1
|
Ebrahimi A, Ghorbanpoor H, Apaydın E, Demir Cevizlidere B, Özel C, Tüfekçioğlu E, Koç Y, Topal AE, Tomsuk Ö, Güleç K, Abdullayeva N, Kaya M, Ghorbani A, Şengel T, Benzait Z, Uysal O, Eker Sarıboyacı A, Doğan Güzel F, Singh H, Hassan S, Ankara H, Pat S, Atalay E, Avci H. Convenient rapid prototyping microphysiological niche for mimicking liver native basement membrane: Liver sinusoid on a chip. Colloids Surf B Biointerfaces 2024; 245:114292. [PMID: 39383580 DOI: 10.1016/j.colsurfb.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Liver is responsible for the metabolization processes of up to 90 % of compounds and toxins in the body. Therefore liver-on-a-chip systems, as an in vitro promising cell culture platform, have great importance for fundamental science and drug development. In most of the liver-on-a-chip studies, seeding cells on both sides of a porous membrane, which represents the basement membrane, fail to resemble the native characteristics of biochemical, biophysical, and mechanical properties. In this study, polycarbonate (PC) and polyethylene terephthalate (PET) membranes were coated with gelatin to address this issue by accurately mimicking the native basement membrane present in the space of Disse. Various coating methods were used, including doctor blade, gel micro-injection, electrospinning, and spin coating. Spin coating was demonstrated to be the most effective technique owing to the ability to produce thin gel thickness with desirable surface roughness for cell interactions on both sides of the membrane. HepG2 and EA.HY926 cells were seeded on the upper and bottom sides of the gelatin-coated PET membrane and cultured on-chip for 7 days. Cell viability increased from 90 % to 95 %, while apoptotic index decreased. Albumin secretion notably rose between days 1-7 and 4-7, while GST-α secretion decreased from day 1 to day 7. In conclusion, the optimized spin coating process reported here can effectively modify the membranes to better mimic the native basement membrane niche characteristics.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Hamed Ghorbanpoor
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Elif Apaydın
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biochemistry, Institute of Health Sciences, Anadolu University, Eskisehir, Türkiye
| | - Bahar Demir Cevizlidere
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ceren Özel
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Emre Tüfekçioğlu
- Department of Industrial Design/Department of Industrial Design, Faculty of Architecture and Design, Eskisehir Technical University, Eskisehir, Türkiye
| | - Yücel Koç
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ahmet Emin Topal
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Biochemistry, School of Pharmacy, Bahçeşehir University, Istanbul, Türkiye
| | - Özlem Tomsuk
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Kadri Güleç
- Department of Analytical Chemistry, Institute of Health Sciences, Anadolu University, Eskisehir, Türkiye
| | - Nuran Abdullayeva
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Murat Kaya
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Aynaz Ghorbani
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Tayfun Şengel
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye; Central Research Laboratory Research and Application Center (ARUM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Zineb Benzait
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Onur Uysal
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ayla Eker Sarıboyacı
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Fatma Doğan Güzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Türkiye
| | - Hemant Singh
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Shabir Hassan
- Department of Biological Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Functional Biomaterials Group, Khalifa University, San Campus, Abu Dhabi, United Arab Emirates
| | - Hüseyin Ankara
- Mining Engineering Department, Engineering-Architecture Faculty, Eskisehir Osmangazi University, Meşelik Campus, Eskisehir 26480, Türkiye
| | - Suat Pat
- Eskisehir Osmangazi University, Faculty of Science, Department of Physics, Eskisehir TR-26040, Türkiye
| | - Eray Atalay
- Department of Ophthalmology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Türkiye; Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Türkiye; Translational Medicine Research and Clinical Center (TATUM), Eskisehir Osmangazi University, Eskisehir, Türkiye.
| |
Collapse
|
2
|
Venkatesalu S, Dilliyappan S, Satish Kumar A, Palaniyandi T, Baskar G, Ravi M, Sivaji A. Prospectives and retrospectives of microfluidics devices and lab-on-A-chip emphasis on cancer. Clin Chim Acta 2024; 552:117646. [PMID: 38000458 DOI: 10.1016/j.cca.2023.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Microfluidics is a science and technology that deals with the concept of "less sample-to-more precision" enabling portable device development via fabrication for in vitro analysis. On evolution, microfluidic system lead to the development of Organ-on-chip where recapitulation of organ's functionality and pathophysiological response can be performed under controlled environment. Further microfluidic-based "Lab-on-chip" device, a versatile innovation credited for its number of parameters that has capability to leverage next-generation companion of medicines. This emulsion science has enormous practise in the field of regenerative medicine, drug screening, medical diagnosis and therapy for accuracy in results. In this era of personalized medicine, getting precise tools for applying these theranostics is crucial. Oncological theranostics create a new gateway to develop precision in personalized medicine for cancer, where microfluidic chips are involved in diagnosis and therapy of various cancers using biomarkers for thyroid, lung cancers, and assay based for breast, circulating tumor cells and colorectal cancers and nanoparticles for ovarian cancer. This review shows more comprehensive approach to the state of art with respect to microfluidic devices in cancer theranostics.
Collapse
Affiliation(s)
- Sneha Venkatesalu
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Avanthika Satish Kumar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
3
|
Boaks M, Roper C, Viglione M, Hooper K, Woolley AT, Christensen KA, Nordin GP. Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration. MICROMACHINES 2023; 14:1589. [PMID: 37630125 PMCID: PMC10456398 DOI: 10.3390/mi14081589] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone's absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 μm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 μm and are printed with 5 μm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min.
Collapse
Affiliation(s)
- Mawla Boaks
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Connor Roper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Matthew Viglione
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Kent Hooper
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Kenneth A. Christensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Gregory P. Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Awate DM, Holton S, Meyer K, Juárez JJ. Processes for the 3D Printing of Hydrodynamic Flow-Focusing Devices. MICROMACHINES 2023; 14:1388. [PMID: 37512699 PMCID: PMC10383660 DOI: 10.3390/mi14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Flow focusing is an important hydrodynamic technique for cytometric analysis, enabling the rapid study of cellular samples to identify a variety of biological processes. To date, the majority of flow-focusing devices are fabricated using conventional photolithography or flame processing of glass capillaries. This article presents a suite of low-cost, millifluidic, flow-focusing devices that were fabricated using a desktop sterolithgraphy (SLA) 3D printer. The suite of SLA printing strategies consists of a monolithic SLA method and a hybrid molding process. In the monolithic SLA approach, 1.3 mm square millifluidic channels were printed as a single piece. The printed device does not require any post processing, such as bonding or surface polishing for optical access. The hybrid molding approach consists of printing a mold using the SLA 3D printer. The mold is treated to an extended UV exposure and oven baked before using PDMS as the molding material for the channel. To demonstrate the viability of these channels, we performed a series of experiments using several flow-rate ratios to show the range of focusing widths that can be achieved in these devices. The experiments are validated using a numerical model developed in ANSYS.
Collapse
Affiliation(s)
- Diwakar M Awate
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Seth Holton
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Katherine Meyer
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jaime J Juárez
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
- Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Gonçalves D, Pinto SN, Fernandes F. Extracellular Vesicles and Infection: From Hijacked Machinery to Therapeutic Tools. Pharmaceutics 2023; 15:1738. [PMID: 37376186 DOI: 10.3390/pharmaceutics15061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) comprise a broad range of secreted cell-derived membrane vesicles. Beyond their more well-characterized role in cell communication, in recent years, EVs have also been shown to play important roles during infection. Viruses can hijack the biogenesis of exosomes (which are small EVs) to promote viral spreading. Additionally, these exosomes are also important mediators in inflammation and immune responses during both bacterial and viral infections. This review summarizes these mechanisms while also describing the impact of bacterial EVs in regulating immune responses. Finally, the review also focuses on the potential and challenges of using EVs, in particular, to tackle infectious diseases.
Collapse
Affiliation(s)
- Diogo Gonçalves
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Soleymani-Goloujeh M, Hosseini S, Baghaban Eslaminejad M. Advanced Nanotechnology Approaches as Emerging Tools in Cellular-Based Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:127-144. [PMID: 35816248 DOI: 10.1007/5584_2022_725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Stem cells are valuable tools in regenerative medicine because they can generate a wide variety of cell types and tissues that can be used to treat or replace damaged tissues and organs. However, challenges related to the application of stem cells in the scope of regenerative medicine have urged scientists to utilize nanomedicine as a prerequisite to circumvent some of these hurdles. Nanomedicine plays a crucial role in this process and manipulates surface biology, the fate of stem cells, and biomaterials. Many attempts have been made to modify cellular behavior and improve their regenerative ability using nano-based strategies. Notably, nanotechnology applications in regenerative medicine and cellular therapies are controversial because of ethical and legal considerations. Therefore, this review describes nanotechnology in cell-based applications and focuses on newly proposed nano-based approaches. Cutting-edge strategies to engineer biological tissues and the ethical, legal, and social considerations of nanotechnology in regenerative nanomedicine applications are also discussed.
Collapse
Affiliation(s)
- Mehdi Soleymani-Goloujeh
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Wei WJ, Wang YC, Guan X, Chen WG, Liu J. A neurovascular unit-on-a-chip: culture and differentiation of human neural stem cells in a three-dimensional microfluidic environment. Neural Regen Res 2022; 17:2260-2266. [PMID: 35259847 PMCID: PMC9083144 DOI: 10.4103/1673-5374.337050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biological studies typically rely on a simple monolayer cell culture, which does not reflect the complex functional characteristics of human tissues and organs, or their real response to external stimuli. Microfluidic technology has advantages of high-throughput screening, accurate control of the fluid velocity, low cell consumption, long-term culture, and high integration. By combining the multipotential differentiation of neural stem cells with high throughput and the integrated characteristics of microfluidic technology, an in vitro model of a functionalized neurovascular unit was established using human neural stem cell-derived neurons, astrocytes, oligodendrocytes, and a functional microvascular barrier. The model comprises a multi-layer vertical neural module and vascular module, both of which were connected with a syringe pump. This provides controllable conditions for cell inoculation and nutrient supply, and simultaneously simulates the process of ischemic/hypoxic injury and the process of inflammatory factors in the circulatory system passing through the blood-brain barrier and then acting on the nerve tissue in the brain. The in vitro functionalized neurovascular unit model will be conducive to central nervous system disease research, drug screening, and new drug development.
Collapse
Affiliation(s)
- Wen-Juan Wei
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
8
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
9
|
An ex vivo organ culture screening model revealed that low temperature conditions prevent side effects of anticancer drugs. Sci Rep 2022; 12:3093. [PMID: 35197531 PMCID: PMC8866511 DOI: 10.1038/s41598-022-06945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/09/2022] [Indexed: 11/08/2022] Open
Abstract
Development of chemotherapy has led to a high survival rate of cancer patients; however, the severe side effects of anticancer drugs, including organ hypoplasia, persist. To assume the side effect of anticancer drugs, we established a new ex vivo screening model and described a method for suppressing side effects. Cyclophosphamide (CPA) is a commonly used anticancer drug and causes severe side effects in developing organs with intensive proliferation, including the teeth and hair. Using the organ culture model, we found that treatment with CPA disturbed the growth of tooth germs by inducing DNA damage, apoptosis and suppressing cellular proliferation and differentiation. Furthermore, low temperature suppressed CPA-mediated inhibition of organ development. Our ex vivo and in vitro analysis revealed that low temperature impeded Rb phosphorylation and caused cell cycle arrest at the G1 phase during CPA treatment. This can prevent the CPA-mediated cell damage of DNA replication caused by the cross-linking reaction of CPA. Our findings suggest that the side effects of anticancer drugs on organ development can be avoided by maintaining the internal environment under low temperature.
Collapse
|
10
|
Juang YJ, Hsu SK. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper. Polymers (Basel) 2022; 14:639. [PMID: 35160629 PMCID: PMC8840650 DOI: 10.3390/polym14030639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
Since the monumental work conducted by Whitesides et al. in 2007, research and development of paper-based microfluidics has been widely carried out, with its applications ranging from chemical and biological detection and analysis, to environmental monitoring and food-safety inspection. Paper-based microfluidics possesses several competitive advantages over other substrate materials, such as being simple, inexpensive, power-free for fluid transport, lightweight, biodegradable, biocompatible, good for colorimetric tests, flammable for easy disposal of used paper-based diagnostic devices by incineration, and being chemically modifiable. Myriad methods have been demonstrated to fabricate paper-based microfluidics, such as solid wax printing, cutting, photolithography, microembossing, etc. In this study, fabrication of paper-based microfluidics was demonstrated by spray on the printed paper. Different from the normally used filter papers, printing paper, which is much more accessible and cheaper, was utilized as the substrate material. The toner was intended to serve as the mask and the patterned hydrophobic barrier was formed after spray and heating. The processing parameters such as toner coverage on the printing paper, properties of the hydrophobic spray, surface properties of the paper, and curing temperature and time were systematically investigated. It was found that, after repetitive printing four times, the toner was able to prevent the hydrophobic spray (the mixture of PDMS and ethyl acetate) from wicking through the printing paper. The overall processing time for fabrication of paper-based microfluidic chips was less than 10 min and the technique is potentially scalable. Glucose detection was conducted using the microfluidic paper-based analytical devices (µPADs) as fabricated and a linear relationship was obtained between 1 and 10 mM.
Collapse
Affiliation(s)
- Yi-Je Juang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan;
- Center for Micro/Nano Science and Technology, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan
| | - Shu-Kai Hsu
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101, Taiwan;
| |
Collapse
|
11
|
Bayir Garbioglu D, Demir N, Ozel C, Avci H, Dincer M. Determination of therapeutic agents efficiencies of microsatellite instability high colon cancer cells in post-metastatic liver biochip modeling. FASEB J 2021; 35:e21834. [PMID: 34403553 DOI: 10.1096/fj.202100333r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Two distinct genetic mutational pathways characterized by either chromosomal instability or high-frequency microsatellite instability (MSI-H) are recognized in the pathogenesis of colorectal cancer (CRC). Recently, it has been shown that patients with primary CRC that displays MSI-H have a significant, stage-independent, multivariate survival advantage. Biological properties of CMS1 (MSI-H type) can affect therapeutic efficiencies of agents used in the treatment of CRC, and therefore become a new predictive factor of the treatment. But, the predictive impact of MSI-H status for adjuvant chemotherapy remains controversial. This study will assess whether there is any unnecessary or inappropriate use of treatment agents recommended for adjuvant therapy of stage 2 and 3 of disease and for palliative or curative treatment of liver metastatic disease in microsatellite instability high group, a molecular subtype of colon cancer. Within this scope, the efficiencies of fluorouracil- and oxaliplatin-based chemotherapeutic agents will be shown on stage 3 microsatellite instability high colon tumor cell lines first, and then a microfluidic model will be created, imitating the metastasis of colon cancer to the liver. In the microfluidic chip model, we will create in liver tissue, where the metastasis of microsatellite instability high colon cancer will be simulated; the effectiveness of chemotherapeutic agents, immunotherapy agents, and targeted agents on tumor cells as well as drug response will be assessed according to cell viability through released biomarkers from the cells. The proposed hypothesis study includes the modeling and treatment of patient-derived post-metastatic liver cancer in microfluidics which has priority at the global and our region and consequently develop personal medication.
Collapse
Affiliation(s)
- Duygu Bayir Garbioglu
- Faculty of Medicine, Department of Medical Oncology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Nazan Demir
- Faculty of Medicine, Department of Medical Oncology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ceren Ozel
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM, Eskisehir Osmangazi University, Eskisehir, Turkey.,Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hüseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM, Eskisehir Osmangazi University, Eskisehir, Turkey.,Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey.,Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Murat Dincer
- Faculty of Medicine, Department of Medical Oncology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
12
|
Höving AL, Schmitz J, Schmidt KE, Greiner JFW, Knabbe C, Kaltschmidt B, Grünberger A, Kaltschmidt C. Human Blood Serum Induces p38-MAPK- and Hsp27-Dependent Migration Dynamics of Adult Human Cardiac Stem Cells: Single-Cell Analysis via a Microfluidic-Based Cultivation Platform. BIOLOGY 2021; 10:biology10080708. [PMID: 34439941 PMCID: PMC8389316 DOI: 10.3390/biology10080708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Adult human stem cells possess the ability to contribute to endogenous regeneration processes of injured tissue by migrating to specific locations. For stem cell-based clinical applications it is highly important to gain knowledge about the migration behavior of adult human stem cells and the underlying molecular mechanisms of this ability. Human blood serum has been shown to have beneficial effects on other regenerative capacities of adult human stem cells. Within this study we tested the effect of human blood serum on the migration behavior of stem cells from the human heart. We used a microfluidic cultivation device, which allowed us to monitor the living cells and their movement behavior in real time. After addition of human blood serum, the heart stem cells increased their speed of movement and covered distance. Further, we observed that this effect could be diminished by inhibition of a specific kinase, p38-MAPK. Thus, our data suggest beneficial effects of human blood serum on adult human heart stem cells dependent on p38-MAPK. Our study contributes to a deeper understanding of the dynamics of stem cell migration and introduces a new platform to monitor stem cell movement in real time. Abstract Migratory capabilities of adult human stem cells are vital for assuring endogenous tissue regeneration and stem cell-based clinical applications. Although human blood serum has been shown to be beneficial for cell migration and proliferation, little is known about its impact on the migratory behavior of cardiac stem cells and underlying signaling pathways. Within this study, we investigated the effects of human blood serum on primary human cardiac stem cells (hCSCs) from the adult heart auricle. On a technical level, we took advantage of a microfluidic cultivation platform, which allowed us to characterize cell morphologies and track migration of single hCSCs via live cell imaging over a period of up to 48 h. Our findings showed a significantly increased migration distance and speed of hCSCs after treatment with human serum compared to control. Exposure of blood serum-stimulated hCSCs to the p38 mitogen-activated protein kinase (p38-MAPK) inhibitor SB239063 resulted in significantly decreased migration. Moreover, we revealed increased phosphorylation of heat shock protein 27 (Hsp27) upon serum treatment, which was diminished by p38-MAPK-inhibition. In summary, we demonstrate human blood serum as a strong inducer of adult human cardiac stem cell migration dependent on p38-MAPK/Hsp27-signalling. Our findings further emphasize the great potential of microfluidic cultivation devices for assessing spatio-temporal migration dynamics of adult human stem cells on a single-cell level.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence:
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Johannes F. W. Greiner
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
| |
Collapse
|
13
|
Kwizera EA, Sun M, White AM, Li J, He X. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater Sci Eng 2021; 7:2043-2063. [PMID: 33871975 PMCID: PMC8205986 DOI: 10.1021/acsbiomaterials.1c00083] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Manipulation of microscale bioparticles including living cells is of great significance to the broad bioengineering and biotechnology fields. Dielectrophoresis (DEP), which is defined as the interactions between dielectric particles and the electric field, is one of the most widely used techniques for the manipulation of bioparticles including cell separation, sorting, and trapping. Bioparticles experience a DEP force if they have a different polarization from the surrounding media in an electric field that is nonuniform in terms of the intensity and/or phase of the electric field. A comprehensive literature survey shows that the DEP-based microfluidic devices for manipulating bioparticles can be categorized according to the methods of creating the nonuniformity via patterned microchannels, electrodes, and media to generate the DEP force. These methods together with the theory of DEP force generation are described in this review, to provide a summary of the methods and materials that have been used to manipulate various bioparticles for various specific biological outcomes. Further developments of DEP-based technologies include identifying materials that better integrate with electrodes than current popular materials (silicone/glass) and improving the performance of DEP manipulation of bioparticles by combining it with other methods of handling bioparticles. Collectively, DEP-based microfluidic manipulation of bioparticles holds great potential for various biomedical applications.
Collapse
Affiliation(s)
- Elyahb A. Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Mingrui Sun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alisa M. White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation. Adv Biol (Weinh) 2021; 5:e2000024. [PMID: 33856745 PMCID: PMC8243895 DOI: 10.1002/adbi.202000024] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2021] [Indexed: 12/11/2022]
Abstract
The last few decades have witnessed diversified in vitro models to recapitulate the architecture and function of living organs or tissues and contribute immensely to advances in life science. Two novel 3D cell culture models: 1) Organoid, promoted mainly by the developments of stem cell biology and 2) Organ-on-a-chip, enhanced primarily due to microfluidic technology, have emerged as two promising approaches to advance the understanding of basic biological principles and clinical treatments. This review describes the comparable distinct differences between these two models and provides more insights into their complementarity and integration to recognize their merits and limitations for applicable fields. The convergence of the two approaches to produce multi-organoid-on-a-chip or human organoid-on-a-chip is emerging as a new approach for building 3D models with higher physiological relevance. Furthermore, rapid advancements in 3D printing and numerical simulations, which facilitate the design, manufacture, and results-translation of 3D cell culture models, can also serve as novel tools to promote the development and propagation of organoid and organ-on-a-chip systems. Current technological challenges and limitations, as well as expert recommendations and future solutions to address the promising combinations by incorporating organoids, organ-on-a-chip, 3D printing, and numerical simulation, are also summarized.
Collapse
Affiliation(s)
- Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuminghao Xiao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Asencio IO. The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering (Basel) 2021; 8:50. [PMID: 33922428 PMCID: PMC8146165 DOI: 10.3390/bioengineering8050050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The recapitulation of the stem cell microenvironment is an emerging area of research that has grown significantly in the last 10 to 15 years. Being able to understand the underlying mechanisms that relate stem cell behavior to the physical environment in which stem cells reside is currently a challenge that many groups are trying to unravel. Several approaches have attempted to mimic the biological components that constitute the native stem cell niche, however, this is a very intricate environment and, although promising advances have been made recently, it becomes clear that new strategies need to be explored to ensure a better understanding of the stem cell niche behavior. The second strand in stem cell niche research focuses on the use of manufacturing techniques to build simple but functional models; these models aim to mimic the physical features of the niche environment which have also been demonstrated to play a big role in directing cell responses. This second strand has involved a more engineering approach in which a wide set of microfabrication techniques have been explored in detail. This review aims to summarize the use of these microfabrication techniques and how they have approached the challenge of mimicking the native stem cell niche.
Collapse
Affiliation(s)
- David H. Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK; (S.M.); (F.C.)
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
| |
Collapse
|
16
|
Amponsah AE, Guo R, Kong D, Feng B, He J, Zhang W, Liu X, Du X, Ma Z, Liu B, Ma J, Cui H. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer's disease. Rev Neurosci 2021; 32:379-402. [PMID: 33550785 DOI: 10.1515/revneuro-2020-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and a common cause of dementia among elderly individuals. The disease is characterized by progressive cognitive decline, accumulation of senile amyloid plaques and neurofibrillary tangles, oxidative stress, and inflammation. Human-derived cell models of AD are scarce, and over the years, non-human-derived models have been developed to recapitulate clinical AD, investigate the disease's pathogenesis and develop therapies for the disease. Several pharmacological compounds have been developed for AD based on findings from non-human-derived cell models; however, these pharmacological compounds have failed at different phases of clinical trials. This necessitates the application of human-derived cell models, such as induced pluripotent stem cells (iPSCs) in their optimized form in AD mechanistic studies and preclinical drug testing. This review provides an overview of AD and iPSCs. The AD-relevant phenotypes of iPSC-derived AD brain cells and the usefulness of iPSCs in AD are highlighted. Finally, the various recommendations that have been made to enhance iPSC/AD modelling are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Zhenhuan Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| |
Collapse
|
17
|
Guerrero YA, Desai D, Sullivan C, Kindt E, Spilker ME, Maurer TS, Solomon DE, Bartlett DW. A Microfluidic Perfusion Platform for In Vitro Analysis of Drug Pharmacokinetic-Pharmacodynamic (PK-PD) Relationships. AAPS JOURNAL 2020; 22:53. [PMID: 32124093 DOI: 10.1208/s12248-020-0430-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/08/2020] [Indexed: 12/14/2022]
Abstract
Static in vitro cell culture studies cannot capture the dynamic concentration profiles of drugs, nutrients, and other factors that cells experience in physiological systems. This limits the confidence in the translational relevance of in vitro experiments and increases the reliance on empirical testing of exposure-response relationships and dose optimization in animal models during preclinical drug development, introducing additional challenges owing to species-specific differences in drug pharmacokinetics (PK) and pharmacodynamics (PD). Here, we describe the development of a microfluidic cell culture device that enables perfusion of cells under 2D or 3D culture conditions with temporally programmable concentration profiles. Proof-of-concept studies using doxorubicin and gemcitabine demonstrated the ability of the microfluidic PK-PD device to examine dose- and time-dependent effects of doxorubicin as well as schedule-dependent effects of doxorubicin and gemcitabine combination therapy on cell viability using both step-wise drug concentration profiles and species-specific (i.e., mouse, human) drug PK profiles. The results demonstrate the importance of including physiologically relevant dynamic drug exposure profiles during in vitro drug testing to more accurately mimic in vivo drug effects, thereby improving translatability across nonclinical studies and reducing the reliance on animal models during drug development.
Collapse
Affiliation(s)
- Yadir A Guerrero
- Neofluidics, 6650 Lusk Blvd, Suite 101, San Diego, California, 92121, USA
| | - Diti Desai
- Neofluidics, 6650 Lusk Blvd, Suite 101, San Diego, California, 92121, USA
| | - Connor Sullivan
- Neofluidics, 6650 Lusk Blvd, Suite 101, San Diego, California, 92121, USA
| | - Erick Kindt
- Pharmacokinetics, Dynamics, & Metabolism, Pfizer Worldwide Research and Development, Pfizer Inc., 10646 Science Center Drive, San Diego, California, 92121, USA
| | - Mary E Spilker
- Pharmacokinetics, Dynamics, & Metabolism, Pfizer Worldwide Research and Development, Pfizer Inc., 10646 Science Center Drive, San Diego, California, 92121, USA
| | - Tristan S Maurer
- Pharmacokinetics, Dynamics, & Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, 02139, USA
| | - Deepak E Solomon
- Neofluidics, 6650 Lusk Blvd, Suite 101, San Diego, California, 92121, USA.
| | - Derek W Bartlett
- Pharmacokinetics, Dynamics, & Metabolism, Pfizer Worldwide Research and Development, Pfizer Inc., 10646 Science Center Drive, San Diego, California, 92121, USA.
| |
Collapse
|
18
|
Dervisevic E, Tuck KL, Voelcker NH, Cadarso VJ. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5027. [PMID: 31752167 PMCID: PMC6891382 DOI: 10.3390/s19225027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Lab-on-a-chip sensing technologies have changed how cell biology research is conducted. This review summarises the progress in the lab-on-a-chip devices implemented for the detection of cellular metabolites. The review is divided into two subsections according to the methods used for the metabolite detection. Each section includes a table which summarises the relevant literature and also elaborates the advantages of, and the challenges faced with that particular method. The review continues with a section discussing the achievements attained due to using lab-on-a-chip devices within the specific context. Finally, a concluding section summarises what is to be resolved and discusses the future perspectives.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia;
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
| |
Collapse
|
19
|
Ramme AP, Koenig L, Hasenberg T, Schwenk C, Magauer C, Faust D, Lorenz AK, Krebs AC, Drewell C, Schirrmann K, Vladetic A, Lin GC, Pabinger S, Neuhaus W, Bois F, Lauster R, Marx U, Dehne EM. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci OA 2019; 5:FSO413. [PMID: 31534781 DOI: 10.1101/376970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Microphysiological systems play a pivotal role in progressing toward a global paradigm shift in drug development. Here, we designed a four-organ-chip interconnecting miniaturized human intestine, liver, brain and kidney equivalents. All four organ models were predifferentiated from induced pluripotent stem cells from the same healthy donor and integrated into the microphysiological system. The coculture of the four autologous tissue models in one common medium deprived of tissue specific growth factors was successful over 14-days. Although there were no added growth factors present in the coculture medium, the intestine, liver and neuronal model maintained defined marker expression. Only the renal model was overgrown by coexisting cells and did not further differentiate. This model platform will pave the way for autologous coculture cross-talk assays, disease induction and subsequent drug testing.
Collapse
Affiliation(s)
| | - Leopold Koenig
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | | | | | | - Daniel Faust
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | | | | - Christopher Drewell
- Technische Universität Berlin, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355 Berlin, Deutschland
| | - Kerstin Schirrmann
- The University of Manchester, Physics of Fluids & Soft Matter Group, Oxford Road, Manchester M13 9PL, UK
| | - Alexandra Vladetic
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Grace-Chiaen Lin
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Stephan Pabinger
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Frederic Bois
- INERIS, METO unit, Parc ALATA BP2, 60550 Verneuil en Halatte, France
| | - Roland Lauster
- Technische Universität Berlin, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355 Berlin, Deutschland
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | |
Collapse
|
20
|
Ramme AP, Koenig L, Hasenberg T, Schwenk C, Magauer C, Faust D, Lorenz AK, Krebs AC, Drewell C, Schirrmann K, Vladetic A, Lin GC, Pabinger S, Neuhaus W, Bois F, Lauster R, Marx U, Dehne EM. Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci OA 2019; 5:FSO413. [PMID: 31534781 PMCID: PMC6745596 DOI: 10.2144/fsoa-2019-0065] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Microphysiological systems play a pivotal role in progressing toward a global paradigm shift in drug development. Here, we designed a four-organ-chip interconnecting miniaturized human intestine, liver, brain and kidney equivalents. All four organ models were predifferentiated from induced pluripotent stem cells from the same healthy donor and integrated into the microphysiological system. The coculture of the four autologous tissue models in one common medium deprived of tissue specific growth factors was successful over 14-days. Although there were no added growth factors present in the coculture medium, the intestine, liver and neuronal model maintained defined marker expression. Only the renal model was overgrown by coexisting cells and did not further differentiate. This model platform will pave the way for autologous coculture cross-talk assays, disease induction and subsequent drug testing.
Collapse
Affiliation(s)
| | - Leopold Koenig
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | | | | | | - Daniel Faust
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | | | | - Christopher Drewell
- Technische Universität Berlin, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355 Berlin, Deutschland
| | - Kerstin Schirrmann
- The University of Manchester, Physics of Fluids & Soft Matter Group, Oxford Road, Manchester M13 9PL, UK
| | - Alexandra Vladetic
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Grace-Chiaen Lin
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Stephan Pabinger
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria
| | - Frederic Bois
- INERIS, METO unit, Parc ALATA BP2, 60550 Verneuil en Halatte, France
| | - Roland Lauster
- Technische Universität Berlin, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355 Berlin, Deutschland
| | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347 Berlin, Deutschland
| | | |
Collapse
|
21
|
Singh A, Yadav CB, Tabassum N, Bajpeyee AK, Verma V. Stem cell niche: Dynamic neighbor of stem cells. Eur J Cell Biol 2018; 98:65-73. [PMID: 30563738 DOI: 10.1016/j.ejcb.2018.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Stem cell niche is a specialized and dynamic microenvironment around the stem cells which plays a critical role in maintaining the stemness properties of stem cells. Over the years, advancement in the research activity has revealed the various important aspects of stem cell niche including cell-cell interaction, cell-extracellular matrix interaction, a large number of soluble signaling factors and various biochemical and biophysical cues (such as oxygen tension, flow, and shear and pore size). Stem cells have the potential to be a powerful tool in regenerative medicine due to their self-renewal property and immense differentiation potential. Recent progresses in in vitro culture conditions of embryonic stem cells, adult stem cells and induced pluripotent stem cells have enabled the researchers to investigate and understand the role of the microenvironment in stem cell properties. The engineered artificial stem cell niche has led to a better execution of stem cells in regenerative medicine. Here we elucidate the key components of stem cell niche and their role in niche engineering and stem cell therapeutics.
Collapse
Affiliation(s)
- Anshuman Singh
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - C B Yadav
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - N Tabassum
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - A K Bajpeyee
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - V Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India.
| |
Collapse
|
22
|
Abstract
Microfluidics has played a vital role in developing novel methods to investigate biological phenomena at the molecular and cellular level during the last two decades. Microscale engineering of cellular systems is nevertheless a nascent field marked inherently by frequent disruptive advancements in technology such as PDMS-based soft lithography. Viable culture and manipulation of cells in microfluidic devices requires knowledge across multiple disciplines including molecular and cellular biology, chemistry, physics, and engineering. There has been numerous excellent reviews in the past 15 years on applications of microfluidics for molecular and cellular biology including microfluidic cell culture (Berthier et al., 2012; El-Ali, Sorger, & Jensen, 2006; Halldorsson et al., 2015; Kim et al., 2007; Mehling & Tay, 2014; Sackmann et al., 2014; Whitesides, 2006; Young & Beebe, 2010), cell culture models (Gupta et al., 2016; Inamdar & Borenstein, 2011; Meyvantsson & Beebe, 2008), cell secretion (Schrell et al., 2016), chemotaxis (Kim & Wu, 2012; Wu et al., 2013), neuron culture (Millet & Gillette, 2012a, 2012b), drug screening (Dittrich & Manz, 2006; Eribol, Uguz, & Ulgen, 2016; Wu, Huang, & Lee, 2010), cell sorting (Autebert et al., 2012; Bhagat et al., 2010; Gossett et al., 2010; Wyatt Shields Iv, Reyes, & López, 2015), single cell studies (Lecault et al., 2012; Reece et al., 2016; Yin & Marshall, 2012), stem cell biology (Burdick & Vunjak-Novakovic, 2009; Wu et al., 2011; Zhang & Austin, 2012), cell differentiation (Zhang et al., 2017a), systems biology (Breslauer, Lee, & Lee, 2006), 3D cell culture (Huh et al., 2011; Li et al., 2012; van Duinen et al., 2015), spheroids and organoids (Lee et al., 2016; Montanez-Sauri, Beebe, & Sung, 2015; Morimoto & Takeuchi, 2013; Skardal et al., 2016; Young, 2013), organ-on-chip (Bhatia & Ingber, 2014; Esch, Bahinski, & Huh, 2015; Huh et al., 2011; van der Meer & van den Berg, 2012), and tissue engineering (Andersson & Van Den Berg, 2004; Choi et al., 2007; Hasan et al., 2014). In this chapter, we provide an overview of PDMS-based microdevices for microfluidic cell culture. We discuss the advantages and challenges of using PDMS-based soft lithography for microfluidic cell culture and highlight recent progress and future directions in this area.
Collapse
Affiliation(s)
- Melikhan Tanyeri
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA, United States
| | - Savaş Tay
- Institute of Molecular Engineering, University of Chicago, Chicago, IL, United States; Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
23
|
Lopa S, Mondadori C, Mainardi VL, Talò G, Costantini M, Candrian C, Święszkowski W, Moretti M. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair. Stem Cells Int 2018; 2018:6594841. [PMID: 29535776 PMCID: PMC5838503 DOI: 10.1155/2018/6594841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.
Collapse
Affiliation(s)
- Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Carlotta Mondadori
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Valerio Luca Mainardi
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics-Chemistry, Material and Chemical Engineering Department “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Marco Costantini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Christian Candrian
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Unità di Traumatologia e Ortopedia-ORL, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| |
Collapse
|
24
|
Kang K, Oh S, Yi H, Han S, Hwang Y. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold. BIOMICROFLUIDICS 2018; 12:014105. [PMID: 29375726 PMCID: PMC5756096 DOI: 10.1063/1.5012548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/27/2017] [Indexed: 05/12/2023]
Abstract
The field of complex microfluidic channels is rapidly expanding toward channels with variable cross-sections (i.e., beyond simple rounded channels with a constant diameter), as well as channels whose trajectory can be outside of a single plane. This paper introduces the use of three-dimensional (3D) printed soluble wax as cast molds for rapid fabrication of truly arbitrary microfluidic polydimethylsiloxane (PDMS) channels that are not achieved through typical soft lithography. The molds are printed directly from computer-aided design files, followed by simple dissolution using a solvent after molding PDMS, making rapid prototyping of microfluidic devices possible in hours. As part of the fabrication method, the solubility of several build materials in solvents and their effect on PDMS were investigated to remove the 3D-printed molds from inside the replicated PDMS microfluidic channels without damage. Technology limits, including surface roughness and resolution by comparing the designed channels with fabricated cylindrical channels with various diameters, are also characterized. We reproduced a 3D image of an actual human cerebral artery as cerebral artery-shaped PDMS channels with a diameter of 240 μm to prove the developed fabrication technique. It was confirmed that the fabricated vascular channels were free from any leakage by observing the fluorescence fluid fill.
Collapse
Affiliation(s)
- Kyunghun Kang
- Department of ElectroMechanical Systems Engineering, Korea University, Sejong 30019, South Korea
| | - Sangwoo Oh
- Maritime Safety Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon, South Korea
| | - Hak Yi
- School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Seungoh Han
- Department of Robotics Engineering, Hoseo University, Asan, South Korea
| | - Yongha Hwang
- Department of ElectroMechanical Systems Engineering, Korea University, Sejong 30019, South Korea
| |
Collapse
|
25
|
Zhou Y. The recent development and applications of fluidic channels by 3D printing. J Biomed Sci 2017; 24:80. [PMID: 29047370 PMCID: PMC5646158 DOI: 10.1186/s12929-017-0384-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/17/2017] [Indexed: 01/09/2023] Open
Abstract
The technology of “Lab-on-a-Chip” allows the synthesis and analysis of chemicals and biological substance within a portable or handheld device. The 3D printed structures enable precise control of various geometries. The combination of these two technologies in recent years makes a significant progress. The current approaches of 3D printing, such as stereolithography, polyjet, and fused deposition modeling, are introduced. Their manufacture specifications, such as surface roughness, resolution, replication fidelity, cost, and fabrication time, are compared with each other. Finally, novel application of 3D printed channel in biology are reviewed, including pathogenic bacteria detection using magnetic nanoparticle clusters in a helical microchannel, cell stimulation by 3D chemical gradients, perfused functional vascular channels, 3D tissue construct, organ-on-a-chip, and miniaturized fluidic “reactionware” devices for chemical syntheses. Overall, the 3D printed fluidic chip is becoming a powerful tool in the both medical and chemical industries.
Collapse
Affiliation(s)
- Yufeng Zhou
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore.
| |
Collapse
|
26
|
Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sci OA 2017; 3:FSO187. [PMID: 28670476 PMCID: PMC5481871 DOI: 10.4155/fsoa-2016-0091] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Microfluidic lab-on-a-chip provides a new platform with unique advantages to mimic complex physiological microenvironments in vivo and has been increasingly exploited to stem cell research. In this review, we highlight recent advances of microfluidic devices for stem cell culture and differentiation toward the development of organ-on-a-chip, especially with an emphasis on vital innovations within the last 2 years. Various aspects for improving on-chip stem-cell culture and differentiation, particularly toward organ-on-a-chip, are discussed, along with microenvironment control, surface modification, extracellular scaffolds, high throughput and stimuli. The combination of microfluidic technologies and stem cells hold great potential toward versatile systems of ‘organ-on-a-chip’ as desired.
Adapted with permission from [1–8]. Stem cells, capable of self-renewing and differentiating into cells of various tissue types, are drawing more and more attention for their enormous potential in many clinically associated applications that include drug screening, disease modeling and regenerative medicine. Conventional cell culture methods, however, have proven to be difficult to mimic in vivo like microenvironments and to provide a number of well-controlled stimuli that are critical for stem cell culture and differentiation. In contrast, microfluidic devices offer new capacities and unique advantages to mimic complex physiological microenvironments in vivo, and has been increasingly applied to stem cell research.
Collapse
|
27
|
Ghazal A, Gontsarik M, Kutter JP, Lafleur JP, Ahmadvand D, Labrador A, Salentinig S, Yaghmur A. Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. J Phys Chem Lett 2017; 8:73-79. [PMID: 27936765 DOI: 10.1021/acs.jpclett.6b02468] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A microfluidic platform combined with synchrotron small-angle X-ray scattering (SAXS) was used for monitoring the continuous production of multilamellar vesicles (MLVs). Their production was fast and started to evolve within less than 0.43 s of contact between the lipids and the aqueous phase. To obtain nanoparticles with a narrow size distribution, it was important to use a modified hydrodynamic flow focusing (HFF) microfluidic device with narrower microchannels than those normally used for SAXS experiments. Monodispersed MLVs as small as 160 nm in size, with a polydispersity index (PDI) of approximately 0.15 were achieved. The nanoparticles produced were smaller and had a narrower size distribution than those obtained via conventional bulk mixing methods. This microfluidic platform therefore has a great potential for the continuous production of monodispersed NPs.
Collapse
Affiliation(s)
- Aghiad Ghazal
- Niels Bohr Institute, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Mark Gontsarik
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Josiane P Lafleur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Davoud Ahmadvand
- Iran University of Medical Sciences , Shahid Hemmat Highway, Tehran, Iran
| | - Ana Labrador
- MAX IV Laboratory, Lund University , 223 62 Lund, Sweden
| | - Stefan Salentinig
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
28
|
Li S, Kuddannaya S, Chuah YJ, Bao J, Zhang Y, Wang D. Combined effects of multi-scale topographical cues on stable cell sheet formation and differentiation of mesenchymal stem cells. Biomater Sci 2017; 5:2056-2067. [DOI: 10.1039/c7bm00134g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To decipher specific cell responses to diverse and complex in vivo signals, it is essential to emulate specific surface chemicals, extra cellular matrix (ECM) components and topographical signals through reliable and easily reproducible in vitro systems.
Collapse
Affiliation(s)
- Sisi Li
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shreyas Kuddannaya
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Dongan Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
29
|
Wang Y, Ma J, Li N, Wang L, Shen L, Sun Y, Wang Y, Zhao J, Wei W, Ren Y, Liu J. Microfluidic engineering of neural stem cell niches for fate determination. BIOMICROFLUIDICS 2017; 11:014106. [PMID: 28798841 PMCID: PMC5533482 DOI: 10.1063/1.4974902] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
Neural stem cell (NSC) transplantation has great therapeutic potential for neurodegenerative diseases and central nervous system injuries. Successful NSC replacement therapy requires precise control over the cellular behaviors. However, the regulation of NSC fate is largely unclear, which severely restricts the potential clinical applications. To develop an effective model, we designed an assembled microfluidic system to engineer NSC niches and assessed the effects of various culture conditions on NSC fate determination. Five types of NSC microenvironments, including two-dimensional (2D) cellular monolayer culture, 2D cellular monolayer culture on the extracellular matrix (ECM), dispersed cells in the ECM, three-dimensional (3D) spheroid aggregates, and 3D spheroids cultured in the ECM, were constructed within an integrated microfluidic chip simultaneously. In addition, we evaluated the influence of static and perfusion culture on NSCs. The efficiency of this approach was evaluated comprehensively by characterization of NSC viability, self-renewal, proliferation, and differentiation into neurons, astrocytes, or oligodendrocytes. Differences in the status and fate of NSCs governed by the culture modes and micro-niches were analyzed. NSCs in the microfluidic device demonstrated good viability, the 3D culture in the ECM facilitated NSC self-renewal and proliferation, and 2D culture in the static state and spheroid culture under perfusion conditions benefited NSC differentiation. Regulation of NSC self-renewal and differentiation on this microfluidic device could provide NSC-based medicinal products and references for distinct nerve disease therapy.
Collapse
Affiliation(s)
| | - Jingyun Ma
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liang Wang
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Shen
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Sun
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yajun Wang
- College of Life Science, Liaoning Normal University, Dalian, China
| | - Jingyuan Zhao
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenjuan Wei
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yan Ren
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Liu
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
30
|
Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora SS, Das D. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 2016; 7:188. [PMID: 28038681 PMCID: PMC5203716 DOI: 10.1186/s13287-016-0440-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The functionality of stem cells is tightly regulated by cues from the niche, comprising both intrinsic and extrinsic cell signals. Besides chemical and growth factors, biophysical signals are important components of extrinsic signals that dictate the stem cell properties. The materials used in the fabrication of scaffolds provide the chemical cues whereas the shape of the scaffolds provides the biophysical cues. The effect of the chemical composition of the scaffolds on stem cell fate is well researched. Biophysical signals such as nanotopography, mechanical forces, stiffness of the matrix, and roughness of the biomaterial influence the fate of stem cells. However, not much is known about their role in signaling crosstalk, stem cell maintenance, and directed differentiation. Among the various techniques for scaffold design, nanotechnology has special significance. The role of nanoscale topography in scaffold design for the regulation of stem cell behavior has gained importance in regenerative medicine. Nanotechnology allows manipulation of highly advanced surfaces/scaffolds for optimal regulation of cellular behavior. Techniques such as electrospinning, soft lithography, microfluidics, carbon nanotubes, and nanostructured hydrogel are described in this review, along with their potential usage in regenerative medicine. We have also provided a brief insight into the potential signaling crosstalk that is triggered by nanomaterials that dictate a specific outcome of stem cells. This concise review compiles recent developments in nanoscale architecture and its importance in directing stem cell differentiation for prospective therapeutic applications.
Collapse
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chaitra Jayadev
- Vitreoretina Services, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - S S Khora
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.
| |
Collapse
|
31
|
Yen MH, Wu YY, Liu YS, Rimando M, Ho JHC, Lee OKS. Efficient generation of hepatic cells from mesenchymal stromal cells by an innovative bio-microfluidic cell culture device. Stem Cell Res Ther 2016; 7:120. [PMID: 27542358 PMCID: PMC4992324 DOI: 10.1186/s13287-016-0371-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/20/2016] [Indexed: 12/30/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are multipotent and have great potential in cell therapy. Previously we reported the differentiation potential of human MSCs into hepatocytes in vitro and that these cells can rescue fulminant hepatic failure. However, the conventional static culture method neither maintains growth factors at an optimal level constantly nor removes cellular waste efficiently. In addition, not only is the duration of differentiating hepatocyte lineage cells from MSCs required to improve, but also the need for a large number of hepatocytes for cell therapy has not to date been addressed fully. The purpose of this study is to design and develop an innovative microfluidic device to overcome these shortcomings. Methods We designed and fabricated a microfluidic device and a culture system for hepatic differentiation of MSCs using our protocol reported previously. The microfluidic device contains a large culture chamber with a stable uniform flow to allow homogeneous distribution and expansion as well as efficient induction of hepatic differentiation for MSCs. Results The device enables real-time observation under light microscopy and exhibits a better differentiation efficiency for MSCs compared with conventional static culture. MSCs grown in the microfluidic device showed a higher level of hepatocyte marker gene expression under hepatic induction. Functional analysis of hepatic differentiation demonstrated significantly higher urea production in the microfluidic device after 21 days of hepatic differentiation. Conclusions The microfluidic device allows the generation of a large number of MSCs and induces hepatic differentiation of MSCs efficiently. The device can be adapted for scale-up production of hepatic cells from MSCs for cellular therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0371-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng-Hua Yen
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan (Republic of China)
| | - Yuan-Yi Wu
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan (Republic of China)
| | - Yi-Shiuan Liu
- Stem Cell Research Center, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan (Republic of China)
| | - Marilyn Rimando
- Taiwan International Graduate Program, National Yang Ming University and Academia Sinica, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan (Republic of China)
| | - Jennifer Hui-Chun Ho
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, No. 111, Section 3, Hsing-Long Rd, Taipei, 116, Taiwan (Republic of China). .,Graduate Institute of Clinical Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei City, 110, Taiwan (Republic of China). .,Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, No. 111, Sec. 3, Hsing-Long Rd, Taipei, 116, Taiwan (Republic of China).
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan (Republic of China). .,Department of Medical Research, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd, Beitou District, Taipei City, 112, Taiwan (Republic of China). .,Taipei City Hospital, No. 145, Zhengzhou Rd, Datong Dist., Taipei, 103, Taiwan (Republic of China).
| |
Collapse
|
32
|
Rahmanian N, Bozorgmehr M, Torabi M, Akbari A, Zarnani AH. Cell separation: Potentials and pitfalls. Prep Biochem Biotechnol 2016; 47:38-51. [PMID: 27045194 DOI: 10.1080/10826068.2016.1163579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation techniques play an indispensable part in numerous basic biological studies and even clinical settings. Although various cell isolation methods with diverse applications have been devised so far, not all of them have been able to gain widespread popularity among researchers and clinicians. There is not a single method known to be advantageous over all cell isolation techniques, and in fact, it is the researcher's aim in performing a study that determines the most suitable method. A perfect method for one study might not be necessarily a proper choice for another and likewise, expensive and complex isolation methods might not always be the best choices. There are several criteria such as cell purity, viability, activation status, and frequency that need to be given serious thought before selecting an isolation technique. Moreover, time and cost are two of the key elements that should be taken into consideration before implementing a project. Hence, here we provide a succinct description of six more popular cell separation methods with respect to their principles, advantages, and disadvantages as well as their most common applications. We further provide several key features of each technique so that it helps the researchers to take the first step toward opting for the best method that fits well into their projects.
Collapse
Affiliation(s)
- Narges Rahmanian
- a Department of Molecular Medicine, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohmood Bozorgmehr
- b Oncopathology Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Monir Torabi
- c Department of Pathology, Shariati Hospital , Tehran University of Medical Sciences , Tehran , Iran
| | - Abolfazl Akbari
- d Colorectal Research Center , Iran University of Medical Sciences , Tehran , Iran
| | - Amir-Hassan Zarnani
- e Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran.,f Immunology Research Center , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
33
|
Kuddannaya S, Bao J, Zhang Y. Enhanced In Vitro Biocompatibility of Chemically Modified Poly(dimethylsiloxane) Surfaces for Stable Adhesion and Long-term Investigation of Brain Cerebral Cortex Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25529-38. [PMID: 26506436 DOI: 10.1021/acsami.5b09032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies on the mammalian brain cerebral cortex have gained increasing importance due to the relevance of the region in controlling critical higher brain functions. Interactions between the cortical cells and surface extracellular matrix (ECM) proteins play a pivotal role in promoting stable cell adhesion, growth, and function. Poly(dimethylsiloxane) (PDMS) based platforms have been increasingly used for on-chip in vitro cellular system analysis. However, the inherent hydrophobicity of the PDMS surface has been unfavorable for any long-term cell system investigations due to transitory physical adsorption of ECM proteins on PDMS surfaces followed by eventual cell dislodgement due to poor anchorage and viability. To address this critical issue, we employed the (3-aminopropyl)triethoxysilane (APTES) based cross-linking strategy to stabilize ECM protein immobilization on PDMS. The efficiency of surface modification in supporting adhesion and long-term viability of neuronal and glial cells was analyzed. The chemically modified surfaces showed a relatively higher cell survival with an increased neurite length and neurite branching. These changes were understood in terms of an increase in surface hydrophilicity, protein stability, and cell-ECM protein interactions. The modification strategy could be successfully applied for stable cortical cell culture on the PDMS microchip for up to 3 weeks in vitro.
Collapse
Affiliation(s)
- Shreyas Kuddannaya
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, N3.2-02-65, Singapore 639798, Singapore
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, N3.2-02-65, Singapore 639798, Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, N3.2-02-65, Singapore 639798, Singapore
| |
Collapse
|
34
|
Saggiomo V, Velders AH. Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500125. [PMID: 27709002 PMCID: PMC5034835 DOI: 10.1002/advs.201500125] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/24/2015] [Indexed: 04/14/2023]
Abstract
An easy and cheap fabrication method for intricate polydimethylsiloxane microfluidic devices is presented. The acrylonitrile butadiene styrene scaffold-removal method uses cheap, off-the-shelf materials and equipment for the fabrication of intricate microfluidic devices. The versatility of the method is proven by the fabrication of 3D multilayer, ship-in-a-bottle, selective heating, sensing, and NMR microfluidic devices. The methodology is coined ESCARGOT: Embedded SCAffold RemovinG Open Technology.
Collapse
Affiliation(s)
- Vittorio Saggiomo
- Laboratory of BioNanoTechnology Wageningen University PO Box 8038 6700 EK Wageningen The Netherlands
| | - Aldrik H Velders
- Laboratory of BioNanoTechnology Wageningen University PO Box 8038 6700 EK Wageningen The Netherlands; Instituto Regional de Investigacion Cientifica Aplicada (IRICA) Universidad de Castilla-La Mancha 13071 Ciudad Real Spain
| |
Collapse
|
35
|
Zeng L, Qiu L, Yang XT, Zhou YH, Du J, Wang HY, Sun JH, Yang C, Jiang JX. Isolation of lung multipotent stem cells using a novel microfluidic magnetic activated cell sorting system. Cell Biol Int 2015; 39:1348-53. [PMID: 26174412 DOI: 10.1002/cbin.10513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022]
Abstract
In recent years, more and more research has shown that the lung is an organ of regenerative potential, with several types of stem/progenitor cells undergoing proliferation and differentiation after lung injury and participating the injury repair process. Mouse lung multipotent stem cells (MLSCs) have extensive self-renewal ability in culture and could differentiate into endothelial and lung epithelial (alveolar epithelial type 1, 2, and Clara) cells in vitro. But the research of MLSCs was limited due to its rarity. In this study, we introduced a novel microfluidic magnetic activated cell sorting system in the isolation of MLSCs. The sorted MLSCs had better viability and purity. They were identified by colony formation efficiency and differentiation ability and they have self-renewal and differentiation capacities, highlighting their stem cell properties.
Collapse
Affiliation(s)
- Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China
| | - Lin Qiu
- Biochemistry and Molecular Biology Laboratory of Experiment Teaching Center, Chongqing Medical University, Chongqing, China
| | - Xue-Tao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China
| | - Yin-Han Zhou
- Lakepharma, Inc., 530 Harbor Blvd, Belmont, CA 94002, USA
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China
| | - Jian-Hui Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, China
| |
Collapse
|
36
|
Huang H, Densmore D. Integration of microfluidics into the synthetic biology design flow. LAB ON A CHIP 2014; 14:3459-74. [PMID: 25012162 DOI: 10.1039/c4lc00509k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications. Major challenges in these efforts include increasing the scalability and robustness of engineered biological systems and streamlining and automating the synthetic biology workflow of specification-design-assembly-verification. We present here a summary of the advances in microfluidic technology, particularly microfluidic large scale integration, that can be used to address the challenges facing each step of the synthetic biology workflow. Microfluidic technologies allow precise control over the flow of biological content within microscale devices, and thus may provide more reliable and scalable construction of synthetic biological systems. The integration of microfluidics and synthetic biology has the capability to produce rapid prototyping platforms for characterization of genetic devices, testing of biotherapeutics, and development of biosensors.
Collapse
Affiliation(s)
- Haiyao Huang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
37
|
Kothapalli CR, Honarmandi P. Theoretical and experimental quantification of the role of diffusive chemogradients on neuritogenesis within three-dimensional collagen scaffolds. Acta Biomater 2014; 10:3664-74. [PMID: 24830550 DOI: 10.1016/j.actbio.2014.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/27/2014] [Accepted: 05/05/2014] [Indexed: 02/08/2023]
Abstract
A critical challenge to regenerating close mimics of native axonal pathways under chronic neurodegenerative disease or injury conditions is the inability to stimulate, sustain and steer neurite outgrowth over a long distance, until they reach their intended targets. Understanding neurite outgrowth necessitates quantitative determination of the role of molecular gradients on growth cone navigation under dynamic physiological conditions. High-fidelity biomimetic platforms are needed to computationally and experimentally acquire and analyze spatiotemporal molecular gradient evolution and the growth cone response across multiple conditions along this gradient pathway. In this study, we utilized a simple microfluidic platform in which diffusive gradients were generated within a 3-D porous scaffold in a defined and reproducible manner. The platform's characteristics (spatiotemporal gradient, steepness, diffusion time, etc.) were precisely quantified at every specified location within the scaffold. Using this platform, we show that the cortical neurite response within 3-D collagen scaffolds, at both the cellular and molecular level, is extremely sensitive to subtle changes in localized concentration and gradient steepness of IGF-1 within that region. This platform could also be used to study other biological processes such as morphogenesis and cancer metastasis, where chemogradients are expected to significantly regulate the outcomes. Results from this study might be of tremendous use in designing biomaterial scaffolds for neural tissue engineering, axonal pathway regeneration under injury or disease, and in formulating targeted drug-delivery strategies.
Collapse
|
38
|
Vyawahare S, Zhang Q, Lau A, Austin RH. In vitro microbial culture models and their application in drug development. Adv Drug Deliv Rev 2014; 69-70:217-24. [PMID: 24566269 DOI: 10.1016/j.addr.2014.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/23/2014] [Accepted: 02/14/2014] [Indexed: 01/09/2023]
Abstract
Drug development faces its nemesis in the form of drug resistance. The rate of bacterial resistance to antibiotics, or tumor resistance to chemotherapy decisively depends on the surrounding heterogeneous tissue. However, in vitro drug testing is almost exclusively done in well stirred, homogeneous environments. Recent advancements in microfluidics and microfabrication introduce opportunities to develop in vitro culture models that mimic the complex in vivo tissue environment. In this review, we will first discuss the design principles underlying such models. Then we will demonstrate two types of microfluidic devices that combine stressor gradients, cell motility, large population of competing/cooperative cells and time varying dosage of drugs. By incorporating ideas from how natural selection and evolution move drug resistance forward, we show that drug resistance can occur at much greater rates than in well-stirred environments. Finally, we will discuss the future direction of in vitro microbial culture models and how to extend the lessons learned from microbial systems to eukaryotic cells.
Collapse
|
39
|
Microfluidics and its applications in quantitative biology. QUANTITATIVE BIOLOGY 2013. [DOI: 10.1007/s40484-014-0024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Abstract
Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.
Collapse
Affiliation(s)
- David A Brafman
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California at San Diego, La Jolla, California
| |
Collapse
|
41
|
Johnson A, Skotheim JM. Start and the restriction point. Curr Opin Cell Biol 2013; 25:717-23. [PMID: 23916770 DOI: 10.1016/j.ceb.2013.07.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/29/2013] [Accepted: 07/15/2013] [Indexed: 02/07/2023]
Abstract
Commitment to division requires that cells sense, interpret, and respond appropriately to multiple signals. In most eukaryotes, cells commit to division in G1 before DNA replication. Beyond a point, known as Start in yeast and the restriction point in mammals, cells will proceed through the cell cycle despite changes in upstream signals. In metazoans, misregulated G1 control can lead to developmental problems or disease, so it is important to understand how cells decipher the myriad external and internal signals that contribute to the fundamental all-or-none decision to divide. Extensive study of G1 control in the budding yeast Saccharomyces cerevisiae and mammalian culture systems has revealed highly similar networks regulating commitment. However, protein sequences of functional orthologs often indicate a total lack of conservation suggesting significant evolution of G1 control. Here, we review recent studies defining the conserved and diverged features of G1 control and highlight systems-level aspects that may be common to other biological regulatory networks.
Collapse
Affiliation(s)
- Amy Johnson
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | | |
Collapse
|
42
|
Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR. Microfluidic devices for cell cultivation and proliferation. BIOMICROFLUIDICS 2013; 7:51502. [PMID: 24273628 PMCID: PMC3829894 DOI: 10.1063/1.4826935] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 05/07/2023]
Abstract
Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.
Collapse
|