1
|
Chen D, Li W, Yang S, Song H, Di Y, Zhong W, Zhang M, Long Q, Li Y, Zhao C. A novel Schirmer strip-based tear matrix metalloproteinase measurement in dry eye evaluation. Ocul Surf 2025; 36:119-125. [PMID: 39824248 DOI: 10.1016/j.jtos.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
PURPOSE The diagnosis and evaluation of dry eye require easy-to-use, precise, and consistent tools in clinical setting. Matrix metalloproteinase 9 (MMP-9) has been proven to be a reliable indicator of dry eye inflammation. The aim of this study is to establish an Eu-time resolved fluorescence immunochromatography (Eu-TRFICO) method for quantitative detection of MMP-9 in human tear based upon widely used Schirmer strips. METHODS The Eu-TRFICO method for Schirmer strip-based tear MMP-9 measurements were optimized and assembled. The sensitivity, repeatability and homogeneity were evaluated using MMP-9 standard dilutions. The diagnostic and treatment monitoring performance were evaluated in both dry eye patients and normal subjects. RESULTS The standard curve equation was y = 0.0037 + 8.0692/[1+ (x/188.322)-0.8972] (R2 = 0.99998), and the sensitivity was 0.25 ng/mL. The Schirmer strip-based MMP-9 measurements showed acceptable repeatability and homogeneity with different saturation length in both low and high standard solutions. A total of 162 participants (162 eyes) were enrolled in this study, including 41 normal and 121 dry eye subjects. This method exhibited a sensitivity of 74.17 % and specificity of 77.5 % for dry eye diagnosis, with an AUC value of 0.8275, and cutoff value of 150.67 ng/mL, using normal subjects as negative control. The tear MMP-9 concentrations monitored with this method correlated well with the therapeutic response in dry eye patients. CONCLUSIONS This study developed Eu-TRFICO Schirmer strips with high sensitivity, specificity, precision, and satisfactory clinical testing performance, which provides a convenient and quantitative option for clinical testing of tear MMP-9 in dry eye patients.
Collapse
Affiliation(s)
- Di Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Wubi Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Shan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Hang Song
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Yu Di
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Weixing Zhong
- Research and Development Department, Beijing Sightnovo Medical Technology Co., Ltd, China
| | - Miao Zhang
- Research and Development Department, Beijing Sightnovo Medical Technology Co., Ltd, China
| | - Qin Long
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Ying Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China
| | - Chan Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
2
|
Yan LKQ, Tam SK, Ng KM. A numerical platform for predicting the performance of paper-based analytical devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7888-7897. [PMID: 39431348 DOI: 10.1039/d4ay01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This article presents a numerical platform for predicting the performance of paper-based analytical devices. The capillary flow, reaction, dissolution, and other physicochemical phenomena associated with device operation are accounted for using Darcy's law, Richard's equation and other transport equations. The platform can be used for different paper substrates, biorecognition methods, detection systems (such as optical and electrochemical detection), device patterns and dimensions, and ways in which the device is operated such as the input method of the body fluid. The device performance is quantified using indicators such as assay time, signal strength and product cost. The predictive capability of this numerical tool is verified with devices reported in the literature. It is shown that the platform can be used to identify possible improvements to these existing devices. More importantly, it can also serve as a numerical tool for synthesizing new paper-based analytical devices with minimum experimental effort.
Collapse
Affiliation(s)
- Lawrence K Q Yan
- Dept. of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong.
| | - Sze Kee Tam
- Dept. of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong.
| | - Ka Ming Ng
- Dept. of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Hong Kong.
| |
Collapse
|
3
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
4
|
Seo J, Kang J, Kim J, Han H, Park M, Shin M, Lee K. Smart Contact Lens for Colorimetric Visualization of Glucose Levels in the Body Fluid. ACS Biomater Sci Eng 2024; 10:4035-4045. [PMID: 38778794 DOI: 10.1021/acsbiomaterials.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Frequent blood glucose monitoring is a crucial routine for diabetic patients. Traditional invasive methods can cause discomfort and pain and even pose a risk of infection. As a result, researchers have been exploring noninvasive techniques. However, a limited number of products have been developed for the market due to their high cost. In this study, we developed a low-cost, highly accessible, and noninvasive contact lens-based glucose monitoring system. We functionalized the surface of the contact lens with boronic acid, which has a strong but reversible binding affinity to glucose. To achieve facile conjugation of boronic acid, we utilized a functional coating layer called poly(tannic acid). The functionalized contact lens binds to glucose in body fluids (e.g., tear) and releases it when soaked in an enzymatic cocktail, allowing for the glucose level to be quantified through a colorimetric assay. Importantly, the transparency and oxygen permeability of the contact lens, which are crucial for practical use, were maintained after functionalization, and the lenses showed high biocompatibility. Based on the analysis of colorimetric data generated by the smartphone application and ultraviolet-visible (UV-vis) spectra, we believe that this contact lens has a high potential to be used as a smart diagnostic tool for monitoring and managing blood glucose levels.
Collapse
Affiliation(s)
- Jeongin Seo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jumi Kang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Jungwoo Kim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Hyeju Han
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720, United States
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
- KNU Institute of Basic Sciences and KNU G-LAMP Project Group, Kyungpook National University, Daegu 41566, South Korea
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41940, South Korea
| |
Collapse
|
5
|
Brazaca LC, Imamura AH, Blasques RV, Camargo JR, Janegitz BC, Carrilho E. The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosens Bioelectron 2024; 246:115846. [PMID: 38006702 DOI: 10.1016/j.bios.2023.115846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
The use of microfluidic paper-based analytical devices (μPADs) for aiding medical diagnosis is a growing trend in the literature mainly due to their low cost, easy use, simple manufacturing, and great potential for application in low-resource settings. Many important biomarkers (proteins, ions, lipids, hormones, DNA, RNA, drugs, whole cells, and more) and biofluids are available for precise detection and diagnosis. We have reviewed the advances μPADs in medical diagnostics have achieved in the last few years, focusing on the most common human biofluids (whole blood/plasma, sweat, urine, tears, and saliva). The challenges of detecting specific biomarkers in each sample are discussed, along with innovative techniques that overcome such limitations. Finally, the difficulties of commercializing μPADs are considered, and future trends are presented, including wearable devices and integrating multiple steps in a single platform.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Vieira Blasques
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Jéssica Rocha Camargo
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
6
|
Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine. Pharmaceutics 2022; 14:pharmaceutics14061154. [PMID: 35745727 PMCID: PMC9227432 DOI: 10.3390/pharmaceutics14061154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Silica nanoparticles hold tremendous potential for the encapsulation of enzymes. However, aqueous alcohol solutions and catalysts are prerequisites for the production of silica nanoparticles, which are too harsh for maintaining the enzyme activity. Herein, a procedure without any organic solvents and catalysts (acidic or alkaline) is developed for the synthesis of silica-encapsulated glucose-oxidase-coated magnetic nanoparticles by a facile self-assembly route, avoiding damage of the enzyme structure in the reaction system. The encapsulated enzyme was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, and a vibrating sample magnetometer. Finally, a colorimetric sensing method was developed for the detection of glucose in urine samples based on the encapsulated glucose oxidase and a hydrogen peroxide test strip. The method exhibited a good linear performance in the concentration range of 20~160 μg mL−1 and good recoveries ranging from 94.3 to 118.0%. This work proves that the self-assembly method could be employed to encapsulate glucose oxidase into silica-coated magnetic particles. The developed colorimetric sensing method shows high sensitivity, which will provide a promising tool for the detection of glucose and the monitoring of diabetes.
Collapse
|
7
|
Li MS, Wong HL, Ip YL, Peng Z, Yiu R, Yuan H, Wai Wong JK, Chan YK. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens 2022; 7:1300-1314. [PMID: 35579258 DOI: 10.1021/acssensors.2c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most current invasive analytic devices for disease diagnosis and monitoring require the collection of blood, which causes great discomfort for patients and may potentially cause infection. This explains the great need for noninvasive devices that utilize other bodily fluids like sweat, saliva, tears, or urine. Among them, eye tears are easily accessible, less complex in composition, and less susceptible to dilution. Tears also contain valuable clinical information for the diagnosis of ocular and systemic diseases as the tear analyte level shows great correlation with the blood analyte level. These unique advantages make tears a promising platform for use in clinical settings. As the volume of tear film and the rate of tear flow are only microliters in size, the use of microfluidic technology in analytic devices allows minimal sample consumption. Hence, more and more microfluidic tear analytic devices have been proposed, and their working mechanisms can be broadly categorized into four main types: (a) electrochemical, (b) photonic crystals, (c) fluorescence, and (d) colorimetry. These devices are being developed toward the application of point-of-care tests with rapid yet accurate results. This review aims to provide a general overview of the recent developmental trend of microfluidic devices for tear analysis. Moreover, the fundamental principle behind each type of device along with their strengths and weaknesses will be discussed, especially in terms of their abilities and potential in being used in point-of-care settings.
Collapse
Affiliation(s)
- Man Shek Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Yan Lam Ip
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Zhiting Peng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Rachel Yiu
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P R China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| |
Collapse
|
8
|
Faura G, Boix-Lemonche G, Holmeide AK, Verkauskiene R, Volke V, Sokolovska J, Petrovski G. Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning. SENSORS 2022; 22:s22030718. [PMID: 35161465 PMCID: PMC8839630 DOI: 10.3390/s22030718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022]
Abstract
In this review, a selection of works on the sensing of biomarkers related to diabetes mellitus (DM) and diabetic retinopathy (DR) are presented, with the scope of helping and encouraging researchers to design sensor-array machine-learning (ML)-supported devices for robust, fast, and cost-effective early detection of these devastating diseases. First, we highlight the social relevance of developing systematic screening programs for such diseases and how sensor-arrays and ML approaches could ease their early diagnosis. Then, we present diverse works related to the colorimetric and electrochemical sensing of biomarkers related to DM and DR with non-invasive sampling (e.g., urine, saliva, breath, tears, and sweat samples), with a special mention to some already-existing sensor arrays and ML approaches. We finally highlight the great potential of the latter approaches for the fast and reliable early diagnosis of DM and DR.
Collapse
Affiliation(s)
- Georgina Faura
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway
| | - Gerard Boix-Lemonche
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
| | | | - Rasa Verkauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, LT-50009 Kaunas, Lithuania;
| | - Vallo Volke
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia;
- Institute of Biomedical and Transplant Medicine, Department of Medical Sciences, Tartu University Hospital, L. Puusepa Street, 51014 Tartu, Estonia
| | | | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway; (G.F.); (G.B.-L.)
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
- Correspondence: ; Tel.: +47-9222-6158
| |
Collapse
|
9
|
Allameh S, Rabbani M. A Distance-Based Microfluidic Paper-Based Biosensor for Glucose Measurements in Tear Range. Appl Biochem Biotechnol 2022; 194:2077-2092. [PMID: 35029790 DOI: 10.1007/s12010-022-03817-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/29/2022]
Abstract
The prevalence of diabetes has increased over the past years. Therefore, developing minimally invasive, user-friendly, and cost-effective glucose biosensors is necessary especially in low-income and developing countries. Cellulose paper-based analytical devices have attracted the attention of many researchers due to affordability, not requiring trained personnel, and complex equipment. This paper describes a microfluidic paper-based analytical device (μPAD) for detecting glucose concentration in tear range with the naked eye. The paper-based biosensor fabricated by laser CO2; and glucose oxidase/horseradish peroxidase (GOx/HRP) enzyme solution coupled with tetramethylbenzidine (TMB) were utilized as reagents. A sample volume of 10 μl was needed for the biosensor operation and the results were observable within 5 min. The color intensity-based and distance-based results were analyzed by ImageJ and Tracker to evaluate the device performance. Distance-based results showed a linear behavior in 0.1-1.2 mM with an R2 = 0.9962 and limit of detection (LOD) of 0.1 mM. The results could be perceived by the naked eye without needing additional equipment or trained personnel in a relatively short time (3-5 min).
Collapse
Affiliation(s)
- Samira Allameh
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohsen Rabbani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
10
|
Ortiz-Martínez M, Flores-DelaToba R, González-González M, Rito-Palomares M. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. BIOSENSORS 2021; 11:482. [PMID: 34940239 PMCID: PMC8699572 DOI: 10.3390/bios11120482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
A point-of-care (POC) can be defined as an in vitro diagnostic test that can provide results within minutes. It has gained enormous attention as a promising tool for biomarkers detection and diagnosis, as well as for screening of chronic noncommunicable diseases such as diabetes mellitus. Diabetes mellitus type 2 is one of the metabolic disorders that has grown exponentially in recent years, becoming one of the greatest challenges to health systems. Early detection and accurate diagnosis of this disorder are essential to provide adequate treatments. However, efforts to reduce incidence should remain not only in these stages but in developing continuous monitoring strategies. Diabetes-monitoring tools must be accessible and affordable; thus, POC platforms are attractive, especially paper-based ones. Paper-based POCs are simple and portable, can use different matrixes, do not require highly trained staff, and are less expensive than other platforms. These advantages enhance the viability of its application in low-income countries and hard-to-reach zones. This review aims to present a critical summary of the main components required to create a sensitive and affordable enzymatic paper-based POC, as well as an oriented analysis to highlight the main limitations and challenges of current POC devices for diabetes type 2 monitoring and future research opportunities in the field.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| |
Collapse
|
11
|
Moreira FTC, Correia BP, Sousa MP, Sales GF. Colorimetric cellulose-based test-strip for rapid detection of amyloid β-42. Mikrochim Acta 2021; 188:334. [PMID: 34498145 DOI: 10.1007/s00604-021-04996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
An innovative sensing assay is described for point-of-care (PoC) quantification of a biomarker of Alzheimer's disease, amyloid β-42 (Aβ-42). This device is based on a cellulose paper-dye test strip platform in which the corresponding detection layer is integrated by applying a molecularly imprinted polymer (MIP) to the cellulose paper surface. Briefly, the cellulose paper is chemically modified with a silane to subsequently apply the MIP detection layer. The imprinting process is confirmed by the parallel preparation of a control material, namely a non-imprinted polymer (NIP). The chemical changes of the surface were evaluated by Fourier transform infrared spectroscopy (FTIR), contact angle, and thermogravimetric analysis (TG). Proteins and peptides can be quantified by conventional staining methods. For this purpose, Coomassie blue (CB) was used as a staining dye for the detection and quantification of Aβ-42. Quantitative determination is made possible by taking a photograph and applying an appropriate mathematical treatment to the color coordinates provided by the ImageJ program. The MIP shows a linear range between 1.0 ng/mL and 10 μg/mL and a detection limit of 0.71 ng/mL. Overall, this cellulose-based assay is suitable for the detection of peptides or proteins in a sample by visual comparison of color change. The test strip provides a simple, instrument-free, and cost-effective method with high chemical stability, capable of detecting very small amounts of peptides or proteins in a sample, and can be used for the detection of any (bio)molecule of interest.
Collapse
Affiliation(s)
- Felismina T C Moreira
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal.
| | - Barbara P Correia
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Mariana P Sousa
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.,CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Goreti F Sales
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal.,BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, R. Sílvio Lima, pólo II, 3030-790, Coimbra, Portugal
| |
Collapse
|
12
|
Abstract
AbstractThe outbreak of new viral strains promotes advances in universal diagnostic techniques for detecting infectious diseases with unknown viral sequence. Long double-stranded RNA (dsRNA), a hallmark of infections, serves as a virus marker for prompt detection of viruses with unknown genomes. Here, we report on-chip paper electrophoresis for ultrafast screening of infectious diseases. Negatively charged RNAs pass through the micro and nanoscale pores of cellulose in order of size under an external electric field applied to the paper microfluidic channel. Quantitative separation of long dsRNA mimicking poly I:C was analyzed from 1.67 to 33 ng·μL−1, which is close to the viral dsRNA concentration in infected cells. This paper-based capillary electrophoresis chip (paper CE chip) can provide a new diagnostic platform for ultrafast viral disease detection at the point-of-care (POC) level.
Collapse
|
13
|
Motalebizadeh A, Asiaei S. Micro-fabrication by wax spraying for rapid smartphone-based quantification of bio-markers. Anal Biochem 2020; 603:113777. [PMID: 32445635 DOI: 10.1016/j.ab.2020.113777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
A cheap/rapid technique for the fabrication of μPADs is presented for point of care analysis. Hydrophobic channels were formed across the width of the paper by spraying hot pure wax. This biocompatible novel process yielded uniform 300 ± 5 μm hydrophilic microchannels on paper, without the use of the cleanroom, UV lamp, or organic solvents and was completed in a single step without the need for a hotplate. Hot wax is properly impregnated across paper thickness by spraying under optimized temperature and pressure. Our method is advantageous in the cost and ease of fabrication, process time (<1 min), the feasibility of mass-fabrication, readout, environmental considerations and multiplexing due to the embossed structure of remnant wax. The performance of the resulting μPAD was assessed on a multiplexed Uric acid and Nitride assay, bearing 95% of confidence level in the readout against standardized tests. A novel RGB processing app was developed for smart-phones to quantify colorimetric read-outs through a heuristic normalization equation that converts RGB to integer systems. This combinatorial sensor demonstrates a good linear range (up to 800 μM for Uric acid and 1250 μM for Nitride), low detection limit (100 μM for uric acid and 156 μM for nitride).
Collapse
Affiliation(s)
- Abbas Motalebizadeh
- Sensors and Integrated Biomicrofluidics/MEMS Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, 1684613114, Tehran, Iran
| | - Sasan Asiaei
- Sensors and Integrated Biomicrofluidics/MEMS Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, 1684613114, Tehran, Iran; Sensors and Integrated Microsystems Laboratory, Mechanical and Mechatronics Engineering Department, University of Waterloo, ON, N2L 3G1, Waterloo, Canada.
| |
Collapse
|
14
|
Park B, Kang SM, Lee GW, Kwak CH, Rethinasabapathy M, Huh YS. Fabrication of CsPbBr3 Perovskite Quantum Dots/Cellulose-Based Colorimetric Sensor: Dual-Responsive On-Site Detection of Chloride and Iodide Ions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05946] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bumjun Park
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Sung-Min Kang
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, United States
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Go-Woon Lee
- Platform Technology Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Daejeon 34129, Republic of Korea
| | - Cheol Hwan Kwak
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Muruganantham Rethinasabapathy
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| |
Collapse
|
15
|
Smartphone-integrated urinary CTX-II immunosensor based on wavelength filtering from chromogenic reaction. Biosens Bioelectron 2019; 150:111932. [PMID: 31791877 DOI: 10.1016/j.bios.2019.111932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
The integration of smart IT devices and biochemical assays with optical biosensing technology facilitates the development of efficacious optical biosensors for many practical diagnostic fields, owing to their minimized use of high-technical electronic components and simple operation. Herein, we introduced a simple optical biosensing system based on the specific wavelength filtering principle and count-based analysis method. The developed system uses a smartphone with a paper-based signal guide and a biosensing channel. The paper-based signal guide was prepared by printing red patterns of various brightness on a black background. Given that a blue product is generated as a result of horseradish peroxidase (HRP)-based enzymatic reaction in the biosensing channel, the channel could be used as a blue filter that absorbs red light. When red light reflected from the red pattern is absorbed by the channel, the pattern appears black. As such, the color of the patterns is assimilated with the black background, so it seems to disappear. Consequently, the amount of blue product relative to the concentration of the target analyte can be measured by counting the number of observed patterns on the paper-based signal guide. In this study, the concentration of urinary C-telopeptide fragment of type II collagen (uCTX-II, 0-10 ng/mL) was measured using the developed system without complicated equipment. In addition, the quantitative analysis of uCTX-II in the real urine sample was successfully performed. Therefore, we expect that the developed optical transducing system could be practically used for point-of-care testing (POCT) diagnosis under resource-limited environmental conditions.
Collapse
|
16
|
Luo JJ, Pan SW, Yang JH, Chang TL, Lin PY, Wu CL, Liu WF, Huang XR, Koshevoy IO, Chou PT, Ho ML. Detecting Glucose Levels in Blood Plasma and Artificial Tear by Au(I) Complex on the Carbopol Polymer: A Microfluidic Paper-Based Method. Polymers (Basel) 2018; 10:E1001. [PMID: 30960926 PMCID: PMC6404068 DOI: 10.3390/polym10091001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/18/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022] Open
Abstract
We report on a selective paper-based method and a microfluidic paper-based analytical device (μPAD) for the detection of human plasma glucose and tear glucose using carbopol polymer-encapsulated Au(I) complex (AuC₂C₆H₄OMe)₂(Ph₂P(C₆H₄)₃PPh₂), (B5). To the best of our knowledge, this demonstrates for the first time the glucose sensing based on dual emission, i.e., fluorescence and phosphorescence, of a single type molecule on the carbopol polymer. Upon addition of human blood treated with anticoagulants to μPADs, plasma is separated from the blood and flows into the response region of the μPADs to react with carbopol polymer-encapsulated B5, in which the ratiometric luminescence is analyzed. The plasma glucose concentration can be quantitively detected at 1.0⁻50.0 mM on paper, and tear glucose can be detected at 0.1⁻4.0 mM on μPADs. Owing to the structural design, this device has superior ratiometric changes of dual emission over other Au(I) complexes for signal transduction. The encapsulation of carbopol polymer also offers long-term storage stability. In tear measurement, carbopol polymer is not only used to encapsulate enzyme to remain the enzyme's activity, but also played as a glue (or media) to connect microfluidic channel and response region. This further improves the sensitivity and limit of detection for glucose. Moreover, this sensor provides a faster response time, a wider range for glucose sensing than reported previously, and no statistical difference of the data from a commercial glucometer, allowing for practical diagnosis of diabetes and healthy individuals.
Collapse
Affiliation(s)
- Jong-Jheng Luo
- Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin, Taipei 11102, Taiwan.
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Institute of Public Health, National Yang-Ming University, Taipei 11102, Taiwan.
| | - Jia-Hui Yang
- Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin, Taipei 11102, Taiwan.
| | - Tian-Lin Chang
- Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin, Taipei 11102, Taiwan.
| | - Peng-Yi Lin
- Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin, Taipei 11102, Taiwan.
| | - Chen-Liang Wu
- Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin, Taipei 11102, Taiwan.
| | - Wei-Fang Liu
- Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin, Taipei 11102, Taiwan.
| | - Xin-Ru Huang
- Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin, Taipei 11102, Taiwan.
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland.
| | - Pi-Tai Chou
- National Taiwan University, Department of Chemistry, Taipei 11102, Taiwan.
| | - Mei-Lin Ho
- Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin, Taipei 11102, Taiwan.
| |
Collapse
|