1
|
Chen A, Qu J, You Y, Pan J, Scheper V, Lin Y, Tian X, Shu F, Luo Y, Tang J, Zhang H. Intratympanic injection of MSC-derived small extracellular vesicles protects spiral ganglion neurons from degeneration. Biomed Pharmacother 2024; 179:117392. [PMID: 39232388 DOI: 10.1016/j.biopha.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Sensorineural hearing loss is one of the most prevalent sensory deficits. Spiral ganglion neurons (SGNs) exhibit very limited regeneration capacity and their degeneration leads to profound hearing loss. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have been demonstrated to repair tissue damage in various degenerative diseases. However, the effects of MSC-sEV on SGN degeneration remain unclear. In this study, we investigated the efficacy of MSC-sEV for protection against ouabain-induced SGN degeneration. MSC-sEV were derived from rat bone marrow and their components related to neuron growth were determined by proteomic analysis. In primary culture SGNs, MSC-sEV significantly promoted neurite growth and growth cone development. The RNA-Seq analysis of SGNs showed that enriched pathways include neuron development and axon regeneration, consistent with proteomics. In ouabain induced SGN degeneration rat model, MSC-sEV administration via intratympanic injection significantly enhanced SGN survival and mitigated hearing loss. Furthermore, after ouabain treatment, SGNs displayed evident signs of apoptosis, including nuclei condensation and fragmentation, with numerous cells exhibiting TUNEL-positive. However, administration of MSC-sEV effectively decreased the number of TUNEL-positive cells and reduced caspase-3 activation. In conclusion, our findings demonstrate the potential of MSC-sEV in preventing SGN degeneration and promoting neural growth, suggesting intratympanic injection of MSC-sEV is a specific and efficient strategy for neural hearing loss.
Collapse
Affiliation(s)
- Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiaxi Qu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yunyou You
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jing Pan
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Verena Scheper
- Department of Otolaryngology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence "Hearing4all", German Research Foundation, Hannover Medical School, Hannover 30625, Germany
| | - Yongdong Lin
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xuexin Tian
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fan Shu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanjing Luo
- Department of Otolaryngology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence "Hearing4all", German Research Foundation, Hannover Medical School, Hannover 30625, Germany
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China.
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Ear Research Institute, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
2
|
Ding D, Manohar S, Kador PF, Salvi R. Multifunctional redox modulator prevents blast-induced loss of cochlear and vestibular hair cells and auditory spiral ganglion neurons. Sci Rep 2024; 14:15296. [PMID: 38961203 PMCID: PMC11222375 DOI: 10.1038/s41598-024-66406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | | | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
3
|
Kim MJ, Carmichael PB, Bose U, Honkura Y, Suzuki J, Ding D, Erfe SL, Simms SS, Avaiya KA, Milani MN, Rymer EJ, Fragnito DT, Strom N, Salvi R, Someya S. Sex differences in body composition, voluntary wheel running activity, balance performance, and auditory function in CBA/CaJ mice across the lifespan. Hear Res 2023; 428:108684. [PMID: 36599258 PMCID: PMC11446250 DOI: 10.1016/j.heares.2022.108684] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Hearing loss is the third most prevalent chronic health condition affecting older adults and age-related hearing loss (ARHL) is the most common form of hearing impairment. Significant sex differences in hearing have been documented in humans and rodents. In general, the results of these studies show that men lose their hearing more rapidly than women. However, the cellular mechanism underlying sex differences in hearing or hearing loss remains largely unknown, and to our knowledge, there is no well-established animal model for studying sex differences in hearing. In the current study, we examined sex differences in body composition, voluntary wheel running activity, balance performance, auditory function, and cochlear histology in young, middle-age, and old CBA/CaJ mice, a model of age-related hearing loss. As expected, body weight of young females was lower than that of males. Similarly, lean mass and total water mass of young, middle-age, and old females were lower than those of males. Young females showed higher voluntary wheel running activity during the dark cycle, an indicator of mobility, physical activity, and balance status, compared to males. Young females also displayed higher auditory brainstem response (ABR) wave I amplitudes at 8 kHz, wave II, III, V amplitudes at 8 and 48 kHz, and wave IV/I and V/I amplitude ratios at 48 kHz compared to males. Collectively, our findings suggest that the CBA/CaJ mouse strain is a useful model to study the cellular mechanisms underlying sex differences in physical activity and hearing.
Collapse
Affiliation(s)
- Mi-Jung Kim
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Peter B Carmichael
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Upal Bose
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Yohei Honkura
- Department of Otolaryngology-Head &Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Suzuki
- Department of Otolaryngology-Head &Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Samantha L Erfe
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA; Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Shion S Simms
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Kishan A Avaiya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Marcus N Milani
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Elizabeth J Rymer
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Daniella T Fragnito
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Nathan Strom
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA; Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Chen C, Ni X, Yin X, Chen H, Zhou Y, Sun H, Qi C, Bu N, Wang S, Yu J, Yang J, Ao W, Zhao B, Dong W. Developmental disorders caused by cefixime in the otic vesicles of zebrafish embryos or larvae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 255:109295. [PMID: 35134541 DOI: 10.1016/j.cbpc.2022.109295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
To explore the developmental toxicity of cefixime (CE) in the developmental disorder and toxicity mechanism of CE on otic vesicles, zebrafish embryos were used as an animal model. The results showed that CE increased mortality in a dose-dependent manner and decreased the hatching rate of zebrafish larva at 96 hpf. Interestingly, CE significantly reduced the area of the saccule and utricle, as well as the area of otic vesicles in zebrafish larvae (p < 0.001). Fibroblast growth factor 8a (Fgf8a) inhibitors and bone morphogenetic protein (BMP) inhibitors caused similar morphological changes. CE decreased the lateral hair cells of zebrafish larvae in a dose-dependent manner. Furthermore, CE caused the downregulation of cartilage and bone-related genes and Na+/K+-ATPase-related genes of zebrafish larvae at 72 hpf and 120 hpf according to RT-qPCR. A comparison with the control group revealed that 100 μg/mL CE also caused a decrease in Na+/K+-ATPase activity (p < 0.01). In addition, antibody staining verified that CE inhibited the expression of Na+/K+-ATPase in the otic vesicles and the nephridium of zebrafish larvae. The data obtained in this study suggested that CE has significant ototoxicity during embryonic development of zebrafish, which is closely related to Na+/K+-ATPase and the regulation of the Fgf8a/BMP signaling pathways. The effects and toxicity of CE on ear development in other animal models need to be further explored.
Collapse
Affiliation(s)
- Chaobao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xuan Ni
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiaoyu Yin
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yini Zhou
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Huiying Sun
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chelimuge Qi
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Nini Bu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Shuaiyu Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jianhua Yu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wuliji Ao
- Inner Mongolia Research Institute of Traditional Mongolian Medicine Engineering Technology/College of Mongolian Medicine and Pharmacy, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
5
|
Schwarzer S, Rekhade DR, Machate A, Spieß S, Geffarth M, Ezhkova D, Hans S. Reactivation of the Neurogenic Niche in the Adult Zebrafish Statoacoustic Ganglion Following a Mechanical Lesion. Front Cell Dev Biol 2022; 10:850624. [PMID: 35372332 PMCID: PMC8964994 DOI: 10.3389/fcell.2022.850624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Sensorineural hearing loss is caused by the loss of sensory hair cells and/or their innervating neurons within the inner ear and affects millions of people worldwide. In mammals, including humans, the underlying cell types are only produced during fetal stages making loss of these cells and the resulting consequences irreversible. In contrast, zebrafish produce sensory hair cells throughout life and additionally possess the remarkable capacity to regenerate them upon lesion. Recently, we showed that also inner ear neurogenesis continues to take place in the zebrafish statoacoustic ganglion (SAG) well into adulthood. The neurogenic niche displays presumptive stem cells, proliferating Neurod-positive progenitors and a high level of neurogenesis at juvenile stages. It turns dormant at adult stages with only a few proliferating presumptive stem cells, no proliferating Neurod-positive progenitors, and very low levels of newborn neurons. Whether the neurogenic niche can be reactivated and whether SAG neurons can regenerate upon damage is unknown. To study the regenerative capacity of the SAG, we established a lesion paradigm using injections into the otic capsule of the right ear. Upon lesion, the number of apoptotic cells increased, and immune cells infiltrated the SAG of the lesioned side. Importantly, the Neurod-positive progenitor cells re-entered the cell cycle displaying a peak in proliferation at 8 days post lesion before they returned to homeostatic levels at 57 days post lesion. In parallel to reactive proliferation, we observed increased neurogenesis from the Neurod-positive progenitor pool. Reactive neurogenesis started at around 4 days post lesion peaking at 8 days post lesion before the neurogenesis rate decreased again to low homeostatic levels at 57 days post lesion. Additionally, administration of the thymidine analog BrdU and, thereby, labeling proliferating cells and their progeny revealed the generation of new sensory neurons within 19 days post lesion. Taken together, we show that the neurogenic niche of the adult zebrafish SAG can indeed be reactivated to re-enter the cell cycle and to increase neurogenesis upon lesion. Studying the underlying genes and pathways in zebrafish will allow comparative studies with mammalian species and might provide valuable insights into developing cures for auditory and vestibular neuropathies.
Collapse
|
6
|
Ma K, Zhang A, She X, Yang H, Wang K, Zhu Y, Gao X, Cui B. Disruption of Glutamate Release and Uptake-Related Protein Expression After Noise-Induced Synaptopathy in the Cochlea. Front Cell Dev Biol 2021; 9:720902. [PMID: 34422838 PMCID: PMC8373299 DOI: 10.3389/fcell.2021.720902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023] Open
Abstract
High-intensity noise can cause permanent hearing loss; however, short-duration medium-intensity noise only induces a temporary threshold shift (TTS) and damages synapses formed by inner hair cells (IHCs) and spiral ganglion nerves. Synaptopathy is generally thought to be caused by glutamate excitotoxicity. In this study, we investigated the expression levels of vesicle transporter protein 3 (Vglut3), responsible for the release of glutamate; glutamate/aspartate transporter protein (GLAST), responsible for the uptake of glutamate; and Na+/K+-ATPase α1 coupled with GLAST, in the process of synaptopathy in the cochlea. The results of the auditory brainstem response (ABR) and CtBP2 immunofluorescence revealed that synaptopathy was induced on day 30 after 100 dB SPL noise exposure in C57BL/6J mice. We found that GLAST and Na+/K+-ATPase α1 were co-localized in the cochlea, mainly in the stria vascularis, spiral ligament, and spiral ganglion cells. Furthermore, Vglut3, GLAST, and Na+/K+-ATPase α1 expression were disrupted after noise exposure. These results indicate that disruption of glutamate release and uptake-related protein expression may exacerbate the occurrence of synaptopathy.
Collapse
Affiliation(s)
- Kefeng Ma
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Anran Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojun She
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Kun Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Ding D, Jiang H, Manohar S, Liu X, Li L, Chen GD, Salvi R. Spatiotemporal Developmental Upregulation of Prestin Correlates With the Severity and Location of Cyclodextrin-Induced Outer Hair Cell Loss and Hearing Loss. Front Cell Dev Biol 2021; 9:643709. [PMID: 34109172 PMCID: PMC8181405 DOI: 10.3389/fcell.2021.643709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Wang X, Mao X, Liang K, Chen X, Yue B, Yang Y. RIP3-mediated necroptosis was essential for spiral ganglion neuron damage. Neurosci Lett 2021; 744:135565. [PMID: 33359086 DOI: 10.1016/j.neulet.2020.135565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
To identify the role of RIP3 in ouabain-induced necroptosis and offer clinical implications to prevent spiral ganglion neurons (SGNs) from death, ouabain was applied in SGNs derived from fetal rats and injected into Sprague-Dawley rats to construct injury model in vitro and in vivo, respectively. The necroptosis rate of SGNs was determined by flow cytometry and MTT assays. The protein levels and phosphorylation of RIP3 were evaluated using western blotting and immunofluorescence. SGNs injury was observed using H&E staining and immunofluorescence. The hearing function of rats was evaluated by the auditory brainstem response (ABR) and Distortion Product Otoacoustic Emissions (DPOAE) methods. Ouabain caused dose-dependent necroptosis in SGNs and significant loss of SGNs of the cochlear axis in vivo. RIP3 and pRIP3 were upregulated with SGNs injury promoted, and RIP3 overexpression promoted ouabain-induced necroptosis in SGNs in vitro, which could be suppressed by necrostatin-1. RIP3 knockdown inhibited ouabain-induced necroptosis and reduced the phosphorylation of MLKL but no RIP3-dependent effect on the level of MLKL. RIP3 inhibition in vivo protected rats from ouabain-induced hearing damage with reducing ABR threshold shifts and promoting DPOAE amplitudes, while overexpression of RIP3 enhanced ouabain-induced injury that could be partially reversed by necrostatin-1. A decrease of SGNs density and an upregulation of pRIP3 were observed with RIP3 overexpression, which was in contrast when RIP3 was silenced. Therefore, RIP3 was essential for mediating necroptosis in ouabain-induced SGNs damage. Targeting RIP3 may prevent SGNs from death in clinical practice, and finally help the treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Xi Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Xiaobo Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, The 928th Hospital of PLA Joint Logistics Support Force, Haikou 571159, Hainan Province, China
| | - Kun Liang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiaodong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bo Yue
- Department of Otorhinolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| | - Yang Yang
- Department of Plastic Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| |
Collapse
|
9
|
Sekiya T, Holley MC. Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity. Cell Transplant 2021; 30:9636897211035076. [PMID: 34498511 PMCID: PMC8438274 DOI: 10.1177/09636897211035076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally, major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless, there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
- Tetsuji Sekiya, Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan,.
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield, England
| |
Collapse
|
10
|
Ding D, Jiang H, Salvi R. Cochlear spiral ganglion neuron degeneration following cyclodextrin-induced hearing loss. Hear Res 2020; 400:108125. [PMID: 33302057 DOI: 10.1016/j.heares.2020.108125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
Because cyclodextrins are capable of removing cholesterol from cell membranes, there is growing interest in using these compounds to treat diseases linked to aberrant cholesterol metabolism. One compound, 2-hydroxypropyl-beta-cyclodextrin (HPβCD), is currently being evaluated as a treatment for Niemann-Pick Type C1 disease, a rare, fatal neurodegenerative disease caused by the buildup of lipids in endosomes and lysosomes. HPβCD can reduce some debilitating symptoms and extend life span, but the therapeutic doses used to treat the disease cause hearing loss. Initial studies in rodents suggested that HPβCD selectively damaged only cochlear outer hair cells during the first week post-treatment. However, our recent in vivo and in vitro studies suggested that the damage could become progressively worse and more extensive over time. To test this hypothesis, we treated rats subcutaneously with 1, 2, 3 or 4 g/kg of HPβCD and waited for 8-weeks to assess the long-term histological consequences. Our new results indicate that the two highest doses of HPβCD caused extensive damage not only to OHC, but also to inner hair cells, pillar cells and other support cells resulting in the collapse and flattening of the sensory epithelium. The 4 g/kg dose destroyed all the outer hair cells and three-fourths of the inner hair cells over the basal two-thirds of the cochlea and more than 85% of the nerve fibers in the habenula perforata and more than 80% of spiral ganglion neurons in the middle of basal turn of the cochlea. The mechanisms that lead to the delayed degeneration of inner hair cells, pillar cells, nerve fibers and spiral ganglion neurons remain poorly understood, but may be related to the loss of trophic support caused by the degeneration of sensory and/or support cells in the organ of Corti. Despite the massive damage to the cochlear sensory epithelium, the blood vessels in the stria vascularis and the vestibular hair cells in the utricle and saccule remained normal.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY 14221, USA.
| |
Collapse
|
11
|
Ding D, Zhang J, Li W, Li D, Yu J, Wu X, Qi W, Liu F, Jiang H, Shi H, Sun H, Li P, Huang W, Salvi R. Can auditory brain stem response accurately reflect the cochlear function? J Neurophysiol 2020; 124:1667-1675. [PMID: 33026904 DOI: 10.1152/jn.00233.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Auditory brain stem response (ABR) and compound action potential (CAP) recordings have been used in animal research to determine hearing sensitivity. Because of the relative ease of testing, the ABR test has been more commonly used in assessing cochlear lesions than the CAP test. The purpose of this experiment is to examine the difference between these two methods in monitoring the dynamic changes in auditory function after cochlear damage and in detecting asymmetric hearing loss due to unilateral cochlear damage. ABR and CAP were measured in two models of cochlear damage: acoustic trauma induced by exposure to a narrowband noise centered at 4 kHz (2,800-5,600 Hz) at 105 dB sound pressure level for 5 h in chinchillas and unilateral cochlear damage induced by surgical destruction of one cochlea in guinea pigs. Cochlear hair cells were quantified after completing the evoked potential testing. In the noise-damaged model, we found different recovery patterns between ABR and CAP. At 1 day after noise exposure, the ABR and CAP assessment revealed a similar level of threshold shifts. However, at 30 days after noise exposure, ABR thresholds displayed an average of 20-dB recovery, whereas CAP thresholds showed no recovery. Notably, the CAP threshold signifies the actual condition of sensory cell pathogenesis in the cochlea because sensory cell death is known to be irreversible in mammals. After unilateral cochlear damage, we found that both CAP and ABR were affected by cross-hearing when testing the damaged ear with the testing stimuli delivered directly into the canal of the damaged ear. When cross-hearing occurred, ABR testing was not able to reveal the presence of cross-hearing because the ABR waveform generated by cross-stimulation was indistinguishable from that generated by the test ear (damaged ear), should the test ear be intact. However, CAP testing can provide a warning sign, since the typical CAP waveform became an ABR-like waveform when cross-hearing occurred. Our study demonstrates two advantages of the CAP test over the ABR test in assessing cochlear lesions: contributing evidence for the occurrence of cross-hearing when subjects have asymmetric hearing loss and providing a better assessment of the progression of cochlear pathogenesis.NEW & NOTEWORTHY Auditory brain stem response (ABR) is more commonly used to evaluate cochlear lesions than cochlear compound action potential (CAP). In a noise-induced cochlear damage model, we found that the reduced CAP and enhanced ABR caused the threshold difference. In a unilateral cochlear destruction model, a shadow curve of the ABR from the contralateral healthy ear masked the hearing loss in the destroyed ear.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York.,The Third People's Hospital of Chengdu, Chengdu, China.,Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhui Zhang
- The Third People's Hospital of Chengdu, Chengdu, China
| | - Wenjuan Li
- Department of Otolaryngology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Li
- Department of Otolaryngology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jintao Yu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewen Wu
- Xiangya Hospital, Central South University, Changsha, China
| | - Weidong Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Liu
- Beijing Hospital and National Center of Gerontology, Department of Otolaryngology, Beijing, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York
| | - Haibo Shi
- Shanghai Six People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Sun
- Xiangya Hospital, Central South University, Changsha, China
| | - Peng Li
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
12
|
Liu X, Ding D, Chen GD, Li L, Jiang H, Salvi R. 2-Hydroxypropyl-β-cyclodextrin Ototoxicity in Adult Rats: Rapid Onset and Massive Destruction of Both Inner and Outer Hair Cells Above a Critical Dose. Neurotox Res 2020; 38:808-823. [PMID: 32607920 DOI: 10.1007/s12640-020-00252-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
2-Hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol chelator, is being used to treat diseases associated with abnormal cholesterol metabolism such as Niemann-Pick C1 (NPC1). However, the high doses of HPβCD needed to slow disease progression may cause hearing loss. Previous studies in mice have suggested that HPβCD ototoxicity results from selective outer hair cell (OHC) damage. However, it is unclear if HPβCD causes the same type of damage or is more or less toxic to other species such as rats, which are widely used in toxicity research. To address these issues, rats were given a subcutaneous injection of HPβCD between 500 and 4000 mg/kg. Distortion product otoacoustic emissions (DPOAE), the cochlear summating potential (SP), and compound action potential (CAP) were used to assess cochlear function followed by quantitative analysis of OHC and inner hair cell (IHC) loss. The 3000- and 4000-mg/kg doses abolished DPOAE and greatly reduced SP and CAP amplitudes. These functional deficits were associated with nearly complete loss of OHC as well as ~ 80% IHC loss over the basal two thirds of the cochlea. The 2000-mg/kg dose abolished DPOAE and significantly reduced SP and CAP amplitudes at the high frequencies. These deficits were linked to OHC and IHC losses in the high-frequency region of the cochlea. Little or no damage occurred with 500 or 1000 mg/kg of HPβCD. The HPβCD-induced functional and structural deficits in rats occurred suddenly, involved damage to both IHC and OHC, and were more severe than those reported in mice.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Li Li
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
13
|
Schwarzer S, Asokan N, Bludau O, Chae J, Kuscha V, Kaslin J, Hans S. Neurogenesis in the inner ear: the zebrafish statoacoustic ganglion provides new neurons from a Neurod/Nestin-positive progenitor pool well into adulthood. Development 2020; 147:dev.176750. [PMID: 32165493 DOI: 10.1242/dev.176750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/25/2020] [Indexed: 01/13/2023]
Abstract
The vertebrate inner ear employs sensory hair cells and neurons to mediate hearing and balance. In mammals, damaged hair cells and neurons are not regenerated. In contrast, hair cells in the inner ear of zebrafish are produced throughout life and regenerate after trauma. However, it is unknown whether new sensory neurons are also formed in the adult zebrafish statoacoustic ganglion (SAG), the sensory ganglion connecting the inner ear to the brain. Using transgenic lines and marker analysis, we identify distinct cell populations and anatomical landmarks in the juvenile and adult SAG. In particular, we analyze a Neurod/Nestin-positive progenitor pool that produces large amounts of new neurons at juvenile stages, which transitions to a quiescent state in the adult SAG. Moreover, BrdU pulse chase experiments reveal the existence of a proliferative but otherwise marker-negative cell population that replenishes the Neurod/Nestin-positive progenitor pool at adult stages. Taken together, our study represents the first comprehensive characterization of the adult zebrafish SAG showing that zebrafish, in sharp contrast to mammals, display continued neurogenesis in the SAG well beyond embryonic and larval stages.
Collapse
Affiliation(s)
- Simone Schwarzer
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Nandini Asokan
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Oliver Bludau
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jeongeun Chae
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Veronika Kuscha
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jan Kaslin
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Abbas L, Rivolta MN. The use of animal models to study cell transplantation in neuropathic hearing loss. Hear Res 2019; 377:72-87. [PMID: 30921643 DOI: 10.1016/j.heares.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/29/2023]
Abstract
Auditory neuropathy (AN) is a form of sensorineural deafness specifically affecting the conduction of the nerve impulse from the cochlear hair cells to the auditory centres of the brain. As such, the condition is a potential clinical target for 'cell replacement therapy', in which a functioning auditory nerve is regenerated by transplanting an appropriated neural progenitor. In this review, we survey the current literature and examine possible experimental models for this condition, with particular reference to their compatibility as suitable hosts for transplantation. The use of exogenous neurotoxic agents such as ouabain or β-bungarotoxin is discussed, as are ageing and noise-induced synaptopathy models. Lesioning of the nerve by mechanical damage during surgery and the neuropathy resulting from infectious diseases may be very relevant clinically, and we discuss whether there are good models for these situations. We also address genetic models for AN, examining whether the phenotypes truly model the clinical situation in their human counterpart syndromes - we use the example of the hyperbilirubinaemic Gunn rat as a particular instance in this regard.
Collapse
MESH Headings
- Animals
- Auditory Cortex/pathology
- Auditory Cortex/physiopathology
- Auditory Cortex/surgery
- Brain Stem/pathology
- Brain Stem/physiopathology
- Brain Stem/transplantation
- Disease Models, Animal
- Hair Cells, Auditory/pathology
- Hearing
- Hearing Loss, Central/etiology
- Hearing Loss, Central/pathology
- Hearing Loss, Central/physiopathology
- Hearing Loss, Central/surgery
- Hearing Loss, Sensorineural/etiology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/surgery
- Humans
- Nerve Regeneration
- Neural Conduction
- Neural Stem Cells/transplantation
- Recovery of Function
- Species Specificity
Collapse
Affiliation(s)
- Leila Abbas
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Marcelo N Rivolta
- Centre for Stem Cell Biology and Department of Biomedical Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
15
|
Xuan Y, Ding D, Xuan W, Huang L, Tang J, Wei Y, Chen S, Hamblin MR. A traditional Chinese medicine compound (Jian Er) for presbycusis in a mouse model: Reduction of apoptosis and protection of cochlear sensorineural cells and hearing. INTERNATIONAL JOURNAL OF HERBAL MEDICINE 2018; 6:127-135. [PMID: 31890893 PMCID: PMC6936738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Age-related hearing loss (AHL) or presbycusis is steadily increasing due to the overall aging of the Chinese population. Traditional Chinese medicine (TCM) has long been used to prevent and treat deafness, but its effectiveness and mechanism of action are still uncertain. The present study tested a TCM preparation called "Jian Er" in a mouse model of prebycusis.
Collapse
Affiliation(s)
- Yi Xuan
- School of Engineering, Tufts University, Medford, MA, USA
| | - Dalian Ding
- Center for Hearing Deafness, the State University of New York at Buffalo, Buffalo, NY, USA
| | - Weijun Xuan
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine,Nanning, China
| | - Liyi Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Junbo Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulong Wei
- Department of Pharmaceutical Manufacturing, Ruikang Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Sizhong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Ouabain Does Not Induce Selective Spiral Ganglion Cell Degeneration in Guinea Pigs. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1568414. [PMID: 30151372 PMCID: PMC6091334 DOI: 10.1155/2018/1568414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/24/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022]
Abstract
Round window membrane (RWM) application of ouabain is known to selectively destroy type I spiral ganglion cells (SGCs) in cochleas of several rodent species, while leaving hair cells intact. This protocol has been used in rats and Mongolian gerbils, but observations in the guinea pig are conflicting. This is why we reinvestigated the effect of ouabain on the guinea pig cochlea. Ouabain solutions of different concentrations were placed, in a piece of gelfoam, upon the RWM of the right cochleas. Auditory function was assessed using acoustically evoked auditory brainstem responses (aABR). Finally, cochleas were fixed and processed for histological examination. Due to variability within treatment groups, histological data was pooled and three categories based upon general histological observations were defined: cochleas without outer hair cell (OHC) and SGC loss (Category 1), cochleas with OHC loss only (Category 2), and cochleas with OHC and SGC loss (Category 3). Animals treated with 1 mM or 10 mM ouabain showed shifts in hearing thresholds, corresponding with varying histological changes in their cochleas. Most cochleas exhibited complete outer hair cell loss in the basal and middle turns, while some had no changes, together with either moderate or near-complete loss of SGCs. Neither loss of inner hair cells nor histological changes of the stria vascularis were observed in any of the animals. Cochleas in Category 1 had normal aABRs and morphology. On average, in Category 2 OHC loss was 46.0±5.7%, SGC loss was below threshold, ABR threshold shift was 44.9±2.7 dB, and ABR wave II amplitude was decreased by 17.1±3.8 dB. In Category 3 OHC loss was 68.3±6.9%, SGC loss was 49.4±4.3%, ABR threshold shift was 39.0±2.4 dB, and ABR amplitude was decreased by 15.8±1.6 dB. Our results show that ouabain does not solely destroy type I SGCs in the guinea pig cochlea.
Collapse
|
17
|
Meas SJ, Zhang CL, Dabdoub A. Reprogramming Glia Into Neurons in the Peripheral Auditory System as a Solution for Sensorineural Hearing Loss: Lessons From the Central Nervous System. Front Mol Neurosci 2018; 11:77. [PMID: 29593497 PMCID: PMC5861218 DOI: 10.3389/fnmol.2018.00077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Disabling hearing loss affects over 5% of the world’s population and impacts the lives of individuals from all age groups. Within the next three decades, the worldwide incidence of hearing impairment is expected to double. Since a leading cause of hearing loss is the degeneration of primary auditory neurons (PANs), the sensory neurons of the auditory system that receive input from mechanosensory hair cells in the cochlea, it may be possible to restore hearing by regenerating PANs. A direct reprogramming approach can be used to convert the resident spiral ganglion glial cells into induced neurons to restore hearing. This review summarizes recent advances in reprogramming glia in the CNS to suggest future steps for regenerating the peripheral auditory system. In the coming years, direct reprogramming of spiral ganglion glial cells has the potential to become one of the leading biological strategies to treat hearing impairment.
Collapse
Affiliation(s)
- Steven J Meas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Ding D, Jiang H, Chen GD, Longo-Guess C, Muthaiah VPK, Tian C, Sheppard A, Salvi R, Johnson KR. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice. Aging (Albany NY) 2017; 8:730-50. [PMID: 26977590 PMCID: PMC4925825 DOI: 10.18632/aging.100927] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023]
Abstract
Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | - Cong Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Adam Sheppard
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
19
|
Hackelberg S, Tuck SJ, He L, Rastogi A, White C, Liu L, Prieskorn DM, Miller RJ, Chan C, Loomis BR, Corey JM, Miller JM, Duncan RK. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS One 2017; 12:e0180427. [PMID: 28672008 PMCID: PMC5495534 DOI: 10.1371/journal.pone.0180427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 06/15/2017] [Indexed: 01/13/2023] Open
Abstract
Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.
Collapse
Affiliation(s)
- Sandra Hackelberg
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Samuel J. Tuck
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Long He
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Departments of Otorhinolaryngology, Guangzhou First Peoples' Hospital and First Affiliated Hospital, School of Medicine, Jinan University, Guangdong, China
| | - Arjun Rastogi
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
| | - Christina White
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Liqian Liu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Diane M. Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Ryan J. Miller
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Che Chan
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Benjamin R. Loomis
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Joseph M. Corey
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Josef M. Miller
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - R. Keith Duncan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
20
|
Péricat D, Farina A, Agavnian-Couquiaud E, Chabbert C, Tighilet B. Complete and irreversible unilateral vestibular loss: A novel rat model of vestibular pathology. J Neurosci Methods 2017; 283:83-91. [DOI: 10.1016/j.jneumeth.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/26/2017] [Accepted: 04/01/2017] [Indexed: 01/10/2023]
|
21
|
Kamerer AM, Diaz FJ, Peppi M, Chertoff ME. The potential use of low-frequency tones to locate regions of outer hair cell loss. Hear Res 2016; 342:39-47. [PMID: 27677389 DOI: 10.1016/j.heares.2016.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022]
Abstract
Current methods used to diagnose cochlear hearing loss are limited in their ability to determine the location and extent of anatomical damage to various cochlear structures. In previous experiments, we have used the electrical potential recorded at the round window -the cochlear response (CR) -to predict the location of damage to outer hair cells in the gerbil. In a follow-up experiment, we applied 10 mM ouabain to the round window niche to reduce neural activity in order to quantify the neural contribution to the CR. We concluded that a significant proportion of the CR to a 762 Hz tone originated from phase-locking activity of basal auditory nerve fibers, which could have contaminated our conclusions regarding outer hair cell health. However, at such high concentrations, ouabain may have also affected the responses from outer hair cells, exaggerating the effect we attributed to the auditory nerve. In this study, we lowered the concentration of ouabain to 1 mM and determined the physiologic effects on outer hair cells using distortion-product otoacoustic emissions. As well as quantifying the effects of 1 mM ouabain on the auditory nerve and outer hair cells, we attempted to reduce the neural contribution to the CR by using near-infrasonic stimulus frequencies of 45 and 85 Hz, and hypothesized that these low-frequency stimuli would generate a cumulative amplitude function (CAF) that could reflect damage to hair cells in the apex more accurately than the 762 stimuli. One hour after application of 1 mM ouabain, CR amplitudes significantly increased, but remained unchanged in the presence of high-pass filtered noise conditions, suggesting that basal auditory nerve fibers have a limited contribution to the CR at such low frequencies.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Cochlea/pathology
- Cochlea/physiopathology
- Cochlear Microphonic Potentials/drug effects
- Cochlear Microphonic Potentials/physiology
- Cochlear Nerve/drug effects
- Cochlear Nerve/physiopathology
- Gerbillinae
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiology
- Hearing Loss, Sensorineural/diagnosis
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Otoacoustic Emissions, Spontaneous/drug effects
- Otoacoustic Emissions, Spontaneous/physiology
- Ouabain/administration & dosage
- Round Window, Ear/drug effects
- Round Window, Ear/physiology
- Round Window, Ear/physiopathology
Collapse
Affiliation(s)
- Aryn M Kamerer
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Francisco J Diaz
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | - Mark E Chertoff
- University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
22
|
Huet A, Batrel C, Tang Y, Desmadryl G, Wang J, Puel JL, Bourien J. Sound coding in the auditory nerve of gerbils. Hear Res 2016; 338:32-9. [PMID: 27220483 DOI: 10.1016/j.heares.2016.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Gerbils possess a very specialized cochlea in which the low-frequency inner hair cells (IHCs) are contacted by auditory nerve fibers (ANFs) having a high spontaneous rate (SR), whereas high frequency IHCs are innervated by ANFs with a greater SR-based diversity. This specificity makes this animal a unique model to investigate, in the same cochlea, the functional role of different pools of ANFs. The distribution of the characteristic frequencies of fibers shows a clear bimodal shape (with a first mode around 1.5 kHz and a second around 12 kHz) and a notch in the histogram near 3.5 kHz. Whereas the mean thresholds did not significantly differ in the two frequency regions, the shape of the rate-intensity functions does vary significantly with the fiber characteristic frequency. Above 3.5 kHz, the sound-driven rate is greater and the slope of the rate-intensity function is steeper. Interestingly, high-SR fibers show a very good synchronized onset response in quiet (small first-spike latency jitter) but a weak response under noisy conditions. The low-SR fibers exhibit the opposite behavior, with poor onset synchronization in quiet but a robust response in noise. Finally, the greater vulnerability of low-SR fibers to various injuries including noise- and age-related hearing loss is discussed with regard to patients with poor speech intelligibility in noisy environments. Together, these results emphasize the need to perform relevant clinical tests to probe the distribution of ANFs in humans, and develop appropriate techniques of rehabilitation. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
Affiliation(s)
- Antoine Huet
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| | - Charlène Batrel
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| | - Yong Tang
- Hospital of Kunming Medical University, E.N.T Department, Kunming, China
| | - Gilles Desmadryl
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| | - Jing Wang
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France.
| | - Jérôme Bourien
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier, Montpellier, France
| |
Collapse
|
23
|
Abstract
As most gene sequences and functional structures of internal organs in rats have been well studied, rat models are widely used in experimental medical studies. A large number of descriptions and atlas of the rat temporal bone have been published, but some detailed anatomy of its surface and inside structures remains to be studied. By focusing on some unique characteristics of the rat temporal bone, the current paper aims to provide more accurate and detailed information on rat temporal bone anatomy in an attempt to complete missing or unclear areas in the existed knowledge. We also hope this paper can lay a solid foundation for experimental rat temporal bone surgeries, and promote information exchange among colleagues, as well as providing useful guidance for novice researchers in the field of hearing research involving rats.
Collapse
Affiliation(s)
- Peng Li
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.,Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Kelei Gao
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA.,Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410013, China
| | - Dalian Ding
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.,Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA.,Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410013, China
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA.,Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410013, China
| |
Collapse
|
24
|
Li P, Ding D, Gao K, Salvi R. Standardized surgical approaches to ear surgery in rats. J Otol 2015; 10:72-77. [PMID: 29937785 PMCID: PMC6002556 DOI: 10.1016/j.joto.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 03/15/2015] [Accepted: 03/30/2015] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To describe several approaches of ear surgeries for experimental studies in rats. METHODS Anesthetized rats were prepared for demonstration of various ear surgery approaches designed to optimize experimental outcomes in studies with specific goals and exposure requirements. The surgical approaches included the posterior tympanum, superior tympanum, inferior tympanum and occipital approaches. RESULTS The middle ear cavity and inner ear were successfully exposed from different angles via the mentioned surgical approaches. For example, electrode placement for recording of cochlear bioelectric responses was easily achieved through the posterior tympanum or inferior tympanum approach. Alternatively, drug delivery or gene transfection via round window membrane was most easily accomplished using the posterior tympanum approach. Cochlear perfusion of protective or ototoxic drugs was best performed using the inferior tympanum approach. Ossicular chain interruption to induce a prolonged conductive hearing loss was readily achieved using a superior tympanum approach. Lastly, surgical destruction of the endolymphatic sac to induce experimental endolymphatic hydrops was readily performed via an occipital surgical approach. CONCLUSION These standardized surgical approaches can be applied in scientific studies of the ear with different purposes covering electrophysiology, conductive hearing loss, intra-cochlear drug perfusion and experimental studies relevant to Meniere's disease.
Collapse
Affiliation(s)
- Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
- Center for Hearing and Deafness, University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410018, China
| | - Kelei Gao
- Center for Hearing and Deafness, University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410018, China
| | - Richard Salvi
- Center for Hearing and Deafness, University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan 410018, China
| |
Collapse
|
25
|
Ding D, Yu J, Li P, Gao K, Jiang H, Zhang W, Sun H, Yin S, Salvi R. Standardization of experimental animals temporal bone sections. J Otol 2015; 10:66-71. [PMID: 29937784 PMCID: PMC6002569 DOI: 10.1016/j.joto.2015.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/18/2015] [Accepted: 03/29/2015] [Indexed: 11/24/2022] Open
Abstract
Preparation of the temporal bone for light microscopy is an important step in histological studies of the inner ear. Due to the complexity of structures of the inner ear, it is difficult to measure or compare structures of interest without a commonly accepted standardized measure of temporal bone sections. Therefore, standardization of temporal bone sections is very important for histological assessment of sensory hair cells and peripheral ganglion neurons in the cochlear and vestibular systems. The standardized temporal bone sectioning is oriented to a plane parallel to the outer and internal auditory canals. Sections are collected from the epitympanum to the hypotympanum to reveal layers in the order of the crista ampullaris of the superior and lateral semicircular canals, macula utriculi and macula sacculi, superior vestibular ganglion neurons, macula of saccule and inferior vestibular ganglion neurons, cochlear modiolus, endolymphatic duct and endolymphatic sac, and finally the crista ampullaris of the posterior semicircular canal. Moreover, technical details of preparing for temporal bone sectioning including fixation, decalcification, whole temporal bone staining, embedding penetration, and embedding orientation are also discussed.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Sun Ya-sen University Third Hospital, Guangzhou, 510630, China
- Department of Otolaryngology Head and Neck Surgery, the Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jintao Yu
- Department of Otolaryngology Head and Neck Surgery, Central South University Xiangya Hospital, Hunan, 410018, China
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Peng Li
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University of New York at Buffalo, Buffalo, NY 14214, USA
- Department of Otolaryngology Head and Neck Surgery, Sun Ya-sen University Third Hospital, Guangzhou, 510630, China
| | - Kelei Gao
- Department of Otolaryngology Head and Neck Surgery, Central South University Xiangya Hospital, Hunan, 410018, China
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Haiyan Jiang
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Wenjuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Central South University Xiangya Hospital, Hunan, 410018, China
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery, the Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Richard Salvi
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
26
|
Monroe JD, Rajadinakaran G, Smith ME. Sensory hair cell death and regeneration in fishes. Front Cell Neurosci 2015; 9:131. [PMID: 25954154 PMCID: PMC4404912 DOI: 10.3389/fncel.2015.00131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/21/2015] [Indexed: 01/31/2023] Open
Abstract
Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University Bowling Green, KY, USA
| | - Gopinath Rajadinakaran
- Department of Genetics and Genome Sciences, University of Connecticut Health Center Farmington, CT, USA
| | - Michael E Smith
- Department of Biology, Western Kentucky University Bowling Green, KY, USA
| |
Collapse
|
27
|
Kersigo J, Fritzsch B. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front Aging Neurosci 2015; 7:33. [PMID: 25852547 PMCID: PMC4364252 DOI: 10.3389/fnagi.2015.00033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/28/2015] [Indexed: 12/14/2022] Open
Abstract
The innervation of the inner ear critically depends on the two neurotrophins Ntf3 and Bdnf. In contrast to this molecularly well-established dependency, evidence regarding the need of innervation for long-term maintenance of inner ear hair cells is inconclusive, due to experimental variability. Mutant mice that lack both neurotrophins could shed light on the long-term consequences of innervation loss on hair cells without introducing experimental variability, but do not survive after birth. Mutant mice with conditional deletion of both neurotrophins lose almost all innervation by postnatal day 10 and show an initially normal development of hair cells by this stage. No innervation remains after 3 weeks and complete loss of all innervation results in near complete loss of outer and many inner hair cells of the organ of Corti within 4 months. Mutants that retain one allele of either neurotrophin have only partial loss of innervation of the organ of Corti and show a longer viability of cochlear hair cells with more profound loss of inner hair cells. By 10 months, hair cells disappear with a base to apex progression, proportional to the residual density of innervation and similar to carboplatin ototoxicity. Similar to reports of hair cell loss after aminoglycoside treatment, blobbing of stereocilia of apparently dying hair cells protrude into the cochlear duct. Denervation of vestibular sensory epithelia for several months also resulted in variable results, ranging from unusual hair cells resembling the aberrations found in the organ of Corti, to near normal hair cells in the canal cristae. Fusion and/or resorption of stereocilia and loss of hair cells follows a pattern reminiscent of Myo6 and Cdc42 null mice. Our data support a role of innervation for long-term maintenance but with a remarkable local variation that needs to be taken into account when attempting regeneration of the organ of Corti.
Collapse
Affiliation(s)
| | - Bernd Fritzsch
- Department of Biology, University of IowaIowa City, IA, USA
| |
Collapse
|
28
|
Wang X, Wang Y, Ding ZJ, Yue B, Zhang PZ, Chen XD, Chen X, Chen J, Chen FQ, Chen Y, Wang RF, Mi WJ, Lin Y, Wang J, Qiu JH. The role of RIP3 mediated necroptosis in ouabain-induced spiral ganglion neurons injuries. Neurosci Lett 2014; 578:111-6. [PMID: 24993301 DOI: 10.1016/j.neulet.2014.06.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
Spiral ganglion neuron (SGN) injury is a generally accepted precursor of auditory neuropathy. Receptor-interacting protein 3 (RIP3) has been reported as an important necroptosis pathway mediator that can be blocked by necrostatin-1 (Nec-1). In our study, we sought to identify whether necroptosis participated in SGN injury. Ouabain was applied to establish an SGN injury model. We measured the auditory brain-stem response (ABR) threshold shift as an indicator of the auditory conditions. Positive β3-tubulin immunofluorescence staining indicated the surviving SGNs. RIP3 expression was evaluated using immunofluorescence, quantitative real-time polymerase chain reaction and western blot. SGN injury promoted an increase in RIP3 expression that could be suppressed by application of the necroptosis inhibitor Nec-1. A decreased ABR threshold shift and increased SGN density were observed when Nec-1 was administered with apoptosis inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD). These results demonstrated that necroptosis is an indispensable pathway separately from apoptosis leading to SGN death pathway, in which RIP3 plays an important role.
Collapse
Affiliation(s)
- Xi Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Ye Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Zhong-jia Ding
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Bo Yue
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Peng-zhi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China; Ji-guan Hospital, Lanzhou Military Region, Air Force of PLA, Lanzhou, Gansu 730000, China
| | - Xiao-dong Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Xin Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Jun Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Fu-quan Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Yang Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Ren-feng Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Wen-juan Mi
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Ying Lin
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China
| | - Jian-hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an 710032, China.
| |
Collapse
|
29
|
Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J. Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 2014; 112:1025-39. [PMID: 24848461 DOI: 10.1152/jn.00738.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude.
Collapse
Affiliation(s)
- Jérôme Bourien
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| | - Yong Tang
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Charlène Batrel
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| | - Antoine Huet
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| | - Marc Lenoir
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| | - Sabine Ladrech
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| | - Gilles Desmadryl
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| | - Régis Nouvian
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| | - Jean-Luc Puel
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| | - Jing Wang
- Institut National de la Santé et de la Recherche Médicale UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University of Montpellier 1 and 2, Montpellier, France; and
| |
Collapse
|
30
|
Ding D, Qi W, Yu D, Jiang H, Han C, Kim MJ, Katsuno K, Hsieh YH, Miyakawa T, Salvi R, Tanokura M, Someya S. Addition of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell degeneration through reduction of caspase-3-mediated apoptosis in cochlear organotypic cultures. PLoS One 2013; 8:e79817. [PMID: 24223197 PMCID: PMC3819247 DOI: 10.1371/journal.pone.0079817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mefloquine is widely used for the treatment of malaria. However, this drug is known to induce neurological side effects including depression, anxiety, balance disorder, and sensorineural hearing loss. Yet, there is currently no treatment for these side effects. PRINCIPAL FINDINGS In this study, we show that the coenzyme NAD(+), known to play a critical role in maintaining the appropriate cellular redox environment, protects cochlear axons and sensory hair cells from mefloquine-induced degeneration in cultured rat cochleae. Mefloquine alone destroyed hair cells and nerve fiber axons in rat cochlear organotypics cultures in a dose-dependent manner, while treatment with NAD(+) protected axons and hair cells from mefloquine-induced degeneration. Furthermore, cochlear organs treated with mefloquine showed increased oxidative stress marker levels, including superoxide and protein carbonyl, and increased apoptosis marker levels, including TUNEL-positive nuclei and caspases-3. Treatment with NAD(+) reduced the levels of these oxidative stress and apoptosis markers. CONCLUSIONS/SIGNIFICANCE Taken together, our findings suggest that that mefloquine disrupts the cellular redox environment and induces oxidative stress in cochlear hair cells and nerve fibers leading to caspases-3-mediated apoptosis of these structures. Exogenous NAD(+) suppresses mefloquine-induced oxidative stress and prevents the degeneration of cochlear axons and sensory hair cells caused by mefloquine treatment.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
- Sixth People’s Hospital, Shanghai Oriental Otolaryngology Institute, Shanghai Jiao Tong University, Shanghai, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Weidong Qi
- Department of Otolaryngology-Head and Neck Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongzhen Yu
- Sixth People’s Hospital, Shanghai Oriental Otolaryngology Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Jiang
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Chul Han
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
| | - Mi-Jung Kim
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
| | - Kana Katsuno
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Yun Hua Hsieh
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Tokyo, Japan
- * E-mail: (MT); (SS)
| | - Shinichi Someya
- Departments of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MT); (SS)
| |
Collapse
|
31
|
Ouabain-induced apoptosis in cochlear hair cells and spiral ganglion neurons in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:628064. [PMID: 24228256 PMCID: PMC3818842 DOI: 10.1155/2013/628064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/16/2013] [Indexed: 11/20/2022]
Abstract
Ouabain is a common tool to explore the pathophysiological changes in adult mammalian cochlea in vivo. In prior studies, locally administering ouabain via round window membrane demonstrated that the ototoxic effects of ouabain in vivo varied among mammalian species. Little is known about the ototoxic effects in vitro. Thus, we prepared cochlear organotypic cultures from postnatal day-3 rats and treated these cultures with ouabain at 50, 500, and 1000 μM for different time to elucidate the ototoxic effects of ouabain in vitro and to provide insights that could explain the comparative ototoxic effects of ouabain in vivo. Degeneration of cochlear hair cells and spiral ganglion neurons was evaluated by hair-cell staining and neurofilament labeling, respectively. Annexin V staining was used to detect apoptotic cells. A quantitative RT-PCR apoptosis-focused gene array determined changes in apoptosis-related genes. The results showed that ouabain-induced damage in vitro was dose and time dependent. 500 μM ouabain and 1000 μM ouabain were destructively traumatic to both spiral ganglion neurons and cochlear hair cells in an apoptotic signal-dependent pathway. The major apoptotic pathways in ouabain-induced spiral ganglion neuron apoptosis culminated in the stimulation of the p53 pathway and triggering of apoptosis by a network of proapoptotic signaling pathways.
Collapse
|
32
|
Lead exposure results in hearing loss and disruption of the cochlear blood-labyrinth barrier and the protective role of iron supplement. Neurotoxicology 2013; 39:173-81. [PMID: 24144481 DOI: 10.1016/j.neuro.2013.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 12/17/2022]
Abstract
This study was designed to investigate the impact of lead (Pb(2+)) on the auditory system and its molecular mechanisms. Pb(AC)2 was administrated to male SD rats aged 21-22 d for 8 weeks at a dose of 300ppm. Male guinea pigs were also administrated with 50mg/kg Pb(AC)2 two times a week for 8 weeks. The auditory nerve-brainstem evoked responses (ABR) was recorded and the morphological changes of the outer hair cells (OHCs) were observed with Phallodin-FITC staining. In addition, the integrity of the blood-labyrinth barrier was observed by TEM and the expression of tight junction proteins (TJPs) in the cochlear stria vascularis was determined by immunofluorescence. Our results showed that Pb(2+) exposure resulted in increased ABR threshold in both rats and guinea pigs. Abnormal shapes and loss of OHCs were found in the cochlear basilar membrane following the Pb(2+) exposure. TEM study showed that the tight junctions between the endothelial cells and the border cells were lost and disrupted. Down-regulation of the occludin, ZO-1 and claudin-5 in the stria vascularis suggested that the increased permeability of the blood-labyrinth barrier may attribute to the Pb(2+)-induced decrease of TJPs' expression. Additionally, Fe(2+) supplement partly reversed the Pb(2+)-induced hearing loss and down-regulation of TJPs. Taken together, these data indicate that the disruption of blood-labyrinth barrier by down-regulating the expression of TJPs plays a role in the Pb(2+)-induced hearing loss, and Fe(2+) supplement protects the auditory system against Pb(2+)-induced toxicity and may have significant clinical implications.
Collapse
|
33
|
Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge ASB. Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 2013; 15:31-43. [PMID: 24113829 DOI: 10.1007/s10162-013-0419-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/19/2013] [Indexed: 11/25/2022] Open
Abstract
Ouabain application to the round window can selectively destroy type-I spiral ganglion cells, producing an animal model of auditory neuropathy. To assess the long-term effects of this deafferentation on synaptic organization in the organ of Corti and cochlear nucleus, and to ask whether surviving cochlear neurons show any post-injury plasticity in the adult, we quantified the peripheral and central synapses of type-I neurons at posttreatment times ranging from 1 to 3 months. Measures of normal DPOAEs and greatly reduced auditory brainstem responses (ABRs) confirmed the neuropathy phenotype. Counts of presynaptic ribbons and postsynaptic glutamate receptor patches in the inner hair cell area decreased with post-exposure time, as did counts of cochlear nerve terminals in the cochlear nucleus. Although these counts provided no evidence of new synapse formation via branching from surviving neurons, the regular appearance of ectopic neurons in the inner hair cell area suggested that neurite extension is not uncommon. Correlations between pathophysiology and histopathology showed that ABR thresholds are very insensitive to even massive neural degeneration, whereas the amplitude of ABR wave 1 is a better metric of synaptic degeneration.
Collapse
Affiliation(s)
- Yasheng Yuan
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wei Y, Fu Y, Liu S, Xia G, Pan S. Effect of lentiviruses carrying enhanced green fluorescent protein injected into the scala media through a cochleostomy in rats. Am J Otolaryngol 2013; 34:301-7. [PMID: 23465349 DOI: 10.1016/j.amjoto.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/24/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE The purposes of the current study were to assess the feasibility of post-auricular microinjection of lentiviruses carrying enhanced green fluorescent protein (EGFP) into the scala media through cochleostomies in rats, determine the expression of viral gene in the cochlea, and record the post-operative changes in the number and auditory function of cochlear hair cells (HCs). METHODS Healthy rats were randomly divided into two groups. The left ears of the animals in group I were injected with lentivirus carrying EGFP (n=10) via scala media lateral wall cochleostomies, and the left ears of the animals in group II were similarly injected with artificial endolymph (n=10). Prior to and 30 days post-injection, auditory function was assessed with click-auditory brainstem response (ABR) testing, EGFP expression was determined with cochlear frozen sections under fluorescence microscopy, and survival of HCs was estimated based on whole mount preparations. RESULTS Thirty days after surgery, click-ABR testing revealed that there were significant differences in the auditory function, EGFP expression, and survival of HCs in the left ears before and after surgery in the same rats from each group. In group I, EGFP was noted in the strial marginal cells of the scala media, the organ of Corti, spiral nerves, and spiral ganglion cells. CONCLUSION Lentiviruses were successfully introduced into the scala media through cochleostomies in rats, and the EGFP reporter gene was efficiently expressed in the organ of Corti, spiral nerves, and spiral ganglion cells.
Collapse
|
35
|
Zhang PZ, He Y, Jiang XW, Chen FQ, Chen Y, Shi L, Chen J, Chen X, Li X, Xue T, Wang Y, Mi WJ, Qiu JH. Stem cell transplantation via the cochlear lateral wall for replacement of degenerated spiral ganglion neurons. Hear Res 2013; 298:1-9. [DOI: 10.1016/j.heares.2013.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 01/11/2023]
|