1
|
González-Pérez E, Jiménez-Bremont JF. Cladosporium psychrotolerans strain T01 enhances plant biomass and also exhibits antifungal activity against pathogens. Braz J Microbiol 2024; 55:2855-2867. [PMID: 38825649 PMCID: PMC11405581 DOI: 10.1007/s42770-024-01399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
An increasing number of microorganisms are being identified to enhance plant growth and inhibit phytopathogens. Some Cladosporium species form beneficial associations with plants, either as endophytes or by colonizing the rhizosphere. Herein, we evaluated the influence of the Cladosporium psychrotolerans (T01 strain) fungus on the in vitro growth of Arabidopsis thaliana plantlets through direct and split interactions. After 9 days post-inoculation with C. psychrotolerans, Arabidopsis plantlets exhibited a notable increase in fresh weight and lateral roots, particularly in split interactions. Chlorophyll content increased in both plant-fungus interaction conditions, whereas the primary root was inhibited during direct interaction. We observed an increase in the GUS signal from the Arabidopsis auxin-inducible DR5:uidA marker in lateral root tips in both contact and split fungal interactions, and primary root tips in a split interaction. Arabidopsis and tomato plants cultivated in soil pots and inoculated with C. psychrotolerans (T01 strain) showed a positive effect on biomass production. GC/MS analysis detected that the T01 strain emitted volatile organic compounds (VOCs), predominantly alcohols and aldehydes. These VOCs displayed potent inhibitory effects, with a 60% inhibition against Botrytis cinerea and a 50% inhibition against C. gloeosporioides. Our study demonstrates that C. psychrotolerans T01 has the potential to enhance biomass production and inhibit pathogens, making it a promising candidate for green technology applications.
Collapse
Affiliation(s)
- Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C, San Luis Potosí, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
2
|
Toloza-Moreno DL, Yockteng R, Pérez-Zuñiga JI, Salinas-Castillo C, Caro-Quintero A. Implications of Domestication in Theobroma cacao L. Seed-Borne Microbial Endophytes Diversity. MICROBIAL ECOLOGY 2024; 87:108. [PMID: 39196422 PMCID: PMC11358227 DOI: 10.1007/s00248-024-02409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
The study of plant-microbe interactions is a rapidly growing research field, with increasing attention to the role of seed-borne microbial endophytes in protecting the plant during its development from abiotic and biotic stresses. Recent evidence suggests that seed microbiota is crucial in establishing the plant microbial community, affecting its composition and structure, and influencing plant physiology and ecology. For Theobroma cacao L., the diversity and composition of vertically transmitted microbes have yet to be addressed in detail. We explored the composition and diversity of seed-borne endophytes in cacao pods of commercial genotypes (ICS95, IMC67), recently liberated genotypes from AGROSAVIA (TCS01, TCS19), and landraces from Tumaco (Colombia) (AC9, ROS1, ROS2), to evaluate microbial vertical transmission and establishment in various tissues during plant development. We observed a higher abundance of Pseudomonas and Pantoea genera in the landraces and AGROSAVIA genotypes, while the commercial genotypes presented a higher number of bacteria species but in low abundance. In addition, all the genotypes and plant tissues showed a high percentage of fungi of the genus Penicillium. These results indicate that domestication in cacao has increased bacterial endophyte diversity but has reduced their abundance. We isolated some of these seed-borne endophytes to evaluate their potential as growth promoters and found that Bacillus, Pantoea, and Pseudomonas strains presented high production of indole acetic acid and ACC deaminase activity. Our results suggest that cacao domestication could lead to the loss of essential bacteria for seedling establishment and development. This study improves our understanding of the relationship and interaction between perennial plants and seed-borne microbiota.
Collapse
Affiliation(s)
- Deisy Lisseth Toloza-Moreno
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Mosquera, Cundinamarca, Colombia
| | - Roxana Yockteng
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Mosquera, Cundinamarca, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, Muséum National d'Histoire Naturelle, Paris, France
| | - José Ives Pérez-Zuñiga
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Sede Popayán, Popayán, Cauca, Colombia
| | - Cristian Salinas-Castillo
- Departamento de Biología, Facultad de Ciencias, Max Planck Tandem Group in Holobionts, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alejandro Caro-Quintero
- Departamento de Biología, Facultad de Ciencias, Max Planck Tandem Group in Holobionts, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
3
|
Laurent‐Webb L, Maurice K, Perez‐Lamarque B, Bourceret A, Ducousso M, Selosse M. Seed or soil: Tracing back the plant mycobiota primary sources. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13301. [PMID: 38924368 PMCID: PMC11194045 DOI: 10.1111/1758-2229.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Plants host diverse communities of fungi (the mycobiota), playing crucial roles in their development. The assembly processes of the mycobiota, however, remain poorly understood, in particular, whether it is transmitted by parents through the seeds (vertical transmission) or recruited in the environment (horizontal transmission). Here we attempt to quantify the relative contributions of horizontal and vertical transmission in the mycobiota assembly of a desert shrub, Haloxylon salicornicum, by comparing the mycobiota of in situ bulk soil and seeds to that of (i) in situ adult individuals and (ii) in vitro-germinated seedlings in soil collected in situ. We show that the mycobiota are partially vertically transmitted through the seeds to seedlings, whereas bulk soil has a limited contribution to the seedling's mycobiota. In adults, root and bulk soil mycobiota tend to resemble each other, suggesting a compositional turnover in plant mycobiota during plant development due to horizontal transmission. Thus, the mycobiota are transmitted both horizontally and vertically depending on the plant tissue and developmental stage. Understanding the respective contribution of these transmission pathways to the plant mycobiota is fundamental to deciphering potential coevolutionary processes between plants and fungi. Our findings particularly emphasize the importance of vertical transmission in desert ecosystems.
Collapse
Affiliation(s)
- Liam Laurent‐Webb
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Benoît Perez‐Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Amélia Bourceret
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Marc‐André Selosse
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
- Faculty of BiologyUniversity of GdanskGdanskPoland
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
4
|
Wu CD, Fan YB, Chen X, Cao JW, Ye JY, Feng ML, Liu XX, Sun WJ, Liu RN, Wang AY. Analysis of endophytic bacterial diversity in seeds of different genotypes of cotton and the suppression of Verticillium wilt pathogen infection by a synthetic microbial community. BMC PLANT BIOLOGY 2024; 24:263. [PMID: 38594616 PMCID: PMC11005247 DOI: 10.1186/s12870-024-04910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.
Collapse
Affiliation(s)
- Chong-Die Wu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Yong-Bin Fan
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xue Chen
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Jiang-Wei Cao
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Jing-Yi Ye
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Meng-Lei Feng
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xing-Xing Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Wen-Jing Sun
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Rui-Na Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Ai-Ying Wang
- College of Life Sciences, Shihezi University, Shihezi, China.
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China.
| |
Collapse
|
5
|
Arnault G, Marais C, Préveaux A, Briand M, Poisson AS, Sarniguet A, Barret M, Simonin M. Seedling microbiota engineering using bacterial synthetic community inoculation on seeds. FEMS Microbiol Ecol 2024; 100:fiae027. [PMID: 38503562 PMCID: PMC10977042 DOI: 10.1093/femsec/fiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.
Collapse
Affiliation(s)
- Gontran Arnault
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne-Sophie Poisson
- Groupe d’Étude et de Contrôle des Variétés et des Semences (GEVES), 49070, Beaucouzé, France
| | - Alain Sarniguet
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Matthieu Barret
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie Simonin
- IRHS-UMR1345, Université d’Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
6
|
Nanfack AD, Nguefack J, Musonerimana S, La China S, Giovanardi D, Stefani E. Exploiting the microbiome associated with normal and abnormal sprouting rice (Oryza sativa L.) seed phenotypes through a metabarcoding approach. Microbiol Res 2024; 279:127546. [PMID: 37992468 DOI: 10.1016/j.micres.2023.127546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Rice germination and seedlings' growth are crucial stages that influence crop establishment and productivity. These performances depend on several factors, including the abundance and diversity of seed microbial endophytes. Two popular rainfed rice varieties cultivated in Cameroon, NERICA 3 and NERICA 8, were used for investigating the seed-associated microbiome using the Illumina-based 16 S rRNA gene. Significant differences were observed in terms of richness index between normal and abnormal seedlings developed from sprouting seeds, although no significant species evenness index was assessed within either phenotype. Two hundred ninety-two bacterial amplicon sequence variants were identified in seed microbiome of the rice varieties, and principal coordinate analysis revealed that microbial communities formed two distinct clusters in normal and abnormal seedling phenotypes. Overall, 38 bacteria genera were identified, belonging to 6 main phyla. Furthermore, the core microbiome was defined, and the differential abundance of 28 bacteria genera was assessed. Based on the collected results, putative bacterial genera were directly correlated with the development of normal seedlings. For most genera that are recognised to include beneficial species, such as Brevundimonas, Sphingomonas, Exiguobacterium, Luteibacter, Microbacterium and Streptomyces, a significant increase of their relative abundance was found in normal seedlings. Additionally, in abnormal seedlings, we also observed an increased abundance of the genera Kosakonia and Paenibacillus, which might have controversial aspects (beneficial or pathogenic), together with the presence of some genera (Clostridium sensu stricto) that are commonly correlated to sick plants. The putative functional gene annotation revealed the higher abundance of genes related to the metabolic biosynthesis of soluble carbohydrates and starch, tryptophan, nucleotides and ABC transporters in normal seedlings. Data presented in this study may help in further understanding the importance of the seed endophyte microbiome for driving a correct development of rice plants at the early stages and to identify possible beneficial bacteria for technological applications aimed to increase seed quality and crop productivity.
Collapse
Affiliation(s)
- Albert Dongmo Nanfack
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon; Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Julienne Nguefack
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
| | - Samson Musonerimana
- International Centre for Genetic Engineering and Biotechnology, Padriciano, TS, Italy; Burundi University, Faculty of Agronomy and Bio-Engineering 2, UNESCO Avenue, P.O. Box 2940, Bujumbura, Burundi
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Davide Giovanardi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Emilio Stefani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy; University Centre for International Cooperation and Development (CUSCOS), via Università 4, 41121 Modena, Italy
| |
Collapse
|
7
|
Newcombe G, Marlin M, Barge E, Heitmann S, Ridout M, Busby PE. Plant Seeds Commonly Host Bacillus spp., Potential Antagonists of Phytopathogens. MICROBIAL ECOLOGY 2023; 85:1356-1366. [PMID: 35552795 DOI: 10.1007/s00248-022-02024-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/25/2022] [Indexed: 05/10/2023]
Abstract
In agriculture, horticulture and plantation forestry, Bacillus species are the most commonly applied antagonists and biopesticides, targeting plant pathogens and insect pests, respectively. Bacillus isolates are also used as bacterial plant biostimulants, or BPBs. Such useful isolates of Bacillus are typically sourced from soil. Here, we show that Bacillus - and other antagonistic microbes - can be sourced from a broad range of plant seeds. We found that culturable Bacillus isolates are common in the seeds of 98 plant species representing 39 families (i.e., 87% of the commonly cultured bacteria belonged to Bacillales). We also found that 83% of the commonly cultured fungi from the seeds of the 98 plant species belonged to just three orders of fungi-Pleosporales, Hypocreales and Eurotiales-that are also associated with antagonism. Furthermore, we confirmed antagonism potential in agaro with seed isolates of Bacillus from Pinus monticola as a representative case. Eight isolates each of seed Bacillus, seed fungi, and foliar fungi, all from P. monticola, were paired in a total of 384 possible pair-wise interactions (with seed and foliar fungi as the targets). Seed Bacillus spp. were the strongest antagonists of the seed and foliar fungi, with a mean interaction strength 2.8 times greater than seed fungi (all either Eurotiales or Hypocreales) and 3.2 times greater than needle fungi. Overall, our study demonstrates that seeds host a taxonomically narrow group of culturable, antagonistic bacteria and fungi.
Collapse
Affiliation(s)
- George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, 83844-1133, USA
| | - Maria Marlin
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID, 83844-1133, USA
| | - Edward Barge
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sabrina Heitmann
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Mary Ridout
- University of Idaho Extension Washington County, College of Agriculture and Life Sciences, Weiser, ID, 83672, USA
| | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
8
|
Bilous S, Likhanov A, Boroday V, Marchuk Y, Zelena L, Subin O, Bilous A. Antifungal Activity and Effect of Plant-Associated Bacteria on Phenolic Synthesis of Quercus robur L. PLANTS (BASEL, SWITZERLAND) 2023; 12:1352. [PMID: 36987039 PMCID: PMC10059881 DOI: 10.3390/plants12061352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Europe's forests, particularly in Ukraine, are highly vulnerable to climate change. The maintenance and improvement of forest health are high-priority issues, and various stakeholders have shown an interest in understanding and utilizing ecological interactions between trees and their associated microorganisms. Endophyte microbes can influence the health of trees either by directly interacting with the damaging agents or modulating host responses to infection. In the framework of this work, ten morphotypes of endophytic bacteria from the tissues of unripe acorns of Quercus robur L. were isolated. Based on the results of the sequenced 16S rRNA genes, four species of endophytic bacteria were identified: Bacillus amyloliquefaciens, Bacillus subtilis, Delftia acidovorans, and Lelliottia amnigena. Determining the activity of pectolytic enzymes showed that the isolates B. subtilis and B. amyloliquefaciens could not cause maceration of plant tissues. Screening for these isolates revealed their fungistatic effect against phytopathogenic micromycetes, namely Fusarium tricinctum, Botrytis cinerea, and Sclerotinia sclerotiorum. Inoculation of B. subtilis, B. amyloliquefaciens, and their complex in oak leaves, in contrast to phytopathogenic bacteria, contributed to the complete restoration of the epidermis at the sites of damage. The phytopathogenic bacteria Pectobacterium and Pseudomonas caused a 2.0 and 2.2 times increase in polyphenol concentration in the plants, respectively, while the ratio of antioxidant activity to total phenolic content decreased. Inoculation of Bacillus amyloliquefaciens and Bacillus subtilis isolates into oak leaf tissue were accompanied by a decrease in the total pool of phenolic compounds. The ratio of antioxidant activity to total phenolic content increased. This indicates a qualitative improvement in the overall balance of the oak leaf antioxidant system induced by potential PGPB. Thus, endophytic bacteria of the genus Bacillus isolated from the internal tissues of unripe oak acorns have the ability of growth biocontrol and spread of phytopathogens, indicating their promise for use as biopesticides.
Collapse
Affiliation(s)
- Svitlana Bilous
- Education and Research Institute of Forestry and Landscape-Park Management, National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine (Y.M.)
- Institute for Evolutionary Ecology NAS of Ukraine, 37 Lebedeva Str., 03143 Kiev, Ukraine
- Forestry Department, Weihenstephan-Triesdorf University of Applied Sciences, Germany, Hans-Carl-von-Carlowitz-Platz 3, 85354 Freising, Germany
| | - Artur Likhanov
- Education and Research Institute of Forestry and Landscape-Park Management, National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine (Y.M.)
- Institute for Evolutionary Ecology NAS of Ukraine, 37 Lebedeva Str., 03143 Kiev, Ukraine
| | - Vira Boroday
- Education and Research Institute of Forestry and Landscape-Park Management, National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine (Y.M.)
| | - Yurii Marchuk
- Education and Research Institute of Forestry and Landscape-Park Management, National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine (Y.M.)
| | - Liubov Zelena
- Danylo Zabolotny Institute of Microbiology and Virology National Academy of Sciences of Ukraine, 154 Zabolotnogo Str., 03143 Kyiv, Ukraine
| | - Oleksandr Subin
- State Enterprise “State Centre of Agricultural Products Certification and Examination”, Janusha Korchaka Str. 9/12, 03143 Kyiv, Ukraine
| | - Andrii Bilous
- Education and Research Institute of Forestry and Landscape-Park Management, National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine (Y.M.)
| |
Collapse
|
9
|
Macaya-Sanz D, Witzell J, Collada C, Gil L, Martín JA. Core endophytic mycobiome in Ulmus minor and its relation to Dutch elm disease resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1125942. [PMID: 36925756 PMCID: PMC10011445 DOI: 10.3389/fpls.2023.1125942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The core microbiota of plants exerts key effects on plant performance and resilience to stress. The aim of this study was to identify the core endophytic mycobiome in U. minor stems and disentangle associations between its composition and the resistance to Dutch elm disease (DED). We also defined its spatial variation within the tree and among distant tree populations. Stem samples were taken i) from different heights of the crown of a 168-year-old elm tree, ii) from adult elm trees growing in a common garden and representing a gradient of resistance to DED, and iii) from trees growing in two distant natural populations, one of them with varying degrees of vitality. Endophyte composition was profiled by high throughput sequencing of the first internal transcribed spacer region (ITS1) of the ribosomal DNA. Three families of yeasts (Buckleyzymaceae, Trichomeriaceae and Bulleraceae) were associated to DED-resistant hosts. A small proportion (10%) of endophytic OTUs was almost ubiquitous throughout the crown while tree colonization by most fungal taxa followed stochastic patterns. A clear distinction in endophyte composition was found between geographical locations. By combining all surveys, we found evidence of a U. minor core mycobiome, pervasive within the tree and ubiquitous across locations, genotypes and health status.
Collapse
Affiliation(s)
- David Macaya-Sanz
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | - Johanna Witzell
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| | - Carmen Collada
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería (ETSI) Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis Gil
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería (ETSI) Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan A. Martín
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería (ETSI) Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Ren Z, Chen AJ, Zong Q, Du Z, Guo Q, Liu T, Chen W, Gao L. Microbiome Signature of Endophytes in Wheat Seed Response to Wheat Dwarf Bunt Caused by Tilletia controversa Kühn. Microbiol Spectr 2023; 11:e0039022. [PMID: 36625645 PMCID: PMC9927297 DOI: 10.1128/spectrum.00390-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/20/2022] [Indexed: 01/11/2023] Open
Abstract
Wheat dwarf bunt leads to the replacement of seeds with fungal galls containing millions of teliospores of the pathogen Tilletia controversa Kühn. As one of the most devastating internationally quarantined wheat diseases, wheat dwarf bunt spreads to cause distant outbreaks by seeds containing teliospores. In this study, based on a combination of amplicon sequencing and isolation approaches, we analyzed the seed microbiome signatures of endophytes between resistant and susceptible cultivars after infection with T. controversa. Among 310 bacterial species obtained only by amplicon sequencing and 51 species obtained only by isolation, we found 14 overlapping species by both methods; we detected 128 fungal species only by amplicon sequencing, 56 only by isolation, and 5 species by both methods. The results indicated that resistant uninfected cultivars hosted endophytic communities that were much more stable and beneficial to plant health than those in susceptible infected cultivars. The susceptible group showed higher diversity than the resistant group, the infected group showed more diversity than the uninfected group, and the microbial communities in seeds were related to infection or resistance to the pathogen. Some antagonistic microbes significantly suppressed the germination rate of the pathogen's teliospores, providing clues for future studies aimed at developing strategies against wheat dwarf bunt. Collectively, this research advances the understanding of the microbial assembly of wheat seeds upon exposure to fungal pathogen (T. controversa) infection. IMPORTANCE This is the first study on the microbiome signature of endophytes in wheat seed response to wheat dwarf bunt caused by Tilletia controversa Kühn. Some antagonistic microbes suppressed the germination of teliospores of the pathogen significantly, which will provide clues for future studies against wheat dwarf bunt. Collectively, this research first advances the understanding of the microbial assembly of wheat seed upon exposure to the fungal pathogen (T. controversa) infection.
Collapse
Affiliation(s)
- Zhaoyu Ren
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Amanda Juan Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, People’s Republic of China
| | - Qianqian Zong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Zhenzhen Du
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Qingyuan Guo
- Xinjiang Agricultural University, Urumqi, Xinjiang, People’s Republic of China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Abstract
The seed acts as the primary inoculum source for the plant microbiota. Understanding the processes involved in its assembly and dynamics during germination and seedling emergence has the potential to allow for the improvement of crop establishment. Changes in the bacterial community structure were tracked in 1,000 individual seeds that were collected throughout seed developments of beans and radishes. Seeds were associated with a dominant bacterial taxon that represented more than 75% of all reads. The identity of this taxon was highly variable between the plants and within the seeds of the same plant. We identified selection as the main ecological process governing the succession of dominant taxa during seed filling and maturation. In a second step, we evaluated the seedling transmission of seed-borne taxa in 160 individual plants. While the initial bacterial abundance on seeds was not a good predictor of seedling transmission, the identities of the seed-borne taxa modified the phenotypes of seedlings. Overall, this work revealed that individual seeds are colonized by a few bacterial taxa of highly variable identity, which appears to be important for the early stages of plant development. IMPORTANCE Seeds are key components of plant fitness and are central to the sustainability of the agri-food system. Both the seed quality for food consumption and the seed vigor in agricultural settings can be influenced by the seed microbiota. Understanding the ecological processes involved in seed microbiota assembly will inform future practices for promoting the presence of important seed microorganisms for plant health and productivity. Our results highlighted that seeds were associated with one dominant bacterial taxon of variable taxonomic identity. This variety of dominant taxa was due to (i) spatial heterogeneity between and within plants and (ii) primary succession during seed development. According to neutral models, selection was the main driver of microbial community assembly for both plant species.
Collapse
|
12
|
Wang X, Wang M, Wang L, Feng H, He X, Chang S, Wang D, Wang L, Yang J, An G, Wang X, Kong L, Geng Z, Wang E. Whole-plant microbiome profiling reveals a novel geminivirus associated with soybean stay-green disease. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2159-2173. [PMID: 35869670 PMCID: PMC9616524 DOI: 10.1111/pbi.13896] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Microbiota colonize every accessible plant tissue and play fundamental roles in plant growth and health. Soybean stay-green syndrome (SGS), a condition that causes delayed leaf senescence (stay-green), flat pods and abnormal seeds of soybean, has become the most serious disease of soybean in China. However, the direct cause of SGS is highly debated, and little is known about how SGS affect soybean microbiome dynamics, particularly the seed microbiome. We studied the bacterial, fungal, and viral communities associated with different soybean tissues with and without SGS using a multi-omics approach, and investigated the possible pathogenic agents associated with SGS and how SGS affects the assembly and functions of plant-associated microbiomes. We obtained a comprehensive view of the composition, function, loads, diversity, and dynamics of soybean microbiomes in the rhizosphere, root, stem, leaf, pod, and seed compartments, and discovered that soybean SGS was associated with dramatically increased microbial loads and dysbiosis of the bacterial microbiota in seeds. Furthermore, we identified a novel geminivirus that was strongly associated with soybean SGS, regardless of plant cultivar, sampling location, or harvest year. This whole-plant microbiome profiling of soybean provides the first demonstration of geminivirus infection associated with microbiota dysbiosis, which might represent a general microbiological symptom of plant diseases.
Collapse
Affiliation(s)
- Xiaolin Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Like Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huan Feng
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
- Northwest A&F UniversityYanglingChina
| | - Xin He
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of AgricultureHenan UniversityKaifengChina
| | - Shihao Chang
- Zhoukou Academy of Agricultural SciencesZhoukouChina
| | - Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of AgricultureHenan UniversityKaifengChina
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Guoyong An
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of AgricultureHenan UniversityKaifengChina
| | | | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of AgronomyShandong Agricultural UniversityTaianChina
| | - Zhen Geng
- Zhoukou Academy of Agricultural SciencesZhoukouChina
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
13
|
Bergmann GE, Leveau JHJ. A metacommunity ecology approach to understanding microbial community assembly in developing plant seeds. Front Microbiol 2022; 13:877519. [PMID: 35935241 PMCID: PMC9355165 DOI: 10.3389/fmicb.2022.877519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have the potential to affect plant seed germination and seedling fitness, ultimately impacting plant health and community dynamics. Because seed-associated microbiota are highly variable across individual plants, plant species, and environments, it is challenging to identify the dominant processes that underlie the assembly, composition, and influence of these communities. We propose here that metacommunity ecology provides a conceptually useful framework for studying the microbiota of developing seeds, by the application of metacommunity principles of filtering, species interactions, and dispersal at multiple scales. Many studies in seed microbial ecology already describe individual assembly processes in a pattern-based manner, such as correlating seed microbiome composition with genotype or tracking diversity metrics across treatments in dispersal limitation experiments. But we see a lot of opportunities to examine understudied aspects of seed microbiology, including trait-based research on mechanisms of filtering and dispersal at the micro-scale, the use of pollination exclusion experiments in macro-scale seed studies, and an in-depth evaluation of how these processes interact via priority effect experiments and joint species distribution modeling.
Collapse
Affiliation(s)
| | - Johan H. J. Leveau
- Department of Plant Pathology, University of California-Davis, Davis, CA, United States
| |
Collapse
|
14
|
Simonin M, Briand M, Chesneau G, Rochefort A, Marais C, Sarniguet A, Barret M. Seed microbiota revealed by a large-scale meta-analysis including 50 plant species. THE NEW PHYTOLOGIST 2022; 234:1448-1463. [PMID: 35175621 DOI: 10.1111/nph.18037] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 05/15/2023]
Abstract
Seed microbiota constitutes a primary inoculum for plants that is gaining attention owing to its role for plant health and productivity. Here, we performed a meta-analysis on 63 seed microbiota studies covering 50 plant species to synthesize knowledge on the diversity of this habitat. Seed microbiota are diverse and extremely variable, with taxa richness varying from one to thousands of taxa. Hence, seed microbiota presents a variable (i.e. flexible) microbial fraction but we also identified a stable (i.e. core) fraction across samples. Around 30 bacterial and fungal taxa are present in most plant species and in samples from all over the world. Core taxa, such as Pantoea agglomerans, Pseudomonas viridiflava, P. fluorescens, Cladosporium perangustum and Alternaria sp., are dominant seed taxa. The characterization of the core and flexible seed microbiota provided here will help uncover seed microbiota roles for plant health and design effective microbiome engineering.
Collapse
Affiliation(s)
- Marie Simonin
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Martial Briand
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Guillaume Chesneau
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Aude Rochefort
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Coralie Marais
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Alain Sarniguet
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Matthieu Barret
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| |
Collapse
|
15
|
The Role of Soil Microbial Diversity in the Conservation of Native Seed Bacterial Microbiomes. Microorganisms 2022; 10:microorganisms10040750. [PMID: 35456799 PMCID: PMC9028870 DOI: 10.3390/microorganisms10040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Research into understanding the structure, composition and vertical transmission of crop seed microbiomes has intensified, although there is much less research into the seed microbiomes of crop wild relatives. Our previous study showed that the standard seed storage procedures (e.g., seed drying and storage temperature) can influence the seed microbiome of domesticated Glycine max. In this study, we characterized the seed microbiota of Glycine clandestina, a perennial wild relative of soybean (G. max (L.) Merr.) to expand our understanding about the effect of other storage procedures such as the periodic regeneration of seed stocks to bulk up seed numbers and secure viability on the seed microbiome of said seed. The G. clandestina microbiota was analysed from Generation 1 (G1) and Generation 2 (G2) seed and from mature plant organs grown in two different soil treatments T (treatment [native soil + potting mix]) and C (control [potting mix only]). Our dataset showed that soil microbiota had a strong influence on next generation seed microbiota, with an increased contribution of root microbiota by 90% and seed transmissibility by 36.3% in G2 (T) seed. Interestingly, the G2 seed microbiota primarily consisted of an initially low abundance of taxa present in G1 seed. Overall, our results indicate that seed regeneration can affect the seed microbiome composition and using native soil from the location of the source plant can enhance the conservation of the native seed microbiota.
Collapse
|
16
|
Kumar K, Verma A, Pal G, Anubha, White JF, Verma SK. Seed Endophytic Bacteria of Pearl Millet ( Pennisetum glaucum L.) Promote Seedling Development and Defend Against a Fungal Phytopathogen. Front Microbiol 2021; 12:774293. [PMID: 34956137 PMCID: PMC8696672 DOI: 10.3389/fmicb.2021.774293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Seed endophytic bacteria (SEB) are primary symbionts that play crucial roles in plant growth and development. The present study reports the isolation of seven culturable SEB including Kosakonia cowanii (KAS1), Bacillus subtilis (KAS2), Bacillus tequilensis (KAS3), Pantoea stewartii (KAS4), Paenibacillus dendritiformis (KAS5), Pseudomonas aeruginosa (KAS6), and Bacillus velezensis (KAS7) in pearl millet seeds. All the isolates were characterized for their plant growth promoting activities. Most of the SEB also inhibited the growth of tested fungal phytopathogens in dual plate culture. Removal of these SEB from seeds compromised the growth and development of seedlings, however, re-inoculation with the SEB (Kosakonia cowanii, Pantoea stewartii, and Pseudomonas aeruginosa) restored the growth and development of seedlings significantly. Fluorescence microscopy showed inter and intracellular colonization of SEB in root parenchyma and root hair cells. Lipopeptides were extracted from all three Bacillus spp. which showed strong antifungal activity against tested fungal pathogens. Antifungal lipopeptide genes were also screened in Bacillus spp. After lipopeptide treatment, live-dead staining with fluorescence microscopy along with bright-field and scanning electron microscopy (SEM) revealed structural deformation and cell death in Fusarium mycelia and spores. Furthermore, the development of pores in the membrane and leakages of protoplasmic substances from cells and ultimately death of hyphae and spores were also confirmed. In microcosm assays, treatment of seeds with Bacillus subtilis or application of its lipopeptide alone significantly protected seedlings from Fusarium sp. infection.
Collapse
Affiliation(s)
- Kanchan Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anand Verma
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Gaurav Pal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anubha
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - James F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Satish K Verma
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Kim H, Lee YH. Spatiotemporal Assembly of Bacterial and Fungal Communities of Seed-Seedling-Adult in Rice. Front Microbiol 2021; 12:708475. [PMID: 34421867 PMCID: PMC8375405 DOI: 10.3389/fmicb.2021.708475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Seeds harbor not only genetic information about plants but also microbial communities affecting plants’ vigor. Knowledge on the movement and formation of seed microbial communities during plant development remains insufficient. Here, we address this knowledge gap by investigating endophytic bacterial and fungal communities of seeds, seedlings, and adult rice plants. We found that seed coats act as microbial niches for seed bacterial and fungal communities. The presence or absence of the seed coat affected taxonomic composition and diversity of bacterial and fungal communities associated with seeds and seedlings. Ordination analysis showed that niche differentiation between above- and belowground compartments leads to compositional differences in endophytic bacterial and fungal communities originating from seeds. Longitudinal tracking of the composition of microbial communities from field-grown rice revealed that bacterial and fungal communities originating from seeds persist in the leaf, stem, and root endospheres throughout the life cycle. Our study provides ecological insights into the assembly of the initial endophytic microbial communities of plants from seeds.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Pastoshchuk A, Yumyna Y, Zelena P, Nudha V, Yanovska V, Kovalenko M, Taran N, Patyka V, Skivka L. Beneficial traits of grain-residing endophytic communities in wheat with different sensitivity to Pseudomonas syringae. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Deep insight into compositional and functional features of endophytic bacterial communities residing in wheat grains opens the way to the use of their plant growth promoting and biocontrol abilities in agricultural biotechnology. The aim of this work was to compare grain-residing endophytes from winter wheat varieties with different sensitivity to Pseudomonas syringae pv. atrofaciens (McCulloch) and to examine their plant-beneficial traits and antagonistic effects. Grain-residing bacteria were isolated from surface-sterilized grains of three wheat varieties sown in Ukraine following a culture-dependent protocol, and were screened for their plant growth promotion (PGP) and antagonistic properties. Bacterial morphotypes were represented by gram-negative rods, endospore-forming bacilli and gram-positive cocci. Different resistance to phytopathogenic pseudomonads was associated with distinctive quantitative and functional features of grain-residing endophytic communities. High resistance to P. syringae was coupled with the prevalence of gram-negative rods in the endophytic community, the highest proportion of endophytic bacteria possessing three PGP activities (phosphate solubilization, nitrogen fixation and production of indolic compounds) simultaneously, and with the most potent antagonistic activity of grain-residing endospore-forming bacilli. In total, five grain-residing isolates, which were obtained from three wheat varieties (two isolates from varieties with medium and high resistance and one – from a low-resistant variety), demonstrated ability to restrain P. syringae pv. atrofaciens (McCulloch) growth. Two isolates (P6 and P10) which were obtained from the high-resistant wheat variety Podolyanka and were assigned to Paenibacillus and Brevibacillus genera according to their biochemical profiling and MS-DS identification, showed the most potent antagonistic effects as indicated by maximum inhibition zone in agar well diffusion assay. These results shed light on the association of the features of grain-residing endophytic bacteria with wheat resistance to phytopathogenic pseudomonads. Isolates from the high-resistant wheat variety can be recommended for grain dressing as plant growth promoting and biocontrol agents for P. syringae pv. atrofaciens (McCulloch).
Collapse
|
19
|
Abstract
The seed microbial community constitutes an initial inoculum for plant microbiota assembly. Still, the persistence of seed microbiota when seeds encounter soil during plant emergence and early growth is barely documented. We characterized the encounter event of seed and soil microbiota and how it structured seedling bacterial and fungal communities by using amplicon sequencing. We performed eight contrasting encounter events to identify drivers influencing seedling microbiota assembly. To do so, four contrasting seed lots of two Brassica napus genotypes were sown in two soils whose microbial diversity levels were manipulated by serial dilution and recolonization. Seedling root and stem microbiota were influenced by soil but not by initial seed microbiota composition or by plant genotype. A strong selection on the seed and soil communities occurred during microbiota assembly, with only 8% to 32% of soil taxa and 0.8% to 1.4% of seed-borne taxa colonizing seedlings. The recruitment of seedling microbiota came mainly from soil (35% to 72% of diversity) and not from seeds (0.3% to 15%). Soil microbiota transmission success was higher for the bacterial community than for the fungal community. Interestingly, seedling microbiota was primarily composed of initially rare taxa (from seed, soil, or unknown origin) and intermediate-abundance soil taxa. IMPORTANCE Seed microbiota can have a crucial role for crop installation by modulating dormancy, germination, seedling development, and recruitment of plant symbionts. Little knowledge is available on the fraction of the plant microbiota that is acquired through seeds. We characterize the encounter between seed and soil communities and how they colonize the seedling together. Transmission success and seedling community assemblage can be influenced by the variation of initial microbial pools, i.e., plant genotype and cropping year for seeds and diversity level for soils. Despite a supposed resident advantage of the seed microbiota, we show that transmission success is in favor of the soil microbiota. Our results also suggest that successful plant-microbiome engineering based on native seed or soil microbiota must include rare taxa.
Collapse
|
20
|
Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. BIOLOGY 2021; 10:biology10050409. [PMID: 34063099 PMCID: PMC8148187 DOI: 10.3390/biology10050409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Unmasking the overall endophytic bacteria communities from wheat grains may help to identify and describe the microbial colonization of bread and emmer varieties, their link to the bioactive compounds produced, and their possible role in mineral nutrition. The possibility of using microorganisms to improve the microelemental composition of grain is an important food security concern, as approximately one-third of the human population experiences latent starvation caused by Fe (anemia), Zn, or Cu deficiency. Four wheat varieties from T. aestivum L. and T. turgidum subsp. dicoccum were grown in field conditions with low bioavailability of microelements in the soil. Varietal differences in the yield, yield characteristics, and the grain micronutrient concentrations were compared with the endophytic bacteria isolated from the grains. Twelve different bacterial isolates were obtained that represented the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus. All studied strains were able to synthesize indole-related compounds (IRCs) with phytohormonal activity. IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics. Abstract Wheat grains are usually low in essential micronutrients. In resolving the problem of grain micronutritional quality, microbe-based technologies, including bacterial endophytes, seem to be promising. Thus, we aimed to (1) isolate and identify grain endophytic bacteria from selected spring wheat varieties (bread Oksamyt myronivs’kyi, Struna myronivs’ka, Dubravka, and emmer Holikovs’ka), which were all grown in field conditions with low bioavailability of microelements, and (2) evaluate the relationship between endophytes’ abilities to synthesize auxins and the concentration of Fe, Zn, and Cu in grains. The calculated biological accumulation factor (BAF) allowed for comparing the varietal ability to uptake and transport micronutrients to the grains. For the first time, bacterial endophytes were isolated from grains of emmer wheat T. turgidum subsp. dicoccum. Generally, the 12 different isolates identified in the four varieties belonged to the genera Staphylococcus, Pantoea, Sphingobium, Bacillus, Kosakonia, and Micrococcus (NCBI accession numbers: MT302194—MT302204, MT312840). All the studied strains were able to synthesize the indole-related compounds (IRCs; max: 16.57 µg∙mL−1) detected using the Salkowski reagent. The IRCs produced by the bacterial genera Pantoea spp. and Bacillus spp. isolated from high-yielding Oksamyt myronivs’kyi and Holikovs’ka grains may be considered as one of the determinants of the yield of wheat and its nutritional characteristics.
Collapse
|
21
|
U'Ren JM, Zimmerman NB. Oaks provide new perspective on seed microbiome assembly. THE NEW PHYTOLOGIST 2021; 230:1293-1295. [PMID: 33855719 DOI: 10.1111/nph.17305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jana M U'Ren
- Department of Biosystems Engineering and BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| | - Naupaka B Zimmerman
- Department of Biology, University of San Francisco, San Francisco, CA, 94117, USA
| |
Collapse
|
22
|
Chesneau G, Torres-Cortes G, Briand M, Darrasse A, Preveaux A, Marais C, Jacques MA, Shade A, Barret M. Temporal dynamics of bacterial communities during seed development and maturation. FEMS Microbiol Ecol 2021; 96:5910485. [PMID: 32966572 DOI: 10.1093/femsec/fiaa190] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Seed microbiota acts as a starting point for the assembly of the plant microbiota and contributes to successful plant establishment. To date, the order and timing of microbial taxa immigration during seed development and maturation remained unknown. We investigated the temporal dynamics of seed bacterial communities in bean and radish. A high phylogenetic turnover was observed for both plant species with few taxa associated with all seed developmental stages. Greater heterogeneity in communities structure within each stage was observed for radish. While, about one-third of radish seed bacterial taxa were detected in buds, flowers and fruits, very few taxa seem to be transmitted by the floral route in bean. In the latter species, bacterial populations belonging to the P. fluorescens species complex were found either in buds, flowers and fruits or in seeds. The relative phylogenetic proximity of these bacterial populations combined with their habitat specificity led us to explore the genetic determinants involved in successful seed transmission in bean. Comparative genomic analyses of representatives bacterial strains revealed dozens of coding sequences specifically associated with seed-transmitted strains. This study provided a first glimpse on processes involved in seed microbiota assembly, which could be used for designing plant-beneficial microbial consortia.
Collapse
Affiliation(s)
- Guillaume Chesneau
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Gloria Torres-Cortes
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Armelle Darrasse
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Anne Preveaux
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Coralie Marais
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Program in Ecology, Evolutionary Biology, and Behavior, The DOE Great Lakes Bioenergy Research Center, and The Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Matthieu Barret
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
23
|
Soluch R, Hülter NF, Romero Picazo D, Özkurt E, Stukenbrock EH, Dagan T. Colonization dynamics of Pantoea agglomerans in the wheat root habitat. Environ Microbiol 2021; 23:2260-2273. [PMID: 33587819 DOI: 10.1111/1462-2920.15430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/09/2021] [Indexed: 01/27/2023]
Abstract
Plants are colonized by microbial communities that have diverse implications for plant development and health. The establishment of a stable plant-bacteria interaction depends on a continuous coexistence over generations. Transmission via the seed is considered as the main route for vertical inheritance of plant-associated bacteria. Nonetheless, the ecological principles that govern the plant colonization by seed endophytes remain understudied. Here we quantify the contribution of arrival time and colonization history to bacterial colonization of the wheat root. Establishing a common seed endophyte, Pantoea agglomerans, and wheat as a model system enabled us to document bacterial colonization of the plant roots during the early stages of germination. Using our system, we estimate the carrying capacity of the wheat roots as 108 cells g-1 , which is robust among individual plants and over time. Competitions in planta reveal a significant advantage of early incoming colonizers over late-incoming colonizers. Priming for the wheat environment had little effect on the colonizer success. Our experiments thus provide empirical data on the root colonization dynamics of a seed endophyte. The persistence of seed endophyte bacteria with the plant population over generations may contribute to the stable transmission that is one route for the evolution of a stable host-associated lifestyle.
Collapse
Affiliation(s)
- Ryszard Soluch
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, 24118, Germany
| | - Nils F Hülter
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, 24118, Germany
| | - Devani Romero Picazo
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, 24118, Germany
| | - Ezgi Özkurt
- Environmental Genomics, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel, 24118, Germany.,Environmental Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, 24306, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel, 24118, Germany.,Environmental Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, 24306, Germany
| | - Tal Dagan
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Am Botanischen Garten 11, Kiel, 24118, Germany
| |
Collapse
|
24
|
Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J Adv Res 2020; 31:75-86. [PMID: 34194833 PMCID: PMC8240117 DOI: 10.1016/j.jare.2020.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction The seed-associated microbiome has a strong influence on plant ecology, fitness, and productivity. Plant microbiota could be exploited for a more responsible crop management in sustainable agriculture. However, the relationships between seed microbiota and hosts related to the changes from ancestor species to breeded crops still remain poor understood. Objectives Our aims were i) to understand the effect of cereal domestication on seed endophytes in terms of diversity, structure and co-occurrence, by comparing four cereal crops and the respective ancestor species; ii) to test the phylogenetic coherence between cereals and their seed microbiota (clue of co-evolution). Methods We investigated the seed microbiota of four cereal crops (Triticum aestivum, Triticum monococcum, Triticum durum, and Hordeum vulgare), along with their respective ancestors (Aegilops tauschii, Triticum baeoticum, Triticum dicoccoides, and Hordeum spontaneum, respectively) using 16S rRNA gene metabarcoding, Randomly Amplified Polymorphic DNA (RAPD) profiling of host plants and co-evolution analysis. Results The diversity of seed microbiota was generally higher in cultivated cereals than in wild ancestors, suggesting that domestication lead to a bacterial diversification. On the other hand, more microbe-microbe interactions were detected in wild species, indicating a better-structured, mature community. Typical human-associated taxa, such as Cutibacterium, dominated in cultivated cereals, suggesting an interkingdom transfers of microbes from human to plants during domestication. Co-evolution analysis revealed a significant phylogenetic congruence between seed endophytes and host plants, indicating clues of co-evolution between hosts and seed-associated microbes during domestication. Conclusion This study demonstrates a diversification of the seed microbiome as a consequence of domestication, and provides clues of co-evolution between cereals and their seed microbiota. This knowledge is useful to develop effective strategies of microbiome exploitation for sustainable agriculture.
Collapse
|
25
|
Dalling JW, Davis AS, Arnold AE, Sarmiento C, Zalamea PC. Extending Plant Defense Theory to Seeds. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-012120-115156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant defense theory explores how plants invest in defenses against natural enemies but has focused primarily on the traits expressed by juvenile and mature plants. Here we describe the diverse ways in which seeds are chemically and physically defended. We suggest that through associations with other traits, seeds are likely to exhibit defense syndromes that reflect constraints or trade-offs imposed by selection to attract dispersers, enable effective dispersal, ensure appropriate timing of seed germination, and enhance seedling performance. We draw attention to seed and reproductive traits that are analogous to defense traits in mature plants and describe how the effectiveness of defenses is likely to differ at pre- and postdispersal stages. We also highlight recent insights into the mutualistic and antagonistic interactions between seeds and microbial communities, including fungi and endohyphal bacteria, that can influence seed survival in the soil and subsequent seedling vigor.
Collapse
Affiliation(s)
- James W. Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, República de Panamá
| | - Adam S. Davis
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - A. Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Carolina Sarmiento
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, República de Panamá
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA;,
| | - Paul-Camilo Zalamea
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, República de Panamá
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA;,
| |
Collapse
|