1
|
Ferro PHS, Ribeiro GC, Borba LE, Batista RO, da Rosa Farias D, Fracalossi DM, Schwegler E, Owatari MS, Schleder DD. Effects of dietary supplementation with inactivated Lactobacillus plantarum on growth performance, haemato-biochemical parameters, liver fatty acids profile and intestinal microbiome of Nile tilapia. Vet Res Commun 2024; 48:2397-2406. [PMID: 38801494 DOI: 10.1007/s11259-024-10425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
This study investigated the effects of dietary supplementation with inactivated Lactobacillus plantarum for Nile tilapia (Oreochromis niloticus). Three treatments, in quintuplicate, were established: a control group, fish fed a diet without additives; LP group, fish fed a diet supplemented with live probiotic; and IP group, fish fed a diet supplemented with inactivated probiotic. Final weights (49.40 ± 3.15 g) and weight gains (38.20 ± 3.23 g) were increased in tilapia in the IP group. Feed conversion (1.32 ± 0.04) decreased significantly in the IP group. Haemato-biochemical parameters were significantly influenced by dietary supplementation. Erythrocyte count (262.74 ± 69.28 × 106 μL-1) was significantly low, while albumin (1.79 ± 1.12 g dL-1) and cholesterol (254.14 ± 98.49 mg dL-1) were high in the control group. Dietary supplementation modified the tilapia microbiome. Rhodobacter was abundant in fish intestines from the control and IP groups. Phreatobacter was abundant in the IP and LP groups, while Aurantimicrobium and Bosea were abundant in the LP group. Oleic acid (C18:1n9) was significantly increased in the LP (3.25 ± 0.49%) and IP (3.02 ± 0.30%) groups. Hexadecatrienoic acid (C16:3n4) was significantly increased (0.04 ± 0.01%) in the IP group, while Cis 11,14,17-eicosatrienoic acid (C20:3n3) (0.31 ± 0.03%) and adrenic acid (C22:4n6) (0.11 ± 0.02%) were significantly decreased in the LP group. Additionally, monounsaturated fatty acids (MUFA) were significantly increased (4.83 ± 0.35%) in the LP group compared to that in the control group. Collectively, these results indicate the potential of inactivated L. plantarum for use in commercial feed, leading to the conclusion that both inactivated and live L. plantarum can improve the Nile tilapia metabolism, altering haematological and biochemical markers.
Collapse
Affiliation(s)
- Pedro Henrique Sousa Ferro
- Federal Institute Catarinense - Campus Araquari, BR 280 Km 27. Caixa Postal 21, 89245-000, Araquari, Santa Catarina, Brazil
| | - Geany Caroline Ribeiro
- Federal Institute Catarinense - Campus Araquari, BR 280 Km 27. Caixa Postal 21, 89245-000, Araquari, Santa Catarina, Brazil
| | - Lucas Eduardo Borba
- Federal Institute Catarinense - Campus Araquari, BR 280 Km 27. Caixa Postal 21, 89245-000, Araquari, Santa Catarina, Brazil
| | - Rosana Oliveira Batista
- Aquaculture Department, Federal University of Santa Catarina (CCA/UFSC), Rodovia Admar Gonzaga 1346, Florianópolis, SC, 88040-900, Brazil
| | - Daniel da Rosa Farias
- Federal Institute Catarinense - Campus Araquari, BR 280 Km 27. Caixa Postal 21, 89245-000, Araquari, Santa Catarina, Brazil
| | - Debora Machado Fracalossi
- Aquaculture Department, Federal University of Santa Catarina (CCA/UFSC), Rodovia Admar Gonzaga 1346, Florianópolis, SC, 88040-900, Brazil
| | - Elizabeth Schwegler
- Federal Institute Catarinense - Campus Araquari, BR 280 Km 27. Caixa Postal 21, 89245-000, Araquari, Santa Catarina, Brazil
| | - Marco Shizuo Owatari
- Aquaculture Department, Federal University of Santa Catarina (CCA/UFSC), Rodovia Admar Gonzaga 1346, Florianópolis, SC, 88040-900, Brazil.
| | - Delano Dias Schleder
- Federal Institute Catarinense - Campus Araquari, BR 280 Km 27. Caixa Postal 21, 89245-000, Araquari, Santa Catarina, Brazil
| |
Collapse
|
2
|
Niczyporuk JS, Kozdruń W, Tomczyk G, Piekarska K, Barabasz M, Michalski M. Molecular characteristics of fowl adenovirus strains detected in broiler chickens on diets without immunostimulant supplements. J Vet Res 2024; 68:207-214. [PMID: 38947150 PMCID: PMC11210352 DOI: 10.2478/jvetres-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Outbreaks of fowl adenovirus (FAdV) infection in chicken flocks in Poland threaten birds' health and lives and are rising in frequency. The risk of these infections in immunocompromised poultry flocks with developed clinical symptoms was analysed through virus detection in broiler chicks and correlation of cases with the birds' immune strength. Material and Methods Samples were analysed from four broiler farms with chicks from the same hatchery in Silesia, Poland where feeding regimes were different. A normal diet was provided to birds on the control farm; a normal diet and probiotic, prebiotic, vitamin and microelement supplementation was supplied on another farm; a normal diet and antibiotics on the third; and a normal diet and both forms of supplementation were given on the fourth farm. Amplification of the virus DNA in a PCR with hexon gene L1 loop hypervariable region 1-4 primers determined the molecular characteristics of isolates of adenovirus strains obtained from necropsy tissue samples. The amplicon sequences were analysed, the pair-wise distances were determined, the maximum likelihood estimate for the gamma parameter for site rates was produced, Tajima's D neutrality test was run and the relative synonymous codon usage and transition/transversion bias were calculated. Results Two species and two serotypes of fowl adenovirus - MW353018-FAdV-1/A-L-liver and MW353019-FAdV-5/B-I-intestine - were isolated in three-week-old broiler chicks on the control farm. Conclusion Supplementation of broiler chicken flocks with probiotics, prebiotics, vitamins and microelements may have a significant beneficial effect on immunity and can prevent virus infection. The studies provided new information on the molecular characteristics of adenovirus strains isolated from chicks with a low level of immunity.
Collapse
Affiliation(s)
| | - Wojciech Kozdruń
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Pulawy, Poland
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Pulawy, Poland
| | - Karolina Piekarska
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100Pulawy, Poland
| | | | | |
Collapse
|
3
|
Zhao X, Liu S, Li S, Jiang W, Wang J, Xiao J, Chen T, Ma J, Khan MZ, Wang W, Li M, Li S, Cao Z. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab 2024; 36:725-744. [PMID: 38569470 DOI: 10.1016/j.cmet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Faculty of Veterinary and Animal Sciences, Department of Animal Breeding and Genetics, The University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Tomczyk G, Niczyporuk JS, Kozdruń W, Sawicka-Durkalec A, Bocian Ł, Barabasz M, Michalski M. Probiotic supplementation as an alternative to antibiotics in broiler chickens. J Vet Res 2024; 68:147-154. [PMID: 38525219 PMCID: PMC10960262 DOI: 10.2478/jvetres-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The broiler chicken digestive tract microbiome maintains the bird's immunity. Its composition has been shown to be important not only for the immune system but also for the gastrointestinal function and productivity of broiler chickens. If the microbiome is populated by supplementation with Lactobacillus, Pediococcus and Saccharomyces spp. - microorganisms with probiotic properties and alternatives to antibiotics - the immune system is stimulated. The use of probiotic supplements in the broiler production cycle can boost bird immunity and prevent adenovirus infection. The resilience of broiler chickens in different feeding schemes including supplementation with these microorganisms was assessed. Material and Methods Four groups of Ross 308 chickens vaccinated on the standard scheme were investigated over 42 days. Group P received probiotics, prebiotics and vitamins; group AO received antibiotics; group P&AO received probiotics, prebiotics, vitamins and antibiotics; and the control group C received none of these. The birds' immunocompetence against common viral poultry pathogens and their immune response to an experimental challenge with a field strain of infectious bronchitis was evaluated by ELISA and production parameters were recorded. Results Mortality was only observed in the control group and was 10%. All birds from the P, P&AO and AO groups responded to the challenge as would be expected of appropriately immunised chickens. Conclusion The obtained results indicated that supplementation with synbiotic products and vitamins can enhance broiler chicken immunity and result in better production parameters.
Collapse
Affiliation(s)
| | | | | | | | - Łukasz Bocian
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, 24-100Puławy, Poland
| | | | | |
Collapse
|
5
|
Hosseini SH, Farhangfar A, Moradi M, Dalir-Naghadeh B. Beyond probiotics: Exploring the potential of postbiotics and parabiotics in veterinary medicine. Res Vet Sci 2024; 167:105133. [PMID: 38176207 DOI: 10.1016/j.rvsc.2023.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Postbiotics and parabiotics (PP) are emerging fields of study in animal nutrition, preventive veterinary medicine, and animal production. Postbiotics are bioactive compounds produced by beneficial microorganisms during the fermentation of a substrate, while parabiotics are inactivated beneficial microbial cells, either intact or broken. Unlike probiotics, which are live microorganisms, PP are produced from a fermentation process without live cells and show significant advantages in promoting animal health owing to their distinctive stability, safety, and functional diversity. PP have numerous beneficial effects on animal health, such as enhancing growth performance, improving the immune system and microbiota of the gastrointestinal tract, aiding ulcer healing, and preventing pathogenic microorganisms from colonizing in the skin. Moreover, PP have been identified as a potential alternative to traditional antibiotics in veterinary medicine due to their ability to improve animal health without the risk of antimicrobial resistance. This review comprehensively explores the current research and applications of PP in veterinary medicine. We aimed to thoroughly examine the mechanisms of action, benefits, and potential applications of PP in various species, emphasizing their use specifically in livestock and poultry. Additionally, we discuss the various routes of administration to animals, including feed, drinking water, and topical use. This review also presents in-depth information on the methodology behind the preparation of PP, outlining the criteria employed to select appropriate microorganisms, and highlighting the challenges commonly associated with PP utilization in veterinary medicine.
Collapse
Affiliation(s)
| | | | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Bahram Dalir-Naghadeh
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
6
|
Wu Y, Hu A, Shu X, Huang W, Zhang R, Xu Y, Yang C. Lactobacillus plantarum postbiotics trigger AMPK-dependent autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome activation. J Cell Physiol 2023; 238:1336-1353. [PMID: 37052047 DOI: 10.1002/jcp.31016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
We previously found that Lactobacillus plantarum (LP)-derived postbiotics protected animals against Salmonella infection, but the molecular mechanism remains obscure. This study clarified the mechanisms from the perspective of autophagy. Intestinal porcine epithelial cells (IPEC-J2) were pretreated with LP-derived postbiotics (the culture supernatant, LPC; or heat-killed bacteria, LPB), and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics markedly triggered autophagy under ST infection, as indicated by the increased LC3 and Beclin1 and the decreased p62 levels. Meanwhile, LP postbiotics (particularly LPC) exhibited a strong capacity of inhibiting ST adhesion, invasion and replication. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) led to a significant decrease of autophagy and the aggravated infection, indicating the importance of autophagy in LP postbiotics-mediated Salmonella elimination. LP postbiotics (especially LPB) significantly suppressed ST-induced inflammation by modulating inflammatory cytokines (the increased interleukin (IL)-4 and IL-10, and decreased tumor necrosis factor-α (TNF), IL-1β, IL-6 and IL-18). Furthermore, LP postbiotics inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation, as evidenced by the decreased levels of NLRP3, Caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Deficits in autophagy resulted in an increase of inflammatory response and inflammasome activation. Finally, we found that both LPC and LPB triggered AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy, and this was further confirmed by AMPK RNA interference. The intracellular infection and NLRP3 inflammasome were aggravated after AMPK knockdown. In summary, LP postbiotics trigger AMPK-mediated autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome in IPEC-J2 cells. Our findings highlight the effectiveness of postbiotics, and provide a new strategy for preventing Salmonella infection.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xin Shu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wenxia Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
7
|
Zhong Y, Wang T, Luo R, Liu J, Jin R, Peng X. Recent advances and potentiality of postbiotics in the food industry: Composition, inactivation methods, current applications in metabolic syndrome, and future trends. Crit Rev Food Sci Nutr 2022; 64:5768-5792. [PMID: 36537328 DOI: 10.1080/10408398.2022.2158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Postbiotics are defined as "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics have unique advantages over probiotics, such as stability, safety, and wide application. Although postbiotics are research hotspots, the research on them is still very limited. This review provides comprehensive information on the scope of postbiotics, the preparation methods of inanimate microorganisms, and the application and mechanisms of postbiotics in metabolic syndrome (MetS). Furthermore, the application trends of postbiotics in the food industry are reviewed. It was found that postbiotics mainly include inactivated microorganisms, microbial lysates, cell components, and metabolites. Thermal treatments are the main methods to prepare inanimate microorganisms as postbiotics, while non-thermal treatments, such as ionizing radiation, ultraviolet light, ultrasound, and supercritical CO2, show great potential in postbiotic preparation. Postbiotics could ameliorate MetS through multiple pathways including the modulation of gut microbiota, the enhancement of intestinal barrier, the regulation of inflammation and immunity, and the modulation of hormone homeostasis. Additionally, postbiotics have great potential in the food industry as functional food supplements, food quality improvers, and food preservatives. In addition, the SWOT analyses showed that the development of postbiotics in the food industry exists both opportunities and challenges.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Ruilin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Sousa JMG, Louvado A, Coelho FJRC, Oliveira V, Oliveira H, Cleary DFR, Gomes NCM. In vitro study of the modulatory effects of heat-killed bacterial biomass on aquaculture bacterioplankton communities. Sci Rep 2022; 12:19699. [PMID: 36385260 PMCID: PMC9669034 DOI: 10.1038/s41598-022-23439-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shown that the addition of non-viable microbial biomass or their components (postbiotics) to fish feed can modulate the gut microbiome and positively influence fish health in aquaculture systems. However, no information was hitherto available on the use of non-viable microbial biomass to manipulate aquaculture bacterioplankton communities. To fill this gap, here we used an in vitro model to assess the effects of heat-killed biomasses of an antagonistic strain Pseudoalteromonas rubra SubTr2 and a non-antagonist strain Escherichia coli DH5α on bacterioplankton communities of a recirculating aquaculture system (RAS). Our results showed that these biomasses can have generalist and species-specific effects on aquaculture bacterioplankton structure and function. In addition, they enriched the abundance of bacterial predators, reduced bacterial load and potentially influenced nutrient cycling and pathogen development in aquaculture water. Despite its preliminary nature, for the first time, this study showed that heat-killed microbial biomass has potential application as an in situ modulator of bacterioplankton in aquaculture systems.
Collapse
Affiliation(s)
- J. M. G. Sousa
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A. Louvado
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - F. J. R. C. Coelho
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - V. Oliveira
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - H. Oliveira
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - D. F. R. Cleary
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - N. C. M. Gomes
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Pandey M, Bhati A, Priya K, Sharma KK, Singhal B. Precision Postbiotics and Mental Health: the Management of Post-COVID-19 Complications. Probiotics Antimicrob Proteins 2021; 14:426-448. [PMID: 34806151 PMCID: PMC8606251 DOI: 10.1007/s12602-021-09875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 01/14/2023]
Abstract
The health catastrophe originated by COVID-19 pandemic construed profound impact on a global scale. However, a plethora of research studies corroborated convincing evidence conferring severity of infection of SARS-CoV-2 with the aberrant gut microbiome that strongly speculated its importance for development of novel therapeutic modalities. The intense exploration of probiotics has been envisaged to promote the healthy growth of the host, and restore intestinal microecological balance through various metabolic and physiological processes. The demystifying effect of probiotics cannot be defied, but there exists a strong skepticism related to their safety and efficacy. Therefore, molecular signature of probiotics termed as "postbiotics" are of paramount importance and there is continuous surge of utilizing postbiotics for enhancing health benefits, but little is explicit about their antiviral effects. Therefore, it is worth considering their prospective role in post-COVID regime that pave the way for exploring the pastoral vistas of postbiotics. Based on previous research investigations, the present article advocates prospective role of postbiotics in alleviating the health burden of viral infections, especially SARS-CoV-2. The article also posits current challenges and proposes a futuristic model describing the concept of "precision postbiotics" for effective therapeutic and preventive interventions that can be used for management of this deadly disease.
Collapse
Affiliation(s)
- Muskan Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Archana Bhati
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Kumari Priya
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - K K Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Barkha Singhal
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
10
|
Abstract
Intestinal microbiota interacts with other systems, especially the immune system, which is responsible for protecting the body by recognizing “stranger” (pathogen associated molecular patterns-PAMPs) and “danger” (damage-associated molecular patterns-DAMPs) molecular motifs. In this manner, it plays an important role in the pathogenesis of various diseases and health. Despite the use of probiotics that modulate the intestinal microbiota in providing health benefits and in the treatment of diseases, there are some possible concerns about the possibility of developing adverse effects, especially in people with suppressed immune systems. Since probiotics provide health benefits with bioactive compounds, studies are carried out on the use of products containing non-living probiotic microorganisms (paraprobiotics) and/or their metabolites (postbiotics) instead of probiotic products. It is even reported that these microbial compounds have more immunomodulatory activities than living microorganisms via some possible mechanism and eliminates some disadvantages of probiotics. Considering the increasing use of functional foods in health and disease, further studies are needed with respect to the benefits and advantages of parabiotic and/or postbiotic use in the food and pharmaceutical industry as well as immune system modulation. Although probiotics have been extensive studied for a long time, it seems that postbiotics are promising tools for future research and applications according to the recent literature. This review aimed to evaluate the interaction of probiotics and postbiotics with the immune systems and also their advantages and disadvantages in the area of food-pharmaceutical industry and immune system modulation.
Collapse
|
11
|
Rad AH, Abbasi A, Kafil HS, Ganbarov K. Potential Pharmaceutical and Food Applications of Postbiotics: A Review. Curr Pharm Biotechnol 2021; 21:1576-1587. [PMID: 32416671 DOI: 10.2174/1389201021666200516154833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/22/2022]
Abstract
In recent decades, functional foods with ingredients comprising probiotics, prebiotics and postbiotics have been gaining a lot of attention from scientists. Probiotics and postbiotics are usually applied in pharmaceutical formulations and/or commercial food-based products. These bioactive agents can be associated with host eukaryotic cells and have a key role in maintaining and restoring host health. The review describes the concept of postbiotics, their quality control and potential applications in pharmaceutical formulations and commercial food-based products for health promotion, prevention of disease and complementary treatment. Despite the effectiveness of probiotic products, researchers have introduced the concept of postbiotic to optimize their beneficial effects as well as to meet the needs of consumers to provide a safe product. The finding of recent studies suggests that postbiotics might be appropriate alternative agents for live probiotic cells and can be applied in medical, veterinary and food practice to prevent and to treat some diseases, promote animal health status and develop functional foods. Presently scientific literature confirms that postbiotics, as potential alternative agents, may have superiority in terms of safety relative to their parent live cells, and due to their unique characteristics in terms of clinical, technological and economical aspects, can be applied as promising tools in the drug and food industry for developing health benefits, and therapeutic aims.
Collapse
Affiliation(s)
- Aziz H Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein S Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khudaverdi Ganbarov
- Department of Microbiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| |
Collapse
|
12
|
Abbasi A, Hajipour N, Hasannezhad P, Baghbanzadeh A, Aghebati-Maleki L. Potential in vivo delivery routes of postbiotics. Crit Rev Food Sci Nutr 2020; 62:3345-3369. [PMID: 33356449 DOI: 10.1080/10408398.2020.1865260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive micro- and macro-molecules (postbiotics) derived from gut beneficial microbes are among natural chemical compounds with medical significance. Currently, a unique therapeutic strategy has been developed with an emphasis on the small molecular weight biomolecules that are made by the microbiome, which endow the host with several physiological health benefits. A large number of postbiotics have been characterized, which due to their unique pharmacokinetic properties in terms of controllable aspects of the dosage and various delivery routes, could be employed as promising medical tools since they exert both prevention and treatment strategies in the host. Nevertheless, there are still main challenges for the in vivo delivery of postbiotics. Currently, scientific literature confirms that targeted delivery systems based on nanoparticles, due to their appealing properties in terms of high biocompatibility, biodegradability, low toxicity, and significant capability to carry both hydrophobic and hydrophilic postbiotics, can be used as a novel and safe strategy for targeted delivery or/and release of postbiotics in various (oral, intradermal, and intravenous) in vivo models. The in vivo delivery of postbiotics are in their emerging phase and require massive investigation and randomized double-blind clinical trials if they are to be applied extensively as treatment strategies. This manuscript provides an overview of the various postbiotic metabolites derived from the gut beneficial microbes, their potential therapeutic activities, and recent progressions in the drug delivery field, as well as concisely giving an insight on the main in vivo delivery routes of postbiotics.
Collapse
Affiliation(s)
- Amin Abbasi
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hajipour
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paniz Hasannezhad
- Department of Medical Engineering Science, University College of Rouzbahan, Sari, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
13
|
Vallejo-Cordoba B, Castro-López C, García HS, González-Córdova AF, Hernández-Mendoza A. Postbiotics and paraprobiotics: A review of current evidence and emerging trends. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:1-34. [PMID: 32892831 DOI: 10.1016/bs.afnr.2020.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, new probiotic-related concepts such as postbiotics and paraprobiotics have been coined to indicate that non-viable microorganisms or bacterial-free extracts may provide benefits to the host by offering additional bioactivities to probiotics, including but not limited to anti-inflammatory, immunomodulatory, anti-proliferative and antioxidant activities. Despite in vitro and in vivo studies that support the promising use of postbiotics and paraprobiotics as health promoters, the mechanism of action and the signaling pathway involved have not yet been fully elucidated. Therefore, the aim of this chapter is to provide an overview of novel probiotic-related concepts and the scientific evidence that supports their bioactivities as well as the possible mechanisms underlying their health-promoting effects. Additionally, current trends in food, feed, and pharmaceutical applications are discussed.
Collapse
Affiliation(s)
- Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, Veracruz, Veracruz, Mexico
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo, Sonora, Mexico.
| |
Collapse
|
14
|
Postbiotics and paraprobiotics: From concepts to applications. Food Res Int 2020; 136:109502. [PMID: 32846581 DOI: 10.1016/j.foodres.2020.109502] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
In recent years, new probiotic-related concepts such as postbiotics and paraprobiotics have been used to describe non-viable microorganisms or bacterial-free extracts that may provide benefits to the host by offering bioactivities additional to probiotics. However, several aspects related to these postbiotics and paraprobiotics bioactivities remain unexplored or are poorly understood. Therefore, the aim of this work is to provide an overview of the general aspects and emerging trends of postbiotics and paraprobiotics, such as conceptualization of terms, production, characterization, bioactivities, health-promoting effects, bioengineering approaches, and applications. In vitro and in vivo studies have demonstrated that some postbiotics and paraprobiotics exhibit bioactivities such as anti-inflammatory, immunomodulatory, anti-proliferative, antioxidant, and antimicrobial. These bioactivities could be involved in health-promoting effects observed in human and clinical trials, but despite the scientific evidence available, the mechanisms of action and the signaling pathways involved have not been fully elucidated. Nevertheless, paraprobiotics and postbiotics possess valuable potential for the development of biotechnological products with functional ingredients for the nutraceutical industry.
Collapse
|
15
|
Hoque F, Jawahar Abraham T, Nagesh TS, Kamilya D. Pseudomonas aeruginosa FARP 72 Offers Protection Against Aeromonas hydrophila Infection in Labeo rohita. Probiotics Antimicrob Proteins 2020; 11:973-980. [PMID: 30112591 DOI: 10.1007/s12602-018-9456-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Use of probiotics as the biocontrol agent for disease prevention in aquaculture is gaining importance as an alternative to the indiscriminate use of antibiotics and other chemotherapeutics. In view of this trend, the probiotic properties of a potent antagonistic bacterium, Pseudomonas aeruginosa FARP72, was characterized in terms of safety, antagonistic activities, in vitro immunomodulation, and in vivo disease resistance. Immunomodulatory activity was ascertained by measuring the production of intracellular superoxide anion, nitric oxide, total leukocyte peroxidase content, and the leukocyte proliferation in head kidney leukocytes. The bacterium isolated from the skin mucus of freshwater catfish Clarias batrachus was harmless to Labeo rohita. It showed inhibitory activity against Aeromonas caviae, A. hydrophila, Edwardsiella tarda, Pseudomonas putida, and Streptococcus agalactiae as revealed by cross and parallel streaking methods. Significantly higher superoxide anion and nitric oxide production, peroxidase content, and proliferative responses of leucocytes delineated the strains' ability to interact with immune cells to activate the immune system in vitro. Significant growth inhibition of A. hydrophila from 1.55 × 105 CFU/mL was observed when co-cultured with P. aeruginosa FARP72 in phosphate-buffered saline (PBS) at levels ranging from 2.61 × 107 to 2.61 × 109 CFU/mL in 10 days. P. aeruginosa FARP72 increased the survival rate of rohu fingerlings against pathogenic A. hydrophila challenge in biocontrol study in vivo as determined by cohabitation challenge. These results suggest that P. aeruginosa FARP72 is a potential probiotic strain and can be used in aquaculture to improve the health status and disease resistance of fish.
Collapse
Affiliation(s)
- Farhana Hoque
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, West Bengal, 700094, India. .,Regional Research Centre, ICAR-Central Institute of Freshwater Aquaculture, Rahara, Kolkata, West Bengal, 700118, India.
| | - T Jawahar Abraham
- Department of Aquatic Animal Health, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, West Bengal, 700094, India
| | - T S Nagesh
- Department of Fisheries Resource Management, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, West Bengal, 700094, India
| | - Dibyendu Kamilya
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University, Lembucherra, Agartala, Tripura (W), 799210, India
| |
Collapse
|
16
|
Awais MM, Jamal MA, Akhtar M, Hameed MR, Anwar MI, Ullah MI. Immunomodulatory and ameliorative effects of Lactobacillus and Saccharomyces based probiotics on pathological effects of eimeriasis in broilers. Microb Pathog 2018; 126:101-108. [PMID: 30385394 DOI: 10.1016/j.micpath.2018.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Accepted: 10/27/2018] [Indexed: 11/28/2022]
Abstract
Eimeria infection is very important in broilers and causes heavy economic losses in extensive farming system due to reduced weight gains, high mortality and poor feed conversion ratio (FCR). Under the circumstances, there is a dire need to devise effective control strategies to avoid/counteract this infectious threat. This study was conducted to assess the immunomodulatory and ameliorative effects of Lactobacillus and Saccharomyces based probiotics against Eimeria infection in broilers. The results showed statistically higher (P < 0.05) lymphoproliferative responses in experimental groups treated either with Lactobacillus or Saccharomyces based probiotics, as compared to control group. Further higher antibody titers (geomean titers) were also recorded in chickens of experimental groups treated with probiotics as compared to those of control group. The probiotic treated groups also revealed significantly improved (P < 0.05) FCRs as compared to control group. In challenge experiment, significantly lower (P < 0.05) oocyst counts were recorded in broilers treated with probiotics, when compared with control group. Further, experimental groups also revealed significantly higher (P < 0.05) daily weight gains and protection rates as compared to control. The data regarding the lesion scoring showed that chickens treated with probiotics had higher values of percent protection against intestinal and caecal lesion, when compared with those of control group. In conclusion, supplementation of probiotics proved very useful to enhance the immunological and performance potentials of broilers which subsequently provided protection against Eimeria infection. Further studies on the physico-chemical properties along with commercial feasibility and cost benefit analysis of these probiotic species are needed for wise selection to get maximum profit from broiler industry.
Collapse
Affiliation(s)
- Mian Muhammad Awais
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Muhammad Asif Jamal
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Masood Akhtar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Raza Hameed
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Irfan Anwar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Irfan Ullah
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
17
|
Alamillo E, Reyes-Becerril M, Cuesta A, Angulo C. Marine yeast Yarrowia lipolytica improves the immune responses in Pacific red snapper (Lutjanus peru) leukocytes. FISH & SHELLFISH IMMUNOLOGY 2017; 70:48-56. [PMID: 28863888 DOI: 10.1016/j.fsi.2017.08.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/19/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
The climatic conditions in saltern saline environments allows the growth of microorganisms adapted to these peculiar ambient and could represent a promising source of new bioactive compounds that could have applications on as animal food supplements, including aquaculture. In this study, we evaluated the role of Yarrowia lipolytica N-6 isolate, from a hypersaline natural environment (Guerrero Negro, Baja California Sur, Mexico), as immunostimulant of the non-specific immune response of head-kidney and spleen Pacific red snapper (Lutjanus peru) leukocytes after challenge with Vibrio parahaemolyticus. In this study, the presence of Y. lipolytica reduced considerably the V. parahaemolyticus load in spleen leukocytes. In vitro assays using head-kidney and spleen leukocytes showed that the response to V. parahaemolyticus infection reveled that leukocyte pre-incubated with Y. lipolytica N-6 significantly increased the non-specific immune response such as respiratory burst, phagocytic activity, NO and MPO activities follow by an increase in SOD and CAT activities, and at the same time inhibited leukocyte apoptosis caused by V. parahaemolyticus. Moreover, Y. lipolytica N-6 incubation also regulated the transcription of genes related to immunity (IL-1β) or oxidative stress (MnSOD, icCu/ZnSOD or CAT) in leukocytes. These results strongly support the idea that the extreme yeast Y. lipolytica N-6 isolate can stimulate the non-specific immune parameters and the antioxidant immune mechanism in head-kidney and spleen Pacific red snapper leukocytes and could be used as potential immunostimulant.
Collapse
Affiliation(s)
- Erika Alamillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, BCS 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, BCS 23096, Mexico
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology & Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Spain
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, BCS 23096, Mexico.
| |
Collapse
|
18
|
Singh ST, Kamilya D, Kheti B, Bordoloi B, Parhi J. Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). FISH & SHELLFISH IMMUNOLOGY 2017; 66:35-42. [PMID: 28476667 DOI: 10.1016/j.fsi.2017.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The present study evaluated the paraprobiotic effect of heat-inactivated Bacillus amyloliquefaciens FPTB16 on immunological response and immune relevant gene expression in catla (Catla catla). Heat inactivation of viable cells of B. amyloliquefaciens was done at 60 °C for 2 h. For preparation of paraprobiotic supplemented diet, the heat-inactivated bacteria were added to the basal diet (control) at three different inclusion levels i.e., 107, 108 and 109 cells g-1 diet. Fish (25.98 ± 2.57 g) were fed with these diets and various immune responses and immune relevant gene expressions were measured after 4 weeks of feeding. Biochemical parameters were also measured along with the immunological responses. Immunological parameters viz. oxygen radical production, serum lysozyme activity and total serum protein content showed significant enhancement (p < 0.05) in fish fed with 108 and 109 cells g-1 diet. Significant enhancement in myeloperoxidase activity was observed in all the dietary groups compared to control. Alkaline phosphatase activity showed significant enhancement (p < 0.05) in fish fed with 107 and 108 cells g-1 diet. Biochemical parameters viz. GPT, GOT and glucose content did not show any significant difference in any of the dietary groups. Immune relevant genes viz. IL-1β, TNF-α, C3 and iNOS showed significantly higher expression in either liver or head-kidney tissues in most of the cases. However, IFN-γ expression showed a down-regulation pattern in both the tissues. In conclusion, the dietary supplementation of heat-inactivated B. amyloliquefaciens enhanced the immunity of catla, particularly at 108 cells g-1 diet. The results collectively suggest the paraprobiotic applicability of B. amyloliquefaciens in aquaculture.
Collapse
Affiliation(s)
- Sukham Tushiba Singh
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University, Lembucherra, 799 210, Tripura (w), India
| | - Dibyendu Kamilya
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University, Lembucherra, 799 210, Tripura (w), India.
| | - Biswanath Kheti
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University, Lembucherra, 799 210, Tripura (w), India
| | - Biswajyoti Bordoloi
- Department of Aquatic Health and Environment, College of Fisheries, Central Agricultural University, Lembucherra, 799 210, Tripura (w), India
| | - Janmejay Parhi
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University, Lembucherra, 799 210, Tripura (w), India
| |
Collapse
|
19
|
de Almada CN, Almada CN, Martinez RC, Sant'Ana AS. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|