1
|
Xie X, Briega-Martos V, Alemany P, Mohandas Sandhya AL, Skála T, Rodríguez MG, Nováková J, Dopita M, Vorochta M, Bruix A, Cherevko S, Neyman KM, Matolínová I, Khalakhan I. Balancing Activity and Stability through Compositional Engineering of Ternary PtNi-Au Alloy ORR Catalysts. ACS Catal 2025; 15:234-245. [PMID: 39781331 PMCID: PMC11705540 DOI: 10.1021/acscatal.4c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
Achieving the optimal balance between cost-efficiency and stability of oxygen reduction reaction (ORR) catalysts is currently among the key research focuses aiming at reaching a broader implementation of proton-exchange membrane fuel cells (PEMFCs). To address this challenge, we combine two well-established strategies to enhance both activity and stability of platinum-based ORR catalysts. Specifically, we prepare ternary PtNi-Au alloys, where each alloying element plays a distinct role: Ni reduces costs and boosts ORR activity, while Au enhances stability. A systematic comparative analysis of the activity-stability relationship for compositionally tuned PtNi-Au model layers, prepared by magnetron co-sputtering, was conducted using a diverse range of complementary characterization techniques and electrochemistry, supported by density functional theory calculations. Our study reveals that a progressive increase of the Au concentration in the Pt50Ni50 alloy from 3 to 15 at % leads to opposing catalyst activity and stability trends. Specifically, we observe a decrease in the ORR activity accompanied by an increase in catalyst stability, manifested in the suppression of both Pt and Ni dissolution. Despite the reduced activity compared to PtNi, the PtNi-Au alloy with 15 at % Au still exhibits nearly three times the activity of monometallic Pt. It also demonstrates a significantly improved dissolution stability relative to that of the PtNi alloy and even monometallic Pt. These findings provide valuable insights into the intricate balance between activity and stability in multimetallic ORR catalysts, paving the way for the design of cost-effective and durable materials for PEMFCs.
Collapse
Affiliation(s)
- Xianxian Xie
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Valentín Briega-Martos
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Julich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Pere Alemany
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Athira Lekshmi Mohandas Sandhya
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Tomáš Skála
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Miquel Gamón Rodríguez
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Jaroslava Nováková
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Milan Dopita
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague 2, Czech Republic
| | - Michael Vorochta
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Albert Bruix
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Serhiy Cherevko
- Helmholtz
Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Julich GmbH, Cauerstr. 1, 91058 Erlangen, Germany
| | - Konstantin M. Neyman
- Departament
de Ciència de Materials i Química Física and
Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain
- ICREA
(Institució Catalana de Recerca i Estudis Avançats), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Iva Matolínová
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| | - Ivan Khalakhan
- Department
of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic
| |
Collapse
|
2
|
Reichmann I, Lloret V, Ehelebe K, Lauf P, Jenewein K, Mayrhofer KJJ, Cherevko S. Scanning Gas Diffusion Electrode Setup for Real-Time Analysis of Catalyst Layers. ACS MEASUREMENT SCIENCE AU 2024; 4:515-527. [PMID: 39430959 PMCID: PMC11487660 DOI: 10.1021/acsmeasuresciau.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 10/22/2024]
Abstract
The scanning gas diffusion electrode (S-GDE) half-cell is introduced as a new tool to improve the evaluation of electrodes used in electrochemical energy conversion technologies. It allows both fast screening and fundamental studies of real catalyst layers by applying coupled mass spectrometry techniques such as inductively coupled plasma mass spectrometry and online gas mass spectrometry. Hence, the proposed setup overcomes the limitations of aqueous model systems and full cell-level studies, bridging the gap between the two approaches. In this proof-of-concept work, standard fuel cell electrodes are investigated at elevated oxygen reduction reaction current densities, while dissolved Pt x+ ions in the electrolyte and gaseous CO2 in the outlet gas stream are detected to track platinum dissolution and carbon corrosion, respectively. Relevant current densities of up to 0.75 A cm-2 are demonstrated. The electrochemically active surface area, oxygen reduction reaction activity, and Pt dissolution rates are quantified and benchmarked to the values obtained in the conventional stationary GDE half-cell. Moreover, it is found that Pt dissolution is suppressed when O2 is purged into the catalyst layer. Overall, this work demonstrates the feasibility of fast fuel cell electrode screening obtaining, complementary to electrochemical, mass spectrometry data necessary in fundamental studies on structure/performance relationships under actual reaction conditions. While Pt/C, in relevance to its fuel cell application, is used in this study, the proposed setup can be applied in water electrolysis, CO2 conversion, metal-air batteries, and other neighbor technologies.
Collapse
Affiliation(s)
- Ina Reichmann
- Forschungzentrum
Jülich GmbH, Helmholtz Institute for Renewable Energy (IET-2), Cauerstraße 1, Erlangen 91058, Germany
- Friedrich-Alexander-University
Erlangen, Nürnberg, Erlangen 91058, Germany
| | - Vicent Lloret
- Forschungzentrum
Jülich GmbH, Helmholtz Institute for Renewable Energy (IET-2), Cauerstraße 1, Erlangen 91058, Germany
| | - Konrad Ehelebe
- Forschungzentrum
Jülich GmbH, Helmholtz Institute for Renewable Energy (IET-2), Cauerstraße 1, Erlangen 91058, Germany
- Friedrich-Alexander-University
Erlangen, Nürnberg, Erlangen 91058, Germany
| | - Pascal Lauf
- Forschungzentrum
Jülich GmbH, Helmholtz Institute for Renewable Energy (IET-2), Cauerstraße 1, Erlangen 91058, Germany
- Friedrich-Alexander-University
Erlangen, Nürnberg, Erlangen 91058, Germany
| | - Ken Jenewein
- Forschungzentrum
Jülich GmbH, Helmholtz Institute for Renewable Energy (IET-2), Cauerstraße 1, Erlangen 91058, Germany
- Friedrich-Alexander-University
Erlangen, Nürnberg, Erlangen 91058, Germany
| | - Karl J. J. Mayrhofer
- Forschungzentrum
Jülich GmbH, Helmholtz Institute for Renewable Energy (IET-2), Cauerstraße 1, Erlangen 91058, Germany
- Friedrich-Alexander-University
Erlangen, Nürnberg, Erlangen 91058, Germany
| | - Serhiy Cherevko
- Forschungzentrum
Jülich GmbH, Helmholtz Institute for Renewable Energy (IET-2), Cauerstraße 1, Erlangen 91058, Germany
| |
Collapse
|
3
|
Lim C, Fairhurst AR, Ransom BJ, Haering D, Stamenkovic VR. Role of Transition Metals in Pt Alloy Catalysts for the Oxygen Reduction Reaction. ACS Catal 2023; 13:14874-14893. [PMID: 38026811 PMCID: PMC10660348 DOI: 10.1021/acscatal.3c03321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
In pursuit of higher activity and stability of electrocatalysts toward the oxygen reduction reaction, it has become standard practice to alloy platinum in various structural configurations. Transition metals have been extensively studied for their ability to tune catalyst functionality through strain, ligand, and ensemble effects. The origin of these effects and potential for synergistic application in practical materials have been the subject of many theoretical and experimental analyses in recent years. Here, a comprehensive overview of these phenomena is provided regarding the impact on reaction mechanisms and kinetics through combined experimental and theoretical approaches. Experimental approaches to electrocatalysis are discussed.
Collapse
Affiliation(s)
- Chaewon Lim
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Alasdair R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Benjamin J. Ransom
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Dominik Haering
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
4
|
Imhof T, Della Bella RKF, Stühmeier BM, Gasteiger HA, Ledendecker M. Towards a realistic prediction of catalyst durability from liquid half-cell tests. Phys Chem Chem Phys 2023. [PMID: 37470348 DOI: 10.1039/d3cp02847j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Liquid half-cell measurements provide a convenient laboratory method for determining relevant parameters of electro-catalysts applied in e.g. polymer electrolyte membrane fuel cells. While these measurements may be effective in certain contexts, their applicability to real-world systems, such as single-cells in a membrane electrode assembly (MEA) configuration, is not always clear. This is particularly true when assessing the stability of these systems through accelerated stress tests (ASTs). Due to different electrode compositions and operating conditions, nanoscale degradation proceeds differently. Nevertheless, given the high demands of MEA measurements in terms of time, testing equipment complexity, and amount of catalyst material, application-relevant predictions of catalyst durability from liquid half-cell tests are highly desirable. This study combines electrochemical and nanoparticle analysis based on transmission electron microscopy to conduct a typical voltage cycling AST for rotating disc electrode (RDE) measurements, showing that the loss of the electrochemically active surface area (ECSA) of the used Pt/Vulcan catalyst is strongly enhanced at 80 °C compared to room temperature, which goes along with increased nanoparticle coarsening. Additionally, a high ionomer/carbon mass ratio (I/C = 0.7) accelerates the ECSA loss, and further investigations of its influence suggest a combination of several factors, including the high local proton concentration and the presence of adsorbing anions. At the same temperature (80 °C) and I/C ratio (0.7), the ECSA loss vs. AST cycle number of the Pt/Vulcan catalyst is essentially identical for a voltage cycling AST conducted in either an RDE half-cell or an MEA configuration, suggesting that liquid electrolyte half-cell based ASTs can provide application-relevant results. Thus, our study points out a way for predicting the stability of electro-catalysts in MEAs based on RDE experiments that require less specialized equipment and only μg-quantities of catalysts.
Collapse
Affiliation(s)
- Timo Imhof
- Technical University of Darmstadt, Peter-Grünberg-Strasse 10, 64287 Darmstadt, Germany.
| | | | - Björn M Stühmeier
- Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Hubert A Gasteiger
- Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Marc Ledendecker
- Technical University of Darmstadt, Peter-Grünberg-Strasse 10, 64287 Darmstadt, Germany.
- Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany.
| |
Collapse
|
5
|
Cho J, Kim H, Oh HS, Choi CH. Elucidation of Electrochemically Induced but Chemically Driven Pt Dissolution. JACS AU 2023; 3:105-112. [PMID: 36711079 PMCID: PMC9875222 DOI: 10.1021/jacsau.2c00474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
Securing the electrochemical durability of noble metal platinum is of central importance for the successful implementation of a proton exchange membrane fuel cell (PEMFC). Pt dissolution, a major cause of PEMFC degradation, is known to be a potential-dependent transient process, but its underlying mechanism is puzzling. Herein, we elucidate a chemical Pt dissolution process that can occur in various electrocatalytic conditions. This process intensively occurs during potential perturbations with a millisecond timescale, which has yet to be seriously considered. The open circuit potential profiles identify the dominant formation of metastable Pt species at such short timescales and their simultaneous dissolution. Considering on these findings, a proof-of-concept strategy for alleviating chemical Pt dissolution is further studied by tuning electric double layer charging. These results suggest that stable Pt electrocatalysis can be achieved if rational synthetic or systematic strategies are further developed.
Collapse
Affiliation(s)
- Junsic Cho
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Haesol Kim
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyung-Suk Oh
- Clean
Energy Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Chang Hyuck Choi
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
6
|
Xie X, Briega-Martos V, Farris R, Dopita M, Vorokhta M, Skála T, Matolínová I, Neyman KM, Cherevko S, Khalakhan I. Optimal Pt-Au Alloying for Efficient and Stable Oxygen Reduction Reaction Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1192-1200. [PMID: 36578102 DOI: 10.1021/acsami.2c18655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stabilization of cathode catalysts in hydrogen-fueled proton-exchange membrane fuel cells (PEMFCs) is paramount to their widespread commercialization. Targeting that aim, Pt-Au alloy catalysts with various compositions (Pt95Au5, Pt90Au10, and Pt80Au20) prepared by magnetron sputtering were investigated. The promising stability improvement of the Pt-Au catalyst, manifested in suppressed platinum dissolution with increasing Au content, was documented over an extended potential range up to 1.5 VRHE. On the other hand, at elevated concentrations, Au showed a detrimental effect on oxygen reduction reaction activity. A systematic study involving complementary characterization techniques, electrochemistry, and Monte Carlo simulations based on density functional theory data enabled us to gain a comprehensive understanding of the composition-activity-stability relationship to find optimal Pt-Au alloying for maintaining the activity of platinum and improving its resistance to dissolution. According to the results, Pt-Au alloy with 10% gold represent the most promising composition retaining the activity of monometallic Pt while suppressing Pt dissolution by 50% at the upper potential limit of 1.2 VRHE and by 20% at devastating 1.5 VRHE.
Collapse
Affiliation(s)
- Xianxian Xie
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, Prague 8 18000, Czech Republic
| | - Valentín Briega-Martos
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, Erlangen 91058, Germany
| | - Riccardo Farris
- Departament de Ciència de Materials i Química Física & Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, Barcelona 08028, Spain
| | - Milan Dopita
- Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, Prague 2 12116, Czech Republic
| | - Mykhailo Vorokhta
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, Prague 8 18000, Czech Republic
| | - Tomáš Skála
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, Prague 8 18000, Czech Republic
| | - Iva Matolínová
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, Prague 8 18000, Czech Republic
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física & Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, Barcelona 08028, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona 08010, Spain
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstr. 1, Erlangen 91058, Germany
| | - Ivan Khalakhan
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, Prague 8 18000, Czech Republic
| |
Collapse
|
7
|
Đukić T, Pavko L, Jovanovič P, Maselj N, Gatalo M, Hodnik N. Stability challenges of carbon-supported Pt-nanoalloys as fuel cell oxygen reduction reaction electrocatalysts. Chem Commun (Camb) 2022; 58:13832-13854. [PMID: 36472187 PMCID: PMC9753161 DOI: 10.1039/d2cc05377b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/21/2022] [Indexed: 11/14/2023]
Abstract
Carbon-supported Pt-based nanoalloys (CSPtNs) as the oxygen reduction reaction (ORR) electrocatalysts are considered state-of-the-art electrocatalysts for use in proton exchange membrane fuel cells (PEMFCs). Although their ORR activity performance is already adequate to allow lowering of the Pt loading and thus commercialisation of the fuel cell technology, their stability remains an open challenge. In this Feature Article, the recent achievements and acquired knowledge on the degradation behaviour of these electrocatalysts are overviewed and discussed.
Collapse
Affiliation(s)
- Tina Đukić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Primož Jovanovič
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
| | - Nik Maselj
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
- ReCatalyst d.o.o., Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova ulica 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
8
|
The phenomenon of increasing capacitance induced by 1T/2H-MoS2 surface modification with Pt particles – Influence on composition and energy storage mechanism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Gatalo M, Bonastre AM, Moriau L, Burdett H, Ruiz-Zepeda F, Hughes E, Hodgkinson A, Šala M, Pavko L, Bele M, Hodnik N, Sharman J, Gaberšček M. Importance of Chemical Activation and the Effect of Low Operation Voltage on the Performance of Pt-Alloy Fuel Cell Electrocatalysts. ACS APPLIED ENERGY MATERIALS 2022; 5:8862-8877. [PMID: 35909804 PMCID: PMC9326812 DOI: 10.1021/acsaem.2c01359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pt-alloy (Pt-M) nanoparticles (NPs) with less-expensive 3d transition metals (M = Ni, Cu, Co) supported on high-surface-area carbon supports are currently the state-of-the-art (SoA) solution to reach the production phase in proton exchange membrane fuel cells (PEMFCs). However, while Pt-M electrocatalysts show promise in terms of increased activity for oxygen reduction reaction (ORR) and, thus, cost reductions from the significantly lower use of expensive and rare Pt, key challenges in terms of synthesis, activation, and stability remain to unlock their true potential. This work systematically tackles them with a combination of electrocatalyst synthesis and characterization methodologies including thin-film rotating disc electrodes (TF-RDEs), an electrochemical flow cell linked to an inductively coupled plasma mass spectrometer (EFC-ICP-MS), and testing in 50 cm2 membrane electrode assemblies (MEAs). In the first part of the present work, we highlight the crucial importance of the chemical activation (dealloying) step on the performance of Pt-M electrocatalysts in the MEA at high current densities (HCDs). In addition, we provide the scientific community with a preliminary and facile method of distinguishing between a "poorly" and "adequately" dealloyed (activated) Pt-alloy electrocatalyst using a much simpler and affordable TF-RDE methodology using the well-known CO-stripping process. Since the transition-metal cations can also be introduced in a PEMFC due to the degradation of the Pt-M NPs, the second part of the work focuses on presenting clear evidence on the direct impact of the lower voltage limit (LVL) on the stability of Pt-M electrocatalysts. The data suggests that in addition to intrinsic improvements in stability, significant improvements in the PEMFC lifetime can also be obtained via the correct MEA design and applied limits of operation, namely, restricting not just the upper but equally important also the lower operation voltage.
Collapse
Affiliation(s)
- Matija Gatalo
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- ReCatalyst
d.o.o., Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | - Léonard
Jean Moriau
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Harriet Burdett
- Johnson
Matthey Technology Centre, Blount’s Court, Sonning
Common, Reading RG4 9NH, U.K.
| | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Edwin Hughes
- Johnson
Matthey Technology Centre, Blount’s Court, Sonning
Common, Reading RG4 9NH, U.K.
| | - Adam Hodgkinson
- Johnson
Matthey Fuel Cells, Lydiard
Fields, Great Western Way, Swindon SN5 8AT, U.K.
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, 1000 Ljubljana, Slovenia
| | - Luka Pavko
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marjan Bele
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University
of Nova Gorica, 5000 Nova Gorica, Slovenia
| | - Jonathan Sharman
- Johnson
Matthey Technology Centre, Blount’s Court, Sonning
Common, Reading RG4 9NH, U.K.
| | - Miran Gaberšček
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 249] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
11
|
Đukić T, Moriau LJ, Pavko L, Kostelec M, Prokop M, Ruiz-Zepeda F, Šala M, Dražić G, Gatalo M, Hodnik N. Understanding the Crucial Significance of the Temperature and Potential Window on the Stability of Carbon Supported Pt-Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. ACS Catal 2022; 12:101-115. [PMID: 35028189 PMCID: PMC8749953 DOI: 10.1021/acscatal.1c04205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/24/2021] [Indexed: 02/03/2023]
Abstract
The present research provides a study of carbon-supported intermetallic Pt-alloy electrocatalysts and assesses their stability against metal dissolution in relation to the operating temperature and the potential window using two advanced electrochemical methodologies: (i) the in-house designed high-temperature disk electrode (HT-DE) methodology as well as (ii) a modification of the electrochemical flow cell coupled to an inductively coupled plasma mass spectrometer (EFC-ICP-MS) methodology, allowing for highly sensitive time- and potential-resolved measurements of metal dissolution. While the rate of carbon corrosion follows the Arrhenius law and increases exponentially with temperature, the findings of the present study contradict the generally accepted hypothesis that the kinetics of Pt and subsequently the less noble metal dissolution are supposed to be for the most part unaffected by temperature. On the contrary, clear evidence is presented that in addition to the importance of the voltage/potential window, the temperature is one of the most critical parameters governing the stability of Pt and thus, in the case of Pt-alloy electrocatalysts, also the ability of the nanoparticles (NPs) to retain the less noble metal. Lastly, but also very importantly, results indicate that the rate of Pt redeposition significantly increases with temperature, which has been the main reason why mechanistic interpretation of the temperature-dependent kinetics related to the stability of Pt remained highly speculative until now.
Collapse
Affiliation(s)
- Tina Đukić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Leonard Jean Moriau
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Mitja Kostelec
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Martin Prokop
- University of Chemistry and Technology Prague, Technická 5, 166 28 Dejvice, Prague 6, Czech Republic
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Martin Šala
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Matija Gatalo
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,ReCatalyst d.o.o., Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.,University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
| |
Collapse
|
12
|
Bogar M, Yakovlev Y, Sandbeck DJS, Cherevko S, Matolínová I, Amenitsch H, Khalakhan I. Interplay Among Dealloying, Ostwald Ripening, and Coalescence in Pt XNi 100–X Bimetallic Alloys under Fuel-Cell-Related Conditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Marco Bogar
- CERIC-ERIC c/o Elettra Synchrotron, S.S. 14 Km 163.5, 34149 Trieste, Italy
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Yurii Yakovlev
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, 18000 Prague 8, Czech Republic
| | - Daniel John Seale Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Iva Matolínová
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, 18000 Prague 8, Czech Republic
| | - Heinz Amenitsch
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Ivan Khalakhan
- Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, 18000 Prague 8, Czech Republic
| |
Collapse
|
13
|
Prokop M, Bystron T, Belsky P, Tucek O, Kodym R, Paidar M, Bouzek K. Degradation kinetics of Pt during high-temperature PEM fuel cell operation Part III: Voltage-dependent Pt degradation rate in single-cell experiments. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Structure dependency of the atomic-scale mechanisms of platinum electro-oxidation and dissolution. Nat Catal 2020. [DOI: 10.1038/s41929-020-0497-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Sandbeck DJS, Inaba M, Quinson J, Bucher J, Zana A, Arenz M, Cherevko S. Particle Size Effect on Platinum Dissolution: Practical Considerations for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25718-25727. [PMID: 32395990 DOI: 10.1021/acsami.0c02801] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The high costs of polymer membrane electrolyte fuel cells (PEMFCs) remain a roadblock for a competitive market with combustion engine vehicles. The PEMFC costs can be reduced by decreasing the size of Pt nanoparticles in the catalyst layer, thereby increasing the Pt dispersion and utilization. Furthermore, high-power performance loss due to O2 transport resistance is alleviated by decreasing the particle size and increasing dispersion. However, firm conclusions on how Pt particle size impacts durability remain elusive due to synthetic difficulties in exclusively varying single parameters (e.g., particle size and loading). Therefore, here the particle size of Pt nanoparticles was varied from 2.0 to 2.8 and 3.7 nm while keeping the loading constant (30 wt %) on a Vulcan support using the two-step surfactant-free toolbox method. By studying the electrochemical dissolution in situ using online inductively coupled plasma mass spectrometry (online ICP-MS), mass-specific dissolution trends are revealed and are attributed to particle-size-dependent changes in electrochemically active surface area. Such degradation trends are critical for the start/stop of PEMFCs and currently require the implementation of potential control systems in consumer vehicles. Additionally, shifts in the onset of anodic dissolution and also oxidation to more negative potentials with decreasing particle size were observed. These results indicate a similar mechanism of anodic dissolution related to place-exchange when moving from extended polycrystalline Pt to nanoparticle scales. The negative shifts in the onset as the particle size decreases highlight a practical limitation for PEMFCs during load/idle conditions: without further material improvements, which inhibit Pt dissolution, reduction in costs and improvement in high-power performance via increased Pt utilization and dispersion will not be possible by decreasing particle sizes further.
Collapse
Affiliation(s)
- Daniel J S Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Masanori Inaba
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Jonathan Quinson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Jan Bucher
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Alessandro Zana
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Matthias Arenz
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Sandbeck DJS, Secher NM, Speck FD, Sørensen JE, Kibsgaard J, Chorkendorff I, Cherevko S. Particle Size Effect on Platinum Dissolution: Considerations for Accelerated Stability Testing of Fuel Cell Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00779] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel J. S. Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Niklas Mørch Secher
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Florian D. Speck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | | | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, 91058 Erlangen, Germany
| |
Collapse
|
17
|
Khalakhan I, Bogar M, Vorokhta M, Kúš P, Yakovlev Y, Dopita M, Sandbeck DJS, Cherevko S, Matolínová I, Amenitsch H. Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17602-17610. [PMID: 32191029 DOI: 10.1021/acsami.0c02083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Comprehensive understanding of the catalyst corrosion dynamics is a prerequisite for the development of an efficient cathode catalyst in proton-exchange membrane fuel cells. To reach this aim, the behavior of fuel cell catalysts must be investigated directly under reaction conditions. Herein, we applied a strategic combination of in situ/online techniques: in situ electrochemical atomic force microscopy, in situ grazing incidence small angle X-ray scattering, and electrochemical scanning flow cell with online detection by inductively coupled plasma mass spectrometry. This combination of techniques allows in-depth investigation of the potential-dependent surface restructuring of a PtNi model thin film catalyst during potentiodynamic cycling in an aqueous acidic electrolyte. The study reveals a clear correlation between the upper potential limit and structural behavior of the PtNi catalyst, namely, its dealloying and coarsening. The results show that at 0.6 and 1.0 VRHE upper potentials, the PtNi catalyst essentially preserves its structure during the entire cycling procedure. The crucial changes in the morphology of PtNi layers are found to occur at 1.3 and 1.5 VRHE cycling potentials. Strong dealloying at the early stage of cycling is substituted with strong coarsening of catalyst particles at the later stage. The coarsening at the later stage of cycling is assigned to the electrochemical Ostwald ripening process.
Collapse
Affiliation(s)
- Ivan Khalakhan
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Marco Bogar
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
- CERIC-ERIC c/o Elettra Synchrotron, S.S. 14 Km 163.5, 34149 Basovizza, Trieste, Italy
| | - Mykhailo Vorokhta
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Peter Kúš
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Yurii Yakovlev
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Milan Dopita
- Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Daniel John Seale Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH. Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH. Egerlandstr. 3, 91058 Erlangen, Germany
| | - Iva Matolínová
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University, V Holešovičkách 2, 18000 Prague 8, Czech Republic
| | - Heinz Amenitsch
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
18
|
Nong HN, Tran HP, Spöri C, Klingenhof M, Frevel L, Jones TE, Cottre T, Kaiser B, Jaegermann W, Schlögl R, Teschner D, Strasser P. The Role of Surface Hydroxylation, Lattice Vacancies and Bond Covalency in the Electrochemical Oxidation of Water (OER) on Ni-Depleted Iridium Oxide Catalysts. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The usage of iridium as an oxygen-evolution-reaction (OER) electrocatalyst requires very high atom efficiencies paired with high activity and stability. Our efforts during the past 6 years in the Priority Program 1613 funded by the Deutsche Forschungsgemeinschaft (DFG) were focused to mitigate the molecular origin of kinetic overpotentials of Ir-based OER catalysts and to design new materials to achieve that Ir-based catalysts are more atom and energy efficient, as well as stable. Approaches involved are: (1) use of bimetallic mixed metal oxide materials where Ir is combined with cheaper transition metals as starting materials, (2) use of dealloying concepts of nanometer sized core-shell particle with a thin noble metal oxide shell combined with a hollow or cheap transition metal-rich alloy core, and (3) use of corrosion-resistant high-surface-area oxide support materials. In this mini review, we have highlighted selected advances in our understanding of Ir–Ni bimetallic oxide electrocatalysts for the OER in acidic environments.
Collapse
Affiliation(s)
- Hong Nhan Nong
- Department of Chemistry, Chemical and Materials Engineering Division , Technical University Berlin , Straße des 17. Juni 124 , 10623 Berlin , Germany
- Department of Heterogeneous Reactions , Max-Planck-Institute for Chemical Energy Conversion , 45470 Mülheim an der Ruhr , Germany
| | - Hoang Phi Tran
- Department of Chemistry, Chemical and Materials Engineering Division , Technical University Berlin , Straße des 17. Juni 124 , 10623 Berlin , Germany
| | - Camillo Spöri
- Department of Chemistry, Chemical and Materials Engineering Division , Technical University Berlin , Straße des 17. Juni 124 , 10623 Berlin , Germany
| | - Malte Klingenhof
- Department of Chemistry, Chemical and Materials Engineering Division , Technical University Berlin , Straße des 17. Juni 124 , 10623 Berlin , Germany
| | - Lorenz Frevel
- Department of Inorganic Chemistry , Fritz-Haber-Institute of the Max-Planck-Society , Faradayweg 4–6 , 14195 Berlin , Germany
| | - Travis E. Jones
- Department of Inorganic Chemistry , Fritz-Haber-Institute of the Max-Planck-Society , Faradayweg 4–6 , 14195 Berlin , Germany
| | - Thorsten Cottre
- Surface Science Division, Department of Materials Science , Technical University Darmstadt , Otto-Berndt-Strasse 3 , Darmstadt, 64287 , Germany
| | - Bernhard Kaiser
- Surface Science Division, Department of Materials Science , Technical University Darmstadt , Otto-Berndt-Strasse 3 , Darmstadt, 64287 , Germany
| | - Wolfram Jaegermann
- Surface Science Division, Department of Materials Science , Technical University Darmstadt , Otto-Berndt-Strasse 3 , Darmstadt, 64287 , Germany
| | - Robert Schlögl
- Department of Heterogeneous Reactions , Max-Planck-Institute for Chemical Energy Conversion , 45470 Mülheim an der Ruhr , Germany
- Department of Inorganic Chemistry , Fritz-Haber-Institute of the Max-Planck-Society , Faradayweg 4–6 , 14195 Berlin , Germany
| | - Detre Teschner
- Department of Heterogeneous Reactions , Max-Planck-Institute for Chemical Energy Conversion , 45470 Mülheim an der Ruhr , Germany
- Department of Inorganic Chemistry , Fritz-Haber-Institute of the Max-Planck-Society , Faradayweg 4–6 , 14195 Berlin , Germany
| | - Peter Strasser
- Department of Chemistry, Chemical and Materials Engineering Division , Technical University Berlin , Straße des 17. Juni 124 , 10623 Berlin , Germany
| |
Collapse
|
19
|
Sandbeck DJS, Brummel O, Mayrhofer KJJ, Libuda J, Katsounaros I, Cherevko S. Dissolution of Platinum Single Crystals in Acidic Medium. Chemphyschem 2019; 20:2997-3003. [PMID: 31603611 PMCID: PMC6899853 DOI: 10.1002/cphc.201900866] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Indexed: 12/20/2022]
Abstract
Platinum single crystal basal planes consisting of Pt(111), Pt(100), Pt(110) and reference polycrystalline platinum Pt(poly) were subjected to various potentiodynamic and potentiostatic electrochemical treatments in 0.1 M HClO4 . Using the scanning flow cell coupled to an inductively coupled plasma mass spectrometer (SFC-ICP-MS) the transient dissolution was detected on-line. Clear trends in dissolution onset potentials and quantities emerged which can be related to the differences in the crystal plane surface structure energies and coordination. Pt(111) is observed to have a higher dissolution onset potential while the generalized trend in dissolution rates and quantities was found to be Pt(110)>P(100)≈Pt(poly)>Pt(111).
Collapse
Affiliation(s)
- Daniel J. S. Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Olaf Brummel
- Interface Research and Catalysis, Erlangen Catalysis Resource CenterFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Catalysis Resource CenterFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Ioannis Katsounaros
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
| |
Collapse
|
20
|
Kasian O, Geiger S, Mayrhofer KJJ, Cherevko S. Electrochemical On-line ICP-MS in Electrocatalysis Research. CHEM REC 2018; 19:2130-2142. [PMID: 30589199 DOI: 10.1002/tcr.201800162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Indexed: 01/13/2023]
Abstract
Electrocatalyst degradation due to dissolution is one of the major challenges in electrochemical energy conversion technologies such as fuel cells and electrolysers. While tendencies towards dissolution can be grasped considering available thermodynamic data, the kinetics of material's stability in real conditions is still difficult to predict and have to be measured experimentally, ideally in-situ and/or on-line. On-line inductively coupled plasma mass spectrometry (ICP-MS) is a technique developed recently to address exactly this issue. It allows time- and potential-resolved analysis of dissolution products in the electrolyte during the reaction under dynamic conditions. In this work, applications of on-line ICP-MS techniques in studies embracing dissolution of catalysts for oxygen reduction (ORR) and evolution (OER) as well as hydrogen oxidation (HOR) and evolution (HER) reactions are reviewed.
Collapse
Affiliation(s)
- Olga Kasian
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| | - Simon Geiger
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany.,Current address: Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Karl J J Mayrhofer
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany.,Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058, Erlangen, Germany.,Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Serhiy Cherevko
- Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany.,Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, 91058, Erlangen, Germany
| |
Collapse
|
21
|
Deng X, Galli F, Koper MTM. In Situ Electrochemical AFM Imaging of a Pt Electrode in Sulfuric Acid under Potential Cycling Conditions. J Am Chem Soc 2018; 140:13285-13291. [PMID: 30222335 PMCID: PMC6328281 DOI: 10.1021/jacs.8b07452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Indexed: 02/03/2023]
Abstract
Understanding the electrochemical behavior of Pt at the solid/liquid interface is of significant importance for the development of efficient electrochemical devices, such as fuel cells and water electrolyzers. In this work, the evolution of the surface morphology of a polycrystalline platinum under potential cycling conditions was investigated by in situ electrochemical atomic force microscopy (EC-AFM). After 50 cycles between 0.05 and 1.8 V in 0.1 M H2SO4, the Pt surface is coarsened and nanoparticles of several nanometers appear on the surface. The critical upper and lower potentials for the formation of nanoparticles are found to be 1.8 and 0.8 V, respectively. The in situ AFM observation coupled with Cyclic Voltammerty reveals the periodic disappearance and reappearance of the nanoparticles, based on which the formation of nanoparticles is attributed to the deposition of dissolved Pt from solution, and a model for the nanoparticle formation is proposed. While the formation of a thick oxide layer is a prerequisite, the reduction process is found to have a strong influence on Pt nanoparticle formation as well. This investigation provides a visualization of the Pt electrode surface under electrochemical control in a large potential window, enabling a broader understanding of the Pt electrode roughening mechanisms.
Collapse
Affiliation(s)
- Xin Deng
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Federica Galli
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
22
|
Shang X, Dong B, Chai YM, Liu CG. In-situ electrochemical activation designed hybrid electrocatalysts for water electrolysis. Sci Bull (Beijing) 2018; 63:853-876. [PMID: 36658965 DOI: 10.1016/j.scib.2018.05.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 05/07/2018] [Indexed: 01/21/2023]
Abstract
Developing transition metal-based electrocatalysts with rich active sites for water electrolysis plays important roles in renewable energy fields. So far, some strategies including designing nanostructures, incorporating conductive support or foreign elements have been adopted to develop efficient electrocatalysts. Herein, we summarize recent progresses and propose in-situ electrochemical activation as a new pretreating technique for enhanced catalytic performances. The activation techniques mainly comprise facile electrochemical processes such as anodic oxidation, cathodic reduction, etching, lithium-assisted tuning and counter electrode electro-dissolution. During these electrochemical treatments, the catalyst surfaces are modified from bulk phase, which can tune local electronic structures, create more active species, enlarge surface area and thus improve the catalytic performances. Meanwhile, this technique can couple the atomic, electronic structures with electrocatalysis mechanisms for water splitting. Compared to traditional chemical treatment, the in-situ electrochemical activation techniques have superior advantages such as facile operation, mild environment, variable control, high efficiency and flexibility. This review may provide guidance for improving water electrolysis efficiencies and hold promising for application in many other energy-conversion fields such as supercapacitors, fuel cells and batteries.
Collapse
Affiliation(s)
- Xiao Shang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China; College of Science, China University of Petroleum (East China), Qingdao 266580, China.
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
| | - Chen-Guang Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
23
|
Corrosion Behavior of Platinum in Aqueous H2SO4 Solution: Part 1—Influence of the Potential Scan Rate and the Dissolved Gas. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0454-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Brummel O, Waidhas F, Khalakhan I, Vorokhta M, Dubau M, Kovács G, Aleksandrov HA, Neyman KM, Matolín V, Libuda J. Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Zhang L, Han L, Liu H, Liu X, Luo J. Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. Angew Chem Int Ed Engl 2017; 56:13694-13698. [PMID: 28787544 PMCID: PMC5659130 DOI: 10.1002/anie.201706921] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 11/08/2022]
Abstract
Single-atom catalysts (SACs) have exhibited high activities for the hydrogen evolution reaction (HER) electrocatalysis in acidic or alkaline media, when they are used with binders on cathodes. However, to date, no SACs have been reported for the HER electrocatalysis in neutral media. We demonstrate a potential-cycling method to synthesize a catalyst comprising single Pt atoms on CoP-based nanotube arrays supported by a Ni foam, termed PtSA-NT-NF. This binder-free catalyst is centimeter-scale and scalable. It is directly used as HER cathodes, whose performances at low and high current densities in phosphate buffer solutions (pH 7.2) are comparable to and better than, respectively, those of commercial Pt/C. The Pt mass activity of PtSA-NT-NF is 4 times of that of Pt/C, and its electrocatalytic stability is also better than that of Pt/C. This work provides a large-scale production strategy for binder-free Pt SAC electrodes for efficient HER in neutral media.
Collapse
Affiliation(s)
- Lihan Zhang
- Center for Electron Microscopy, TUT-FEI Joint Laboratory, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Lili Han
- Center for Electron Microscopy, TUT-FEI Joint Laboratory, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Haoxuan Liu
- Center for Electron Microscopy, TUT-FEI Joint Laboratory, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- Center for Electron Microscopy, TUT-FEI Joint Laboratory, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy, TUT-FEI Joint Laboratory, Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
26
|
Zhang L, Han L, Liu H, Liu X, Luo J. Potential-Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706921] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lihan Zhang
- Center for Electron Microscopy; TUT-FEI Joint Laboratory; Tianjin Key Laboratory of Advanced Functional Porous Materials; Institute for New Energy Materials & Low-Carbon Technologies; School of Materials Science and Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Lili Han
- Center for Electron Microscopy; TUT-FEI Joint Laboratory; Tianjin Key Laboratory of Advanced Functional Porous Materials; Institute for New Energy Materials & Low-Carbon Technologies; School of Materials Science and Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Haoxuan Liu
- Center for Electron Microscopy; TUT-FEI Joint Laboratory; Tianjin Key Laboratory of Advanced Functional Porous Materials; Institute for New Energy Materials & Low-Carbon Technologies; School of Materials Science and Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Xijun Liu
- Center for Electron Microscopy; TUT-FEI Joint Laboratory; Tianjin Key Laboratory of Advanced Functional Porous Materials; Institute for New Energy Materials & Low-Carbon Technologies; School of Materials Science and Engineering; Tianjin University of Technology; Tianjin 300384 China
| | - Jun Luo
- Center for Electron Microscopy; TUT-FEI Joint Laboratory; Tianjin Key Laboratory of Advanced Functional Porous Materials; Institute for New Energy Materials & Low-Carbon Technologies; School of Materials Science and Engineering; Tianjin University of Technology; Tianjin 300384 China
| |
Collapse
|
27
|
Tavakkoli M, Holmberg N, Kronberg R, Jiang H, Sainio J, Kauppinen EI, Kallio T, Laasonen K. Electrochemical Activation of Single-Walled Carbon Nanotubes with Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00199] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Tavakkoli
- Department
of Chemistry, Aalto University, School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Nico Holmberg
- Department
of Chemistry, Aalto University, School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Rasmus Kronberg
- Department
of Chemistry, Aalto University, School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Hua Jiang
- Department
of Applied Physics, Aalto University, School of Science, P.O. Box 15100, FI 00076 Aalto, Finland
| | - Jani Sainio
- Department
of Applied Physics, Aalto University, School of Science, P.O. Box 15100, FI 00076 Aalto, Finland
| | - Esko I. Kauppinen
- Department
of Applied Physics, Aalto University, School of Science, P.O. Box 15100, FI 00076 Aalto, Finland
| | - Tanja Kallio
- Department
of Chemistry, Aalto University, School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Kari Laasonen
- Department
of Chemistry, Aalto University, School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
28
|
Polymeros G, Baldizzone C, Geiger S, Grote J, Knossalla J, Mezzavilla S, Keeley G, Cherevko S, Zeradjanin A, Schüth F, Mayrhofer K. High temperature stability study of carbon supported high surface area catalysts—Expanding the boundaries of ex-situ diagnostics. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Tian M, Cousins C, Beauchemin D, Furuya Y, Ohma A, Jerkiewicz G. Influence of the Working and Counter Electrode Surface Area Ratios on the Dissolution of Platinum under Electrochemical Conditions. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00200] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Tian
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Christine Cousins
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Diane Beauchemin
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Yoshihisa Furuya
- Nissan
Research Center, Nissan Motor Company, 1-Natsushima Cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Atsushi Ohma
- Nissan
Research Center, Nissan Motor Company, 1-Natsushima Cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Gregory Jerkiewicz
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
30
|
Cherevko S, Geiger S, Kasian O, Mingers A, Mayrhofer KJ. Oxygen evolution activity and stability of iridium in acidic media. Part 1. – Metallic iridium. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.033] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Mezzavilla S, Cherevko S, Baldizzone C, Pizzutilo E, Polymeros G, Mayrhofer KJJ. Experimental Methodologies to Understand Degradation of Nanostructured Electrocatalysts for PEM Fuel Cells: Advances and Opportunities. ChemElectroChem 2016. [DOI: 10.1002/celc.201600170] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stefano Mezzavilla
- Department of Electrocatalysis; Forschungszentrum Jülich GmbH; Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11); Egerlandstr. 3 91058 Erlangen Germany
| | - Serhiy Cherevko
- Department of Electrocatalysis; Forschungszentrum Jülich GmbH; Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11); Egerlandstr. 3 91058 Erlangen Germany
- Interface Chemistry and Surface Engineering; Max-Planck-Institut für Eisenforschung GmbH; Max-Planck-Straße 1 40237 Düsseldorf Germany
| | - Claudio Baldizzone
- Department of Electrocatalysis; Forschungszentrum Jülich GmbH; Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11); Egerlandstr. 3 91058 Erlangen Germany
| | - Enrico Pizzutilo
- Interface Chemistry and Surface Engineering; Max-Planck-Institut für Eisenforschung GmbH; Max-Planck-Straße 1 40237 Düsseldorf Germany
| | - George Polymeros
- Interface Chemistry and Surface Engineering; Max-Planck-Institut für Eisenforschung GmbH; Max-Planck-Straße 1 40237 Düsseldorf Germany
| | - Karl J. J. Mayrhofer
- Department of Electrocatalysis; Forschungszentrum Jülich GmbH; Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11); Egerlandstr. 3 91058 Erlangen Germany
- Interface Chemistry and Surface Engineering; Max-Planck-Institut für Eisenforschung GmbH; Max-Planck-Straße 1 40237 Düsseldorf Germany
- Department of Chemical and Biological Engineering; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
32
|
Dutta A, Rahaman M, Luedi NC, Mohos M, Broekmann P. Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00770] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Abhijit Dutta
- Department of Chemistry and
Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Motiar Rahaman
- Department of Chemistry and
Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Nicola C. Luedi
- Department of Chemistry and
Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Miklos Mohos
- Department of Chemistry and
Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry and
Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
33
|
Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJ. Oxygen and hydrogen evolution reactions on Ru, RuO 2 , Ir, and IrO 2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.08.014] [Citation(s) in RCA: 744] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
|
35
|
Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong HN, Schlögl R, Mayrhofer KJJ, Strasser P. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER). J Am Chem Soc 2015; 137:13031-40. [DOI: 10.1021/jacs.5b07788] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tobias Reier
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Zarina Pawolek
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Serhiy Cherevko
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Michael Bruns
- Institute
for Applied Materials and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Travis Jones
- Department
of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Detre Teschner
- Department
of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Sören Selve
- Zentraleinrichtung
Elektronenmikroskopie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Arno Bergmann
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Hong Nhan Nong
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Robert Schlögl
- Department
of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karl J. J. Mayrhofer
- Department
of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Peter Strasser
- Department
of Chemistry, Chemical and Materials Engineering Division, The Electrochemical
Energy, Catalysis and Materials Science Laboratory, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
36
|
Urchaga P, Kadyk T, Rinaldo SG, Pistono AO, Hu J, Lee W, Richards C, Eikerling MH, Rice CA. Catalyst Degradation in Fuel Cell Electrodes: Accelerated Stress Tests and Model-based Analysis. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.152] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Gilbert JA, Kariuki NN, Wang X, Kropf AJ, Yu K, Groom DJ, Ferreira PJ, Morgan D, Myers DJ. Pt Catalyst Degradation in Aqueous and Fuel Cell Environments studied via In-Operando Anomalous Small-Angle X-ray Scattering. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Latsuzbaia R, Negro E, Koper GJM. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts. CHEMSUSCHEM 2015; 8:1926-1934. [PMID: 25959077 DOI: 10.1002/cssc.201500019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/24/2015] [Indexed: 06/04/2023]
Abstract
The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- R Latsuzbaia
- Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)
| | - E Negro
- Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)
| | - G J M Koper
- Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands).
| |
Collapse
|
39
|
Cherevko S, Keeley GP, Geiger S, Zeradjanin AR, Hodnik N, Kulyk N, Mayrhofer KJJ. Dissolution of Platinum in the Operational Range of Fuel Cells. ChemElectroChem 2015; 2:1471-1478. [PMID: 27525206 PMCID: PMC4964885 DOI: 10.1002/celc.201500098] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 11/07/2022]
Abstract
One of the most important practical issues in low-temperature fuel-cell catalyst degradation is platinum dissolution. According to the literature, it initiates at 0.6-0.9 VRHE, whereas previous time- and potential-resolved inductively coupled plasma mass spectrometry (ICP-MS) experiments, however, revealed dissolution onset at only 1.05 VRHE. In this manuscript, the apparent discrepancy is addressed by investigating bulk and nanoparticulated catalysts. It is shown that, given enough time for accumulation, traces of platinum can be detected at potentials as low as 0.85 VRHE. At these low potentials, anodic dissolution is the dominant process, whereas, at more positive potentials, more platinum dissolves during the oxide reduction after accumulation. Interestingly, the potential and time dissolution dependence is similar for both types of electrode. Dissolution processes are discussed with relevance to fuel-cell operation and plausible dissolution mechanisms are considered.
Collapse
Affiliation(s)
- Serhiy Cherevko
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| | - Gareth P. Keeley
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| | - Simon Geiger
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| | - Aleksandar R. Zeradjanin
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| | - Nejc Hodnik
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| | - Nadiia Kulyk
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| | - Karl J. J. Mayrhofer
- Department of Interface Chemistry and Surface EngineeringMax-Planck-Institut für Eisenforschung GmbHMax-Planck-Straße 140237DüsseldorfGermany
| |
Collapse
|
40
|
Furuya Y, Mashio T, Ohma A, Tian M, Kaveh F, Beauchemin D, Jerkiewicz G. Influence of Electrolyte Composition and pH on Platinum Electrochemical and/or Chemical Dissolution in Aqueous Acidic Media. ACS Catal 2015. [DOI: 10.1021/cs5016035] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshihisa Furuya
- Nissan Research
Center, Nissan Motor Company, 1-Natsushima
Cho, Yokosuka, Kanagawa 237-8523, Japan
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Tetsuya Mashio
- Nissan Research
Center, Nissan Motor Company, 1-Natsushima
Cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Atsushi Ohma
- Nissan Research
Center, Nissan Motor Company, 1-Natsushima
Cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Min Tian
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Farhad Kaveh
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Diane Beauchemin
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Gregory Jerkiewicz
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| |
Collapse
|
41
|
Pulliam CJ, Bain RM, Wiley JS, Ouyang Z, Cooks RG. Mass spectrometry in the home and garden. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:224-230. [PMID: 25510934 PMCID: PMC4693292 DOI: 10.1007/s13361-014-1056-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Identification of active components in a variety of chemical products used directly by consumers is described at both trace and bulk levels using mass spectrometry. The combination of external ambient ionization with a portable mass spectrometer capable of tandem mass spectrometry provides high chemical specificity and sensitivity as well as allowing on-site monitoring. These experiments were done using a custom-built portable ion trap mass spectrometer in combination with the ambient ionization methods of paper spray, leaf spray, and low temperature plasma ionization. Bactericides, garden chemicals, air fresheners, and other products were examined. Herbicide applied to suburban lawns was detected in situ on single leaves 5 d after application.
Collapse
|