1
|
Wang R, Long T, He J, Xu Y, Wei Y, Zhang Y, He X, He M. Associations of multiple plasma metals with chronic kidney disease in patients with diabetes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114048. [PMID: 36063616 DOI: 10.1016/j.ecoenv.2022.114048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As common contaminants, metals are non-negligible risk factors for diabetes and chronic kidney disease. However, whether there is an association between multiple metals exposure and incident chronic kidney disease (CKD) risk in patients with diabetes is unclear. We conducted a prospective study to evaluate these associations. In total, 3071 diabetics with baseline estimated glomerular filtration rate (eGFR) ≥ 60 mL/min/1.73 m2 from the Dongfeng-Tongji cohort were included. We measured baseline plasma concentrations of 23 metals and investigated the associations between plasma metal concentrations and CKD in diabetics using logistic regression, the least absolute shrinkage and selection operator (LASSO), and the Bayesian Kernel Machine Regression (BKMR) models. During average 4.6 years of follow-up, 457 diabetics developed CKD (14.9 %). The three models consistently found plasma levels of zinc, arsenic, and rubidium had a positive association with incident CKD risk in patients with diabetes, while titanium, cadmium, and lead had an inverse correlation. The results of BKMR showed a significant and positive overall effect of 23 metals on the risk of CKD, when all of the metals were above the 50th percentile as compared to the median value. In addition, potential interactions of zinc and arsenic, zinc and cadmium, zinc and lead, titanium and arsenic, and cadmium and lead on CKD risk were observed. In summary, we found significant associations of plasma titanium, zinc, arsenic, rubidium, cadmium, and lead with CKD in diabetes and interactions between these metals except for rubidium. Co-exposure to multiple metals was associated with increased CKD risk in diabetics.
Collapse
Affiliation(s)
- Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Tengfei Long
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiangjing He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
2
|
Haidara MA, Al-Ani B, Bin-Jaliah I, Shams Eldeen AM, Morsy MD. Vanadyl sulphate ameliorates biomarkers of endothelial injury and coagulation and thrombosis in a rat model of hyperglycaemia. Arch Physiol Biochem 2022; 128:447-454. [PMID: 31774317 DOI: 10.1080/13813455.2019.1691602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND We sought to determine whether the insulin mimicking agent, vanadyl sulphate (Van) can inhibit biomarkers of endothelial injury and coagulation and thrombosis induced by a moderate level of hyperglycaemia. MATERIAL AND METHODS Hyperglycaemia was induced in rats by a single injection of streptozotocin (STZ, 50 mg/kg) two weeks after being fed on a high-fat diet (model group). The treatment group started Van (20 mg/kg/day) treatment one-week post STZ injection and continued on Van until being sacrificed at week 10. RESULTS Administration of Van to the model group significantly (p < .05) ameliorated dyslipidemia and biomarkers of inflammation (TNF-α, IL-6, and hsCRP) and endothelial injury (E-selectin, P-selectin, sICAM-1, sVCAM-1, and ET-1). Van also significantly inhibited hyperglycaemia-induced blood levels of coagulation (vWF) and thrombosis (PAI-1 and fibrinogen) biomarkers. CONCLUSIONS Vanadyl sulphate effectively suppresses hyperglycaemia-induced endothelial injury, coagulation and thrombosis, which is associated with the inhibition of inflammation and dyslipidemia.
Collapse
Affiliation(s)
- Mohamed A Haidara
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Asmaa M Shams Eldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M D Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, College of Medicine, Menoufia University, Shibin el Kom, Egypt
| |
Collapse
|
3
|
Tunali S, Gezginci-Oktayoglu S, Bolkent S, Coskun E, Bal-Demirci T, Ulkuseven B, Yanardag R. Protective Effects of an Oxovanadium(IV) Complex with N 2O 2 Chelating Thiosemicarbazone on Small Intestine Injury of STZ-Diabetic Rats. Biol Trace Elem Res 2021; 199:1515-1523. [PMID: 32648196 DOI: 10.1007/s12011-020-02269-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
Abstract
Vanadium compounds are being investigated as potential therapeutic agents in the treatment of many health problems, primarily diabetes. We aimed to provide the effect of N(1)-4-hydroxysalicylidene-N(4)-salicylidene-S-methyl-isothiosemicarbazidato-oxovanadium(IV) (VOL) on small intestinal injury in experimental male diabetic rats. Four groups were created of 3.0-3.5-month-old rats. The rats were made diabetic by a single dose of streptozotocin (STZ) at 65 mg/kg and grouped as follows: control animals, VOL-given control animals, STZ-induced diabetic animals and STZ-induced diabetic animals given VOL. A daily dose of 0.2 mM/kg vanadium complex was administered orally for 12 days after the inducement of diabetes. On the 12th day, small intestine tissue samples were taken. According to the data obtained from the biochemical analysis, reduced glutathione (GSH) level, catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), Na+/K+-ATPase and paraoxanase (PON) activities were increased, whereas sialic acid (SA), xanthine oxidase (XO) and disaccharidases (maltase and saccharidase) activities were decreased in the small intestine tissue of VOL-treated diabetic rats. Microscopic examinations revealed a remarkable decrease in the mucosal necrotic areas, discontinuity in the brush border, deterioration of the villi integrity and oedema inside the villi, but with a mild decrease in the inflammatory cells, deterioration and loss of integrity of the gland in the small intestine of VOL-treated diabetic rats. Moreover, VOL treatment markedly decreased the proliferation of villus cells and especially inflammatory cells in the small intestine of diabetic rats. According to the obtained data, the administration of VOL is a potentially convenient strategy to reducing small intestine injury in diabetic rats.
Collapse
Affiliation(s)
- Sevim Tunali
- Department of Chemistry, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey.
| | - Selda Gezginci-Oktayoglu
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Sehnaz Bolkent
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Ediz Coskun
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Tulay Bal-Demirci
- Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Bahri Ulkuseven
- Department of Chemistry, Inorganic Chemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Biochemistry Division, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| |
Collapse
|
4
|
Pereira-Moreira R, Muscelli E. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review. J Diabetes Res 2020; 2020:8492467. [PMID: 32377524 PMCID: PMC7180501 DOI: 10.1155/2020/8492467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Renal proximal tubules reabsorb glucose from the glomerular filtrate and release it back into the circulation. Modulation of glomerular filtration and renal glucose disposal are some of the insulin actions, but little is known about a possible insulin effect on tubular glucose reabsorption. This review is aimed at synthesizing the current knowledge about insulin action on glucose handling by proximal tubules. Method. A systematic article selection from Medline (PubMed) and Embase between 2008 and 2019. 180 selected articles were clustered into topics (renal insulin handling, proximal tubule glucose transport, renal gluconeogenesis, and renal insulin resistance). Summary of Results. Insulin upregulates its renal uptake and degradation, and there is probably a renal site-specific insulin action and resistance; studies in diabetic animal models suggest that insulin increases renal SGLT2 protein content; in vivo human studies on glucose transport are few, and results of glucose transporter protein and mRNA contents are conflicting in human kidney biopsies; maximum renal glucose reabsorptive capacity is higher in diabetic patients than in healthy subjects; glucose stimulates SGLT1, SGLT2, and GLUT2 in renal cell cultures while insulin raises SGLT2 protein availability and activity and seems to directly inhibit the SGLT1 activity despite it activating this transporter indirectly. Besides, insulin regulates SGLT2 inhibitor bioavailability, inhibits renal gluconeogenesis, and interferes with Na+K+ATPase activity impacting on glucose transport. Conclusion. Available data points to an important insulin participation in renal glucose handling, including tubular glucose transport, but human studies with reproducible and comparable method are still needed.
Collapse
Affiliation(s)
- Ricardo Pereira-Moreira
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| | - Elza Muscelli
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| |
Collapse
|
5
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
6
|
Biswas N, Patra D, Mondal B, Bera S, Acharyya S, Biswas AK, Mukhopadhyay TK, Pal A, Drew MGB, Ghosh T. Exploring the effect of hydroxylic and non-hydroxylic solvents on the reaction of [V IVO(β-diketonate) 2] with 2-aminobenzoylhydrazide in aerobic and anaerobic conditions. Dalton Trans 2017; 46:10963-10985. [PMID: 28766668 DOI: 10.1039/c7dt01776f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Refluxing [VIVO(β-diketonate)2], namely [VIVO(acetylacetonate)2] and [VIVO(benzoylacetonate)2], separately with an equivalent or excess amount of 2-aminobenzoylhydrazide (ah) in laboratory grade (LG) CH3OH in aerobic conditions afforded non-oxidovanadium(iv) and oxidovanadium(v) complexes of the type [VIV(L1)2] (1), [VVO(L1)(OCH3)]2 (3) and [VIV(L2)2] (2), and [VVO(L2)(OCH3)] (4), respectively. (L1)2- and (L2)2- represent the dianionic forms of 2-aminobenzoylhydrazone of acetylacetone (H2L1) and benzoylacetone (H2L2), respectively, (general abbreviation, H2L), which was formed by the in situ condensation of ah with the respective coordinated [β-diketonate] in medium-to-good yield. The yield of different resulting products was dependent upon the ratio of ah to [VIVO(β-diketonate)2]. For example, the yield of 1 and 2 complexes increased significantly associated with a decrease in the amount of 3 and 4 with an increase in the molar ratio of ah. Upon replacing CH3OH by a non-hydroxylic solvent, LG CHCl3, the above reaction yielded only oxidovanadium(v) complexes of the type [VVO(L1)(OH)]2 (5), [VVO(L2)(OH)] (6) and [VO3(L)2] (7, 8) whereas, upon replacing CHCl3 by another non-hydroxylic solvent, namely LG CH3CN, only the respective [VO3(L)2] (7, 8) complex was isolated in 72-78% yield. However, upon performing the above reactions in the absence of air using dry CH3OH or dry CHCl3, only the respective [VIV(L)2] complex was obtained, suggesting that aerial oxygen was the oxidising agent and the type of pentavalent product formed was dependent upon the nature of solvent used. Complexes 3 and 4 were converted, respectively, to 7 and 8 on refluxing in LG CHCl3via the respective unstable complex 5 and 6. The DFT calculated change in internal energy (ΔE) for the reactions 2[VVO(L2)(OCH3)] + 2H2O → 2[VVO(L2)(OH)] + 2CH3OH and 2[VVO(L2)(OH)] → [VO3(L2)2] + H2O was, respectively, +3.61 and -7.42 kcal mol-1, suggesting that the [VVO(L2)(OH)] species was unstable and readily transformed to the stable [VO3(L2)2] complex. Upon one-electron reduction at an appropriate potential, each of 7 and 8 generated mixed-valence [(L)VVO-(μ-O)-OVIV(L)]- species, which showed valence-delocalisation at room temperature and localisation at 77 K. Some of the complexes showed a wide range of toxicity in a dose-dependent manner against lung cancer cells comparable with that observed with cis-platin.
Collapse
Affiliation(s)
- Nirmalendu Biswas
- Postgraduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Patra D, Biswas N, Kumari B, Das P, Sepay N, Chatterjee S, Drew MGB, Ghosh T. A family of mixed-ligand oxidovanadium(v) complexes with aroylhydrazone ligands: a combined experimental and computational study on the electronic effects of para substituents of hydrazone ligands on the electronic properties, DNA binding and nuclease activities. RSC Adv 2015. [DOI: 10.1039/c5ra17844d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Substituents at 5-position in the acetophenone ring of the hydrazone ligands in a family of mixed-ligand oxidovanadium(v) complexes show marked influence on the electronic properties, DNA binding ability and nuclease activity.
Collapse
Affiliation(s)
- Debashis Patra
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Nirmalendu Biswas
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| | - Bhavini Kumari
- Department of Chemistry
- Indian Institute of Technology Patna
- India
| | - Prolay Das
- Department of Chemistry
- Indian Institute of Technology Patna
- India
| | - Nayim Sepay
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | - Shamba Chatterjee
- Department of Organic Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | | | - Tapas Ghosh
- Post Graduate Department of Chemistry
- Ramakrishna Mission Vivekananda Centenary College
- Kolkata-700118
- India
| |
Collapse
|
8
|
Liu Y, Chen DD, Xing YH, Ge N, Zhang Y, Liu J, Zou W. A new oxovanadium complex enhances renal function by improving insulin signaling pathway in diabetic mice. J Diabetes Complications 2014; 28:265-72. [PMID: 24636761 DOI: 10.1016/j.jdiacomp.2014.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 11/17/2022]
Abstract
AIM Since vanadium complexes have insulin-mimetic effects and can be used to treat complications of diabetes, we aimed to screen a new oxovanadium complex with a low toxicity, and investigate its insulin-mimetic effects, as well as the mechanism of improvement to diabetic mouse renal function. METHODS Cells were treated with oxovanadium complexes, and viability was assessed by MTT assay. Diabetic mouse model was established using alloxan. Blood urea nitrogen (BUN) and serum creatinine (SCr) in the mice were measured using an automatic biochemical analyzer, and blood glucose was measured using a Glucoval Compact meter. Expression of proteins related to the insulin signaling pathway in the renal cortex of mice was measured by Western blot analysis. RESULTS Diabetic mice developed high blood glucose, BUN and SCr levels compared with control mice. The new oxovanadium complex with 3,5-dimethyl-pyrazolyl ligand, VO(HB(3,5-Me2pz)3)(3,5-Me2pz)(SCN)(SCNH)2, showed low toxicity and significantly reduced blood glucose, BUN and SCr levels in the diabetic mice. Additionally, p42/p44MAPK and Akt phosphorylation was markedly increased in diabetic mice and was decreased by treatment with the new oxovanadium complex. Caveolin-1 (Cav-1) expression was greatly decreased in diabetic mice and significantly increased after treatment with the new oxovanadium complex. CONCLUSIONS The new oxovanadium complex, with 3,5-dimethyl-pyrazolyl ligand, improves kidney function in diabetic mice, and its mechanism may involve regulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Y Liu
- School of Life Science, Liaoning Normal University, Dalian, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - D D Chen
- School of Life Science, Liaoning Normal University, Dalian, China; Department of Anesthesiology, Emory University School of Medicine, GA, USA
| | - Y H Xing
- Liaoning Key Lab of Biotechnology and Molecular Medicine R&D, Dalian, China; School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - N Ge
- College of engineering, Swansea University, Swansea, UK
| | - Y Zhang
- School of Life Science, Liaoning Normal University, Dalian, China
| | - J Liu
- Centre for Regenerative Medicine, First Affiliated Hospital of Dalian Medical, University, Dalian, China.
| | - W Zou
- School of Life Science, Liaoning Normal University, Dalian, China; Liaoning Key Lab of Biotechnology and Molecular Medicine R&D, Dalian, China.
| |
Collapse
|
9
|
Dash SP, Pasayat S, Bhakat S, Roy S, Dinda R, Tiekink ERT, Mukhopadhyay S, Bhutia SK, Hardikar MR, Joshi BN, Patil YP, Nethaji M. Highly Stable Hexacoordinated Nonoxidovanadium(IV) Complexes of Sterically Constrained Ligands: Syntheses, Structure, and Study of Antiproliferative and Insulin Mimetic Activity. Inorg Chem 2013; 52:14096-107. [DOI: 10.1021/ic401866x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Subhashree P. Dash
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sagarika Pasayat
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Saswati Bhakat
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Satabdi Roy
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rupam Dinda
- Department
of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Subhadip Mukhopadhyay
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Sujit K. Bhutia
- Department
of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Manasi R. Hardikar
- Biometry
and Nutrition Group, Agharkar Research Institute, G.G. Agrakar Road, Pune 411004
| | - Bimba N. Joshi
- Biometry
and Nutrition Group, Agharkar Research Institute, G.G. Agrakar Road, Pune 411004
| | - Yogesh P. Patil
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - M. Nethaji
- Department
of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
10
|
Gagné F, André C, Turcotte P, Gagnon C, Sherry J, Talbot A. A comparative toxicogenomic investigation of oil sand water and processed water in rainbow trout hepatocytes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:309-323. [PMID: 23515748 DOI: 10.1007/s00244-013-9888-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/24/2013] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to compare the expression of gene transcripts involved in toxic stress in rainbow trout hepatocytes exposed to oil sand water (OSW), lixiviate (OSLW), and processed water (OSPW). We pose the hypothesis that the changes in gene expression responses in cells exposed to a simulated oil sand extraction procedure (OSPW) differ from the gene expression responses of OSLW and OS. Rainbow trout hepatocytes were exposed to increasing concentrations of OSW, OSLW, and OSPW for 48 h at 15 °C. Cell viability was assessed by measuring membrane permeability, total RNA levels, and gene expression using an array of 16 genes involved in xenobiotic biotransformation (GST, CYP1A1, CYP3A4, MDR), metal homeostasis and oxidative stress (MT, SOD, and CAT), estrogenicity (VTG, ERβ), DNA repair (LIG, APEX, UNG, and OGG), cell growth (GADD45 and PCNA), and glycolysis (GAPDH). The results showed that the toxicogenomic properties of OSPW differed from those of OSLW and OSW. Gene transcripts that were influenced by OSW and OSLW, and strongly expressed in OSPW, were MT, CAT, GST (induction), CYP1A1, VTG, UNG/OGG, and PCNA. These genes are therefore considered not entirely specific to OSPW but to water in contact with OS. We also found gene transcripts that responded only with OSPW: SOD, GST (inhibition), MDR (inhibition), CYP3A4, GAPDH, GADD45, and APEX. Of these gene transcripts, the ones strongly associated with toxicity (loss of cell viability and RNA levels) were CYP3A4, GST, and GAPDH. Genes involved in DNA repair were also strongly related to the loss of cell viability but responded to both OSLW and OSPW. The observed changes in cell toxicity and gene expression therefore support the hypothesis that OSPW has a distinct toxic fingerprint from OSLW and OSW.
Collapse
Affiliation(s)
- F Gagné
- Emerging Methods, Aquatic Contaminants Research Division, Water Science and Technology, Environment Canada, 105 Mc Gill Street, Montreal, QC, H2Y 2E7, Canada.
| | | | | | | | | | | |
Collapse
|