1
|
Kodama K, Todoroki N. Progress in Experimental Methods Using Model Electrodes for the Development of Noble-Metal-Based Oxygen Electrocatalysts in Fuel Cells and Water Electrolyzers. SMALL METHODS 2025:e2401851. [PMID: 39888223 DOI: 10.1002/smtd.202401851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Indexed: 02/01/2025]
Abstract
Hydrogen plays a key role in maximizing the benefits of renewable energy, and the widespread adoption of water electrolyzers and fuel cells, which convert the chemical energy of hydrogen and electrical energy into each other, is strongly desired. Electrocatalysts used in these devices, typically in the form of nanoparticles, are crucial components because they significantly affect cell performance, but their raw materials rely on limited resources. In catalyst research, electrochemical experimental studies using model catalysts, such as single-crystal electrodes, have provided valuable information on reaction and degradation mechanisms, as well as catalyst development strategies aimed at overcoming the trade-off between activity and durability, across spatial scales ranging from the atomic to the nanoscale. Traditionally, these experiments are conducted using well-defined, simple model surfaces like bare single-crystal electrodes in pure systems. However, in recent years, experimental methods using more complex interfaces-while still precisely controlling elemental distribution, microstructure, and modification patterns-have been established. This paper reviews the history of those studies focusing on noble-metal-based electrocatalysts for oxygen reduction reactions and oxygen evolution reactions, which account for the majority of efficiency losses in fuel cells and water electrolyzers, respectively. Furthermore, potential future research themes in experimental studies using model electrodes are identified.
Collapse
Affiliation(s)
- Kensaku Kodama
- Toyota Central R&D Labs., Inc., Nagakute, 480-1192, Japan
| | | |
Collapse
|
2
|
Artmann E, Schmider T, Jacob T, Engstfeld AK. Facet-Dependent Formation and Adhesion of Au Oxide and Nanoporous Au on Poly-Oriented Au Single Crystals. Chemphyschem 2023; 24:e202300428. [PMID: 37435757 DOI: 10.1002/cphc.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
Nanoporous Au (NPG) has different properties compared to bulk Au, making it an interesting material for numerous applications. To modify the structure of NPG films for specific applications, e. g., the porosity, thickness, and homogeneity of the films, a fundamental understanding of the structure formation is essential. Here, we focus on NPG prepared via electrochemical reduction from Au oxide formed during high voltage (HV) electrolysis on poly-oriented Au single crystal (Au POSC) electrodes. These POSCs consist of a metal bead, with faces with different crystallographic orientations and allow screening of the influence of crystallographic orientation on the structure formation for different facets in one experiment. The HV electrolysis is performed between 100 ms and 30 s at 300 V and 540 V. The amount of Au oxide formed is determined by electrochemical measurements and the structural properties are investigated by scanning electron and optical microscopy. We show that the formation of Au oxide is mostly independent of the crystallographic orientation, except for thick layers, while the macroscopic structure of the NPG films depends on experimental parameters such as the Au oxide precursor thickness and the crystallographic orientation of the substrate. Possible reasons for the frequently observed exfoliation of the NPG films are discussed.
Collapse
Affiliation(s)
- Evelyn Artmann
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | - Tobias Schmider
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, D-89081, Ulm, Germany
| | | |
Collapse
|
3
|
Arulmozhi N, Hanselman S, Tudor V, Chen X, van Velden D, Schneider GF, Calle-Vallejo F, Koper MTM. Energetics and Kinetics of Hydrogen Electrosorption on a Graphene-Covered Pt(111) Electrode. JACS AU 2023; 3:526-535. [PMID: 36873699 PMCID: PMC9976337 DOI: 10.1021/jacsau.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
The Angstrom-scale space between graphene and its substrate provides an attractive playground for scientific exploration and can lead to breakthrough applications. Here, we report the energetics and kinetics of hydrogen electrosorption on a graphene-covered Pt(111) electrode using electrochemical experiments, in situ spectroscopy, and density functional theory calculations. The graphene overlayer influences the hydrogen adsorption on Pt(111) by shielding the ions from the interface and weakening the Pt-H bond energy. Analysis of the proton permeation resistance with controlled graphene defect density proves that the domain boundary defects and point defects are the pathways for proton permeation in the graphene layer, in agreement with density functional theory (DFT) calculations of the lowest energy proton permeation pathways. Although graphene blocks the interaction of anions with the Pt(111) surfaces, anions do adsorb near the defects: the rate constant for hydrogen permeation is sensitively dependent on anion identity and concentration.
Collapse
Affiliation(s)
- Nakkiran Arulmozhi
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Selwyn Hanselman
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Viorica Tudor
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Xiaoting Chen
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - David van Velden
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Grégory F. Schneider
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| | - Federico Calle-Vallejo
- Department
of Materials Science and Chemical Physics & Institute of Theoretical
and Computational Chemistry (IQTCUB), University
of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Nano-Bio
Spectroscopy Group and European Theoretical Spectroscopy Facility
(ETSF), Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, University of the Basque
Country UPV/EHU, Av. Tolosa 72, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands
| |
Collapse
|
4
|
Mapping the kinetics of hydrogen evolution reaction on Ag via pseudo-single-crystal scanning electrochemical cell microscopy. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Esau D, Schuett FM, Varvaris KL, Kibler LA, Jacob T, Jerkiewicz G. Inductive Heating for Research in Electrocatalysis: Theory, Practical Considerations, and Examples. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Derek Esau
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Fabian M. Schuett
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - K. Liam Varvaris
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Ludwig A. Kibler
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage, Helmholtzstr. 11, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
6
|
Double-layer structure of the Pt(111)-aqueous electrolyte interface. Proc Natl Acad Sci U S A 2022; 119:2116016119. [PMID: 35042778 PMCID: PMC8784099 DOI: 10.1073/pnas.2116016119] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/18/2022] Open
Abstract
We present detailed measurements of the double-layer capacitance of the Pt(111)-electrolyte interface close to the potential of zero charge (PZC) in the presence of several different electrolytes consisting of anions and cations that are considered to be nonspecifically adsorbed. For low electrolyte concentrations, we show strong deviations from traditional Gouy-Chapman-Stern (GCS) behavior that appear to be independent of the nature of the electrolyte ions. Focusing on the capacitance further away from PZC and the trends for increasing ion concentration, we observe ion-specific capacitance effects that appear to be related to the size or hydration strength of the ions. We formulate a model for the structure of the electric double layer of the Pt(111)-electrolyte interface that goes significantly beyond the GCS theory. By combining two existing models, namely, one capturing the water reorganization on Pt close to the PZC and one accounting for an attractive ion-surface interaction not included in the GCS model, we can reproduce and interpret the main features the experimental capacitance of the Pt(111)-electrolyte interface. The model suggests a picture of the double layer with an increased ion concentration close to the interface as a consequence of a weak attractive ion-surface interaction, and a changing polarizability of the Pt(111)-water interface due to the potential-dependent water adsorption and orientation.
Collapse
|
7
|
Raaijman S, Arulmozhi N, Koper MTM. Morphological Stability of Copper Surfaces under Reducing Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48730-48744. [PMID: 34612038 PMCID: PMC8532114 DOI: 10.1021/acsami.1c13989] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/26/2021] [Indexed: 05/28/2023]
Abstract
Though copper is a capable electrocatalyst for the CO2 reduction reaction (CO2RR), it rapidly deactivates to produce mostly hydrogen. A current hypothesis as to why this occurs is that potential-induced morphological restructuring takes place, leading to a redistribution of the facets at the interface resulting in a shift in the catalytic activity to favor the hydrogen evolution reaction over CO2RR. Here, we investigate the veracity of this hypothesis by studying the changes in the voltammetry of various copper surfaces, specifically the three principal orientations and a polycrystalline surface, after being subjected to strongly cathodic conditions. The basal planes were chosen as model catalysts, while polycrystalline copper was included as a means of investigating the overall behavior of defect-rich facets with many low coordination steps and kink sites. We found that all surfaces exhibited (perhaps surprisingly) high stability when subjected to strongly cathodic potentials in a concentrated alkaline electrolyte (10 M NaOH). Proof for morphological stability under CO2RR-representative conditions (60 min at -0.75 V in 0.5 M KHCO3) was obtained from identical location scanning electron microscopy, where the mesoscopic morphology for a nanoparticle-covered copper surface was found unchanged to within the instrument accuracy. Observed changes in voltammetry under such conditions, we found, were not indicative of a redistribution of surface sites but of electrode fouling. Besides impurities, we show that (brief) exposure to oxygen or oxidizing conditions (i.e., 1 min) leads to copper exhibiting changing morphology upon cathodic treatment which, we posit, is ultimately the reason why many groups report the evolution of copper morphology during CO2RR: accidental oxidation/reduction cycles.
Collapse
|
8
|
Schuett FM, Zeller SJ, Eckl MJ, Matzik FM, Heubach MK, Geng T, Hermann JM, Uhl M, Kibler LA, Engstfeld AK, Jacob T. Versatile 3D-Printed Micro-Reference Electrodes for Aqueous and Non-Aqueous Solutions. Angew Chem Int Ed Engl 2021; 60:22783-22790. [PMID: 34427031 PMCID: PMC8518549 DOI: 10.1002/anie.202105871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/18/2021] [Indexed: 11/09/2022]
Abstract
While numerous reference electrodes suitable for aqueous electrolytes exist, there is no well-defined standard for non-aqueous electrolytes. Furthermore, reference electrodes are often large and do not meet the size requirements for small cells. In this work, we present a simple method for fabricating stable 3D-printed micro-reference electrodes. The prints are made from polyvinylidene fluoride, which is chemically inert in strong acids, bases, and commonly used non-aqueous solvents. We chose six different reference systems based on Ag, Cu, Zn, and Na, including three aqueous and three non-aqueous systems to demonstrate the versatility of the approach. Subsequently, we conducted cyclic voltammetry experiments and measured the potential difference between the aqueous homemade reference electrodes and a commercial Ag/AgCl-electrode. For the non-aqueous reference electrodes, we chose the ferrocene redox couple as an internal standard. From these measurements, we deduced that this new class of micro-reference electrodes is leak-tight and shows a stable electrode potential.
Collapse
Affiliation(s)
- Fabian M Schuett
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Sven J Zeller
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Helmholtz-Institute-Ulm (HIU), Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Maximilian J Eckl
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Felix M Matzik
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Maren-Kathrin Heubach
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Tanja Geng
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Johannes M Hermann
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Matthias Uhl
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Ludwig A Kibler
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Albert K Engstfeld
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Helmholtz-Institute-Ulm (HIU), Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
9
|
Schuett FM, Zeller SJ, Eckl MJ, Matzik FM, Heubach M, Geng T, Hermann JM, Uhl M, Kibler LA, Engstfeld AK, Jacob T. Versatile 3D‐Printed Micro‐Reference Electrodes for Aqueous and Non‐Aqueous Solutions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fabian M. Schuett
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Sven J. Zeller
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany
| | - Maximilian J. Eckl
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Felix M. Matzik
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Maren‐Kathrin Heubach
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Tanja Geng
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Johannes M. Hermann
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Matthias Uhl
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Ludwig A. Kibler
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Albert K. Engstfeld
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Timo Jacob
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany
| |
Collapse
|
10
|
Nanoscale morphological evolution of monocrystalline Pt surfaces during cathodic corrosion. Proc Natl Acad Sci U S A 2020; 117:32267-32277. [PMID: 33288700 PMCID: PMC7768681 DOI: 10.1073/pnas.2017086117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cathodic corrosion is a relatively unexplored but highly enigmatic electrochemical phenomenon that transforms, roughens, and dissolves metal surfaces under cathodic polarization. We show how cathodic corrosion of a platinum spherical single-crystal electrode in an aqueous alkaline electrolyte leads initially to the formation of etch pits that reflect the local symmetry of the surface and subsequently develop into a growth regime in which self-similar diffusion-limited patterns emerge. These are unique observations that may eventually open the door to controlled surface patterning and nanoparticle preparation. This paper studies the cathodic corrosion of a spherical single crystal of platinum in an aqueous alkaline electrolyte, to map out the detailed facet dependence of the corrosion structures forming during this still largely unexplored electrochemical phenomenon. We find that anisotropic corrosion of the platinum electrode takes place in different stages. Initially, corrosion etch pits are formed, which reflect the local symmetry of the surface: square pits on (100) facets, triangular pits on (111) facets, and rectangular pits on (110) facets. We hypothesize that these etch pits are formed through a ternary metal hydride corrosion intermediate. In contrast to anodic corrosion, the (111) facet corrodes the fastest, and the (110) facet corrodes the slowest. For cathodic corrosion on the (100) facet and on higher-index surfaces close to the (100) plane, the etch pit destabilizes in a second growth stage, by etching faster in the (111) direction, leading to arms in the etch pit, yielding a concave octagon-shaped pit. In a third growth stage, these arms develop side arms, leading to a structure that strongly resembles a self-similar diffusion-limited growth pattern, with strongly preferred growth directions.
Collapse
|
11
|
Schuett FM, Esau D, Varvaris KL, Gelman S, Björk J, Rosen J, Jerkiewicz G, Jacob T. Controlled-Atmosphere Flame Fusion Single-Crystal Growth of Non-Noble fcc, hcp, and bcc Metals Using Copper, Cobalt, and Iron. Angew Chem Int Ed Engl 2020; 59:13246-13252. [PMID: 32250028 PMCID: PMC7496678 DOI: 10.1002/anie.201915389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Indexed: 11/30/2022]
Abstract
The growth of noble‐metal single crystals via the flame fusion method was developed in the 1980s. Since then, there have been no major advancements to the technique until the recent development of the controlled‐atmosphere flame fusion (CAFF) method to grow non‐noble Ni single crystals. Herein, we demonstrate the generality of this method with the first preparation of fcc Cu as well as the first hcp and bcc single crystals of Co and Fe, respectively. The high quality of the single crystals was verified using scanning electron microscopy and Laue X‐ray backscattering. Based on Wulff constructions, the equilibrium shapes of the single‐crystal particles were studied, confirming the symmetry of the fcc, hcp, and bcc single‐crystal lattices. The low cost of the CAFF method makes all kinds of high‐quality non‐noble single crystals independent of their lattice accessible for use in electrocatalysis, electrochemistry, surface science, and materials science.
Collapse
Affiliation(s)
- Fabian M Schuett
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany
| | - Derek Esau
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - K Liam Varvaris
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Shelly Gelman
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183, Linköping, Sweden
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM, Linköping University, 58183, Linköping, Sweden
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany.,Helmholtz-Institute-Ulm (HIU), Electrochemical Energy Storage, Helmholtzstr. 11, 89081, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
12
|
Schuett FM, Esau D, Varvaris KL, Gelman S, Björk J, Rosen J, Jerkiewicz G, Jacob T. Controlled‐Atmosphere Flame Fusion Single‐Crystal Growth of Non‐Noble fcc, hcp, and bcc Metals Using Copper, Cobalt, and Iron. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fabian M. Schuett
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
| | - Derek Esau
- Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - K. Liam Varvaris
- Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Shelly Gelman
- Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM Linköping University 58183 Linköping Sweden
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM Linköping University 58183 Linköping Sweden
| | - Gregory Jerkiewicz
- Department of Chemistry Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
| | - Timo Jacob
- Institute of Electrochemistry Ulm University Albert-Einstein-Allee 47 89081 Ulm Germany
- Helmholtz-Institute-Ulm (HIU) Electrochemical Energy Storage Helmholtzstr. 11 89081 Ulm Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640 76021 Karlsruhe Germany
| |
Collapse
|
13
|
Ojha K, Arulmozhi N, Aranzales D, Koper MTM. Double Layer at the Pt(111)-Aqueous Electrolyte Interface: Potential of Zero Charge and Anomalous Gouy-Chapman Screening. Angew Chem Int Ed Engl 2020; 59:711-715. [PMID: 31682314 PMCID: PMC6973170 DOI: 10.1002/anie.201911929] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/30/2019] [Indexed: 12/02/2022]
Abstract
We report, for the first time, the observation of a Gouy-Chapman capacitance minimum at the potential of zero charge of the Pt(111)-aqueous perchlorate electrolyte interface. The potential of zero charge of 0.3 V vs. NHE agrees very well with earlier values obtained by different methods. The observation of the potential of zero charge of this interface requires a specific pH (pH 4) and anomalously low electrolyte concentrations (<10-3 m). By comparison to gold and mercury double-layer data, we conclude that the diffuse double layer structure at the Pt(111)-electrolyte interface deviates significantly from the Gouy-Chapman theory in the sense that the electrostatic screening is much better than predicted by purely electrostatic mean-field Poisson-Boltzmann theory.
Collapse
Affiliation(s)
- Kasinath Ojha
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | - Nakkiran Arulmozhi
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | - Diana Aranzales
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | - Marc T. M. Koper
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| |
Collapse
|
14
|
Esau D, Schuett FM, Varvaris KL, Björk J, Jacob T, Jerkiewicz G. Controlled-Atmosphere Flame Fusion Growth of Nickel Poly-oriented Spherical Single Crystals—Unraveling Decades of Impossibility. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-019-00575-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Ojha K, Arulmozhi N, Aranzales D, Koper MTM. Double Layer at the Pt(111)–Aqueous Electrolyte Interface: Potential of Zero Charge and Anomalous Gouy–Chapman Screening. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kasinath Ojha
- Leiden Institute of ChemistryLeiden University 2300 RA Leiden The Netherlands
| | - Nakkiran Arulmozhi
- Leiden Institute of ChemistryLeiden University 2300 RA Leiden The Netherlands
| | - Diana Aranzales
- Leiden Institute of ChemistryLeiden University 2300 RA Leiden The Netherlands
| | - Marc T. M. Koper
- Leiden Institute of ChemistryLeiden University 2300 RA Leiden The Netherlands
| |
Collapse
|
16
|
Sandbeck DJS, Brummel O, Mayrhofer KJJ, Libuda J, Katsounaros I, Cherevko S. Dissolution of Platinum Single Crystals in Acidic Medium. Chemphyschem 2019; 20:2997-3003. [PMID: 31603611 PMCID: PMC6899853 DOI: 10.1002/cphc.201900866] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Indexed: 12/20/2022]
Abstract
Platinum single crystal basal planes consisting of Pt(111), Pt(100), Pt(110) and reference polycrystalline platinum Pt(poly) were subjected to various potentiodynamic and potentiostatic electrochemical treatments in 0.1 M HClO4 . Using the scanning flow cell coupled to an inductively coupled plasma mass spectrometer (SFC-ICP-MS) the transient dissolution was detected on-line. Clear trends in dissolution onset potentials and quantities emerged which can be related to the differences in the crystal plane surface structure energies and coordination. Pt(111) is observed to have a higher dissolution onset potential while the generalized trend in dissolution rates and quantities was found to be Pt(110)>P(100)≈Pt(poly)>Pt(111).
Collapse
Affiliation(s)
- Daniel J. S. Sandbeck
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Olaf Brummel
- Interface Research and Catalysis, Erlangen Catalysis Resource CenterFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Karl J. J. Mayrhofer
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Catalysis Resource CenterFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Ioannis Katsounaros
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
| | - Serhiy Cherevko
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)Forschungszentrum Jülich GmbHEgerlandstr. 391058ErlangenGermany
| |
Collapse
|
17
|
Zinola CF. Carbon monoxide oxidation assisted by interfacial oxygen-water layers. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-018-04190-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Arulmozhi N, Esau D, Lamsal RP, Beauchemin D, Jerkiewicz G. Structural Transformation of Monocrystalline Platinum Electrodes upon Electro-oxidation and Electro-dissolution. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nakkiran Arulmozhi
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Derek Esau
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Ram P. Lamsal
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Diane Beauchemin
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Gregory Jerkiewicz
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
19
|
Arulmozhi N, Esau D, van Drunen J, Jerkiewicz G. Design and Development of Instrumentations for the Preparation of Platinum Single Crystals for Electrochemistry and Electrocatalysis Research Part 3: Final Treatment, Electrochemical Measurements, and Recommended Laboratory Practices. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0426-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Design and Development of Instrumentations for the Preparation of Platinum Single Crystals for Electrochemistry and Electrocatalysis Research. Part 2: Orientation, Cutting, and Annealing. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0385-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|