1
|
Fritz P, Fritz R, Bóday P, Bóday Á, Bató E, Kesserű P, Oláh C. Gut microbiome composition: link between sports performance and protein absorption? J Int Soc Sports Nutr 2024; 21:2297992. [PMID: 38151716 PMCID: PMC10763846 DOI: 10.1080/15502783.2023.2297992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Sufficient protein intake is essential for adequate physical condition and athletic performance. However, numerous factors can influence the absorption of consumed protein, including timing, type of protein intake, and gut microbiota. In the present study, elite male water polo players consumed a plant-based, vegan protein supplement with (n = 10) or without (n = 10) pre- and probiotics daily during the 31-day study period. METHODS We determined the anthropometric characteristics and body composition, dietary habits, gut microbiota composition, and blood parameters of the players at the beginning and at the end of the study. Body composition parameters were analyzed using the InBody 970 bioimpedance analyzer. Gut microbiome composition was determined from stool samples by metagenome sequencing. Paired and unpaired t-tests were used to determine differences between body composition and blood parameters within the groups and between the two groups at the two different sampling times. The Wilcoxon test was used to determine the change in bacterial composition during the study. Correlations between changes in body composition, blood parameters, and taxonomic groups were analyzed using a linear correlation calculation. RESULTS Skeletal muscle mass (p < 0.001), body cell mass (p = 0.002), arm circumference (p = 0.003), and protein mass (p < 0.001) increased, while body fat mass (p = 0.004) decreased significantly in the intervention group which consumed pre- and probiotics in addition to protein supplement. Activated acetate (reductive TCA cycle I) and propionate (pyruvate fermentation to propanoate I) pathways correlated positively with increased skeletal muscle mass (p < 0.01 and p < 0.05), and the relative abundance of butyrate-producing species showed a significant positive correlation with changes in body fat mass in the intervention group (p < 0.05). These correlations were not observed in the control group without the intake of pre- and probiotics. CONCLUSIONS The composition of the gut microbiota may influence protein absorption and therefore body composition and consequently physical condition and sports performance.
Collapse
Affiliation(s)
- Péter Fritz
- Károli Gáspár University of the Reformed Church in Hungary, Faculty of Economics, Health Sciences and Social Studies, Budapest, Hungary
| | - Réka Fritz
- University of Szeged, Doctoral School of Clinical Medicine, Szeged, Hungary
| | - Pál Bóday
- Multi-domain Statistics Department, Hungarian Central Statistical Office, Budapest, Hungary
| | - Ádám Bóday
- Cordi R&D nonprofit Inc, Budapest, Hungary
| | | | - Péter Kesserű
- Eötvös Loránd Research Network, Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- University of Pannonia Nagykanizsa - University Center for Circular Economy, Soós Ernő Research and Development Center, Nagykanizsa, Hungary
| | - Csilla Oláh
- University of Duisburg-Essen, Department of Urology, Essen, Germany
| |
Collapse
|
2
|
Horner KM, Mullen B, Quinn A, Scheufele P, Gola S, Gonnelli F, Bozzato M, Pratt J, Sala W, Mullin S, Kirwan L, Dardevet D, Guillet C, De Vito G, Visser M, Volkert D, Corish CA. Plant protein, fibre and physical activity solutions to address poor appetite and prevent undernutrition in older adults: study protocol for the APPETITE randomised controlled trial. Br J Nutr 2024:1-12. [PMID: 39387205 DOI: 10.1017/s0007114524002125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Reduced appetite with ageing is a key factor that may increase risk of undernutrition. The objective of this study is to determine the impact of innovative plant protein fibre (PPF) products within a personalised optimised diet (PD), a physical activity (PA) programme, and their combination on appetite, and other nutritional, functional and clinical outcomes in community-dwelling older adults in a multi-country randomised controlled intervention trial. One hundred and eighty community-dwelling adults (approximately sixty per trial centre in Germany, Ireland and Italy) aged 65 years and over will be recruited to participate in a 12-week, parallel-group, controlled trial. Participants will be randomised into one of four groups: 1, PD (incorporating two PPF products): 2, PA; 3, PD + PA; and 4, no intervention (control). The primary outcome is appetite measured by visual analogue scales and energy intake from an ad libitum test meal. Secondary outcomes include fasting and postprandial appetite-related gut hormones, Simplified Nutritional Appetite Questionnaire score, body composition, cardiorespiratory fitness, muscle strength, physical function and PA. In addition, self-efficacy, cognitive status, dietary restraint, depressive symptoms and compliance and acceptability of the intervention will be assessed. Metabolomic profiles, RMR, muscle motor unit properties and gut microbiome will also be assessed to explore potential underlying mechanisms. This multi-centre randomised controlled trial will advance knowledge on how PD (incorporating PPF products), PA and their combination influence appetite, nutritional status and related health outcomes in community-dwelling older adults and contribute to the prevention of undernutrition. Trial registration: Clinical Trials.gov Registry NCT05608707 (registered on 2 November 2022). Protocol Version: NCT05608707 Version 4 (registered on 29 September 2023).
Collapse
Affiliation(s)
- Katy M Horner
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin 4, Republic of Ireland
- Institute for Food and Health, University College Dublin, Dublin 4, Republic of Ireland
- Institute for Sport and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Brian Mullen
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin 4, Republic of Ireland
- Institute for Food and Health, University College Dublin, Dublin 4, Republic of Ireland
- Institute for Sport and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Anna Quinn
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin 4, Republic of Ireland
- Institute for Food and Health, University College Dublin, Dublin 4, Republic of Ireland
- Institute for Sport and Health, University College Dublin, Dublin 4, Republic of Ireland
| | - Pia Scheufele
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Susanne Gola
- Fraunhofer Institute for Process Engineering and Packaging, Freising, Germany
| | - Federica Gonnelli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Bozzato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jedd Pratt
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Wiktoria Sala
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Sinead Mullin
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Laura Kirwan
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin 4, Republic of Ireland
| | | | | | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marjolein Visser
- Department of Health Sciences, Faculty of Science, and the Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Clare A Corish
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin 4, Republic of Ireland
- Institute for Food and Health, University College Dublin, Dublin 4, Republic of Ireland
| |
Collapse
|
3
|
Lapauw L, Rutten A, Dupont J, Amini N, Vercauteren L, Derrien M, Raes J, Gielen E. Associations between gut microbiota and sarcopenia or its defining parameters in older adults: A systematic review. J Cachexia Sarcopenia Muscle 2024. [PMID: 39192550 DOI: 10.1002/jcsm.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Altered gut microbiota (GM) potentially contribute to development or worsening of sarcopenia through a gut-muscle axis. This systematic review aims to compare GM between persons with sarcopenia or low sarcopenia-defining parameters (muscle mass, strength, and physical performance) to those with preserved muscle status, as well as to clarify possible associations between sarcopenia (-defining parameters) and relative abundance (RA) of GM-taxa or GM-(α- or β) diversity indices, in order to clarify whether there is robust evidence of the existence of a GM signature for sarcopenia. This systematic review was conducted according to the PRISMA-reporting guideline and pre-registered on PROSPERO (CRD42021259597). PubMed, Web of Science, Embase, ClinicalTrials.gov, and Cochrane library were searched until 20 July 2023. Included studies reported on GM and sarcopenia or its defining parameters. Observational studies were included with populations of mean age ≥50 years. Thirty-two studies totalling 10 781 persons (58.56% ♀) were included. Thirteen studies defined sarcopenia as a construct. Nineteen studies reported at least one sarcopenia-defining parameter (muscle mass, strength or physical performance). Studies found different GM-taxa at multiple levels to be significantly associated with sarcopenia (n = 4/6), muscle mass (n = 13/14), strength (n = 7/9), and physical performance (n = 3/3); however, directions of associations were heterogeneous and also conflicting for specific GM-taxa. Regarding β-diversity, studies found GM of persons with sarcopenia, low muscle mass, or low strength to cluster differently compared with persons with preserved muscle status. α-diversity was low in persons with sarcopenia or low muscle mass as compared with those with preserved muscle status, indicating low richness and diversity. In line with this, α-diversity was significantly and positively associated with muscle mass (n = 3/4) and muscle strength (n = 2/3). All reported results were significant (P < 0.05). Persons with sarcopenia and low muscle parameters have less rich and diverse GM and can be separated from persons with preserved muscle mass and function based on GM-composition. Sarcopenia and low muscle parameters are also associated with different GM-taxa at multiple levels, but results were heterogeneous and no causal conclusions could be made due to the cross-sectional design of the studies. This emphasizes the need for uniformly designed cross-sectional and longitudinal trials with appropriate GM confounder control in large samples of persons with sarcopenia and clearly defined core outcome sets in order to further explore changes in GM-taxa and to determine a sarcopenia-specific GM-signature.
Collapse
Affiliation(s)
- Laurence Lapauw
- Department of Public Health and Primary Care, Division of Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
| | - Aurélie Rutten
- Division of Gerontology and Geriatrics, Zuyderland Medisch Centrum, Sittard, The Netherlands
| | - Jolan Dupont
- Department of Public Health and Primary Care, Division of Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
- Division of Gerontology and Geriatrics, University Hospitals Leuven, Leuven, Belgium
| | - Nadjia Amini
- Department of Public Health and Primary Care, Division of Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
| | - Laura Vercauteren
- Department of Public Health and Primary Care, Division of Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
| | - Muriel Derrien
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- VIB Center for Microbiology, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- VIB Center for Microbiology, Leuven, Belgium
| | - Evelien Gielen
- Department of Public Health and Primary Care, Division of Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
- Division of Gerontology and Geriatrics, Zuyderland Medisch Centrum, Sittard, The Netherlands
| |
Collapse
|
4
|
Wang C, Zhu H, Cheng Y, Guo Y, Zhao Y, Qian H. Aqueous Extract of Brassica rapa L.'s Impact on Modulating Exercise-Induced Fatigue via Gut-Muscle Axis. Nutrients 2023; 15:4737. [PMID: 38004133 PMCID: PMC10674577 DOI: 10.3390/nu15224737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Exercise-induced fatigue is a common physiological response to prolonged physical activity, often associated with changes in gut microbiota and metabolic responses. This study investigates the potential role of Brassica rapa L. in modulating these responses. Using an animal model subjected to chronic exercise-induced stress, we explored the effects of Brassica rapa L. on fatigue-related biomarkers, energy metabolism genes, inflammatory responses, intestinal integrity, and gut microbiota composition. Our findings revealed that Brassica rapa L. exhibits significant antioxidant activity and effectively modulates physiological responses to fatigue. It influences gene expression related to the tricarboxylic acid (TCA) cycle in muscle tissue through the AMPK/PGC-1α/TFAM signaling pathway. Furthermore, Brassica rapa L. has been found to alleviate inflammation by inhibiting lipopolysaccharide (LPS) infection and suppressing the activation of the NF-κB pathway. It also maintains intestinal integrity and controls Gram-negative bacterial growth. A correlation analysis identified several pathogenic bacteria linked with inflammation and energy metabolism, as well as beneficial probiotic bacteria associated with improved energy metabolism and reduced inflammation. These findings underscore Brassica rapa L.'s potential for managing prolonged exercise-induced fatigue, paving the way for future therapeutic applications. The results highlight its impact on gut microbiota modulation and its role in nutrition science and sports medicine.
Collapse
Affiliation(s)
- Cheng Wang
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yong Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China; (C.W.); (H.Z.); (Y.C.); (Y.G.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Qiao X, Gao Q, Yang L, Wang X, Wang Z, Li Z, Xu J, Xue C. In-Depth Analysis of the Mechanism of Astaxanthin Succinate Diester in Reducing Ulcerative Colitis in C57BL/6J Mice Based on Microbiota Informatics. Molecules 2023; 28:6513. [PMID: 37764289 PMCID: PMC10537600 DOI: 10.3390/molecules28186513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This paper aims to explore the effect and mechanism of water-soluble astaxanthin succinate diester (Asta-SD) on ulcerative colitis (UC) induced by dextran sodium sulfate in zebrafish and C57BL/6J mice. Asta-SD was synthesized with hydrophilic fatty acid succinic anhydride and the hydroxyl groups at the ends of F-Asta were synthesized by esterifying. Through the construction of a zebrafish intestinal inflammation model, it was found that Asta-SD could effectively reduce the levels of ROS and increase the number of healthy intestinal lysosomes in zebrafish. After continuous gavage of Asta-SD for seven days, the body weight, disease activity index, colonic length, colonic histopathology, expression of inflammatory factors, and intestinal flora of the mice were measured. The results showed that Asta-SD could significantly alleviate weight loss and colonic shrinkage, as well as reducing pro-inflammatory cytokines and recess injury in UC mice. The 16S rRNA gene sequencing showed that Asta-SD significantly increased the beneficial bacteria (Lactobacillus, Anaerotruncus) and decreased the relative abundance of pathogenic bacteria, effectively maintaining intestinal microbiota homeostasis in mice. Based on Pearson analysis, Bacteroides, Parabacteroides, and Butyrimionas were expected to be associated with the significant difference in the expression of inflammatory factors between the UC and the corresponding host. Thus, Asta-SD significantly improves UC and maintains intestinal microbiota homeostasis.
Collapse
Affiliation(s)
- Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Qun Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| |
Collapse
|
6
|
Liu C, Sun C, Cheng Y. β-Glucan alleviates mice with ulcerative colitis through interactions between gut microbes and amino acids metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4006-4016. [PMID: 36433918 DOI: 10.1002/jsfa.12357] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 11/26/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Food polysaccharide 1,3-β-d-glucan (OBG) has been shown to alleviate ulcerative colitis (UC) in a mouse model, but the underlying mechanisms remain unclear. Here, we aimed to investigate potential mechanisms involving interactions among gut microbiota, microbial metabolites and host metabolic function. RESULTS OBG alleviated colonic inflammation, barrier dysfunction and intestinal concentrations of short-chain fatty acids in mice with UC. In addition, the relative abundance of Muribaculaceae, Alistipes, Erysipelatoclostridium and Blautia increased, whereas the abundance of Proteus, Lachnospiraceae and Ruminococcus decreased within the gut microbiota upon OBG treatment. Kyoto Encyclopedia of Genes and Genomes analyses showed that intestinal enzymes altered upon OBG treatment were mainly enriched in sub-pathways of amino acid biosynthesis. Metabolomics analyses showed that l-tryptophan, l-tyrosine, l-phenylalanine and l-alanine increased, which is consistent with the predictive metabolism of gut microbiota. Correlation analysis and interaction networks highlighted gut microbiota (especially Lactobacillus, Parabacteroides, Proteus and Blautia), metabolites (especially l-phenylalanine, l-tryptophan, l-tyrosine and acetic acid) and metabolism (phenylalanine, tyrosine and tryptophan biosynthesis) that may be key targets of OBG. CONCLUSION OBG is beneficial to the gut microecological balance in mice with colitis, mainly becaue of its impact on the interactions between gut microbes and amino acids metabolism (especially tyrosine and tryptophan metabolism). © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Changwu Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Prokopidis K, Giannos P, Kirwan R, Ispoglou T, Galli F, Witard OC, Triantafyllidis KK, Kechagias KS, Morwani-Mangnani J, Ticinesi A, Isanejad M. Impact of probiotics on muscle mass, muscle strength and lean mass: a systematic review and meta-analysis of randomized controlled trials. J Cachexia Sarcopenia Muscle 2023; 14:30-44. [PMID: 36414567 PMCID: PMC9891957 DOI: 10.1002/jcsm.13132] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Probiotics have shown potential to counteract sarcopenia, although the extent to which they can influence domains of sarcopenia such as muscle mass and strength in humans is unclear. The aim of this systematic review and meta-analysis was to explore the impact of probiotic supplementation on muscle mass, total lean mass and muscle strength in human adults. A literature search of randomized controlled trials (RCTs) was conducted through PubMed, Scopus, Web of Science and Cochrane Library from inception until June 2022. Eligible RCTs compared the effect of probiotic supplementation versus placebo on muscle and total lean mass and global muscle strength (composite score of all muscle strength outcomes) in adults (>18 years). To evaluate the differences between groups, a meta-analysis was conducted using the random effects inverse-variance model by utilizing standardized mean differences. Twenty-four studies were included in the systematic review and meta-analysis exploring the effects of probiotics on muscle mass, total lean mass and global muscle strength. Our main analysis (k = 10) revealed that muscle mass was improved following probiotics compared with placebo (SMD: 0.42, 95% CI: 0.10-0.74, I2 = 57%, P = 0.009), although no changes were revealed in relation to total lean mass (k = 12; SMD: -0.03, 95% CI: -0.19 - 0.13, I2 = 0%, P = 0.69). Interestingly, a significant increase in global muscle strength was also observed among six RCTs (SMD: 0.69, 95% CI: 0.33-1.06, I2 = 64%, P = 0.0002). Probiotic supplementation enhances both muscle mass and global muscle strength; however, no beneficial effects were observed in total lean mass. Investigating the physiological mechanisms underpinning different ageing groups and elucidating appropriate probiotic strains for optimal gains in muscle mass and strength are warranted.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.,Society of Meta-research and Biomedical Innovation, London, UK
| | - Panagiotis Giannos
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Francesco Galli
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, Perugia, Italy
| | - Oliver C Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Konstantinos K Triantafyllidis
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Nutrition & Dietetics, Musgrove Park Hospital, Taunton & Somerset NHS Foundation Trust, Taunton, UK
| | - Konstantinos S Kechagias
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jordi Morwani-Mangnani
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Masoud Isanejad
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Chew W, Lim YP, Lim WS, Chambers ES, Frost G, Wong SH, Ali Y. Gut-muscle crosstalk. A perspective on influence of microbes on muscle function. Front Med (Lausanne) 2023; 9:1065365. [PMID: 36698827 PMCID: PMC9868714 DOI: 10.3389/fmed.2022.1065365] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Our gastrointestinal system functions to digest and absorb ingested food, but it is also home to trillions of microbes that change across time, nutrition, lifestyle, and disease conditions. Largely commensals, these microbes are gaining prominence with regards to how they collectively affect the function of important metabolic organs, from the adipose tissues to the endocrine pancreas to the skeletal muscle. Muscle, as the biggest utilizer of ingested glucose and an important reservoir of body proteins, is intricately linked with homeostasis, and with important anabolic and catabolic functions, respectively. Herein, we provide a brief overview of how gut microbiota may influence muscle health and how various microbes may in turn be altered during certain muscle disease states. Specifically, we discuss recent experimental and clinical evidence in support for a role of gut-muscle crosstalk and include suggested underpinning molecular mechanisms that facilitate this crosstalk in health and diseased conditions. We end with a brief perspective on how exercise and pharmacological interventions may interface with the gut-muscle axis to improve muscle mass and function.
Collapse
Affiliation(s)
- Weixuan Chew
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yen Peng Lim
- Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore,Department of Nutrition and Dietetics, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Wee Shiong Lim
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore, Singapore
| | - Edward S. Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sunny Hei Wong
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore, Singapore
| | - Yusuf Ali
- Nutrition, Metabolism and Health Programme, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore,Singapore General Hospital, Singapore Eye Research Institute (SERI), Singapore, Singapore,Clinical Research Unit, Khoo Teck Puat Hospital, National Healthcare Group, Singapore, Singapore,*Correspondence: Yusuf Ali ✉
| |
Collapse
|
9
|
Zhang T, Cheng JK, Hu YM. Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev 2022; 81:101739. [PMID: 36182084 DOI: 10.1016/j.arr.2022.101739] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 09/25/2022] [Indexed: 01/31/2023]
Abstract
Sarcopenia is characterized by a progressive loss of skeletal muscle mass and function with aging. Recently, sarcopenia has been shown to be closely related with gut microbiota. Strategies such as probiotics and fecal microbiota transplantation have shown potential to ameliorate the muscle loss. This review will focus on the age-related sarcopenia, in particular on the relationship between gut microbiota and age-related sarcopenia, how gut microbiota is engaged in sarcopenia, and the potential role of gut microbiota in the treatment of age-related sarcopenia.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jin-Ke Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital Affiliated, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao-Min Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
10
|
Annual Dynamics of Blood Lipid Parameters in Highly Qualified Physical Training. Appl Biochem Biotechnol 2022; 194:3582-3593. [PMID: 35451795 DOI: 10.1007/s12010-022-03918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
The purpose of the paper is to study and analyse the annual dynamics of blood lipid parameters in highly qualified physical training. An experiment is a leading method for studying this problem that allows considering the problem comprehensively and in practice, as well as a comparison method, which makes it possible to analyse common features and differences as well as consider the dynamics of blood lipid parameters. Athletes who developed endurance or strength to a greater extent had no significant differences in many blood parameters. However, the groups of athletes who developed only strength had a more pronounced anisocytosis. In addition, it was possible to identify a correlation between the parameters of red blood cells and trained sports results. It was concluded that the highest indicators of the number of red blood cells, haemoglobin and average haemoglobin concentration in red blood cells were observed in strength training, and the lowest-in athletes training speed indicators. The article is of practical value for future research in the field of medicine and regenerative physiotherapy.
Collapse
|
11
|
Li G, Jin B, Fan Z. Mechanisms Involved in Gut Microbiota Regulation of Skeletal Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2151191. [PMID: 35633886 PMCID: PMC9132697 DOI: 10.1155/2022/2151191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is one of the largest organs in the body and is essential for maintaining quality of life. Loss of skeletal muscle mass and function can lead to a range of adverse consequences. The gut microbiota can interact with skeletal muscle by regulating a variety of processes that affect host physiology, including inflammatory immunity, protein anabolism, energy, lipids, neuromuscular connectivity, oxidative stress, mitochondrial function, and endocrine and insulin resistance. It is proposed that the gut microbiota plays a role in the direction of skeletal muscle mass and work. Even though the notion of the gut microbiota-muscle axis (gut-muscle axis) has been postulated, its causal link is still unknown. The impact of the gut microbiota on skeletal muscle function and quality is described in detail in this review.
Collapse
Affiliation(s)
- Guangyao Li
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of Central Laboratory, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Liu C, Cheung W, Li J, Chow SK, Yu J, Wong SH, Ip M, Sung JJY, Wong RMY. Understanding the gut microbiota and sarcopenia: a systematic review. J Cachexia Sarcopenia Muscle 2021; 12:1393-1407. [PMID: 34523250 PMCID: PMC8718038 DOI: 10.1002/jcsm.12784] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/03/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gut microbiota dysbiosis and sarcopenia commonly occur in the elderly. Although the concept of the gut-muscle axis has been raised, the casual relationship is still unclear. This systematic review analyses the current evidence of gut microbiota effects on muscle/sarcopenia. METHODS A systematic review was performed in PubMed, Embase, Web of Science, and The Cochrane Library databases using the keywords (microbiota* OR microbiome*) AND (sarcopen* OR muscle). Studies reporting the alterations of gut microbiota and muscle/physical performance were analysed. RESULTS A total of 26 pre-clinical and 10 clinical studies were included. For animal studies, three revealed age-related changes and relationships between gut microbiota and muscle. Three studies focused on muscle characteristics of germ-free mice. Seventy-five per cent of eight faecal microbiota transplantation studies showed that the recipient mice successfully replicated the muscle phenotype of donors. There were positive effects on muscle from seven probiotics, two prebiotics, and short-chain fatty acids (SCFAs). Ten studies investigated on other dietary supplements, antibiotics, exercise, and food withdrawal that affected both muscle and gut microbiota. Twelve studies explored the potential mechanisms of the gut-muscle axis. For clinical studies, 6 studies recruited 676 elderly people (72.8 ± 5.6 years, 57.8% female), while 4 studies focused on 244 young adults (29.7 ± 7.8 years, 55.4% female). The associations of gut microbiota and muscle had been shown in four observational studies. Probiotics, prebiotics, synbiotics, fermented milk, caloric restriction, and exercise in six studies displayed inconsistent effects on muscle mass, function, and gut microbiota. CONCLUSIONS Altering the gut microbiota through bacteria depletion, faecal transplantation, and various supplements was shown to directly affect muscle phenotypes. Probiotics, prebiotics, SCFAs, and bacterial products are potential novel therapies to enhance muscle mass and physical performance. Lactobacillus and Bifidobacterium strains restored age-related muscle loss. Potential mechanisms of microbiome modulating muscle mainly include protein, energy, lipid, and glucose metabolism, inflammation level, neuromuscular junction, and mitochondrial function. The role of the gut microbiota in the development of muscle loss during aging is a crucial area that requires further studies for translation to patients.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Wing‐Hoi Cheung
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Jie Li
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Simon Kwoon‐Ho Chow
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| | - Jun Yu
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Sunny Hei Wong
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Margaret Ip
- Department of MicrobiologyThe Chinese University of Hong KongHong Kong SARChina
| | - Joseph Jao Yiu Sung
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
13
|
Moore TM, Terrazas A, Strumwasser AR, Lin AJ, Zhu X, Anand ATS, Nguyen CQ, Stiles L, Norheim F, Lang JM, Hui ST, Turcotte LP, Zhou Z. Effect of voluntary exercise upon the metabolic syndrome and gut microbiome composition in mice. Physiol Rep 2021; 9:e15068. [PMID: 34755487 PMCID: PMC8578881 DOI: 10.14814/phy2.15068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.
Collapse
Affiliation(s)
- Timothy M. Moore
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony Terrazas
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Xiaopeng Zhu
- Division of Pediatric EndocrinologyDepartment of Pediatrics UCLA Children's Discovery and Innovation InstituteDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of Endocrinology and Metabolism. Zhongshan HospitalFudan UniversityShanghaiP.R.China
| | - Akshay T. S. Anand
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Frode Norheim
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of NutritionFaculty of MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jennifer M. Lang
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Simon T. Hui
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Prokopidis K, Chambers E, Ni Lochlainn M, Witard OC. Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Front Physiol 2021; 12:770455. [PMID: 34764887 PMCID: PMC8576575 DOI: 10.3389/fphys.2021.770455] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward Chambers
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
15
|
Davis JA, Collier F, Mohebbi M, Pasco JA, Shivappa N, Hébert JR, Jacka FN, Loughman A. The associations of butyrate-producing bacteria of the gut microbiome with diet quality and muscle health. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 2:e2. [PMID: 39296318 PMCID: PMC11406371 DOI: 10.1017/gmb.2021.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 09/21/2024]
Abstract
This study aimed to investigate the relationships between diet quality, the relative abundance of butyrate-producing bacteria of the gut microbiome and muscle mass, strength and function. In this cross-sectional study, n = 490 men (64.4 ± 13.5 years) from the Geelong Osteoporosis Study provided food frequency questionnaire data, from which the Australian Recommended Food Score (ARFS) and Dietary Inflammatory Index (DII) score were calculated. Muscle mass (skeletal muscle index from DXA-derived lean mass), muscle strength (handgrip strength) and muscle function (Timed Up-and-Go test) were measured. Participants provided stool samples for 16S rRNA gene sequencing. There was no evidence of associations between alpha or beta diversity and muscle health measures. A healthier ARFS score was positively associated with the relative abundance of butyrate-producing bacteria (β 0.09, 95%CI 0.03, 0.15) and a higher (pro-inflammatory) DII score was associated with lower relative abundance of butyrate-producing bacteria (β -0.60, 95%CI -1.06, -0.15). The relative abundance of butyrate-producing bacteria was positively associated with healthier muscle mass, strength and function; however, these relationships were attenuated in multivariable models. These findings support the role of diet quality in achieving a healthier gut microbiome, however, further evidence is required for a gut-muscle axis in humans.
Collapse
Affiliation(s)
- Jessica A Davis
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Fiona Collier
- Geelong Centre for Emerging Infectious Diseases (GCEID), Barwon Health, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Mohammadreza Mohebbi
- Biostatistics Unit, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Julie A Pasco
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Medicine - Western Health, The University of Melbourne, St Albans, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Prahran, VIC, Australia
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - James R Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Felice N Jacka
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- James Cook University, Townsville, QLD, Australia
| | - Amy Loughman
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
16
|
Liu C, Hu B, Cheng Y, Guo Y, Yao W, Qian H. In-depth analysis of the mechanisms of aloe polysaccharides on mitigating subacute colitis in mice via microbiota informatics. Carbohydr Polym 2021; 265:118041. [PMID: 33966825 DOI: 10.1016/j.carbpol.2021.118041] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
Aloe polysaccharides (APs) are indigestible bioactive polysaccharides, while can be fermented by colonic microbiota. Although plant polysaccharides can alleviate subacute ulcerative colitis (SUC), the mechanisms APs regulated SUC via colonic microbiota have not been fully explored. Hence, to elucidate the complex interactions between the novel APs, colonic microbiota, SCFAs, and inflammation, the SUC mouse model and in-depth analysis were performed, including multiple bioinformatics analysis and structural equation modeling (SEM). After APs intervention, SCFAs and SCFAs-producing genus, including Akkermansia and Blautia, were increased in colon, and the colonic inflammation and barrier dysfunction were alleviated significantly in SUC mice. Spearman analysis found positive correlations between microbiota and SCFAs. PICRUSt2 and KEGG analysis revealed 6-pyruvoyltetra hydropterin synthase in folate biosynthesis metabolism pathway was activated, while phosphotransferase system was inhibited. SEM results further proved APs was beneficial to gut micro-ecological balance in mice via SCFAs metabolism and anti-inflammatory functions. Together, APs could be exploited to alleviate SUC as dietary therapeutics.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
17
|
Liu C, Cheng Y, Guo Y, Qian H. Magnesium-L-threonate alleviate colonic inflammation and memory impairment in chronic-plus-binge alcohol feeding mice. Brain Res Bull 2021; 174:184-193. [PMID: 34144203 DOI: 10.1016/j.brainresbull.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 12/22/2022]
Abstract
Magnesium-l-threonate (MgT) is considered a food supplement. Alcohol-mediated diseases (AMD) are accompanied by inflammation and memory impairment. The purpose of this study is to investigate the function of MgT in AMD. Hence, chronic-plus-binge alcohol feeding mice model and multiply bioinformatics analysis were performed. Consequently, the expression of inflammatory cytokines downregulated, while the activities of antioxidases decreased in serum, colon, and brain. Interestingly, MgT relieved gut barrier dysfunction and reshaped microbiota. The relative abundance of Akkermansia, Odoribacter, and Blautia were increased, while that of Alloprevotella and Clostridium were decreased. Metabolic analysis elucidated amino acids and glutamate metabolism were enhanced in MgT-treated mice. Furthermore, morris water maze test confirmed memory ability was enhanced. Inflammation cytokines were negatively correlated with Blautia, and Akkermansia. Collectively, MgT relieved inflammation in gut-brain axis of mice, reshaped gut microbiota, and enhanced the amino acids and glutamate metabolism. MgT may be used as a food supplement to prevent inflammation and memory impairment induced by alcohol abuse.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.
| |
Collapse
|
18
|
Zhao J, Huang Y, Yu X. A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota. Int J Gen Med 2021; 14:1263-1273. [PMID: 33880058 PMCID: PMC8053521 DOI: 10.2147/ijgm.s301141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a multifactorial disease related to aging, chronic inflammation, insufficient nutrition, and physical inactivity. Previous studies have suggested that there is a relationship between sarcopenia and gut microbiota,namely, the gut-muscle axis. The present review highlights that the gut microbiota can affect muscle mass and muscle function from inflammation and immunity,substance and energy metabolism, endocrine and insulin sensitivity, etc., directly or indirectly establishing a connection with sarcopenia, thereby realizing the “gut-muscle axis”.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Yiqin Huang
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Xiaofeng Yu
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Cox NJ, Bowyer RCE, Ni Lochlainn M, Wells PM, Roberts HC, Steves CJ. The composition of the gut microbiome differs among community dwelling older people with good and poor appetite. J Cachexia Sarcopenia Muscle 2021; 12:368-377. [PMID: 33580637 PMCID: PMC8061352 DOI: 10.1002/jcsm.12683] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anorexia of ageing is common and important in the development of sarcopenia in older individuals. Links have been proposed between the gut microbiota and sarcopenia. Disordered gut function is also recognized in anorexia of ageing, but how this may relate to resident gut microbiota is unexplored. Understanding this relationship may provide a basis for novel interventions for anorexia of ageing and sarcopenia. This study explores compositional differences of the gut microbiota between community dwelling healthy older adults with good or poor appetite, and associated differences in sarcopenia. METHODS We assessed appetite by the Simplified Nutritional Appetite Questionnaire (SNAQ) in members of the TwinsUK cohort aged ≥65 years. Using a pool of 776 individuals with existing microbiome data estimated from 16S rRNA sequencing data, we identified 102 cases (SNAQ score < 14) (95% female, mean age 68 years) matched to controls (SNAQ > 14) on body mass index, gender, age, diet, calorie consumption, frailty, antibiotic use, socio-economic status, and technical variables to minimize confounding microbiota associations. Species abundance and diversity, compositional differences, and paired differences in taxa abundance were compared between cases and controls. Additionally, we compared case and controls for sarcopenia as measured by muscle mass (appendicular lean mass/height2 ) and strength (chair stand time in seconds). RESULTS Cases with poor appetite had reduced species richness and diversity of their gut microbiome (adjusted OBSERVED: beta = -0.2, P < 0.001; adjusted SHANNON: beta = -0.17, P = 0.0135), significant compositional differences (adjusted non-parametric multivariate analysis of variance, P = 0.0095), and significant differences in taxa abundance including reduction of genus Lachnospira (logFC = -1.015, q = 0.023). In all-female subgroup analysis, cases with poor appetite demonstrated reduction in muscle strength (11.03 s vs. 9.26 s, P = 0.02). CONCLUSIONS This study is the first to observe differences in the composition of gut microbiota between healthy community dwelling older individuals with good and poor appetite. We found female individuals with reduced muscle strength had poor appetite compared with those with normal strength. These associations require further examination to understand causality and mechanisms of interaction, to inform potential strategies targeting the gut microbiota as a novel intervention for anorexia of ageing and sarcopenia.
Collapse
Affiliation(s)
- Natalie J Cox
- Academic Geriatric Medicine, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ruth C E Bowyer
- Department of Twins Research and Genetic Epidemiology, Kings College London, St Thomas' Hospital, London, UK
| | - Mary Ni Lochlainn
- Department of Twins Research and Genetic Epidemiology, Kings College London, St Thomas' Hospital, London, UK
| | - Philippa M Wells
- Department of Twins Research and Genetic Epidemiology, Kings College London, St Thomas' Hospital, London, UK
| | - Helen C Roberts
- Academic Geriatric Medicine, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Applied Research Collaboration (ARC) Wessex, Southampton, UK
| | - Claire J Steves
- Department of Twins Research and Genetic Epidemiology, Kings College London, St Thomas' Hospital, London, UK.,Department of Ageing and Health, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|