1
|
Hernández-Ospina DA, Osorio-González CS, Miri S, Kaur Brar S. New perspectives on the anaerobic degradation of BTEX: Mechanisms, pathways, and intermediates. CHEMOSPHERE 2024; 361:142490. [PMID: 38821131 DOI: 10.1016/j.chemosphere.2024.142490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Aromatic hydrocarbons like benzene, toluene, xylene, and ethylbenzene (BTEX) can escape into the environment from oil and gas operations and manufacturing industries posing significant health risks to humans and wildlife. Unlike conventional clean-up methods used, biological approaches such as bioremediation can provide a more energy and labour-efficient and environmentally friendly option for sensitive areas such as nature reserves and cities, protecting biodiversity and public health. BTEX contamination is often concentrated in the subsurface of these locations where oxygen is rapidly depleted, and biodegradation relies on anaerobic processes. Thus, it is critical to understand the anaerobic biodegradation characteristics as it has not been explored to a major extent. This review presents novel insights into the degradation mechanisms under anaerobic conditions and presents a detailed description and interconnection between them. BTEX degradation can follow four activation mechanisms: hydroxylation, carboxylation, methylation, and fumarate addition. Hydroxylation is one of the mechanisms that explains the transformation of benzene into phenol, toluene into benzyl alcohol or p-cresol, and ethylbenzene into 1-phenylethanol. Carboxylation to benzoate is thought to be the primary mechanism of degradation for benzene. Despite being poorly understood, benzene methylation has been also reported. Moreover, fumarate addition is the most widely reported mechanism, present in toluene, ethylbenzene, and xylene degradation. Further research efforts are required to better elucidate new and current alternative catabolic pathways. Likewise, a comprehensive analysis of the enzymes involved as well as the development of advance tools such as omic tools can reveal bottlenecks degradation steps and create more effective on-site strategies to address BTEX pollution.
Collapse
Affiliation(s)
- Diego A Hernández-Ospina
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Carlos S Osorio-González
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, Canada, M3J 1P3.
| |
Collapse
|
2
|
Castro AR, Martins G, Salvador AF, Cavaleiro AJ. Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms 2022; 10:2142. [PMID: 36363734 PMCID: PMC9695802 DOI: 10.3390/microorganisms10112142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/22/2023] Open
Abstract
Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted.
Collapse
Affiliation(s)
- Ana R. Castro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Gilberto Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Andreia F. Salvador
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Ana J. Cavaleiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Guo Y, Aoyagi T, Hori T. Comparative insights into genome signatures of ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. BMC Genomics 2021; 22:475. [PMID: 34171987 PMCID: PMC8235581 DOI: 10.1186/s12864-021-07809-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have been isolated through enrichment with crystalline Fe (III) oxide and anode. The strains isolated using electron acceptors with distinct redox potentials may have different abilities, for instance, of extracellular electron transport, surface recognition and colonization. The objective of this study was to identify the different genomic signatures between the crystalline Fe (III) oxide-stimulated strain AOP6 and the anode-stimulated strains WTL and DDH964 by comparative genome analysis. RESULTS The AOP6 genome possessed the flagellar biosynthesis gene cluster, as well as diverse and abundant genes involved in chemotaxis sensory systems and c-type cytochromes capable of reduction of electron acceptors with low redox potentials. The WTL and DDH964 genomes lacked the flagellar biosynthesis cluster and exhibited a massive expansion of transposable gene elements that might mediate genome rearrangement, while they were deficient in some of the chemotaxis and cytochrome genes and included the genes for oxygen resistance. CONCLUSIONS Our results revealed the genomic signatures distinctive for the ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. These findings highlighted the different metabolic abilities, such as extracellular electron transfer and environmental stress resistance, of these phylogenetically close bacterial strains, casting light on genome evolution of the subsurface Fe (III) oxide reducers.
Collapse
Affiliation(s)
- Yong Guo
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
4
|
Melkonian C, Fillinger L, Atashgahi S, da Rocha UN, Kuiper E, Olivier B, Braster M, Gottstein W, Helmus R, Parsons JR, Smidt H, van der Waals M, Gerritse J, Brandt BW, Röling WFM, Molenaar D, van Spanning RJM. High biodiversity in a benzene-degrading nitrate-reducing culture is sustained by a few primary consumers. Commun Biol 2021; 4:530. [PMID: 33953314 PMCID: PMC8099898 DOI: 10.1038/s42003-021-01948-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
A key question in microbial ecology is what the driving forces behind the persistence of large biodiversity in natural environments are. We studied a microbial community with more than 100 different types of species which evolved in a 15-years old bioreactor with benzene as the main carbon and energy source and nitrate as the electron acceptor. Using genome-centric metagenomics plus metatranscriptomics, we demonstrate that most of the community members likely feed on metabolic left-overs or on necromass while only a few of them, from families Rhodocyclaceae and Peptococcaceae, are candidates to degrade benzene. We verify with an additional succession experiment using metabolomics and metabarcoding that these few community members are the actual drivers of benzene degradation. As such, we hypothesize that high species richness is maintained and the complexity of a natural community is stabilized in a controlled environment by the interdependencies between the few benzene degraders and the rest of the community members, ultimately resulting in a food web with different trophic levels.
Collapse
Affiliation(s)
- Chrats Melkonian
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Lucas Fillinger
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Esther Kuiper
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brett Olivier
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Willi Gottstein
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Jan Gerritse
- Unit Subsurface and Groundwater Systems, Deltares, Utrecht, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilfred F M Röling
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Lee K, Ulrich A. Indigenous microbial communities in Albertan sediments are capable of anaerobic benzene biodegradation under methanogenic, sulfate-reducing, nitrate-reducing, and iron-reducing redox conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:524-534. [PMID: 32892398 DOI: 10.1002/wer.1454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Alberta is a major center for oil and gas production, and correspondingly harbors hundreds of unresolved contamination sites by environmental hazards such as benzene (C6 H6 ). Due to its cost-effectiveness, bioremediation has become a promising strategy for C6 H6 removal. Contamination sites typically take on an anaerobic context, which complicates the energetics of contamination sites and is a subject that is scarcely broached in studies of Albertan sediments. This study examines the innate potential for indigenous microbial communities in Albertan sediments to remove C6 H6 in a multitude of reduced conditions. Community profiles of these sediments were analyzed by 16S rRNA gene amplicon sequencing, and removal rates and reaction stoichiometries were observed by gas chromatography and ion chromatography. Organisms belonging to known primary degrader taxa were identified, including Geobacter (iron-reducing), and Peptococcaceae (nitrate-reducing). Furthermore, benzene removal patterns of the cultures were similar to those observed in previously reported microcosms, with lag times between 70 and 168 days and removal rates between 3.27 and 12.70 µM/day. Such information could support a more comprehensive survey of Albertan sediment consortia, which may eventually be utilized in informing future remediation efforts in the province. PRACTITIONER POINTS: ●Clay and sand sediments originating from Northern Alberta could remove benzene under methanogenic, sulfate-reducing, iron-reducing, and nitrate-reducing conditions. ●Degradation profiles were broadly comparable to those of reported cultures from other geographical locales. ●Key degrader taxa observed included Geobacter (Fe3+ -reducing) and Peptococcaceae ( NO 3 - -reducing). ●Knowledge gained can be the start of a more extensive survey of Albertan sediments. Eventually, this collection of information can be used to generate robust C6 H6 -degrading cultures that can be implemented for bioaugmentation and be implemented in informing remediation strategies in soil and water matrices for priority contamination cases such as leaking underground storage tanks and orphan wells.
Collapse
Affiliation(s)
- Korris Lee
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Zhao Z, Xia L, Qin Z, Cao J, Omer Mohammed AA, Toland H. The environmental fate of phenanthrene in paddy field system and microbial responses in rhizosphere interface: Effect of water-saving patterns. CHEMOSPHERE 2021; 269:128774. [PMID: 33143890 DOI: 10.1016/j.chemosphere.2020.128774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The effects of water-saving patterns (Semi-dry water-saving, B; Shallow-wet control irrigation, Q; Traditional flooding irrigation, C; and Moistening irrigation, S) on the environmental fate of phenanthrene (Phe) and microbial responses in rhizosphere were investigated in paddy field system. Results showed the rice grain in Q treatment was more high production and safety with less Phe residue (up to 18%-49%) than other treatments, and the residual Phe in soil declined in the order: C (14.17%) > S (13.36%) > B (5.86%)>Q (2.70%), which proves the existence of optimal water conditions for PAHs degradation and rhizosphere effect during rice cultivation. Laccase (LAC) and dioxygenase (C23O) played important roles in Phe degradation, which were significantly positively correlated with Phe dissipation rate in soil (p < 0.01). Moreover, their activities in Q treatment, rhizosphere and subsoil were higher than those in C treatment, non-rhizoshere and upper layer soil. The introduction of Phe and rice into paddy field system decreased the microorganism diversity, and promoted the activities of enzymes and some PAHs degrading bacteria, such as Delftia, Serratia, Enterobacter, Pseudomonas, norank_f_Rhodospirillaceae, norank_f_Nitrosomonadaceae and so on. According to the cluster analysis, redundancy analysis and correlation analysis between bacterial community composition and environmental factors, water-saving patterns markedly impacted the relative abundance and bacterial community structure by the regulating and controlling on environmental conditions of paddy field. The dioxygenase activity, laccase activity, oxidation-reduction potential and conductivity were the main affecting factors on Phe dissipation during growth stage of rice.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- School of Computer & Software, Nanjing Institute of Industry Technology, Nanjing, 210016, PR China.
| | - Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jingjing Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Abduelrahman Adam Omer Mohammed
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Water Harvesting Center, Nyala University, Nyala, Sudan
| | - Harry Toland
- Department of Geography and Earth Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DB, UK
| |
Collapse
|
7
|
Zhang F, Qian DK, Wang XB, Dai K, Wang T, Zhang W, Zeng RJ. Stimulation of methane production from benzoate with addition of carbon materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138080. [PMID: 32220738 DOI: 10.1016/j.scitotenv.2020.138080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Huge amounts of wastewater that contain aromatic compounds such as benzene and phenols are discharged worldwide. Benzoate is a typical intermediate in the anaerobic transformation of those aromatic compounds. In this study, electrically conductive carbon-based materials of granulated activated carbon (GAC), multiwalled carbon nanotubes (MwCNTs), and graphite were evaluated for the ability to promote the benzoate degradation. The results showed that 82-93% of the electrons were recovered in CH4 production from benzoate. The carbon materials stimulated benzoate degradation in the sequence of GAC (5 g/L) > MwCNTs (1 g/L) ~ Graphite (0.1 g/L) > Control. Acetate was the only detected intermediate in the process of benzoate degradation. Taxonomic analyses revealed that benzoate was degraded by Syntrophus to acetate and H2, which were subsequently converted to methane by Methanosarcina (both acetoclastic methanogens and hydrogenotrophic methanogens) and Methanoculleus (hydrogenotrophic methanogens), and direct interspecies electron transfer (DIET) of Desulfovibrio and Methanosarcina. Thus, these results suggest a method to effectively enhance the removal of aromatic compounds and methane recovery.
Collapse
Affiliation(s)
- Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xian-Bin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
8
|
Han X, Peng S, Zhang L, Lu P, Zhang D. The Co-occurrence of DNRA and Anammox during the anaerobic degradation of benzene under denitrification. CHEMOSPHERE 2020; 247:125968. [PMID: 32069733 DOI: 10.1016/j.chemosphere.2020.125968] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
It was revealed that Anammox process promotes the anaerobic degradation of benzene under denitrification. This study investigates the effect of dissimilatory nitrate reduction to ammonium (DNRA) and exogenous ammonium on anaerobic ammonium oxidation bacteria (AnAOB) during the anaerobic degradation of benzene under denitrification. The results indicate that anammox occurs synergistically with organisms using the DNRA pathway, such as Draconibacterium and Ignavibacterium. Phylogenetic analysis showed 64% (16/25) and 36% (5/25) hzsB gene sequences, a specific biomarker of AnAOB, belonged to Candidatus 'Brocadia fuldiga' and Candidatus 'Kuenenia', respectively. Exogenous ammonium addition enhanced the anammox process and accelerated benzene degradation at a 1.89-fold higher average rate compared to that in the absence of exogenous ammonium and AnAOB belonged to Ca. 'Kuenenia' (84%) and Ca. 'Brocadia fuldiga' (16%). These results indicate that Ca. 'Brocadia fuldiga' could also play a role in DNRA. However, the diversity of abcA and bamA, the key anaerobic benzene metabolism biomarkers, remained unchanged. These findings suggest that anammox occurrence may be coupled with DNRA or exogenous ammonium and that anammox promotes anaerobic benzene degradation under denitrifying conditions. The results of this study contribute to understanding the co-occurrence of DNRA and Anammox and help explore their involvement in degradation of benzene, which will be crucial for directing remediation strategies of benzene-contaminated anoxic environment.
Collapse
Affiliation(s)
- Xinkuan Han
- Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Shuchan Peng
- Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| |
Collapse
|
9
|
Hidalgo KJ, Teramoto EH, Soriano AU, Valoni E, Baessa MP, Richnow HH, Vogt C, Chang HK, Oliveira VM. Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135152. [PMID: 31812384 DOI: 10.1016/j.scitotenv.2019.135152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Natural attenuation represents all processes that govern contaminant mass removal, which mainly occurs via microbial degradation in the environment. Although this process is intrinsic its rate and efficiency depend on multiple factors. This study aimed to characterize the microbial taxonomic and functional diversity in different aquifer sediments collected in the saturated zone and in situ microcosms (BACTRAP®s) amended with hydrocarbons (13C-labeled and non-labeled benzene, toluene and naphthalene) using 16S rRNA gene and "shotgun" Illumina high throughput sequencing at a jet-fuel contaminated site. The BACTRAP®s were installed to assess hydrocarbon metabolism by native bacteria. Results indicated that Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla (~98%) in the aquifer sediment samples. Meanwhile, in the benzene- and toluene-amended BACTRAP®s the phyla Firmicutes and Proteobacteria accounted for about 90% of total community. In the naphthalene-amended BACTRAP®, members of the SR-FBR-L83 family (Order Ignavibacteriales) accounted for almost 80% of bacterial community. Functional annotation of metagenomes showed that only the sediment sample located at the source zone border and with the lowest BTEX concentration, has metabolic potential to degrade hydrocarbons aerobically. On the other hand, in situ BACTRAP®s allowed enrichment of hydrocarbon-degrading bacteria. Metagenomic data suggest that fumarate addition is the main mechanism for hydrocarbon activation of toluene. Also, indications for methylation, hydroxylation and carboxylation as activation mechanisms for benzene anaerobic conversion were found. After 120 days of exposure in the contaminated groundwater, the isotopic analysis of fatty acids extracted from BACTRAP®s demonstrated the assimilation of isotopic labeled compounds in the cells of microbes expressed by strong isotopic enrichment. We propose that the microbiota in this jet-fuel contaminated site has metabolic potential to degrade benzene and toluene by a syntrophic process, between members of the families Geobacteraceae and Peptococcaceae (genus Pelotomaculum), coupled to nitrate, iron and/or sulfate reduction.
Collapse
Affiliation(s)
- K J Hidalgo
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, Campinas, SP. ZIP 13083-862, Brazil.
| | - E H Teramoto
- Laboratory of Basin Studies (LEBAC), São Paulo State University (UNESP), Rio Claro, Av. 24A, 1515 ZIP 13506-900, Brazil
| | - A U Soriano
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - E Valoni
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - M P Baessa
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - H H Richnow
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15 04318 Leipzig, Germany
| | - C Vogt
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15 04318 Leipzig, Germany
| | - H K Chang
- Laboratory of Basin Studies (LEBAC), São Paulo State University (UNESP), Rio Claro, Av. 24A, 1515 ZIP 13506-900, Brazil
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Paulínia, Brazil, Av. Alexandre Cazellato, 999, ZIP 13148-218, Brazil
| |
Collapse
|
10
|
Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecules 2019; 24:molecules24183400. [PMID: 31546774 PMCID: PMC6767264 DOI: 10.3390/molecules24183400] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.
Collapse
Affiliation(s)
- Adam Truskewycz
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Taylor D Gundry
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Leadin S Khudur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Adam Kolobaric
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Qaliuobia 13736, Egypt.
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
11
|
Aburto-Medina A, Shahsavari E, Salzman SA, Kramer A, Ball AS, Allinson G. Elucidation of the microbial diversity in rivers in south-west Victoria, Australia impacted by rural agricultural contamination (dairy farming). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:356-363. [PMID: 30731266 DOI: 10.1016/j.ecoenv.2019.01.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
We assessed the water quality of south-west Victorian rivers impacted by the dairy industry using traditional water quality assessment together with culture-dependent (colilert/enterolert) and also culture-independent (next generation sequencing) microbial methods. The aim of the study was to identify relationships/associations between dairy farming intensity and water contamination. Water samples with high total and faecal coliforms (>1000 MPN cfu/100 ml), and with high nitrogen levels (TN) were observed in zones with a high proportion of dairy farming. Members of the genus Nitrospira, Rhodobacter and Rhodoplanes were predominant in such high cattle density zones. Samples from sites in zones with lower dairy farming activities registered faecal coliform numbers within the permissible limits (<1000 MPN cfu/100 ml) and showed the presence of a wide variety of microorganisms. However, no bacterial pathogens were found in the river waters regardless of the proportion of cattle. The data suggests that using the spatially weighted proportion of land used for dairy farming is a useful way to target at-risk sub-catchments across south west Victoria; further work is required to confirm that this approach is applicable in other regions.
Collapse
Affiliation(s)
- Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Scott A Salzman
- Department of Information Systems and Business Analytics, Deakin University, Warrnambool, Victoria 3280 Australia
| | - Andrew Kramer
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria 3085 Australia; Waikato Regional Council, Private Bag 3038, Waikato Mail Centre, Hamilton 3240, New Zealand
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
12
|
de Lima e Silva MR, Correa RC, Sakamoto IK, Varesche MBA. Microbial Characterization of Methanogenic and Iron-reducing Consortium in Reactors with Polychlorinated Biphenyls. Curr Microbiol 2018; 75:666-676. [DOI: 10.1007/s00284-018-1431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
|
13
|
Denitrification synergized with ANAMMOX for the anaerobic degradation of benzene: performance and microbial community structure. Appl Microbiol Biotechnol 2017; 101:4315-4325. [DOI: 10.1007/s00253-017-8166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/25/2017] [Accepted: 02/05/2017] [Indexed: 12/21/2022]
|
14
|
Velasco A, Aburto-Medina A, Shahsavari E, Revah S, Ortiz I. Degradation mechanisms of DDX induced by the addition of toluene and glycerol as cosubstrates in a zero-valent iron pretreated soil. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:681-689. [PMID: 27694047 DOI: 10.1016/j.jhazmat.2016.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Abiotic and biotic processes can be used to remediate DDX (DDT, DDD, DDE, and DDNS) contaminated soils; these processes can be fostered using specific carbon-amendments to stimulate particular soil indigenous microbial communities to improve rates or extent of degradation. In this study, toluene and glycerol were evaluated as cosubstrates under aerobic and anoxic conditions to determine the degradation efficiencies of DDX and to elucidate possible degradation mechanisms. Slurry microcosms experiments were performed during 60 days using pretreated soil with zero-valent iron (ZVI). Toluene addition enhanced the percentage of degradation of DDX. DDNS was the main compound degraded (around 86%) under aerobic conditions, suggesting cometabolic degradation of DDX by toluene-degrading soil bacteria. Glycerol addition under anoxic conditions favored the abiotic degradation of DDX mediated by sulfate-reducing bacteria activity, where DDT was the main compound degraded (around 90%). The 16S rDNA metagenomic analyses revealed Rhodococcus ruber and Desulfosporosinus auripigmenti as the predominant bacterial species after 40 days of treatment with toluene and glycerol additions, respectively. This study provides evidence of biotic and abiotic DDX degradation by the addition of toluene and glycerol as cosubstrates in ZVI pretreated DDX-contaminated soil.
Collapse
Affiliation(s)
- Antonio Velasco
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico City, Mexico
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Applied Sciences, RMIT University, Bundoora, Victoria, 3083, Australia; Departamento de Biotecnología, Escuela de Ingeniería, Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Vía Atlixcáyotl No. 2301, Reserva Territorial Atlixcáyotl, San Andrés Cholula, 72800, Puebla, Mexico
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Applied Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Sergio Revah
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico City, Mexico
| | - Irmene Ortiz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico City, Mexico.
| |
Collapse
|
15
|
Koshlaf E, Shahsavari E, Aburto-Medina A, Taha M, Haleyur N, Makadia TH, Morrison PD, Ball AS. Bioremediation potential of diesel-contaminated Libyan soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:297-305. [PMID: 27479774 DOI: 10.1016/j.ecoenv.2016.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil.
Collapse
Affiliation(s)
- Eman Koshlaf
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia; Department of Biology, Faculty of Science Algabal Algarbi University, Gharian, Libya
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia; Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Nagalakshmi Haleyur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Tanvi H Makadia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Paul D Morrison
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|