevent the development of mammary microcalcifications in luminal breast cancer.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain.
| | - Jose Javier Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain.
| |
Collapse
|
14
|
Lee Y, Choi K, Kim JE, Cha S, Nam JM. Integrating, Validating, and Expanding Information Space in Single-Molecule Surface-Enhanced Raman Spectroscopy for Biomolecules. ACS NANO 2024; 18:25359-25371. [PMID: 39228259 DOI: 10.1021/acsnano.4c09218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) is an ultrahigh-resolution spectroscopic method for directly obtaining the complex vibrational mode information on individual molecules. SM-SERS offers a wide range of submolecular information on the hidden heterogeneity in its functional groups and varying structures, dynamics of conformational changes, binding and reaction kinetics, and interactions with the neighboring molecule and environment. Despite the richness in information on individual molecules and potential of SM-SERS in various detection targets, including large and complex biomolecules, several issues and practical considerations remain to be addressed, such as the requirement of long integration time, challenges in forming reliable and controllable interfaces between nanostructures and biomolecules, difficulty in determining hotspot size and shape, and most importantly, insufficient signal reproducibility and stability. Moreover, utilizing and interpreting SERS spectra is challenging, mainly because of the complexity and dynamic nature of molecular fingerprint Raman spectra, and this leads to fragmentary analysis and incomplete understanding of the spectra. In this Perspective, we discuss the current challenges and future opportunities of SM-SERS in views of system approaches by integrating molecules of interest, Raman dyes, plasmonic nanostructures, and artificial intelligence, particularly for detecting and analyzing biomolecules to realize the validation and expansion of information space in SM-SERS.
Collapse
Affiliation(s)
- Yeonhee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Kyungin Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Ji-Eun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Seungsang Cha
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
15
|
Hagan ML, Tuladhar A, Yu K, Alhamad DW, Bensreti H, Dorn J, Piedra VM, Cantu N, Stokes EG, Blumenthal D, Roberts RL, Balayan V, Bass SM, Dickerson T, Cartelle AL, Montesinos-Cartagena M, Awad ME, Castro AA, Garland T, Cooley MA, Johnson M, Hamrick MW, McNeil PL, McGee-Lawrence ME. Osteocyte Sptbn1 Deficiency Alters Cell Survival and Mechanotransduction Following Formation of Plasma Membrane Disruptions (PMD) from Mechanical Loading. Calcif Tissue Int 2024:10.1007/s00223-024-01285-2. [PMID: 39276238 DOI: 10.1007/s00223-024-01285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
We and others have shown that application of high-level mechanical loading promotes the formation of transient plasma membrane disruptions (PMD) which initiate mechanotransduction. We hypothesized that increasing osteocyte cell membrane fragility, by disrupting the cytoskeleton-associated protein β2-spectrin (Sptbn1), could alter osteocytic responses and bone adaptation to loading in a PMD-related fashion. In MLO-Y4 cells, treatment with the spectrin-disrupting agent diamide or knockdown of Sptbn1 via siRNA increased the number of PMD formed by fluid shear stress. Primary osteocytes from an osteocyte-targeted DMP1-Cre Sptbn1 conditional knockout (CKO) model mimicked trends seen with diamide and siRNA treatment and suggested the creation of larger PMD, which repaired more slowly, for a given level of stimulus. Post-wounding cell survival was impaired in all three models, and calcium signaling responses from the wounded osteocyte were mildly altered in Sptbn1 CKO cultures. Although Sptbn1 CKO mice did not demonstrate an altered skeletal phenotype as compared to WT littermates under baseline conditions, they showed a blunted increase in cortical thickness when subjected to an osteogenic tibial loading protocol as well as evidence of increased osteocyte death (increased lacunar vacancy) in the loaded limb after 2 weeks of loading. The impaired post-wounding cell viability and impaired bone adaptation seen with Sptbn1 disruption support the existence of an important role for Sptbn1, and PMD formation, in osteocyte mechanotransduction and bone adaptation to mechanical loading.
Collapse
Affiliation(s)
- Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Anik Tuladhar
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Dima W Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Victor M Piedra
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Nicholas Cantu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Eric G Stokes
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Daniel Blumenthal
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Rachel L Roberts
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Vanshika Balayan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Sarah M Bass
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Thomas Dickerson
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Anabel Liyen Cartelle
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Marlian Montesinos-Cartagena
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Alberto A Castro
- Evolution Ecology & Organismal Biology Department, University of California Riverside, Riverside, USA
| | - Theodore Garland
- Evolution Ecology & Organismal Biology Department, University of California Riverside, Riverside, USA
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Maribeth Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Paul L McNeil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, CB1101, Augusta, GA, 30912, USA.
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
16
|
Morris GP, Foster CG, Sutherland BA, Grubb S. Microglia contact cerebral vasculature through gaps between astrocyte endfeet. J Cereb Blood Flow Metab 2024:271678X241280775. [PMID: 39253821 DOI: 10.1177/0271678x241280775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The close spatial relationship between microglia and cerebral blood vessels implicates microglia in vascular development, homeostasis and disease. In this study we used the publicly available Cortical MM^3 electron microscopy dataset to systematically investigate microglial interactions with the vasculature. Our analysis revealed that approximately 20% of microglia formed direct contacts with blood vessels through gaps between adjacent astrocyte endfeet. We termed these contact points "plugs". Plug-forming microglia exhibited closer proximity to blood vessels than non-plug forming microglia and formed multiple plugs, predominantly near the soma, ranging in surface area from ∼0.01 μm2 to ∼15 μm2. Plugs were enriched at the venule end of the vascular tree and displayed a preference for contacting endothelial cells over pericytes at a ratio of 3:1. In summary, we provide novel insights into the ultrastructural relationship between microglia and the vasculature, laying a foundation for understanding how these contacts contribute to the functional cross-talk between microglia and cells of the vasculature in health and disease.
Collapse
Affiliation(s)
- Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Catherine G Foster
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Søren Grubb
- Center for Translational Neuromedicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
17
|
Habermann S, Gerken LRH, Kociak M, Monachon C, Kissling VM, Gogos A, Herrmann IK. Cathodoluminescent and Characteristic X-Ray-Emissive Rare-Earth-Doped Core/Shell Protein Labels for Spectromicroscopic Analysis of Cell Surface Receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404309. [PMID: 39246186 DOI: 10.1002/smll.202404309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Understanding the localization and the interactions of biomolecules at the nanoscale and in the cellular context remains challenging. Electron microscopy (EM), unlike light-based microscopy, gives access to the cellular ultrastructure yet results in grey-scale images and averts unambiguous (co-)localization of biomolecules. Multimodal nanoparticle-based protein labels for correlative cathodoluminescence electron microscopy (CCLEM) and energy-dispersive X-ray spectromicroscopy (EDX-SM) are presented. The single-particle STEM-cathodoluminescence (CL) and characteristic X-ray emissivity of sub-20 nm lanthanide-doped nanoparticles are exploited as unique spectral fingerprints for precise label localization and identification. To maximize the nanoparticle brightness, lanthanides are incorporated in a low-phonon host lattice and separated from the environment using a passivating shell. The core/shell nanoparticles are then functionalized with either folic (terbium-doped) or caffeic acid (europium-doped). Their potential for (protein-)labeling is successfully demonstrated using HeLa cells expressing different surface receptors that bind to folic or caffeic acid, respectively. Both particle populations show single-particle CL emission along with a distinctive energy-dispersive X-ray signal, with the latter enabling color-based localization of receptors within swift imaging times well below 2 min perμ m $\umu\text{m}$ 2 while offering high resolution with a pixel size of 2.78 nm. Taken together, these results open a route to multi-color labeling based on electron spectromicroscopy.
Collapse
Affiliation(s)
- Sebastian Habermann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | | | - Vera M Kissling
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, Balgrist Campus, Forchstrasse 340, 8008, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 74, 8006, Zurich, Switzerland
| |
Collapse
|
18
|
Hellwig P, Dittrich A, Heyer R, Reichl U, Benndorf D. Detection, isolation and characterization of phage-host complexes using BONCAT and click chemistry. Front Microbiol 2024; 15:1434301. [PMID: 39296306 PMCID: PMC11409252 DOI: 10.3389/fmicb.2024.1434301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Phages are viruses that infect prokaryotes and can shape microbial communities by lysis, thus offering applications in various fields. However, challenges exist in sampling, isolation and accurate prediction of the host specificity of phages as well as in the identification of newly replicated virions in response to environmental challenges. Methods A new workflow using biorthogonal non-canonical amino acid tagging (BONCAT) and click chemistry (CC) allowed the combined analysis of phages and their hosts, the identification of newly replicated virions, and the specific tagging of phages with biotin for affinity chromatography. Results Replication of phage λ in Escherichia coli was selected as a model for workflow development. Specific labeling of phage λ proteins with the non-canonical amino acid 4-azido-L-homoalanine (AHA) during phage development in E. coli was confirmed by LC-MS/MS. Subsequent tagging of AHA with fluorescent dyes via CC allowed the visualization of phages adsorbed to the cell surface by fluorescence microscopy. Flow cytometry enabled the automated detection of these fluorescent phage-host complexes. Alternatively, AHA-labeled phages were tagged with biotin for purification by affinity chromatography. Despite biotinylation the tagged phages could be purified and were infectious after purification. Discussion Applying this approach to environmental samples would enable host screening without cultivation. A flexible and powerful workflow for the detection and enrichment of phages and their hosts in pure cultures has been established. The developed method lays the groundwork for future workflows that could enable the isolation of phage-host complexes from diverse complex microbial communities using fluorescence-activated cell sorting or biotin purification. The ability to expand and customize the workflow through the growing range of compounds for CC offers the potential to develop a versatile toolbox in phage research. This work provides a starting point for these further studies by providing a comprehensive standard operating procedure.
Collapse
Affiliation(s)
- Patrick Hellwig
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
| | - Anna Dittrich
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Heyer
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße, Bielefeld, Germany
| | - Udo Reichl
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
| | - Dirk Benndorf
- Chair of Bioprocess Engineering, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Magdeburg, Germany
- Department of Microbiology, Anhalt University of Applied Sciences, Köthen, Germany
| |
Collapse
|
19
|
Jang E, Ho TWW, Brumell JH, Lefebvre F, Wang C, Lee WL. IL-1β Induces LDL Transcytosis by a Novel Pathway Involving LDLR and Rab27a. Arterioscler Thromb Vasc Biol 2024; 44:2053-2068. [PMID: 38989581 DOI: 10.1161/atvbaha.124.320940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND In early atherosclerosis, circulating LDLs (low-density lipoproteins) traverse individual endothelial cells by an active process termed transcytosis. The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) treated advanced atherosclerosis using a blocking antibody for IL-1β (interleukin-1β); this significantly reduced cardiovascular events. However, whether IL-1β regulates early disease, particularly LDL transcytosis, remains unknown. METHODS We used total internal reflection fluorescence microscopy to quantify transcytosis by human coronary artery endothelial cells exposed to IL-1β. To investigate transcytosis in vivo, we injected wild-type and knockout mice with IL-1β and LDL to visualize acute LDL deposition in the aortic arch. RESULTS Exposure to picomolar concentrations of IL-1β induced transcytosis of LDL but not of albumin by human coronary artery endothelial cells. Surprisingly, expression of the 2 known receptors for LDL transcytosis, ALK-1 (activin receptor-like kinase-1) and SR-BI (scavenger receptor BI), was unchanged or decreased. Instead, IL-1β increased the expression of the LDLR (LDL receptor); this was unexpected because LDLR is not required for LDL transcytosis. Overexpression of LDLR had no effect on basal LDL transcytosis. However, knockdown of LDLR abrogated the effect of IL-1β on transcytosis rates while the depletion of Cav-1 (caveolin-1) did not. Since LDLR was necessary but overexpression had no effect, we reasoned that another player must be involved. Using public RNA sequencing data to curate a list of Rab (Ras-associated binding) GTPases affected by IL-1β, we identified Rab27a. Overexpression of Rab27a alone had no effect on basal transcytosis, but its knockdown prevented induction by IL-1β. This was phenocopied by depletion of the Rab27a effector JFC1 (synaptotagmin-like protein 1). In vivo, IL-1β increased LDL transcytosis in the aortic arch of wild-type but not Ldlr-/- or Rab27a-deficient mice. The JFC1 inhibitor nexinhib20 also blocked IL-1β-induced LDL accumulation in the aorta. CONCLUSIONS IL-1β induces LDL transcytosis by a distinct pathway requiring LDLR and Rab27a; this route differs from basal transcytosis. We speculate that induction of transcytosis by IL-1β may contribute to the acceleration of early disease.
Collapse
Affiliation(s)
- Erika Jang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada (E.J., T.W.W.H., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., T.W.W.H., W.L.L.), University of Toronto, ON, Canada
| | - Tse Wing Winnie Ho
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada (E.J., T.W.W.H., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., T.W.W.H., W.L.L.), University of Toronto, ON, Canada
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada (J.H.B.)
| | - François Lefebvre
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada (F.L.)
| | - Changsen Wang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada (E.J., T.W.W.H., C.W., W.L.L.)
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, ON, Canada (E.J., T.W.W.H., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., T.W.W.H., W.L.L.), University of Toronto, ON, Canada
- Department of Biochemistry (W.L.L.), University of Toronto, ON, Canada
- Department of Medicine and the Interdepartmental Division of Critical Care Medicine (W.L.L.), University of Toronto, ON, Canada
| |
Collapse
|
20
|
Santamaría B, L. Hernandez A, Laguna M, Holgado M. Comparative analysis of electrophoresis and interferometric optical detection method for molecular weight determination of proteins. Heliyon 2024; 10:e35932. [PMID: 39229532 PMCID: PMC11369481 DOI: 10.1016/j.heliyon.2024.e35932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Analytical detection methods play a pivotal role in scientific research, enabling the identification and quantification of specific analytes in various disciplines. This scientific report aims to compare two very different methodologies for determining the Molecular Mass (MM, also known as Molecular Weight, MW) of proteins: electrophoresis gel and the Interferometric Optical Detection Method (IODM). For this purpose, several proteins with different MM were selected. The electrophoresis technique was employed to validate the structure and MM of different parts or fragments of the Matrix Metallopeptidase 9 antibody (anti-MMP9), antibody against S100 calcium binding protein A6 (anti-S100A6) and Cystatin S4 antibody (anti-CST4) by examining the presence of bands with expected sizes. The IODM was applied to study the above-mentioned proteins (part of the antibodies) together with the protein G, as a reference to correlate the MM and protein sizes with the measured signal. We report the evidence of IODM as a competitive analytical approach for the determination of the MM of proteins for the first time. This innovative method allows for accurate MM determination using minimal sample volumes and concentrations, employing a simple experimental procedure that eliminates the requirement for protein denaturation.
Collapse
Affiliation(s)
- B. Santamaría
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, M-40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
- Group of Organ and Tissue on-a-chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/ Profesor Martín Lagos s/n, 4a Planta Sur 28040, Madrid, Spain
- Department of Mechanics, Chemistry and Industrial Design Engineering, Escuela Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012, Madrid, Spain
| | - A. L. Hernandez
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, M-40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
- Group of Organ and Tissue on-a-chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/ Profesor Martín Lagos s/n, 4a Planta Sur 28040, Madrid, Spain
| | - M.F. Laguna
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, M-40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
- Group of Organ and Tissue on-a-chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/ Profesor Martín Lagos s/n, 4a Planta Sur 28040, Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - M. Holgado
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, M-40 km38, 28223 Pozuelo de Alarcón, Madrid, Spain
- Group of Organ and Tissue on-a-chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/ Profesor Martín Lagos s/n, 4a Planta Sur 28040, Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| |
Collapse
|
21
|
Yeboah IO, Young RT, Mosioma M, Sensale S. A mean-field theory for characterizing the closing rates of DNA origami hinges. J Chem Phys 2024; 161:074901. [PMID: 39145564 DOI: 10.1063/5.0222446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optimization of kinetic properties governing conformational changes. In this work, we introduce a mean-field theory to characterize the kinetic behavior of a dynamic DNA origami hinge where each arm bears complementary single-stranded DNA overhangs of different lengths, which can latch the hinge at a closed conformation. This device is currently being investigated for multiple applications, being of particular interest the development of DNA-based rapid diagnostic tests for coronavirus. Drawing from classical statistical mechanics theories, we derive analytical expressions for the mean binding time of these overhangs within a constant hinge. This analysis is then extended to flexible hinges, where the angle diffuses within a predetermined energy landscape. We validate our model by comparing it with experimental measurements of the closing rates of DNA nanocalipers with different energy landscapes and overhang lengths, demonstrating excellent agreement and suggesting fast angular relaxation relative to binding. These findings offer insights that can guide the optimization of devices for specific state lifetimes. Moreover, the framework introduced here lays the groundwork for further advancements in modeling the kinetics of dynamic DNA nanostructures.
Collapse
Affiliation(s)
- Isaac O Yeboah
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Robert T Young
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Mark Mosioma
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
- Department of Physics, Indiana University Indianapolis, Indianapolis, Indiana 46202, USA
| |
Collapse
|
22
|
Johnson MD, Shepherd DC, Sakai HD, Mudaliyar M, Pandurangan AP, Short FL, Veith PD, Scott NE, Kurosawa N, Ghosal D. Cell-to-cell interactions revealed by cryo-tomography of a DPANN co-culture system. Nat Commun 2024; 15:7066. [PMID: 39152123 PMCID: PMC11329633 DOI: 10.1038/s41467-024-51159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
DPANN is a widespread and diverse group of archaea characterized by their small size, reduced genome, limited metabolic pathways, and symbiotic existence. Known DPANN species are predominantly obligate ectosymbionts that depend on their host for proliferation. The structural and molecular details of host recognition, host-DPANN intercellular communication, and host adaptation in response to DPANN attachment remain unknown. Here, we use electron cryotomography (cryo-ET) to show that the Microcaldus variisymbioticus ARM-1 may interact with its host, Metallosphaera javensis AS-7 through intercellular proteinaceous nanotubes. Combining cryo-ET and sub-tomogram averaging, we show the in situ architectures of host and DPANN S-layers and the structures of the nanotubes in their primed and extended states. In addition, comparative proteomics and genomic analyses identified host proteomic changes in response to DPANN attachment. These results provide insights into the structural basis of host-DPANN communication and deepen our understanding of the host ectosymbiotic relationships.
Collapse
Affiliation(s)
- Matthew D Johnson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Doulin C Shepherd
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Hiroyuki D Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Manasi Mudaliyar
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Arun Prasad Pandurangan
- Heart and Lung Research Institute, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Francesca L Short
- Department of Microbiology and Infection Program, Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
23
|
Gao T, Yachi T, Shi X, Sato R, Sato C, Yonamine Y, Kanie K, Misawa H, Ijiro K, Mitomo H. Ultrasensitive Surface-Enhanced Raman Scattering Platform for Protein Detection via Active Delivery to Nanogaps as a Hotspot. ACS NANO 2024; 18:21593-21606. [PMID: 39093951 PMCID: PMC11328179 DOI: 10.1021/acsnano.4c09578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is an attractive technique in molecular detection with high sensitivity and label-free characteristics. However, its use in protein detection is limited by the large volume of proteins, hindering its approach to the narrow spaces of hotspots. In this study, we fabricated a Au nanoTriangle plate Array on Gel (AuTAG) as an SERS substrate by attaching a Au nanoTriangle plate (AuNT) arrangement on a thermoresponsive hydrogel surface. The AuTAG acts as an actively tunable plasmonic device, on which the interparticle distance is altered by controlling temperature via changes in hydrogel volume. Further, we designed a Gel Filter Trapping (GFT) method as an active protein delivery strategy based on the characteristics of hydrogels, which can absorb water and separate biopolymers through their three-dimensional (3D) polymer networks. On the AuTAGs, fabricated with AuNTs modified with charged surface ligands to prevent the nonspecific adsorption of analytes to particles, the GFT method helped the delivery of proteins to hotspot areas on the AuNT arrangement. This combination of a AuTAG substrate and the GFT method enables ultrahigh sensitivity for protein detection by SERS up to a single-molecule level as well as a wide quantification concentration range of 6 orders due to their geometric advantages.
Collapse
Affiliation(s)
- Tianxu Gao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takehiro Yachi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Xu Shi
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Creative Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Rina Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Chikara Sato
- AIST Tsukuba central 7, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
- Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Division of Immune Homeostasis, Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi 173-8610, Japan
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kiyoshi Kanie
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Sendai 980-8577, Japan
| | - Hiroaki Misawa
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 770-8530, Japan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
24
|
Basile S, Parisi C, Bellia F, Zimbone S, Arrabito G, Gulli D, Pignataro B, Giuffrida ML, Sortino S, Copani A. Red-Light-Photosensitized Tyrosine 10 Nitration of β-Amyloid 1-42 Diverts the Protein from Forming Toxic Aggregates. ACS Chem Neurosci 2024; 15:2916-2924. [PMID: 39036818 DOI: 10.1021/acschemneuro.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Several studies have highlighted the presence of nitration damage following neuroinflammation in Alzheimer's disease (AD). Accordingly, post-transcriptional modifications of β-amyloid (Aβ), including peptide nitration, have been explored as a marker of the disease. However, the implications of Aβ nitration in terms of aggregation propensity and neurotoxicity are still debated. Here, we show new data obtained using a photoactivatable peroxynitrite generator (BPT-NO) to overcome the limitations associated with chemical nitration methods. We found that the photoactivation of BPT-NO with the highly biocompatible red light selectively induces the nitration of tyrosine 10 of freshly solubilized full-length Aβ1-42. Photonitrated Aβ1-42 was, therefore, investigated for aggregation states and functions. It resulted that photonitrated Aβ1-42 did not aggregate into small oligomers but rather self-assembled into large amorphous aggregates. When tested on neuronal-like SH-SY5Y cells and microglial C57BL/6 BV2 cells, photonitrated Aβ1-42 showed to be free of neurotoxicity and able to induce phagocytic microglia cells. We propose that light-controlled nitration of the multiple forms in which Aβ occurs (i.e., monomers, oligomers, fibrils) could be a tool to assess in real-time the impact of tyrosine nitration on the amyloidogenic and toxic properties of Aβ1-42.
Collapse
Affiliation(s)
- Sarah Basile
- Department of Drug and Health Sciences (DSFS), University of Catania, 95125 Catania, Italy
| | - Cristina Parisi
- Department of Drug and Health Sciences (DSFS), University of Catania, 95125 Catania, Italy
| | - Francesco Bellia
- Institute of Crystallography (IC), National Research Council, 95126 Catania, Italy
| | - Stefania Zimbone
- Institute of Crystallography (IC), National Research Council, 95126 Catania, Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- ATeN Center, University of Palermo, 90128 Palermo, Italy
| | - Daniele Gulli
- ATeN Center, University of Palermo, 90128 Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- ATeN Center, University of Palermo, 90128 Palermo, Italy
| | | | - Salvatore Sortino
- Department of Drug and Health Sciences (DSFS), University of Catania, 95125 Catania, Italy
| | - Agata Copani
- Department of Drug and Health Sciences (DSFS), University of Catania, 95125 Catania, Italy
- Institute of Crystallography (IC), National Research Council, 95126 Catania, Italy
| |
Collapse
|
25
|
Mazalo JK, Tay SS, Kempe D, Biro M. Chemokine receptor distribution on the surface of repolarizing T cells. Biophys J 2024; 123:2328-2342. [PMID: 38327056 PMCID: PMC11331047 DOI: 10.1016/j.bpj.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/17/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
T cells migrate constitutively with a polarized morphology, underpinned by signaling compartmentalization and discrete cytoskeletal organizations, giving rise to a dynamic and expansive leading edge, distinct from the stable and constricted uropod at the rear. In vivo, the motion and function of T cells at various stages of differentiation is highly directed by chemokine gradients. When cognate ligands bind chemokine receptors on their surface, T cells respond by reorientating their polarity axis and migrating toward the source of the chemokine signal. Despite the significance of such chemotactic repolarization to the accurate navigation and function of T cells, the precise signaling mechanisms that underlie it remain elusive. Notably, it remained unclear whether the distribution of chemokine receptors on the T cell surface is altered during repolarization. Here, we developed parallel cell-secreted and microfluidics-based chemokine gradient delivery methods and employed both fixed imaging and live lattice light-sheet microscopy to investigate the dynamics of chemokine receptor CCR5 on the surface of primary murine CD8+ T cells. Our findings show that, during constitutive migration, chemokine receptor distribution is largely isotropic on the T cell surface. However, upon exposure to a CCL3 gradient, surface chemokine receptor distributions exhibit a transient bias toward the uropod. The chemokine receptors then progressively redistribute from the uropod to cover the T cell surface uniformly. This study sheds new light on the dynamics of surface chemokine receptor distribution during T cell repolarization, advancing our understanding of the signaling of immune cells in the complex chemokine landscapes they navigate.
Collapse
Affiliation(s)
- Jessica K Mazalo
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Szun S Tay
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Li H, Yu H, Liu D, Liao P, Gao C, Zhou J, Mei J, Zong Y, Ding P, Yao M, Wang B, Lu Y, Huang Y, Gao Y, Zhang C, Zheng M, Gao J. Adenosine diphosphate released from stressed cells triggers mitochondrial transfer to achieve tissue homeostasis. PLoS Biol 2024; 22:e3002753. [PMID: 39163396 PMCID: PMC11335167 DOI: 10.1371/journal.pbio.3002753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Cell-to-cell mitochondrial transfer has recently been shown to play a role in maintaining physiological functions of cell. We previously illustrated that mitochondrial transfer within osteocyte dendritic network regulates bone tissue homeostasis. However, the mechanism of triggering this process has not been explored. Here, we showed that stressed osteocytes in mice release adenosine diphosphate (ADP), resulting in triggering mitochondrial transfer from healthy osteocytes to restore the oxygen consumption rate (OCR) and to alleviate reactive oxygen species accumulation. Furthermore, we identified that P2Y2 and P2Y6 transduced the ADP signal to regulate osteocyte mitochondrial transfer. We showed that mitochondrial metabolism is impaired in aged osteocytes, and there were more extracellular nucleotides release into the matrix in aged cortical bone due to compromised membrane integrity. Conditioned medium from aged osteocytes triggered mitochondrial transfer between osteocytes to enhance the energy metabolism. Together, using osteocyte as an example, this study showed new insights into how extracellular ADP triggers healthy cells to rescue energy metabolism crisis in stressed cells via mitochondrial transfer in tissue homeostasis.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Bland T, Hirani N, Briggs DC, Rossetto R, Ng K, Taylor IA, McDonald NQ, Zwicker D, Goehring NW. Optimized PAR-2 RING dimerization mediates cooperative and selective membrane binding for robust cell polarity. EMBO J 2024; 43:3214-3239. [PMID: 38907033 PMCID: PMC11294563 DOI: 10.1038/s44318-024-00123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.
Collapse
Affiliation(s)
- Tom Bland
- Francis Crick Institute, London, NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | | | - Riccardo Rossetto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - KangBo Ng
- Francis Crick Institute, London, NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | - Neil Q McDonald
- Francis Crick Institute, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, WC1E 7HX, UK
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Nathan W Goehring
- Francis Crick Institute, London, NW1 1AT, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| |
Collapse
|
28
|
Okuda J, Watanabe N, Nakamura T, Mizushima K, Xi H, Kumamoto Y, Fujita K, Kino-Oka M. The impact of repeated temperature cycling on cryopreserved human iPSC viability stems from cytochrome redox state changes. Front Bioeng Biotechnol 2024; 12:1443795. [PMID: 39139293 PMCID: PMC11319289 DOI: 10.3389/fbioe.2024.1443795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are an attractive cell source for regenerative medicine. For its widespread use as a starting material, a robust storage and distribution system in the frozen state is necessary. For this system, managing transient warming during storage and transport is essential, but how transient warming affects cells and the mechanisms involved are not yet fully understood. This study examined the influence of temperature cyclings (from -80°C to -150°C) on cryopreserved hiPSCs using a custom-made cryo Raman microscope, flow cytometry, and performance indices to assess viability. Raman spectroscopy indicated the disappearance of mitochondrial cytochrome signals after thawing. A reduction in the mitochondrial membrane potential was detected using flow cytometry. The performance indices indicated a decrease in attachment efficiency with an increase in the number of temperature cycles. This decrease was observed in the temperature cycle range above the glass transition temperature of the cryoprotectant. Raman observations captured an increase in the signal intensity of intracellular dimethyl sulfoxide (DMSO) during temperature cycles. Based on these results, we proposed a schematic illustration for cellular responses to temperature fluctuations, suggesting that temperature fluctuations above the glass-transition temperature trigger the movement of DMSO, leading to cytochrome c oxidation, mitochondrial damage, and caspase-mediated cell death. This enhances our understanding of the key events during cryopreservation and informs the development of quality control strategies for hiPSC storage and transport.
Collapse
Affiliation(s)
- Jun Okuda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Research Base for Cell Manufacturability, Osaka University, Suita, Japan
- R&D Center, Iwatani Corporation, Amagasaki, Japan
| | - Namiko Watanabe
- Research Base for Cell Manufacturability, Osaka University, Suita, Japan
- R&D Center, Iwatani Corporation, Amagasaki, Japan
| | - Tetsuji Nakamura
- Research Base for Cell Manufacturability, Osaka University, Suita, Japan
- R&D Center, Iwatani Corporation, Amagasaki, Japan
| | - Kenta Mizushima
- Department of Applied Physics, Osaka University, Suita, Japan
| | - Heqi Xi
- Department of Applied Physics, Osaka University, Suita, Japan
| | | | | | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Research Base for Cell Manufacturability, Osaka University, Suita, Japan
| |
Collapse
|
29
|
Chen X, Seyboldt R, Sommer JU, Jülicher F, Harmon T. Droplet Differentiation by a Chemical Switch. PHYSICAL REVIEW LETTERS 2024; 133:028402. [PMID: 39073969 DOI: 10.1103/physrevlett.133.028402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
A fundamental question about biomolecular condensates is how distinct condensates can emerge from the interplay of different components. Here we present a minimal model of droplet differentiation where phase separated droplets demix into two types with different chemical modifications triggered by enzymatic reactions. We use numerical solutions to Cahn-Hilliard equations with chemical reactions and an effective droplet model to reveal the switchlike behavior. Our work shows how condensate identities in cells could result from competing enzymatic actions.
Collapse
Affiliation(s)
| | | | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung, Institut Theorie der Polymere, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
- Institute for Theoretical Physics, TU Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstrasse 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
30
|
Sakamoto R, Murrell MP. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model. Commun Biol 2024; 7:840. [PMID: 38987288 PMCID: PMC11236970 DOI: 10.1038/s42003-024-06528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
The architecture of the actin cortex determines the generation and transmission of stresses, during key events from cell division to migration. However, its impact on myosin-induced cell shape changes remains unclear. Here, we reconstitute a minimal model of the actomyosin cortex with branched or linear F-actin architecture within giant unilamellar vesicles (GUVs, liposomes). Upon light activation of myosin, neither the branched nor linear F-actin architecture alone induces significant liposome shape changes. The branched F-actin network forms an integrated, membrane-bound "no-slip boundary" -like cortex that attenuates actomyosin contractility. By contrast, the linear F-actin network forms an unintegrated "slip boundary" -like cortex, where actin asters form without inducing membrane deformations. Notably, liposomes undergo significant deformations at an optimized balance of branched and linear F-actin networks. Our findings highlight the pivotal roles of branched F-actin in force transmission and linear F-actin in force generation to yield membrane shape changes.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
31
|
Noori MT, Rossi R, Logan BE, Min B. Hydrogen production in microbial electrolysis cells with biocathodes. Trends Biotechnol 2024; 42:815-828. [PMID: 38360421 DOI: 10.1016/j.tibtech.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
Electroautotrophic microbes at biocathodes in microbial electrolysis cells (MECs) can catalyze the hydrogen evolution reaction with low energy demand, facilitating long-term stable performance through specific and renewable biocatalysts. However, MECs have not yet reached commercialization due to a lack of understanding of the optimal microbial strains and reactor configurations for achieving high performance. Here, we critically analyze the criteria for the inocula selection, with a focus on the effect of hydrogenase activity and microbe-electrode interactions. We also evaluate the impact of the reactor design and key parameters, such as membrane type, composition, and electrode surface area on internal resistance, mass transport, and pH imbalances within MECs. This analysis paves the way for advancements that could propel biocathode-assisted MECs toward scalable hydrogen gas production.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, South Korea
| | - Ruggero Rossi
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, Penn State University, Pennsylvania, PA 16801, USA
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Yongin-Si, South Korea.
| |
Collapse
|
32
|
Jo M, Qi J, Du Z, Li Y, Shi YC. Changes in the structure and enzyme binding of starches during in vitro enzymatic hydrolysis using mammalian mucosal enzyme mixtures. Carbohydr Polym 2024; 335:122070. [PMID: 38616092 DOI: 10.1016/j.carbpol.2024.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.
Collapse
Affiliation(s)
- Myeongsu Jo
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea
| | - Jing Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
33
|
Chen YS, Hong ZX, Lin YT, Tsao EC, Chen PY, Liu CA, Harn HJ, Chiou TW, Lin SZ. Efficiency of PGK1 proteins delivered to the brain via a liposomal system through intranasal route administration for the treatment of spinocerebellar ataxia type 3. Drug Deliv Transl Res 2024; 14:1940-1953. [PMID: 38161195 DOI: 10.1007/s13346-023-01498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
A patient-friendly and efficient treatment method for patients with spinocerebellar ataxia type 3 (SCA3) was provided through a nose-to-brain liposomal system. Initially, PGK1 was overexpressed in HEK 293-84Q-GFP diseased cells (HEK 293-84Q-GFP-PGK1 cells) to confirm its effect on the diseased protein polyQ. A decrease in polyQ expression was demonstrated in HEK 293-84Q-GFP-PGK1 cells compared to HEK 293-84Q-GFP parental cells. Subsequently, PGK1 was encapsulated in a liposomal system to evaluate its therapeutic efficiency in SCA3. The optimized liposomes exhibited a significantly enhanced positive charge, facilitating efficient intracellular protein delivery to the cells. The proteins were encapsulated within the liposomes using an optimized method involving a combination of heat shock and sonication. The liposomal system was further demonstrated to be deliverable to the brain via intranasal administration. PGK1/liposomes were intranasally delivered to SCA3 mice, which subsequently exhibited an amelioration of motor impairment, as assessed via the accelerated rotarod test. Additionally, fewer shrunken morphology Purkinje cells and a reduction in polyQ expression were observed in SCA3 mice that received PGK1/liposomes but not in the untreated, liposome-only, or PGK1-only groups. This study provides a non-invasive route for protein delivery and greater delivery efficiency via the liposomal system for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan.
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Tzu Chi University of Science and Technology, Hualien, Taiwan.
| | - Zhen-Xiang Hong
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Yi-Tung Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - En-Ci Tsao
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Pei-Yu Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, 707, Sec.3, Chung-Yang Rd., 970, R.O.C, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| |
Collapse
|
34
|
Wei L, Wong D, Jeoh T, Marco ML. Intestinal delivery of encapsulated bacteriocin peptides in cross-linked alginate microcapsules. Food Res Int 2024; 188:114473. [PMID: 38823837 DOI: 10.1016/j.foodres.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Oral delivery of larger bioactive peptides (>20 amino acids) to the small intestine remains a challenge due to their sensitivity to proteolytic degradation and chemical denaturation during gastrointestinal transit. In this study, we investigated the capacity of crosslinked alginate microcapsules (CLAMs) formed by spray drying to protect Plantaricin EF (PlnEF) (C-EF) in gastric conditions and to dissolve and release PlnEF in the small intestine. PlnEF is an unmodified, two-peptide (PlnE: 33 amino acids; PlnF: 34 amino acids) bacteriocin produced by Lactiplantibacillus plantarum with antimicrobial and gut barrier protective properties. After 2 h incubation in simulated gastric fluid (SGF) (pH 1.5), 43.39 % ± 8.27 % intact PlnEF was liberated from the CLAMs encapsulates, as determined by an antimicrobial activity assay. Transfer of the undissolved fraction to simulated intestinal fluid (SIF) (pH 7) for another 2 h incubation resulted in an additional release of 16.13 % ± 4.33 %. No active PlnEF was found during SGF or sequential SIF incubations when pepsin (2,000 U/ml) was added to the SGF. To test PlnEF release in C-EF contained in a food matrix, C-EF was mixed in peanut butter (PB) (0.15 g C-EF in 1.5 g PB). A total of 12.52 % ± 9.09 % active PlnEF was detected after incubation of PB + C-EF in SGF without pepsin, whereas no activity was found when pepsin was included. Transfer of the remaining PB + C-EF fractions to SIF yielded the recovery of 46.67 % ± 13.09 % and 39.42 % ± 11.53 % active PlnEF in the SIF following exposure to SGF and to SGF with pepsin, respectively. Upon accounting for the undissolved fraction after SIF incubation, PlnEF was fully protected in the CLAMs-PB mixture and there was not a significant reduction in active PlnEF when pepsin was present. These results show that CLAMs alone do not guard PlnEF bacteriocin peptides from gastric conditions, however, mixing them in PB protected against proteolysis and improved intestinal release.
Collapse
Affiliation(s)
- Lei Wei
- Department of Food Science and Technology, University of California, Davis, USA
| | - Dana Wong
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Tina Jeoh
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, USA.
| |
Collapse
|
35
|
Bian Y, Chen Y, Zhan L, Guo H, Ke H, Wang Y, Wang Q, Gao Y, Gao Y. Effects of enzyme-induced carbonate precipitation technique on multiple heavy metals immobilization and unconfined compressive strength improvement of contaminated sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174409. [PMID: 38960158 DOI: 10.1016/j.scitotenv.2024.174409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Enzyme-induced carbonate precipitation (EICP) has been studied in remediation of heavy metal contaminated water or soil in recent years. This paper aims to investigate the immobilization mechanism of Zn2+, Ni2+, and Cr(VI) in contaminated sand, as well as strength enhancement of sand specimens by using EICP method with crude sword bean urease extracts. A series of liquid batch tests and artificially contaminated sand remediation experiments were conducted to explore the heavy metal immobilization efficacy and mechanisms. Results showed that the urea hydrolysis completion efficiency decreased as the Ca2+ concentration increased and the heavy metal immobilization percentage increased with the concentration of Ca2+ and treatment cycles in contaminated sand. After four treatment cycles with 0.5 mol/L Ca2+ added, the immobilization percentage of Zn2+, Ni2+, and Cr(VI) were 99.99 %, 86.38 %, and 75.18 %, respectively. The microscale analysis results presented that carbonate precipitates and metallic oxide such as CaCO3, ZnCO3, NiCO3, Zn(OH)2, and CrO(OH) were generated in liquid batch tests and sand remediation experiments. The SEM-EDS and FTIR results also showed that organic molecules and CaCO3 may adsorb or complex heavy metal ions. Thus, the immobilization mechanism of EICP method with crude sword bean urease can be considered as biomineralization, as well as adsorption and complexation by organic matter and calcium carbonate. The unconfined compressive strength of EICP-treated contaminated sand specimens demonstrated a positive correlation with the increased generation of carbonate precipitates, being up to 306 kPa after four treatment cycles with shear failure mode. Crude sword bean urease with 0.5 mol/L Ca2+ added is recommended to immobilize multiple heavy metal ions and enhance soil strength.
Collapse
Affiliation(s)
- Yi Bian
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China
| | - Yanbo Chen
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China; Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou, China.
| | - Liangtong Zhan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China
| | - Haowen Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, PR China
| | - Han Ke
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuze Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingyang Wang
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, China
| | - Yufeng Gao
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, China
| | - Yunqi Gao
- Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding City, Hebei Province, China
| |
Collapse
|
36
|
Barkley RJR, Crowley JC, Brodrick AJ, Zipfel WR, Parker JSL. Fluorescent protein tags affect the condensation properties of a phase-separating viral protein. Mol Biol Cell 2024; 35:ar100. [PMID: 38809580 PMCID: PMC11244164 DOI: 10.1091/mbc.e24-01-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Fluorescent protein (FP) tags are extensively used to visualize and characterize the properties of biomolecular condensates despite a lack of investigation into the effects of these tags on phase separation. Here, we characterized the dynamic properties of µNS, a viral protein hypothesized to undergo phase separation and the main component of mammalian orthoreovirus viral factories. Our interest in the sequence determinants and nucleation process of µNS phase separation led us to compare the size and density of condensates formed by FP::µNS to the untagged protein. We found an FP-dependent increase in droplet size and density, which suggests that FP tags can promote µNS condensation. To further assess the effect of FP tags on µNS droplet formation, we fused FP tags to µNS mutants to show that the tags could variably induce phase separation of otherwise noncondensing proteins. By comparing fluorescent constructs with untagged µNS, we identified mNeonGreen as the least artifactual FP tag that minimally perturbed µNS condensation. These results show that FP tags can promote phase separation and that some tags are more suitable for visualizing and characterizing biomolecular condensates with minimal experimental artifacts.
Collapse
Affiliation(s)
- Russell J. R. Barkley
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jack C. Crowley
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
| | - Andrew J. Brodrick
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Warren R. Zipfel
- School of Applied and Engineering Physics, College of Engineering, Cornell University, Ithaca, NY 14850
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14850
| | - John S. L. Parker
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
37
|
Ribeiro-Oliveira R, Diniz C, Ferreira IMPLVO. In vitro strategies to understand the impact of oral intake on the bioavailability and bioactivity of peptides from brewing by-products. Crit Rev Food Sci Nutr 2024:1-9. [PMID: 38950579 DOI: 10.1080/10408398.2024.2362410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Bioactive peptides from brewer's spent grain (BSG) and brewer's spent yeast (BSY), two by-products of the brewing industry, have great potential as functional food ingredients, dietary supplements or nutraceuticals to reduce the risk of numerous pathological conditions. Nevertheless, the oral administration of these peptides poses great challenges since peptides must undergo gastrointestinal digestion, intestinal absorption and hepatic metabolism, which can affect their bioavailability and, therefore, the expected outcomes. This review provides a comprehensive and critical analysis of the potential impact of the oral route on the bioactivity of BSG/BSY peptides as assessed by in vitro assays and identifies research gaps that require novel approaches/methodologies. The data collected indicate that in addition to the significant influence of gastrointestinal digestion, intestinal absorption and hepatic metabolism also have a major impact on the bioactivity of brewing peptides. The major gap identified was the insufficient evidence regarding hepatic metabolism, which points for the need of employing in vitro assays in this research field to provide such clarification. Thus, to reach the market, the impact of the oral route on the bioactivities of BSG/BSY peptides must be properly studied in vitro to allow adequate/effective administration (dosage/frequency) with a beneficial impact on the population health.
Collapse
Affiliation(s)
- Rita Ribeiro-Oliveira
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
38
|
Liu J, Tan YY, Zheng W, Wang Y, Ju LA, Su QP. Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology. J Nanobiotechnology 2024; 22:363. [PMID: 38910248 PMCID: PMC11194919 DOI: 10.1186/s12951-024-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
Collapse
Affiliation(s)
- Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuping Yolanda Tan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Wen Zheng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Heart Research Institute, Newtown, NSW, 2042, Australia.
| |
Collapse
|
39
|
Capuano GE, Corso D, Farina R, Pezzotti Escobar G, Screpis GA, Coniglio MA, Libertino S. Miniaturizable Chemiluminescence System for ATP Detection in Water. SENSORS (BASEL, SWITZERLAND) 2024; 24:3921. [PMID: 38931704 PMCID: PMC11207618 DOI: 10.3390/s24123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP-luciferin chemiluminescent solution was faced to a silicon photomultiplier (SiPM) for highly sensitive real-time detection. This system can detect ATP concentrations as low as 0.2 nM, with a sensitivity of 79.5 A/M. Additionally, it offers rapid response times and can measure the characteristic time required for reactant diffusion and mixing within the reaction volume, determined to be 0.3 ± 0.1 s. This corresponds to a diffusion velocity of approximately 44 ± 14 mm2/s.
Collapse
Affiliation(s)
- Giuseppe E. Capuano
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Domenico Corso
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Roberta Farina
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Gianni Pezzotti Escobar
- URT “LabSens of Beyond Nano” of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR-DSFTM-ME), Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| | - Giuseppe A. Screpis
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Maria Anna Coniglio
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Sebania Libertino
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| |
Collapse
|
40
|
Wolska M, Kabsch-Korbutowicz M, Rosińska A, Solipiwko-Pieścik A, Urbańska-Kozłowska H. The Use of Microfiltration for the Pretreatment of Backwash Water from Sand Filters. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2819. [PMID: 38930189 PMCID: PMC11204804 DOI: 10.3390/ma17122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Tests of microfiltration efficiency used for the pretreatment of backwash water from sand filters were conducted at two water treatment plants treating surface water and infiltration water. Microfiltration efficiency was evaluated for three membrane modules: two with polymeric membranes and one with a ceramic membrane. This study showed that the contaminants that limit the reuse of backwash water from both plants by returning them to the water treatment line are mostly microorganisms, including pathogenic species (Clostridium perfringens). Additionally, in the case of backwash water from infiltration water treatment, iron and manganese compounds also had to be removed before its recirculation to the water treatment system. Unexpectedly, organic carbon concentrations in both types of backwash water were similar to those present in intake waters. Microfiltration provided for the removal of organic matter, ranging from 19.9% to 44.5% and from 7.2% to 53.9% for backwash water from the treatments of surface water and infiltration water, respectively. Furthermore, the efficiency of the iron removal from backwash water from infiltration water treatment was sufficient to ensure good intake water quality. On the other hand, manganese concentrations in the backwash water, from infiltration water treatment, pretreated using the microfiltration process exceeded the levels found in the intake water and were, therefore, an additional limiting factor for the reuse of the backwash water. In both types of backwash water, the number of microorganisms, including Clostridium perfringens (a pathogenic one), was a limiting parameter for backwash water reuse without pretreatment. The results of the present study showed the possibility for using microfiltration for the pretreatment of backwash water, regardless of its origin but not as the sole process. More complex technological systems are needed before recirculating backwash water into the water treatment system. The polyvinylidene fluoride (PVDF) membrane proved to be the most effective for DOC and microorganism removal from backwash water.
Collapse
Affiliation(s)
- Małgorzata Wolska
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław, Poland; (M.K.-K.); (A.S.-P.)
| | - Małgorzata Kabsch-Korbutowicz
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław, Poland; (M.K.-K.); (A.S.-P.)
| | - Agata Rosińska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, 60a Brzeźnicka st., 42-200 Czestochowa, Poland;
| | - Anna Solipiwko-Pieścik
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., 50-370 Wrocław, Poland; (M.K.-K.); (A.S.-P.)
| | | |
Collapse
|
41
|
Siritanaratkul B, Megarity CF, Herold RA, Armstrong FA. Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material. Commun Chem 2024; 7:132. [PMID: 38858478 PMCID: PMC11165005 DOI: 10.1038/s42004-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
An emerging concept and platform, the electrochemical Leaf (e-Leaf), offers a radical change in the way tandem (multi-step) catalysis by enzyme cascades is studied and exploited. The various enzymes are loaded into an electronically conducting porous material composed of metallic oxide nanoparticles, where they achieve high concentration and crowding - in the latter respect the environment resembles that found in living cells. By exploiting efficient electron tunneling between the nanoparticles and one of the enzymes, the e-Leaf enables the user to interact directly with complex networks, rendering simultaneous the abilities to energise, control and observe catalysis. Because dispersion of intermediates is physically suppressed, the output of the cascade - the rate of flow of chemical steps and information - is delivered in real time as electrical current. Myriad enzymes of all major classes now become effectively electroactive in a technology that offers scalability between micro-(analytical, multiplex) and macro-(synthesis) levels. This Perspective describes how the e-Leaf was discovered, the steps in its development so far, and the outlook for future research and applications.
Collapse
Affiliation(s)
| | - Clare F Megarity
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Ryan A Herold
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
42
|
Keuper K, Bartek J, Maya-Mendoza A. The nexus of nuclear envelope dynamics, circular economy and cancer cell pathophysiology. Eur J Cell Biol 2024; 103:151394. [PMID: 38340500 DOI: 10.1016/j.ejcb.2024.151394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The nuclear envelope (NE) is a critical component in maintaining the function and structure of the eukaryotic nucleus. The NE and lamina are disassembled during each cell cycle to enable an open mitosis. Nuclear architecture construction and deconstruction is a prime example of a circular economy, as it fulfills a highly efficient recycling program bound to continuous assessment of the quality and functionality of the building blocks. Alterations in the nuclear dynamics and lamina structure have emerged as important contributors to both oncogenic transformation and cancer progression. However, the knowledge of the NE breakdown and reassembly is still limited to a fraction of participating proteins and complexes. As cancer cells contain highly diverse nuclei in terms of DNA content, but also in terms of nuclear number, size, and shape, it is of great interest to understand the intricate relationship between these nuclear features in cancer cell pathophysiology. In this review, we provide insights into how those NE dynamics are regulated, and how lamina destabilization processes may alter the NE circular economy. Moreover, we expand the knowledge of the lamina-associated domain region by using strategic algorithms, including Artificial Intelligence, to infer protein associations, assess their function and location, and predict cancer-type specificity with implications for the future of cancer diagnosis, prognosis and treatment. Using this approach we identified NUP98 and MECP2 as potential proteins that exhibit upregulation in Acute Myeloid Leukemia (LAML) patients with implications for early diagnosis.
Collapse
Affiliation(s)
- Kristina Keuper
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark; Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden
| | | |
Collapse
|
43
|
Mietzner R, Barbey C, Lehr H, Ziegler CE, Peterhoff D, Wagner R, Goepferich A, Breunig M. Prolonged delivery of HIV-1 vaccine nanoparticles from hydrogels. Int J Pharm 2024; 657:124131. [PMID: 38643811 DOI: 10.1016/j.ijpharm.2024.124131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Immunization is a straightforward concept but remains for some pathogens like HIV-1 a challenge. Thus, new approaches towards increasing the efficacy of vaccines are required to turn the tide. There is increasing evidence that antigen exposure over several days to weeks induces a much stronger and more sustained immune response compared to traditional bolus injection, which usually leads to antigen elimination from the body within a couple of days. Therefore, we developed a poly(ethylene) glycol (PEG) hydrogel platform to investigate the principal feasibility of a sustained release of antigens to mimic natural infection kinetics. Eight-and four-armed PEG macromonomers of different MWs (10, 20, and 40 kDa) were end-group functionalized to allow for hydrogel formation via covalent cross-linking. An HIV-1 envelope (Env) antigen in its trimeric (Envtri) or monomeric (Envmono) form was applied. The soluble Env antigen was compared to a formulation of Env attached to silica nanoparticles (Env-SiNPs). The latter are known to have a higher immunogenicity compared to their soluble counterparts. Hydrogels were tunable regarding the rheological behavior allowing for different degradation times and release timeframes of Env-SiNPs over two to up to 50 days. Affinity measurements of the VCR01 antibody which specifically recognizes the CD4 binding site of Env, revealed that neither the integrity nor the functionality of Envmono-SiNPs (Kd = 2.1 ± 0.9 nM) and Envtri-SiNPs (Kd = 1.5 ± 1.3 nM), respectively, were impaired after release from the hydrogel (Kd before release: 2.1 ± 0.1 and 7.8 ± 5.3 nM, respectively). Finally, soluble Env and Env-SiNPs which are two physico-chemically distinct compounds, were co-delivered and shown to be sequentially released from one hydrogel which could be beneficial in terms of heterologous immunization or single dose vaccination. In summary, this study presents a tunable, versatile applicable, and effective delivery platform that could improve vaccination effectiveness also for other infectious diseases than HIV-1.
Collapse
Affiliation(s)
- Raphael Mietzner
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Clara Barbey
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Heike Lehr
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Christian E Ziegler
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany.
| |
Collapse
|
44
|
Herrera MG, Amundarain MJ, Dörfler PW, Dodero VI. The Celiac-Disease Superantigen Oligomerizes and Increases Permeability in an Enterocyte Cell Model. Angew Chem Int Ed Engl 2024; 63:e202317552. [PMID: 38497459 DOI: 10.1002/anie.202317552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor β-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.
Collapse
Affiliation(s)
- Maria G Herrera
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, C1428EG, Argentina
| | - Maria J Amundarain
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Philipp W Dörfler
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Veronica I Dodero
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
45
|
Uchida Y, Arakawa T, Higo A, Ishizaka Y. Silicon Microring Resonator Biosensor for Detection of Nucleocapsid Protein of SARS-CoV-2. SENSORS (BASEL, SWITZERLAND) 2024; 24:3250. [PMID: 38794104 PMCID: PMC11125905 DOI: 10.3390/s24103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
A high-sensitivity silicon microring (Si MRR) optical biosensor for detecting the nucleocapsid protein of SARS-CoV-2 is proposed and demonstrated. In the proposed biosensor, the surface of a Si MRR waveguide is modified with antibodies, and the target protein is detected by measuring a resonant wavelength shift of the MRR caused by the selective adsorption of the protein to the surface of the waveguide. A Si MRR is fabricated on a silicon-on-insulator substrate using a CMOS-compatible fabrication process. The quality factor of the MRR is approximately 20,000. The resonant wavelength shift of the MRR and the detection limit for the environmental refractive index change are evaluated to be 89 nm/refractive index unit (RIU) and 10-4 RIU, respectively. The sensing characteristics are examined using a polydimethylsiloxane flow channel after the surface of the Si MRR waveguide is modified with the IgG antibodies through the Si-tagged protein. First, the selective detection of the protein by the MRR sensor is experimentally demonstrated by the detection of bovine serum albumin and human serum albumin. Next, various concentrations of nucleocapsid protein solutions are measured by the MRR, in which the waveguide surface is modified with the IgG antibodies through the Si-tagged protein. Although the experimental results are very preliminary, they show that the proposed sensor has a potential nucleocapsid sensitivity in the order of 10 pg/mL, which is comparable to the sensitivity of current antigen tests. The detection time is less than 10 min, which is much shorter than those of other antigen tests.
Collapse
Affiliation(s)
- Yusuke Uchida
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwada, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Taro Arakawa
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwada, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akio Higo
- System Design Lab, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan;
| | - Yuhei Ishizaka
- Department of Science and Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-higashi, Kanazawa-ku, Yokohama 236-8501, Japan
| |
Collapse
|
46
|
Ribeiro NS, da Rosa DF, Xavier MA, Dos Reis SV, Beys-da-Silva WO, Santi L, Bizarro CV, Dalberto PF, Basso LA, Macedo AJ. Unveiling antibiofilm potential: proteins from Priestia sp. targeting Staphylococcus aureus biofilm formation. Antonie Van Leeuwenhoek 2024; 117:78. [PMID: 38740670 DOI: 10.1007/s10482-024-01977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Staphylococcus aureus is the etiologic agent of many nosocomial infections, and its biofilm is frequently isolated from medical devices. Moreover, the dissemination of multidrug-resistant (MDR) strains from this pathogen, such as methicillin-resistant S. aureus (MRSA) strains, is a worldwide public health issue. The inhibition of biofilm formation can be used as a strategy to weaken bacterial resistance. Taking that into account, we analysed the ability of marine sponge-associated bacteria to produce antibiofilm molecules, and we found that marine Priestia sp., isolated from marine sponge Scopalina sp. collected on the Brazilian coast, secretes proteins that impair biofilm development from S. aureus. Partially purified proteins (PPP) secreted after 24 hours of bacterial growth promoted a 92% biofilm mass reduction and 4.0 µg/dL was the minimum concentration to significantly inhibit biofilm formation. This reduction was visually confirmed by light microscopy and Scanning Electron Microscopy (SEM). Furthermore, biochemical assays showed that the antibiofilm activity of PPP was reduced by ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline (PHEN), while it was stimulated by zinc ions, suggesting an active metallopeptidase in PPP. This result agrees with mass spectrometry (MS) identification, which indicated the presence of a metallopeptidase from the M28 family. Additionally, whole-genome sequencing analysis of Priestia sp. shows that gene ywad, a metallopeptidase-encoding gene, was present. Therefore, the results presented herein indicate that PPP secreted by the marine Priestia sp. can be explored as a potential antibiofilm agent and help to treat chronic infections.
Collapse
Affiliation(s)
- Nicole Sartori Ribeiro
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Deisiane Fernanda da Rosa
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sharon Vieira Dos Reis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil
| | - Pedro Ferrari Dalberto
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil
| | - Alexandre José Macedo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
47
|
Olgenblum GI, Hutcheson BO, Pielak GJ, Harries D. Protecting Proteins from Desiccation Stress Using Molecular Glasses and Gels. Chem Rev 2024; 124:5668-5694. [PMID: 38635951 PMCID: PMC11082905 DOI: 10.1021/acs.chemrev.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 04/20/2024]
Abstract
Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.
Collapse
Affiliation(s)
- Gil I. Olgenblum
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Brent O. Hutcheson
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, Department of Biochemistry & Biophysics, Integrated
Program for Biological & Genome Sciences, Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel Harries
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
48
|
Filius M, van Wee R, de Lannoy C, Westerlaken I, Li Z, Kim SH, de Agrela Pinto C, Wu Y, Boons GJ, Pabst M, de Ridder D, Joo C. Full-length single-molecule protein fingerprinting. NATURE NANOTECHNOLOGY 2024; 19:652-659. [PMID: 38351230 DOI: 10.1038/s41565-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/22/2023] [Indexed: 03/21/2024]
Abstract
Proteins are the primary functional actors of the cell. While proteoform diversity is known to be highly biologically relevant, current protein analysis methods are of limited use for distinguishing proteoforms. Mass spectrometric methods, in particular, often provide only ambiguous information on post-translational modification sites, and sequences of co-existing modifications may not be resolved. Here we demonstrate fluorescence resonance energy transfer (FRET)-based single-molecule protein fingerprinting to map the location of individual amino acids and post-translational modifications within single full-length protein molecules. Our data show that both intrinsically disordered proteins and folded globular proteins can be fingerprinted with a subnanometer resolution, achieved by probing the amino acids one by one using single-molecule FRET via DNA exchange. This capability was demonstrated through the analysis of alpha-synuclein, an intrinsically disordered protein, by accurately quantifying isoforms in mixtures using a machine learning classifier, and by determining the locations of two O-GlcNAc moieties. Furthermore, we demonstrate fingerprinting of the globular proteins Bcl-2-like protein 1, procalcitonin and S100A9. We anticipate that our ability to perform proteoform identification with the ultimate sensitivity may unlock exciting new venues in proteomics research and biomarker-based diagnosis.
Collapse
Affiliation(s)
- Mike Filius
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Raman van Wee
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Carlos de Lannoy
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Ilja Westerlaken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Zeshi Li
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sung Hyun Kim
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Cecilia de Agrela Pinto
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Chirlmin Joo
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Formal CL, Lytle DA, Harmon S, Wahman DG, DeSantis MK, Tang M. Impact of orthophosphate on the solubility and properties of lead orthophosphate nanoparticles. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:1623-1636. [PMID: 39439488 PMCID: PMC11492965 DOI: 10.1039/d4ew00152d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Orthophosphate (PO4) is a commonly used corrosion control treatment to reduce lead (Pb) concentrations in drinking water. PO4 reduces Pb concentrations by forming relatively insoluble lead phosphate (Pb-PO4) minerals. In some cases, however, Pb-PO4 minerals have been observed to form nanoparticles, and if suspended in water, these nanoparticles can be mobile and reach consumer taps. Although recent research on Pb-PO4 particles has been performed, there remains a need to improve our understanding of the nature of Pb-PO4 nanoparticles. For that reason, Pb precipitation experiments were conducted to generate Pb-PO4 nanoparticles in bench scale studies for analysis. The study objective was to observe how pH, dissolved inorganic carbon (DIC), and PO4 impacted the properties of Pb-PO4 particles. Specifically, particle size, surface charge, mineralogy, and solubility were analysed. Hydrocerussite was precipitated when no PO4 was present, hydroxypyromorphite (Pb5(PO4)3OH) nanoparticles (<100 nm diameter) were precipitated when excess PO4 relative to Pb necessary to completely precipitate the mineral was present, and a mixture of the two minerals was precipitated when an insufficient amount of PO4 was present. Hydroxypyromorphite particles were less soluble than hydrocerussite by up to two orders of magnitude. The estimated K sp,OH of 10-66.87 in this work closely aligned with previous K sp,OH estimates that ranged from 10-66.77 to 10-62.79. Hydroxypyromorphite particles would not settle in water which was likely due to their small size and high negative charge. The mobility and size of these particles indicates that there are potential implications for such particulate Pb to remain suspended in water and thus be present in the tap water.
Collapse
Affiliation(s)
- Casey L Formal
- ORAU Contractor at U.S. Environmental Protect Agency, Office of Research and Development (ORD), Center for Environmental Solutions & Emergency Response (CESER), Water Infrastructure Division (WID), 26 W. Martin Luther King Dr., Cincinnati, Ohio 45268, USA
| | - Darren A Lytle
- U.S. Environmental Protect Agency, ORD, CESER, WID, 26 W. Martin Luther King Dr., Cincinnati, Ohio 45268, USA
| | - Stephen Harmon
- U.S. Environmental Protect Agency, ORD, CESER, WID, 26 W. Martin Luther King Dr., Cincinnati, Ohio 45268, USA
| | - David G Wahman
- U.S. Environmental Protect Agency, ORD, CESER, WID, 26 W. Martin Luther King Dr., Cincinnati, Ohio 45268, USA
| | - Michael K DeSantis
- U.S. Environmental Protect Agency, ORD, CESER, WID, 26 W. Martin Luther King Dr., Cincinnati, Ohio 45268, USA
| | - Min Tang
- ORISE Fellow at U.S. Environmental Protect Agency, Office of Research and Development (ORD), Center for Environmental Solutions & Emergency Response (CESER), Water Infrastructure Division (WID), 26 W. Martin Luther King Dr., Cincinnati, Ohio 45268, USA
| |
Collapse
|
50
|
Hong C, Hong I, Jiang Y, Ndukaife JC. Plasmonic dielectric antennas for hybrid optical nanotweezing and optothermoelectric manipulation of single nanosized extracellular vesicles. ADVANCED OPTICAL MATERIALS 2024; 12:2302603. [PMID: 38899010 PMCID: PMC11185818 DOI: 10.1002/adom.202302603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 06/21/2024]
Abstract
This paper showcases an experimental demonstration of near-field optical trapping and dynamic manipulation of an individual extracellular vesicle. This is accomplished through the utilization of a plasmonic dielectric nanoantenna designed to support an optical anapole state-a non-radiating optical state resulting from the destructive interference between electric and toroidal dipoles in the far-field, leading to robust near-field enhancement. To further enhance the field intensity associated with the optical anapole state, a plasmonic mirror is incorporated, thereby boosting trapping capabilities. In addition to demonstrating near-field optical trapping, the study achieves dynamic manipulation of extracellular vesicles by harnessing the thermoelectric effect. This effect is induced in the presence of an ionic surfactant, cetyltrimethylammonium chloride (CTAC), combined with plasmonic heating. Furthermore, the thermoelectric effect improves trapping stability by introducing a wide and deep trapping potential. In summary, our hybrid plasmonic-dielectric trapping platform offers a versatile approach for actively transporting, stably trapping, and dynamically manipulating individual extracellular vesicles.
Collapse
Affiliation(s)
- Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuxi Jiang
- Department of Electrical and Computer Engineering, University of Maryland College Park, MD, USA
- Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland College Park, MD, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|