1
|
Zhu Y, Hu X, Dong L, Yang H, Zhou D, Liu X, Dong C, Yue X, Zhao L. Green Synthesized Silver Nanoparticles Induced Accumulation of Biomass and Secondary Metabolites in Hairy Roots of Rehmannia glutinosa. Int J Mol Sci 2024; 25:13088. [PMID: 39684801 DOI: 10.3390/ijms252313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The hairy roots of Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C. A. Mey. are capable of producing active compounds such as iridoid glycoside, and phenylethanoid glycosides, which have potential applications in the pharmaceutical industry. Silver nanoparticles (AgNPs) have been used as novel elicitors in the induced cultivation of hairy roots, but there is a lack of research regarding their effects on R. glutinosa hairy roots. In the present study, silver nanoparticles (Pp-AgNPs) synthesized by the endophytic fungus Penicillium polandii PG21 were adopted to elicit hairy roots of R. glutinosa, to investigate their influences on the biomass, color, secondary metabolites, antioxidant activity, sucrose metabolism, and phytohormone-related gene expression. The results revealed that the dry weight and fresh weight of R. glutinosa hairy roots were both higher in the treated group than in the control group after addition of 2 mg/L Pp-AgNPs for 20 d. The content of verbascoside, total phenylethanol glycosides and total cycloartenoid in the treatment group reached the highest level at 20 d, which were 1.75, 1.51, 1.44 times more than those in the control group, respectively. Pp-AgNPs significantly stimulated the enzyme activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). The growth-promoting effect of Pp-AgNPs may be accomplished by increasing sucrose metabolism, and regulating the synthesis and signal transduction of gibberellin (GA) and indoleacetic acid (IAA). Moreover, expressed sequence tags-simple sequence repeat (EST-SSR)-based genetic diversity analyses indicated that there was little possibility of genetic variation among samples under different treatment conditions. In conclusion, the appropriate concentration of Pp-AgNPs can be used as an effective elicitor to improve the biomass and secondary metabolites content in R. glutinosa hairy roots.
Collapse
Affiliation(s)
- Yunhao Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xiangxiang Hu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Le Dong
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Han Yang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Danning Zhou
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xiangnan Liu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Chengming Dong
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xiule Yue
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Le Zhao
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
2
|
Szűcs Z, Cziáky Z, Volánszki L, Máthé C, Vasas G, Gonda S. Production of Polyphenolic Natural Products by Bract-Derived Tissue Cultures of Three Medicinal Tilia spp.: A Comparative Untargeted Metabolomics Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1288. [PMID: 38794359 PMCID: PMC11124948 DOI: 10.3390/plants13101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Medicinal plant tissue cultures are potential sources of bioactive compounds. In this study, we report the chemical characterization of the callus cultures of three medicinal Tilia spp. (Tilia cordata, Tilia vulgaris and Tilia tomentosa), along with the comparison to bracts and flowers of the same species. Our aim was to show that calli of Tilia spp. are good alternatives to the calli of T. americana for the production of polyphenols and are better sources of a subset of polyphenolic metabolites, compared to the original organs. Calli were initiated from young bracts and grown on woody plant medium containing 1 mg L-1 2,4-D and 0.1 mg L-1 BAP. For chemical characterization, a quality-controlled untargeted metabolomics approach and the quantification of several bioactive compounds was performed with the use of LC-ESI-MS/MS. While bracts and flowers contained flavonoid glycosides (astragalin, isoquercitrin) as major polyphenols, calli of all species contained catechins, coumarins (fraxin, esculin and scopoletin) and flavane aglyca. T. tomentosa calli contained 5397 µg g DW-1 catechin, 201 µg g DW-1 esculin, 218 µg g DW-1 taxifolin and 273 µg g DW-1 eriodictyol, while calli from other species contained lower amounts. T. cordata and T. tomentosa flowers were rich in isoquercitrin, containing 8134 and 6385 µg g DW-1, respectively. The currently tested species contained many of the bioactive metabolites described from T. americana. The production of catechin was shown to be comparable to the most efficient tissue cultures reported. Flowers and bracts contained flavonoid glycosides, including tiliroside, resembling bioactive fractions of T. americana. In addition, untargeted metabolomics has shown fingerprint-like differences among species, highlighting possible chemotaxonomic and quality control applications, especially for bracts.
Collapse
Affiliation(s)
- Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Healthcare Industry Institute, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Sóstói út 31/b, 4400 Nyíregyháza, Hungary;
| | - László Volánszki
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Csaba Máthé
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
- Balaton Limnological Research Institute, HUN-REN (Hungarian Research Network), Klebelsberg K. u. 3, 8237 Tihany, Hungary
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (Z.S.); (C.M.); (G.V.)
| |
Collapse
|
3
|
Verma SK, Goyary D, Singh AK, Anandhan S, Raina SN, Pandey S, Kumar S, Khare N. Modulation of terpenoid indole alkaloid pathway via elicitation with phytosynthesized silver nanoparticles for the enhancement of ajmalicine, a pharmaceutically important alkaloid. PLANTA 2023; 259:30. [PMID: 38150044 DOI: 10.1007/s00425-023-04311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
MAIN CONCLUSION The use of silver nanoparticles as elicitors in cell cultures of Rauwolfia serpentina resulted in increased levels of ajmalicine, upregulated structural and regulatory genes, elevated MDA content, and reduced activity of antioxidant enzymes. These findings hold potential for developing a cost-effective method for commercial ajmalicine production. Plants possess an intrinsic ability to detect various stress signals, prompting the activation of defense mechanisms through the reprogramming of metabolites to counter adverse conditions. The current study aims to propose an optimized bioprocess for enhancing the content of ajmalicine in Rauwolfia serpentina callus through elicitation with phytosynthesized silver nanoparticles. Initially, callus lines exhibiting elevated ajmalicine content were established. Following this, a protocol for the phytosynthesis of silver nanoparticles using seed extract from Rauwolfia serpentina was successfully standardized. The physicochemical attributes of the silver nanoparticles were identified, including their spherical shape, size ranging from 6.7 to 28.8 nm in diameter, and the presence of reducing-capping groups such as amino, carbonyl, and amide. Further, the findings indicated that the presence of 2.5 mg L-1 phytosynthesized silver nanoparticles in the culture medium increased the ajmalicine content. Concurrently, structural genes (TDC, SLS, STR, SGD, G10H) and regulatory gene (ORCA3) associated with the ajmalicine biosynthetic pathway were observed to be upregulated. A notable increase in MDA content and a decrease in the activities of antioxidant enzymes were observed. A notable increase in MDA content and a decrease in the activities of antioxidant enzymes were also observed. Our results strongly recommend the augmentation of ajmalicine content in the callus culture of R. serpentina through supplementation with silver nanoparticles, a potential avenue for developing a cost-effective process for the commercial production of ajmalicine.
Collapse
Affiliation(s)
- Sachin Kumar Verma
- Nims Institute of Allied Medical Science and Technology, Nims University Rajasthan, Delhi-Jaipur Highway, NH-11C, Jaipur, 303121, Rajasthan, India
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, Assam, India
| | - Amit Kumar Singh
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012, India
| | - Sivalingam Anandhan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, Maharashtra, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Shailesh Kumar
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Neeraj Khare
- Nims Institute of Allied Medical Science and Technology, Nims University Rajasthan, Delhi-Jaipur Highway, NH-11C, Jaipur, 303121, Rajasthan, India.
| |
Collapse
|
4
|
Zhao Z, Zhang Y, Li W, Tang Y, Wang S. Transcriptomics and Physiological Analyses Reveal Changes in Paclitaxel Production and Physiological Properties in Taxus cuspidata Suspension Cells in Response to Elicitors. PLANTS (BASEL, SWITZERLAND) 2023; 12:3817. [PMID: 38005714 PMCID: PMC10674800 DOI: 10.3390/plants12223817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
In this research, the cell growth, physiological, and biochemical reactions, as well as the paclitaxel production, of Taxus cuspidata suspension cells after treatment with polyethylene glycol (PEG), cyclodextrin (CD), or salicylic acid (SA) (alone or in combination) were investigated. To reveal the paclitaxel synthesis mechanism of T. cuspidata suspension cells under elicitor treatment, the transcriptomics of the Control group and P + C + S group (PEG + CD + SA) were compared. The results show that there were no significant differences in cell biomass after 5 days of elicitor treatments. However, the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA), and the activities of phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO) after elicitor combination treatments were decreased compared with the single-elicitor treatment. Meanwhile, the antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and peroxidase (PO)) and the contents of soluble sugar and soluble protein were increased after combination elicitor treatments. Additionally, the paclitaxel yield after treatment with the combination of all three elicitors (P + C + S) was 6.02 times higher than that of the Control group, thus indicating that the combination elicitor treatments had a significant effect on paclitaxel production in T. cuspidata cell suspension culture. Transcriptomics analysis revealed 13,623 differentially expressed genes (DEGs) between the Control and P + C + S treatment groups. Both GO and KEGG analyses showed that the DEGs mainly affected metabolic processes. DEGs associated with antioxidant enzymes, paclitaxel biosynthesis enzymes, and transcription factors were identified. It can be hypothesized that the oxidative stress of suspension cells occurred with elicitor stimulation, thereby leading to a defense response and an up-regulation of the gene expression associated with antioxidant enzymes, paclitaxel synthesis enzymes, and paclitaxel synthesis transcription factors; this ultimately increased the production of paclitaxel.
Collapse
Affiliation(s)
| | | | | | | | - Shujie Wang
- College of Biology and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
5
|
Tavan M, Hanachi P, Mirjalili MH. Biochemical changes and enhanced accumulation of phenolic compounds in cell culture of Perilla frutescens (L.) by nano-chemical elicitation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108151. [PMID: 37931559 DOI: 10.1016/j.plaphy.2023.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Perilla frutescens (L.) Britt is a renowned medicinal plant with pharmaceutically valuable phenolic acids and flavonoids. The present study was aimed to study the eliciting effect of silver and copper nanoparticles (AgNPs and CuNPs, 50 and 100 mg/L), and methyl jasmonate (MeJa, 50 and 100 μM) on the biochemical traits, the accumulation of phenolic compounds and antioxidative capacity of P. frutescens cell suspension culture. Suspension cells were obtained from friable calli derived from nodal explants in Murashige and Skoog (MS) liquid medium containing 1 mg/L 2,4-D and 1 mg/L BAP. The 21 days old cell suspension culture established from nodal explant derived callus supplemented with 100 mg/L MeJa resulted in the highest activity of catalase and guaiacol peroxidase enzymes, and CuNPs 100 mg/L treated cells indicated the maximum content of total phenol, total anthocyanin, superoxide dismutase, malondialdehyde, and H2O2. Also, the highest content of ferulic acid (1.41 ± 0.03, mg/g DW), rosmarinic acid (19.29 ± 0.12, mg/g DW), and phenylalanine ammonia-lyase (16.81 ± 0.18, U/mg protein) were observed with 100 mg/L CuNPs, exhibiting a total increase of 1.58-fold, 2.12-fold, and 1.51-fold, respectively, higher than untreated cells. On the other hand, AgNPs 100 mg/L treated cells indicated the most amounts of caffeic acid (0.57 ± 0.03, mg/g DW) and rutin (1.13 ± 0.07, mg/g DW), as well as the highest scavenging potential of free radicals. Overall, the results of the present study can be applied for the large-scale production of valuable phenolic acids and flavonoids from P. frutescens through CuNPs and AgNPs 100 mg/L elicited cell suspension cultures.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
6
|
Singh Y, Kumar U, Panigrahi S, Balyan P, Mehla S, Sihag P, Sagwal V, Singh KP, White JC, Dhankher OP. Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108004. [PMID: 37714027 DOI: 10.1016/j.plaphy.2023.108004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Plant tissue culture is the primary, fundamental, and applied aspect of plant biology. It is an indispensable and valuable technique for investigating morphogenesis, embryogenesis, clonal propagation, crop improvements, generation of pathogen-free plants, gene transfer and expression, and the production of secondary metabolites. The extensive use of various nanoparticles (NPs) in fields such as cosmetics, energy, medicine, pharmaceuticals, electronics, agriculture, and biotechnology have demonstrated positive impacts in microbial decontamination, callus differentiation, organogenesis, somatic variations, biotransformation, cryopreservation, and enhanced synthesis of bioactive compounds. This review summarizes the current state of knowledge with regard to the use of nanoparticles in plant tissue culture, with a particular focus on the beneficial outcomes. The positive (beneficial) and negative (toxic) effects of engineered NPs in tissue culture medium, delivery of transgenes, NPs toxicity concerns, safety issues, and potential hazards arising from utilization of nanomaterials in agriculture through plant tissue culture are discussed in detail, along with the future prospects for these applications. In addition, the potential use of novel nanomaterials such as graphene, graphite, dendrimers, quantum dots, and carbon nanotubes as well as unique metal or metalloid NPs are proposed. Further, the potential mechanisms underlying NPs elicitation of tissue culture response in different applications are critically evaluated. The potential of these approaches in plant nanobiotechnology is only now becoming understood and it is clear that the role of these strategies in sustainably increasing crop production to combat global food security and safety in a changing climate will be significant.
Collapse
Affiliation(s)
- Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India.
| | - Sourav Panigrahi
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Sheetal Mehla
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Vijeta Sagwal
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
| |
Collapse
|
7
|
Cessur A, Albayrak İ, Demirci T, Göktürk Baydar N. Silver and salicylic acid-chitosan nanoparticles alter indole alkaloid production and gene expression in root and shoot cultures of Isatis tinctoria and Isatis ermenekensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107977. [PMID: 37639984 DOI: 10.1016/j.plaphy.2023.107977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Isatis spp. are well-known for their industrial significance due to natural sources of indigotin and indirubin, important indole alkaloids, used in the dye and pharmaceutical industries. In this study, silver nanoparticles (AgNP) and salicylic acid-chitosan nanoparticles (SA-CNP) were synthesized and applied to enhance the production of indigotin and indirubin in shoot and root cultures of Isatis tinctoria and Isatis ermenekensis. Different doses of AgNP and SA-CNP were administered to three-week-old shoot and root cultures, and the effects were assessed at 12, 24, and 48 h. The harvested samples were analyzed to quantify indigotin and indirubin levels. Furthermore, the expression levels of It-TSA and CYP79B2 genes, known to be involved in indole alkaloid biosynthesis, were determined. In I. tinctoria roots, the highest levels of indigotin and indirubin were observed after applying 150 mg L-1 of SA-CNP for 48 h while in I. ermenekensis shoots, indigotin and indirubin reached the maximum levels with the application of 8 mg L-1 AgNP for 48 h. NP application had no remarkable effects on the accumulation of indigotin and indirubin in I. tinctoria shoots and I. ermenekensis roots compared to controls. Additionally, shoot cultures demonstrated superior indirubin production, which significantly increased with AgNP applications. The gene expression analysis also exhibited significant correlations with the changes in indigotin and indirubin levels. The findings of this study lay the groundwork for enhancing in vitro production of indigotin and indirubin in Isatis species through NP applications, and for developing high-capacity production strategies by determining optimal dosages in scale-up studies.
Collapse
Affiliation(s)
- Alper Cessur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| | - İlknur Albayrak
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| | - Tunahan Demirci
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Süleyman Demirel University, 32260, Isparta, Turkey.
| | - Nilgün Göktürk Baydar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Isparta University of Applied Sciences, 32270, Isparta, Turkey
| |
Collapse
|
8
|
Pathak A, Haq S, Meena N, Dwivedi P, Kothari SL, Kachhwaha S. Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:3126. [PMID: 37687372 PMCID: PMC10490111 DOI: 10.3390/plants12173126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023]
Abstract
The agricultural practices of breeding, farm management and cultivation have improved production, to a great extent, in order to meet the food demands of a growing population. However, the newer challenges of climate change, global warming, and nutritional quality improvement will have to be addressed under a new scenario. Plant biotechnology has emerged as a reliable tool for enhancing crop yields by protecting plants against insect pests and metabolic engineering through the addition of new genes and, to some extent, nutritional quality improvement. Plant tissue culture techniques have provided ways for the accelerated clonal multiplication of selected varieties with the enhanced production of value-added plant products to increase modern agriculture. The in vitro propagation method has appeared as a pre-eminent approach for the escalated production of healthy plants in relatively shorter durations, also circumventing seasonal effects. However, there are various kinds of factors that directly or indirectly affect the efficiency of in vitro regeneration like the concentration and combination of growth regulators, variety/genotype of the mother plant, explant type, age of seedlings and other nutritional factors, and elicitors. Nanotechnology as one of the latest and most advanced approaches in the material sciences, and can be considered to be very promising for the improvement of crop production. Nanomaterials have various kinds of properties because of their small size, such as an enhanced contact surface area, increased reactivity, stability, chemical composition, etc., which can be employed in plant sciences to alter the potential and performance of plants to improve tissue culture practices. Implementing nanomaterials with in vitro production procedures has been demonstrated to increase the shoot multiplication potential, stress adaptation and yield of plant-based products. However, nanotoxicity and biosafety issues are limitations, but there is evidence that implies the promotion and further exploration of nanoparticles in agriculture production. The incorporation of properly designed nanoparticles with tissue culture programs in a controlled manner can be assumed as a new pathway for sustainable agriculture development. The present review enlists different studies in which treatment with various nanoparticles influenced the growth and biochemical responses of seed germination, as well as the in vitro morphogenesis of many crop species. In addition, many studies suggest that nanoparticles can be useful as elicitors for elevating levels of important secondary metabolites in in vitro cultures. Recent advancements in this field also depict the suitability of nanoparticles as a promising carrier for gene transfer, which show better efficiency than traditional Agrobacterium-mediated delivery. This review comprehensively highlights different in vitro studies that will aid in identifying research gaps and provide future directions for unexplored areas of research in important crop species.
Collapse
Affiliation(s)
- Ashutosh Pathak
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Shamshadul Haq
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Neelam Meena
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Pratibha Dwivedi
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India;
| | - Sumita Kachhwaha
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| |
Collapse
|
9
|
Biosynthesized Ag nanoparticles on urea-based periodic mesoporous organosilica enhance galegine content in Galega. Appl Microbiol Biotechnol 2023; 107:1589-1608. [PMID: 36738339 DOI: 10.1007/s00253-023-12414-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
The biological approach for synthesizing nanoparticles (NPs) using plant extracts is an efficient alternative to conventional physicochemical methods. Galegine, isolated from Galega (Galega officinalis L.), has anti-diabetic properties. In the present study, silver nanoparticles (AgNPs) loaded onto urea-based periodic mesoporous organosilica (AgNPs/Ur-PMO) were bio-synthesized using G. officinalis leaf extract. The synthesized NPs were characterized and confirmed via analysis methods. Different concentrations of biosynthesized AgNPs/Ur-PMO nanoparticles (0, 1, 5, 10, and 20 mg L-1) were used as elicitors in cell suspension culture (CSC) of G. officinalis. The callus cells from hypocotyl explants were treated at their logarithmic growth phase (8th d) and were collected at time intervals of 24, 72, 120, and 168 h. The viability and growth of cells were reduced (by 17% and 35%, respectively) at higher concentrations and longer treatments of AgNPs/Ur-PMO; however, the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were increased (1.23 and 3.01 fold, respectively in comparison with the control average). The highest total phenolic (2.43 mg g-1 dry weight) and flavonoid (2.22 mg g-1 dry weight) contents were obtained 168 h after treatment with 10 mg L-1 AgNPs/Ur-PMO. An increasing tendency in the antioxidant enzyme activities was also observed in all the elicitor concentrations. Treatment with AgNPs/Ur-PMO (in particular 5 mg L-1 for 120 h) significantly enhanced the galegine content (up to 17.42 mg g-1) about 1.80 fold compared with the control. The results suggest that AgNPs/Ur-PMO can be used as an effective elicitor for enhancing galegine production in the CSC of G. officinalis. KEY POINTS: • The green biosynthesis of AgNPs/Ur-PMO was done using G. officinalis leaf extract • Its toxicity as an elicitor increased with increasing concentration and treatment time • AgNPs/Ur-PMO significantly increased the antioxidant capacity and galegine content.
Collapse
|
10
|
Giri VP, Shukla P, Tripathi A, Verma P, Kumar N, Pandey S, Dimkpa CO, Mishra A. A Review of Sustainable Use of Biogenic Nanoscale Agro-Materials to Enhance Stress Tolerance and Nutritional Value of Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:815. [PMID: 36840163 PMCID: PMC9967242 DOI: 10.3390/plants12040815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Climate change is more likely to have a detrimental effect on the world's productive assets. Several undesirable conditions and practices, including extreme temperature, drought, and uncontrolled use of agrochemicals, result in stresses that strain agriculture. In addition, nutritional inadequacies in food crops are wreaking havoc on human health, especially in rural regions of less developed countries. This could be because plants are unable to absorb the nutrients in conventional fertilizers, or these fertilizers have an inappropriate or unbalanced nutrient composition. Chemical fertilizers have been used for centuries and have considerably increased crop yields. However, they also disrupt soil quality and structure, eventually impacting the entire ecosystem. To address the situation, it is necessary to develop advanced materials that can release nutrients to targeted points in the plant-soil environment or appropriate receptors on the leaf in the case of foliar applications. Recently, nanotechnology-based interventions have been strongly encouraged to meet the world's growing food demand and to promote food security in an environmentally friendly manner. Biological approaches for the synthesis of nanoscale agro-materials have become a promising area of research, with a wide range of product types such as nanopesticides, nanoinsecticides, nanoherbicides, nanobactericides/fungicides, bio-conjugated nanocomplexes, and nanoemulsions emerging therefrom. These materials are more sustainable and target-oriented than conventional agrochemicals. In this paper, we reviewed the literature on major abiotic and biotic stresses that are detrimental to plant growth and productivity. We comprehensively discussed the different forms of nanoscale agro-materials and provided an overview of biological approaches in nano-enabled strategies that can efficiently alleviate plant biotic and abiotic stresses while potentially enhancing the nutritional values of plants.
Collapse
Affiliation(s)
- Ved Prakash Giri
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Department of Botany, Lucknow University, Hasanganj, Lucknow 226007, India
| | - Pallavi Shukla
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashutosh Tripathi
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Verma
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Navinit Kumar
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shipra Pandey
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Christian O. Dimkpa
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR—National Botanical Research Institute, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Ramphinwa ML, Mchau GRA, Mashau ME, Madala NE, Chimonyo VGP, Modi TA, Mabhaudhi T, Thibane VS, Mudau FN. Eco-physiological response of secondary metabolites of teas: Review of quality attributes of herbal tea. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.990334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Herbal tea is a rich source of secondary metabolites which are reputed to have medicinal and nutritional efficacy. These secondary metabolites are influenced by the abiotic and biotic stresses that improve the production of herbal teas in terms of biomass production, accumulation and partitioning of assimilates of compounds. In this study, various examples of herbal teas have been shown to respond differently to secondary metabolites affected by environmental factors. Thus, the meta-analysis of this study confirms that different herbal teas' response to environmental factors depends on the type of species, cultivar, and the degree of shade that the plant is exposed. It is also evident that the metabolic processes are also known to optimize the production of secondary metabolites which can thus be achieved by manipulating agronomic practices on herbal teas. The different phenolic compound in herbal teas possesses the antioxidant, antimicrobial, antiatherosclerosis, anti-inflammatory, antimutagenic, antitumor, antidiabetic and antiviral activities that are important in managing chronic diseases associated with lifestyle. It can be precluded that more studies should be conducted to establish interactive responses of biotic and abiotic environmental factors on quality attributes of herbal teas.
Collapse
|
12
|
Khan I, Awan SA, Rizwan M, Akram MA, Zia-Ur-Rehman M, Wang X, Zhang X, Huang L. Physiological and transcriptome analyses demonstrate the silver nanoparticles mediated alleviation of salt stress in pearl millet (Pennisetum glaucum L). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120863. [PMID: 36526056 DOI: 10.1016/j.envpol.2022.120863] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Pearl millet (Pennisetum glaucum L.) is a highly nutritive-value summer-annual forage crop used for hay, silage, grazing, and green chop. However, abiotic stresses including salinity negatively affect its growth and productivity. Furthermore, the nanotechnology is attaining greater consideration to reduce the impact of environmental stresses in plants. In the present study, transcriptome responses of silver nanoparticles (AgNPs) in pearl millet under salinity were investigated. The treatments were given as Control, NaCl (250 mM), AgNPs (20 mg/L), and NaCl + AgNPs to pearl millet seedlings after thirteen days of seed sowing. After 1 h of given treatments, leaf samples were collected and subjected to physio-chemical examination and transcriptome analyses. Salt stress increased the hydrogen peroxide (H2O2), malondialdehyde (MDA) content, and proline as compared to other treatments. In addition, the combined applications of NaCl + AgNPs ameliorated the oxidative damage by increasing antioxidant enzymes activities including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, RNA sequencing data showed 6016 commonly annotated Differentially Expressed Transcripts (DETs) among various treated combinations. Among them, 427 transcripts were upregulated, and 136 transcripts were downregulated at nanoparticles vs control, 1469 upregulated and 1182 downregulated at salt vs control, 494 upregulated and 231 downregulated at salt + nanoparticles vs control, 783 upregulated and 523 downregulated at nanoparticles vs salt. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that Mitogen-activated protein kinase (MAPK) signaling pathway, biosynthesis of secondary metabolites, and plant hormonal signal transduction pathway were the enriched among all identified pathways. In addition, Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) showed that salinity up regulated the relative expression of DETs in pearl millet while, AgNPs optimized their expression that are associated with various molecular and metabolic functions. Overall, AgNPs treatments effectively improved the morphology, physiology, biochemistry, and gene expression pattern under salinity which could be attributed to positive impacts of AgNPs on pearl millet.
Collapse
Affiliation(s)
- Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Samrah Afzal Awan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Xiaosan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
13
|
Jafari A, Hatami M. Foliar-applied nanoscale zero-valent iron (nZVI) and iron oxide (Fe 3O 4) induce differential responses in growth, physiology, antioxidative defense and biochemical indices in Leonurus cardiaca L. ENVIRONMENTAL RESEARCH 2022; 215:114254. [PMID: 36096173 DOI: 10.1016/j.envres.2022.114254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The impacts of nZVI and iron oxides on growth, physiology and elicitation of bioactive antioxidant metabolites in medicinal aromatic plants must be critically assessed to ensure their safe utilization within the food chain and achieve nutritional gains. The present study investigated and compared the morpho-physiological and biochemical changes of Leonurus cardiaca L. plants as affected by various concentrations (0, 250, 500 and 1000 mg L-1) of nZVI and Fe3O4. The foliar uptake of nZVI was verified through Scanning Electron Microscopy (SEM) images and Energy Dispersive X-ray (EDX) analytical spectra. Plants exposed to nZVI at low concentration showed comparatively monotonic deposition of NPs on the surface of leaves, however, the agglomerate size of nZVI was raised as their doses increased, leading to remarkable changes in anatomical and biochemical traits. 250 mg L-1 nZVI and 500 mg L-1 Fe3O4 significantly (P < 0.05) increased plant dry matter accumulation by 37.8 and 27% over the control, respectively. The treatments of nZVI and Fe3O4 at 250 mg L-1 significantly (P < 0.01) improved chlorophyll a content by 22.4% and 15.3% as compared to the control, and then a rapid decrease (by 14.8% and 4.1%) followed at 1000 mg L-1, respectively. Both nZVI and Fe3O4 at 250 mg L-1 had no significant impact on malondialdehyde (MDA) formation, however, at an exposure of 500-1000 mg L-1, the MDA levels and cellular electrolyte leakage were increased. Although nZVI particles could be utilized by plants and enhanced the synthesis of chlorophylls and secondary metabolites, they appeared to be more toxic than Fe3O4 at 1000 mg L-1. Exposure to nZVI levels showed positive, negative and or neutral impacts on leaf water content compared to control, while no significant difference was observed with Fe3O4 treatments. Soluble sugar, total phenolics and hyperoside content were significantly increased upon optimum concentrations of employed treatments-with 250 mg L-1 nZVI being most superior. Among the extracts, those obtained from plants treated with 250-500 mg L-1 nZVI revealed the strong antioxidant activity in terms of scavenging free radical (DPPH) and chelating ferrous ions. These results suggest that nZVI (at lower concentration) has alternative and additional benefits both as nano-fertilizer and nano-elicitor for biosynthesis of antioxidant metabolites in plants, but at high concentrations is more toxic than Fe3O4.
Collapse
Affiliation(s)
- Abbas Jafari
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
14
|
Mohaddab M, El Goumi Y, Gallo M, Montesano D, Zengin G, Bouyahya A, Fakiri M. Biotechnology and In Vitro Culture as an Alternative System for Secondary Metabolite Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228093. [PMID: 36432194 PMCID: PMC9697480 DOI: 10.3390/molecules27228093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Medicinal plants are rich sources of bioactive compounds widely used as medicaments, food additives, perfumes, and agrochemicals. These secondary compounds are produced under stress conditions to carry out physiological tasks in plants. Secondary metabolites have a complex chemical structure with pharmacological properties. The widespread use of these metabolites in a lot of industrial sectors has raised the need to increase the production of secondary metabolites. Biotechnological methods of cell culture allow the conservation of plants, as well as the improvement of metabolite biosynthesis and the possibility to modify the synthesis pathways. The objective of this review is to outline the applications of different in vitro culture systems with previously reported relevant examples for the optimal production of plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Marouane Mohaddab
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, BP 577, Settat 26000, Morocco
| | - Younes El Goumi
- Polyyvalent Team in R&D, Higher School of Technology of Fkih Ben Salah, Sultan Moulay Slimane University, USMS, Beni Mellal 23000, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131 Naples, Italy
- Correspondence: (M.G.); (A.B.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (M.G.); (A.B.)
| | - Malika Fakiri
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, BP 577, Settat 26000, Morocco
| |
Collapse
|
15
|
Stimulation of Secondary Metabolites and γ-Terpinene Synthase by Silver Nanoparticles in Callus Cultures of Carum carvi. Appl Biochem Biotechnol 2022; 194:3228-3241. [PMID: 35349082 DOI: 10.1007/s12010-022-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Biotechnology and nanotechnology are important tools for understanding biochemical pathways. They can be used efficiently for stimulating and increasing the production of secondary metabolites in medicinal plants. The present study aimed to identify the γ-terpinene synthase gene (CcTPS2) as an effective contributor to the biosynthetic pathway of monoterpenes. The effects of silver nanoparticles (AgNPs; 50 and 100 mg l- 1) and time (24 and 48 h) were examined on secondary metabolites in cell suspension cultures of Carum carvi. This involved the identification, isolation, and sequencing of a partial sequence in the CcTPS2 gene of C. carvi. The genomic sequence of CcTPS2 comprised 292 bp which were organized into two exons (110 and 82 bp) and one intron (100 bp), while the cDNA was 192 bp. In the scale of nucleotides, the CcTPS2 gene showed 96% similarity with the TPS2 gene of Oliveria decumbens. We generated sequence data of the CcTPS2 gene for the first time in this species, thereby enabling further developments in understanding the molecular mechanisms responsible for terpene biosynthesis and other chemical derivatives in C. carvi. The results of GC/MS and GC/FID showed that AgNPs strongly affected the secondary metabolites in cell suspension cultures of C. carvi. According to the results, the AgNPs (50 mg l- 1) increased p-cymene and carvone contents in comparison with the control. The exposure of plants to 100 mg l- 1 AgNPs induced the production of thymol and carvacrol. The results of real-time PCR revealed that the exposure of plants to 100 mg l- 1 AgNPs caused a significant upregulation of CcTPS2 expression for 24 h. These cell suspension cultures were elicited by AgNPs, the application of which proved as an effective method to improve the production of secondary metabolites in vitro.
Collapse
|
16
|
Nanotechnology in Plant Metabolite Improvement and in Animal Welfare. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plant tissue culture plays an important role in plant biotechnology due to its potential for massive production of improved crop varieties and high yield of important secondary metabolites. Several efforts have been made to ameliorate the effectiveness and production of plant tissue culture, using biotic and abiotic factors. Nowadays, the addition of nanoparticles as elicitors has, for instance, gained worldwide interest because of its success in microbial decontamination and enhancement of secondary metabolites. Nanoparticles are entities in the nanometric dimension range: they possess unique physicochemical properties. Among all nanoparticles, silver-nanoparticles (AgNPs) are well-known for their antimicrobial and hormetic effects, which in appropriate doses, led to the improvement of plant biomass as well as secondary metabolite accumulation. This review is focused on the evaluation of the integration of nanotechnology with plant tissue culture. The highlight is especially conveyed on secondary metabolite enhancement, effects on plant growth and biomass accumulation as well as their possible mechanism of action. In addition, some perspectives of the use of nanomaterials as potential therapeutic agents are also discussed. Thus, the information provided will be a good tool for future research in plant improvement and the large-scale production of important secondary metabolites. Elicitation of silver-nanoparticles, as well as nanomaterials, function as therapeutic agents for animal well-being is expected to play a major role in the process. However, nanosized supramolecular aggregates have received an increased resonance also in other fields of application such as animal welfare. Therefore, the concluding section of this contribution is dedicated to the description and possible potential and usage of different nanoparticles that have been the object of work and expertise also in our laboratories.
Collapse
|
17
|
Saeed F, Younas M, Fazal H, Mushtaq S, Rahman FU, Shah M, Anjum S, Ahmad N, Ali M, Hano C, Abbasi BH. Green and chemically synthesized zinc oxide nanoparticles: effects on in-vitro seedlings and callus cultures of Silybum marianum and evaluation of their antimicrobial and anticancer potential. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:450-460. [PMID: 33993821 DOI: 10.1080/21691401.2021.1926274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 01/02/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have been produced by physical and chemical methods. Here, the comparative evaluation of both chemically-synthesised ZnO-NPs (C-ZNPs) and in-vitro cultured S. marianum mediated green-synthesised ZnO-NPs (G-ZNPs) were investigated on seed germination frequency, root and shoot growth, callus induction and biochemical profile of medicinally important plant Silybum marianum. Of all the treatments, callus-mediated ZnO-NPs gave optimum results for seed germination (65%), plantlet's root length (4.3 cm), shoot length (5.3 cm) and fresh and dry weights (220.4 g L-1 and 21.23 g L-1, respectively). Similarly, the accumulation of phenolic (12.3 µg/mg DW) and flavonoid (2.8 µg/mg DW) contents were also enhanced in callus cultures treated with G-ZNPs. We also observed maximum antioxidant activity (99%) in callus cultures treated with G-ZNPs, however, in case of plantlets, these activities were found highest for in-vitro whole plant-mediated ZnO-NPs. Moreover, G-ZNPs also enhanced total protein content (265.32 BSAE/20g FW) in callus cultures. G-ZNPs were further assessed for their effects on several multidrug resistant bacterial strains and human liver carcinoma (HepG2) cells and our findings revealed that callus extracts treated with G-ZNPs show ameliorated antibacterial (highest zone of inhibition (19 mm) against Klebsiella pneumonia) and anticancer (highest cytotoxicity of 64%) activities.
Collapse
Affiliation(s)
- Faryal Saeed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Younas
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hina Fazal
- Medicinal Botanic Centre, Pakistan Council of Scientific and Industrial Research, Peshawar, Pakistan
| | - Sadaf Mushtaq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faiz Ur Rahman
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Nisar Ahmad
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, University of Orleans, Chartres, France
| | | |
Collapse
|
18
|
Lala S. Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnol 2021; 15:28-57. [PMID: 34694730 PMCID: PMC8675826 DOI: 10.1049/nbt2.12005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 01/10/2023] Open
Abstract
Nanoparticles possess some unique properties which improve their biochemical reactivity. Plants, due to their stationary nature, are constantly exposed to nanoparticles present in the environment, which act as abiotic stress agents at sub-toxic concentrations and phytotoxic agents at higher concentrations. In general, nanoparticles exert their toxicological effect by the generation of reactive oxygen species to which plants respond by activating both enzymatic and non-enzymatic anti-oxidant defence mechanisms. One important manifestation of the defence response is the increased or de novo biosynthesis of secondary metabolites, many of which have commercial application. The present review extensively summarizes current knowledge about the application of different metallic, non-metallic and carbon-based nanoparticles as elicitors of economically important secondary metabolites in different plants, both in vivo and in vitro. Elicitation of secondary metabolites with nanoparticles in plant cultures, including hairy root cultures, is discussed. Another emergent technology is the ligand-harvesting of secondary metabolites using surface-functionalized nanoparticles, which is also mentioned. A brief explanation of the mechanism of action of nanoparticles on plant secondary metabolism is included. Optimum conditions and parameters to be evaluated and standardized for the successful commercial exploitation of this technology are also mentioned.
Collapse
Affiliation(s)
- Sanchaita Lala
- Department of Botany, Sarsuna College, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Arya SS, Lenka SK, Cahill DM, Rookes JE. Designer nanoparticles for plant cell culture systems: Mechanisms of elicitation and harnessing of specialized metabolites. Bioessays 2021; 43:e2100081. [PMID: 34608646 DOI: 10.1002/bies.202100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
Plant cell culture systems have become an attractive and sustainable approach to produce high-value and commercially significant metabolites under controlled conditions. Strategies involving elicitor supplementation into plant cell culture media are employed to mimic natural conditions for increasing the metabolite yield. Studies on nanoparticles (NPs) that have investigated elicitation of specialized metabolism have shown the potential of NPs to be a substitute for biotic elicitors such as phytohormones and microbial extracts. Customizable physicochemical characteristics allow the design of monodispersed-, stimulus-responsive-, and hormone-carrying-NPs of precise geometries to enhance their elicitation capabilities based on target metabolite/plant cell culture type. We contextualize advances in NP-mediated elicitation, especially stimulation of specialized metabolic pathways, the underlying mechanisms, impacts on gene regulation, and NP-associated cytotoxicity. The novelty of the concept lies in unleashing the potential of designer NPs to enhance yield, harness metabolites, and transform nanoelicitation from exploratory investigations to a commercially viable strategy.
Collapse
Affiliation(s)
- Sagar S Arya
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia.,TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia
| | - James E Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Campus at Waurn Ponds, Geelong, Victoria, Australia
| |
Collapse
|
20
|
Saad K, Kumar G, Mudliar SN, Giridhar P, Shetty NP. Salt Stress-Induced Anthocyanin Biosynthesis Genes and MATE Transporter Involved in Anthocyanin Accumulation in Daucus carota Cell Culture. ACS OMEGA 2021; 6:24502-24514. [PMID: 34604632 PMCID: PMC8482394 DOI: 10.1021/acsomega.1c02941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins biosynthesis is a well-studied biosynthesis pathway in Daucus carota. However, the scale-up production at the bioreactor level and transporter involved in accumulation is poorly understood. To increase anthocyanin content and elucidate the molecular mechanism involved in accumulation, we examined D. carota cell culture in flask and bioreactor for 18 days under salt stress (20.0 mM NH4NO3/37.6 mM KNO3) at 3 day intervals. The expression of anthocyanin biosynthesis and putative MATE (multidrug and toxic compound extrusion) transporter expression was analyzed by qRT-PCR. It was observed that there was a significant enhancement of anthocyanin in the bioreactor compared to the control culture. A correlation was observed between the expression of MATE and the anthocyanin biosynthesis genes (CHS, C4H, LDOX, and UFGT) on the 9th day in a bioreactor, where maximum anthocyanin accumulation and expression was detected. We hypothesize the involvement of MATE in transporting anthocyanin to tonoplast in D. carota culture under salt stress.
Collapse
|
21
|
Responses of Medicinal and Aromatic Plants to Engineered Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medicinal and aromatic plants have been used by mankind since ancient times. This is primarily due to their healing effects associated with their specific secondary metabolites (some of which are also used as drugs in modern medicine), or their structures, served as a basis for the development of new effective synthetic drugs. One way to increase the production of these secondary metabolites is to use nanoparticles that act as elicitors. However, depending on the specific particle size, composition, concentration, and route of application, nanoparticles may have several other benefits on medicinal and aromatic plants (e.g., increased plant growth, improved photosynthesis, and overall performance). On the other hand, particularly at applications of high concentrations, they are able to damage plants mechanically, adversely affect morphological and biochemical characteristics of plants, and show cytotoxic and genotoxic effects. This paper provides a comprehensive overview of the beneficial and adverse effects of metal-, metalloid-, and carbon-based nanoparticles on the germination, growth, and biochemical characteristics of a wide range of medicinal and aromatic plants, including the corresponding mechanisms of action. The positive impact of nanopriming and application of nanosized fertilizers on medicinal and aromatic plants is emphasized. Special attention is paid to the effects of various nanoparticles on the production of valuable secondary metabolites in these plants cultivated in hydroponic systems, soil, hairy root, or in vitro cultures. The beneficial impact of nanoparticles on the alleviation of abiotic stresses in medicinal and aromatic plants is also discussed.
Collapse
|
22
|
Nano-Elicitation as an Effective and Emerging Strategy for In Vitro Production of Industrially Important Flavonoids. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flavonoids represent a popular class of industrially important bioactive compounds. They possess valuable health-benefiting and disease preventing properties, and therefore they are an important component of the pharmaceutical, nutraceutical, cosmetical and medicinal industries. Moreover, flavonoids possess significant antiallergic, antihepatotoxic, anti-inflammatory, antioxidant, antitumor, antiviral, and antibacterial as well as cardio-protective activities. Due to these properties, there is a rise in global demand for flavonoids, forming a significant part of the world market. However, obtaining flavonoids directly from plants has some limitations, such as low quantity, poor extraction, over-exploitation, time consuming process and loss of flora. Henceforth, there is a shift towards the in vitro production of flavonoids using the plant tissue culture technique to achieve better yields in less time. In order to achieve the productivity of flavonoids at an industrially competitive level, elicitation is a useful tool. The elicitation of in vitro cultures induces stressful conditions to plants, activates the plant defense system and enhances the accumulation of secondary metabolites in higher quantities. In this regard, nanoparticles (NPs) have emerged as novel and effective elicitors for enhancing the in vitro production of industrially important flavonoids. Different classes of NPs, including metallic NPs (silver and copper), metallic oxide NPs (copper oxide, iron oxide, zinc oxide, silicon dioxide) and carbon nanotubes, are widely reported as nano-elicitors of flavonoids discussed herein. Lastly, the mechanisms of NPs as well as knowledge gaps in the area of the nano-elicitation of flavonoids have been highlighted in this review.
Collapse
|
23
|
Dumas NGE, Anderson NTY, Godswill NN, Thiruvengadam M, Ana-Maria G, Ramona P, Crisan GC, Laurian V, Shariati MA, Tokhtarov Z, Emmanuel Y. Secondary metabolite contents and antimicrobial activity of leaf extracts reveal genetic variability of Vernonia amygdalina and Vernonia calvoana morphotypes. Biotechnol Appl Biochem 2020; 68:938-947. [PMID: 32881085 DOI: 10.1002/bab.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/12/2020] [Indexed: 01/14/2023]
Abstract
Vernonia species (Asteraceae) are indigenous medicinal and food leaf vegetables commonly consumed in some African countries like Cameroon where they constitute a staple dish called "ndolé." Previous studies have demonstrated the nutritional importance of Vernonia, but there is little knowledge of their agronomic value and genetic potentials. Wide genetic variability in the genus has been established earlier through the study of its pollen. However, to the best of our understanding, no such study has been undertaken on the genetic variability of Vernonia with respect to its secondary metabolites. This study was therefore aimed at evaluating the genetic variability of Vernonia amygdalina (VAA and VALF) and V. calvoana (VCAB, VCAV, VCSB, and VCSV) morphotypes in 2016 based on secondary metabolite content and antimicrobial properties. This involved phytochemical analysis by HPLC/MS for the detection of alkaloids, flavonoids, phenols, and tannins in leaves from each of the six genotypes. Results showed that all tested genotypes are rich in phenols (18 analyzed), flavonoids, and tannins with, VAA richer in phenols (206.1 ± 3.12 µg/g of dry extract), followed by VCAV (197.9 ± 18.03 µg/g). The lowest level of flavonoid was found in VCSV (81.6 ± 7.21 µg/g), while the highest was from VCAB (132.8 ± 31.5 µg/g). VCSV (56.3 ± 4.08 µg/g) had the lowest level of tannins, while VCAB (97.8 ± 23.8 µg/g) had the highest levels. Assessment of antimicrobial activity of leaf extracts from the six genotypes was done by culture on Mueller Hinton (MH) agar and MH broth agar for bacteria and in Sabouraud dextrose agar and Sabouraud dextrose broth media for fungi, respectively. All morphotypes exhibited inhibitory activity on bacteria except VAA, with isoquercetin characteristic of VCSV. Chemotaxonomic analyses of Vernonia morphotypes highlighted the genetic diversity within species and variability of antimicrobial properties of ethanolic leaf extracts among morphotypes. These results provide baseline data in the valuation of genetic resources and the establishment of improvement programs.
Collapse
Affiliation(s)
| | - Ngandjui Tchangoue Yvan Anderson
- Department of Organic Chemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon.,Laboratory of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy "Luliu Hatieganu" Str. Gheorghe Marinescu, Cluj-Napoca, Cluj, 400337, Romania
| | - Ntsomboh-Ntsefong Godswill
- Faculty of Science, Department of Plant Biology, University of Yaounde I, Yaounde, Cameroon.,Directorate of Research Valorisation and Innovation, Institute of Agricultural Research for Development (IRAD), Yaounde, Cameroon
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gheldiu Ana-Maria
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Luliu Hatieganu" 8, Victor Babes, Cluj-Napoca, Cluj, 400012, Romania
| | - Paltinean Ramona
- Laboratory of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy "Luliu Hatieganu" Str. Gheorghe Marinescu, Cluj-Napoca, Cluj, 400337, Romania
| | - Gianina Cristina Crisan
- Laboratory of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy "Luliu Hatieganu" Str. Gheorghe Marinescu, Cluj-Napoca, Cluj, 400337, Romania
| | - Vlase Laurian
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Luliu Hatieganu" 8, Victor Babes, Cluj-Napoca, Cluj, 400012, Romania
| | - Mohammad Ali Shariati
- Department of Technology of Food Production, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, 109004, Russian Federation
| | | | - Youmbi Emmanuel
- Faculty of Science, Department of Plant Biology, University of Yaounde I, Yaounde, Cameroon.,Tissue Culture Laboratory, African Centre for Research on Banana and Plantain (CARBAP), Njombe, Cameroon
| |
Collapse
|
24
|
Selvakesavan RK, Franklin G. Nanoparticles Affect the Expression Stability of Housekeeping Genes in Plant Cells. Nanotechnol Sci Appl 2020; 13:77-88. [PMID: 32884247 PMCID: PMC7431599 DOI: 10.2147/nsa.s265641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose We report on the expression stability of several housekeeping/reference genes that can be used in the normalization of target gene expression in quantitative real-time PCR (qRT-PCR) analysis of plant cells challenged with metal nanoparticles (NPs). Materials and Methods Uniform cell suspension cultures of Hypericum perforatum were treated with 25 mg/l silver and gold NPs (14-15 nm in diameter). Cells were collected after 0.5, 4.0, and 12 h. The total RNA isolated from the cells was analyzed for the stability of ACT2, ACT3, ACT7, EF1-α, GAPDH, H2A, TUB-α, TUB-β, and 18S rRNA genes using qRT-PCR. The cycle threshold (Ct) values of the genes were analyzed using the geNorm, NormFinder, BestKeeper, and RefFinder statistical algorithms to rank gene stability. The stability of the top-ranked genes was validated by normalizing the expression of HYP1. Results The expression of the tested housekeeping genes varied with treatment duration and NP types. EF1-α in gold NP treatment and TUB-α and EF1-α in silver NP treatment ranked among the top three positions. However, none of the genes retained their top ranking with time and across NP types. Conclusion EF1-α can be used as a reference for treatment involving both silver and gold NPs in H. perforatum cells. TUB-α can be used only for silver NP-treated cells. The expression instability of most of the housekeeping genes highlights the importance of systematic standardization of reference genes for NP treatment conditions to draw proper conclusions on the target gene expression.
Collapse
Affiliation(s)
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60-479, Poland
| |
Collapse
|
25
|
The Effect of Non-biological Elicitors on Physiological and Biochemical Properties of Medicinal Plant Momordica charantia L. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2020. [DOI: 10.1007/s40995-020-00939-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Anjum S, Anjum I, Hano C, Kousar S. Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: current status and future outlooks. RSC Adv 2019; 9:40404-40423. [PMID: 35542657 PMCID: PMC9076378 DOI: 10.1039/c9ra08457f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/30/2019] [Indexed: 11/21/2022] Open
Abstract
During the last few decades major advances have shed light on nanotechnology. Nanomaterials have been widely used in various fields such as medicine, energy, cosmetics, electronics, biotechnology and pharmaceuticals. Owing to their unique physicochemical characteristics and nanoscale structures, nanoparticles (NPs) have the capacity to enter into plant cells and interact with intracellular organelles and various metabolites. The effects of NPs on plant growth, development, physiology and biochemistry have been reported, but their impact on plant specialized metabolism (aka as secondary metabolism) still remains obscure. In reaction to environmental stress and elicitors, a common response in plants results in the production or activation of different types of specialized metabolites (e.g., alkaloids, terpenoids, phenolics and flavonoids). These plant specialized metabolites (SMs) are important for plant adaptation to an adverse environment, but also a huge number of them are biologically active and used in various commercially-valued products (pharmacy, cosmetic, agriculture, food/feed). Due to their wide array of applications, SMs have attracted much attention to explore and develop new strategies to enhance their production in plants. In this context, NPs emerged as a novel class of effective elicitors to enhance the production of various plant SMs. In recent years, many reports have been published regarding the elicitation of SMs by different types of NPs. However, in order to achieve an enhanced and sustainable production of these SMs, in-depth studies are required to figure out the most suitable NP in terms of type, size and/or effective concentration, along with a more complete understanding about their uptake, translocation, internalization and elicitation mechanisms. Herein, we are presenting a comprehensive and critical account of the plant SMs elicitation capacities of the three main classes of nanomaterials (i.e., metallic NPs (MNPs), metal oxide NPs (MONPs) and carbon related nanomaterials). Their different proposed uptake, translocation and internalization pathways as well as elicitation mechanism along with their possible deleterious effect on plant SMs and/or phytotoxic effects are summarized. We also identified and critically discussed the current research gaps existing in this field and requiring future investigation to further improve the use of these nanomaterials for an efficient production of plant SMs.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women Lahore Pakistan +92-300-6957038
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women Lahore Pakistan +92-300-6957038
| | - Christopher Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328, Université d'Orléans 28000 Chartres France
| | - Sidra Kousar
- Department of Chemistry, University of Agriculture Faisalabad Pakistan
| |
Collapse
|
27
|
Iqbal M, Raja NI, Ali A, Rashid H, Hussain M, Ejaz M, Iqbal R, Khan UA, Shaheen N, Rauf A, Satti SH, Saira H. Silver nanoparticles and silver salt (AgNO 3) elicits morphogenic and biochemical variations in callus cultures of sugarcane. IET Nanobiotechnol 2019; 13:896-904. [PMID: 31811757 PMCID: PMC8676125 DOI: 10.1049/iet-nbt.2018.5122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022] Open
Abstract
The research work was arranged to check the role of AgNPs and silver ions on callus cells of sugarcane (Saccharum spp. cv CP-77,400). AgNPs were synthesized chemically and characterized by UV-Vis spectra, XRD and SEM. AgNPs and silver ions were applied in various concentrations (0, 20, 40, 60 ppm) to sugarcane calli and the induced stress was characterized by studying various morphological and biochemical parameters. AgNPs and silver ions treatments produced high levels of malondialdehyde, proline, proteins, TP and TF contents. Similarly, CAT, SOD and POX activity was also significant in both treatments. The lower concentration of AgNPs and silver ions (20 ppm) provided maximum intracellular GSH level. This work mainly showed effects of AgNPs and silver ions on sugarcane calli in terms of morphological aberrations and cell membrane damage due to severe oxidative stress and production of enhanced levels of enzymatic and non-enzymatic antioxidants as self-defence to tolerate oxidative stress by scavenging reactive oxygen species. These preliminary findings will provide the way to study ecotoxicity mechanism of the metal ions and NPs in medicine industry and in vitro toxicity research. Furthermore, silver ions alone and their chemically synthesised AgNPs can be used for various biomedical applications in future.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Hamid Rashid
- Department of Biosciences, COMSATS Institute of Information Technology Sahiwal, Sahiwal, Pakistan
| | - Mubashir Hussain
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Muhammad Ejaz
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Rashid Iqbal
- Department of Biochemistry, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Umair A Khan
- Institute of Molecular Biology and Biotechnology, University of Lahore, Sargodha Campus, Pakistan
| | - Najma Shaheen
- Institute of Molecular Biology and Biotechnology, University of Lahore, Sargodha Campus, Pakistan
| | - Abdul Rauf
- Department of Biology, AIOU, Islamabad, Pakistan
| | - Seema Hassan Satti
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Hafiza Saira
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| |
Collapse
|
28
|
Alleviation of Phytophthora infestans Mediated Necrotic Stress in the Transgenic Potato ( Solanum tuberosum L.) with Enhanced Ascorbic acid Accumulation. PLANTS 2019; 8:plants8100365. [PMID: 31547616 PMCID: PMC6843151 DOI: 10.3390/plants8100365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
Potato is the most widely cultivated non-cereal crop in the world, and like any other crop, it is susceptible to yield losses because of various factors, including pathogen attacks. Among the various diseases of potato, late blight caused by the oomycete Phytophthora infestans is considered as the most devastating disease worldwide. In this study, transgenic potato plants overexpressing the D-galacturonic acid reductase (GalUR) gene with an enhanced level of cellular L-ascorbate (L-AsA) were challenged with Phytophthora infestans to determine the level of stress tolerance induced in those plants. With the onset of pathogen infection, necrotic lesions progressively expanded and became necrotic in the control plants. The transgenic potato lines with enhanced ascorbic acid showed reduced necrotic lesions. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were relatively lower in transgenic plants compared to the untransformed control (UT) plants. The mRNA expressions of pathogenesis-related (PR) genes, such as pathogenesis related 1 (PR1) and phenylalanine ammonia-lyase (PAL) were slightly higher in GalUR overexpressing transgenic lines as compared to the untransformed control plants. Pathogen infection also altered the mRNA expression of genes associated with gibberellic acid (GA) and abscisic acid (ABA) biosynthesis. Furthermore, the increase in various antioxidant enzymes was also observed in the gene expression analysis with the transgenic plants. The complete loss of the pathogen growth and disease occurrence was not observed in our study; however, the findings indicated that an increase in the level of cellular L-ascorbate in the transgenic potato leads to enhanced cellular antioxidants, PR genes and plant defense hormones, such as GA and ABA resulting in the reduction of the disease symptoms caused by the Phytophthora infestans.
Collapse
|
29
|
Impact of Copper Oxide Nanoparticles on Enhancement of Bioactive Compounds Using Cell Suspension Cultures of Gymnema sylvestre (Retz.) R. Br. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gymnema sylvestre is a plant that is enriched in bioactive compounds. In particular, gymnemic acids (GA) and phenolic compounds (PC) are pharmaceutically important. There is a commercial demand for naturally occurring bioactive compounds, but their availability is limited due to geographical and seasonal variations. The elicitation approach can enhance the biosynthesis of phytochemicals during in vitro culture of G. sylvestre. Here, to further improve gymnemic acid II (GA II) and phenolic compounds (PC) production by G. sylvestre, cell suspension cultures (CSC), which has attracted attention for the production of essential phytochemicals, was explored using copper oxide nanoparticles (CuO NPs). Callus was obtained on MS medium containing 2,4-dichlorophenoxyacetic acid, kinetin, phytoagar, and sucrose. Agar-free MS medium was used to initiate CSC, which was treated with three concentrations of CuO NPs (1, 3 or 5 mg/L). Treatment for 48 h with 3 mg/L CuO NPs resulted in the greatest yields of GA II, total phenolics, and flavonoids. The cultures also displayed pronounced antioxidant, antidiabetic, anti-inflammatory, antibacterial, antifungal, and anticancer activities. The use of CuO NPs (3 mg/L) significantly increased the production of GA II (nine-fold) and PC compared to unamended CSC. We propose that CSC and use of nanoparticles (NPs) as a new generation of elicitors, offer a suitable prospect for the production of bioactive compounds.
Collapse
|
30
|
Azam Ansari M, Chung IM, Rajakumar G, A Alzohairy M, Almatroudi A, Gopiesh Khanna V, Thiruvengadam M. Evaluation of Polyphenolic Compounds and Pharmacological Activities in Hairy Root Cultures of Ligularia fischeri Turcz. f. spiciformis (Nakai). Molecules 2019; 24:E1586. [PMID: 31013652 PMCID: PMC6515212 DOI: 10.3390/molecules24081586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
A considerable amount of bioactive compounds have been used for the biopharmaceutical engineering to help human health and nutrition. Hairy root culture (HRC) or transgenic root is a favourable alternative technique for phytochemical production. Ligularia fischeri is a significant source of pharmaceutically important active compounds with an enormous range of health care applications. HRC of L. fischeri was developed using Agrobacterium rhizogenes for the production of polyphenolic compounds with antioxidant, antimicrobial, antidiabetic, anticancer and anti-inflammatory pharmaceutical activities. Hairy roots (HRs) were selected by morphological assessment, genetic and molecular analyses. The maximum accumulation of fresh mass (94.15 g/L) and dry mass (9.45 g/L) was recorded in MS liquid medium supplemented with 30 g/L sucrose at 28 days. Furthermore, HRs successfully produced numerous polyphenolic compounds, including six hydroxycinnamic acids, seven flavonols, seven hydroxybenzoic acids, vanillin, resveratrol, pyrogallol, homogentisic, and veratric acids, which were identified by UHPLC analysis. HRs produced higher total phenolic (185.65 mg/g), and flavonoid (5.25 mg/g) contents than non-transformed roots (125.55 mg/g and 3.75 mg/g). As a result of these metabolic changes, pharmaceutical activities were found higher in HRs than non-transformed roots (NTRs). The present study indicates that HRC has the potential to increase the content of beneficial polyphenolic compounds with higher potential pharmaceutical activities. To the best of our knowledge, the present study is the first report on enhancing the production of polyphenolic compounds with pharmaceutical activities from the HRCs of L. fischeri.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Ill-Min Chung
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Korea.
| | - Govindasamy Rajakumar
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Korea.
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia.
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia.
| | - Venkatesan Gopiesh Khanna
- Department of Biotechnology, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Vels University, Pallavaram, Chennai 600117, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|