1
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
2
|
Tomah AA, Khattak AA, Aldarraji MH, Al-Maidi AAH, Mohany M, Al-Rejaie SS, Ogunyemi SO. Sclerotia degradation by Trichoderma-mycoparasitic; an effective and sustainable trend in the drop lettuce disease control caused by Sclerotinia sclerotiorum. Arch Microbiol 2024; 206:286. [PMID: 38829426 DOI: 10.1007/s00203-024-04014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Controlling the hazard of sclerotia produced by the Sclerotinia sclerotiorum is very complex, and it is urgent to adopt an effective method that is harmonious environmentally to control the disease. Among the six isolates isolated from the rhizosphere of lettuce, the isolate HZA84 demonstrated a high activity in its antagonism towards Sclerotinia sclerotiorum in vitro, and produces siderophore. By amplification of internal transcribed spacer (ITS), translation elongation factor 1-alpha (TEF1-α), and RNA polymerase II subunit (RPB2) genes, the isolate HZA84 was identified as Trichoderma asperellum, which was confirmed by analysis of phylogenetic tree. The Scanning electron microscope monitoring detected that the isolate HZA84 spread over the sclerotial surface, thus, damaging, decomposing, and distorting the globular cells of the outer cortex of the sclerotia. The Real-time polymerase chain reaction (RT-qPCR) analysis disclosed the overexpression of two genes (chit33 and chit37) encoding the endochitinase in addition to one gene (prb1) encoding the proteinase during 4 and 8 days of the parasitism behavior of isolate HZA84 on the sclerotia surface. These enzymes aligned together in the sclerotia destruction by hyperparasitism. On the other hand, the pots trial revealed that spraying of isolate HZA84 reduced the drop disease symptoms of lettuce. The disease severity was decreased by 19.33 and the biocontrol efficiency was increased by 80.67% within the fourth week of inoculation. These findings magnify the unique role of Trichoderma in disrupting the development of plant diseases in sustainable ways.
Collapse
Affiliation(s)
- Ali Athafah Tomah
- Plant Protection, College of Agriculture, University of Misan, AL-Amarah, 62001, Iraq.
| | - Arif Ali Khattak
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | | | | | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Jambhulkar PP, Singh B, Raja M, Ismaiel A, Lakshman DK, Tomar M, Sharma P. Genetic diversity and antagonistic properties of Trichoderma strains from the crop rhizospheres in southern Rajasthan, India. Sci Rep 2024; 14:8610. [PMID: 38616195 PMCID: PMC11016547 DOI: 10.1038/s41598-024-58302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
There are fewer studies on Trichoderma diversity in agricultural fields. The rhizosphere of 16 crops was analyzed for Trichoderma species in 7 districts of Rajasthan state of India. Based on DNA sequence of translation elongation factor 1α (tef-1α), and morphological characteristics, 60 isolates were identified as 11 species: Trichoderma brevicompactum, species in Harzianum clade identified as T. afroharzianum, T. inhamatum, T. lentiforme, T. camerunense, T. asperellum, T. asperelloides, T. erinaceum, T. atroviride, T. ghanense, and T. longibrachiatum. T. brevicompactum is the most commonly occurring strain followed by T. afroharzianum. No new species were described in this study. T. lentiforme, showed its first occurrence outside the South American continent. The morphological and cultural characteristics of the major species were observed, described, and illustrated in detail. The isolates were tested for their antagonistic effect against three soilborne plant pathogens fungi: Sclerotium rolfsii, Rhizoctonia solani, and Fusarium verticillioides in plate culture assays. One of the most potent strains was T. afroharzianum BThr29 having a maximum in vitro inhibition of S. rolfsii (76.6%), R. solani (84.8%), and F. verticillioides (85.7%). The potential strain T. afroharzianum BThr29 was also found to be efficient antagonists against soil borne pathogens in in vivo experiment. Such information on crop selectivity, antagonistic properties, and geographic distribution of Trichoderma species will be beneficial for developing efficient Trichoderma-based biocontrol agents.
Collapse
Affiliation(s)
- Prashant P Jambhulkar
- Department of Plant Pathology, College of Agriculture, Rani Lakshmi Bai Central Agricultural University (RLBCAU), Jhansi, Uttar Pradesh, 284003, India.
- Agricultural Research Station, Banswara, Rajasthan, 327001, India.
| | - Bhumica Singh
- Agricultural Research Station, Banswara, Rajasthan, 327001, India
| | - M Raja
- Department of Plant Pathology, Sri Karan Narendra Agriculture University, Jobner-Jaipur, Rajasthan, 303328, India
| | - Adnan Ismaiel
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Dilip K Lakshman
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Maharishi Tomar
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Pratibha Sharma
- Department of Plant Pathology, Sri Karan Narendra Agriculture University, Jobner-Jaipur, Rajasthan, 303328, India
| |
Collapse
|
4
|
Lodi RS, Peng C, Dong X, Deng P, Peng L. Trichoderma hamatum and Its Benefits. J Fungi (Basel) 2023; 9:994. [PMID: 37888250 PMCID: PMC10607699 DOI: 10.3390/jof9100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Trichoderma hamatum (Bonord.) Bainier (T. hamatum) belongs to Hypocreaceae family, Trichoderma genus. Trichoderma spp. are prominently known for their biocontrol activities and plant growth promotion. Hence, T. hamatum also possess several beneficial activities, such as antimicrobial activity, antioxidant activity, insecticidal activity, herbicidal activity, and plant growth promotion; in addition, it holds several other beneficial properties, such as resistance to dichlorodiphenyltrichloroethane (DDT) and degradation of DDT by certain enzymes and production of certain polysaccharide-degrading enzymes. Hence, the current review discusses the beneficial properties of T. hamatum and describes the gaps that need to be further considered in future studies, such as T. hamatum's potentiality against human pathogens and, in contrast, its role as an opportunistic human pathogen. Moreover, there is a need for substantial study on its antiviral and antioxidant activities.
Collapse
Affiliation(s)
| | | | | | | | - Lizeng Peng
- Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (R.S.L.); (C.P.); (X.D.); (P.D.)
| |
Collapse
|
5
|
Giehl A, dos Santos AA, Cadamuro RD, Tadioto V, Guterres IZ, Prá Zuchi ID, Minussi GDA, Fongaro G, Silva IT, Alves SL. Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. PLANTS (BASEL, SWITZERLAND) 2023; 12:2688. [PMID: 37514302 PMCID: PMC10385130 DOI: 10.3390/plants12142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.
Collapse
Affiliation(s)
- Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Angela Alves dos Santos
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Viviani Tadioto
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Isabella Dai Prá Zuchi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Gabriel do Amaral Minussi
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Izabella Thais Silva
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Sergio Luiz Alves
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| |
Collapse
|
6
|
Winter HL, Flores-Bocanegra L, Cank KB, Crandall WJ, Rotich FC, Tillman MN, Todd DA, Graf TN, Raja HA, Pearce CJ, Oberlies NH, Cech NB. What was old is new again: Phenotypic screening of a unique fungal library yields pyridoxatin, a promising lead against extensively resistant Acinetobacter baumannii (AB5075). PHYTOCHEMISTRY LETTERS 2023; 55:88-96. [PMID: 37252254 PMCID: PMC10210987 DOI: 10.1016/j.phytol.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Due to the emergence of resistance, the World Health Organization considers Gram-negative pathogen Acinetobacter baumannii a top priority for therapeutic development. Using this priority pathogen and a phenotypic, agar plate-based assay, a unique library of extracts from 2,500 diverse fungi was screened for antimicrobial activity against a highly virulent, drug-resistant strain of A. baumannii (AB5075). The most potent hit from this screen was an extract from the fungus Tolypocladium sp., which was found to produce pyridoxatin. Another active extract from the fungi Trichoderma deliquescens was characterized and yielded trichokonin VII and trichokonin VIII. Evaluation of pyridoxatin against A. baumannii (AB5075) in a broth microdilution assay revealed a minimum inhibitory concentration (MIC) of 38 μM, compared to the known antibiotic levofloxacin with MIC of 28 μM. Mass spectrometry, Marfey's analysis and nuclear magnetic resonance spectroscopy analyses confirmed the structures of trichokonins VII and VIII to be consistent with previous reports. In an in vivo Galleria mellonella model, pyridoxatin tested at 150 mg/kg exhibited minimal toxicity (90% survival) and promising antimicrobial efficacy (50% survival) after 5 days. Trichokonins VII and VIII tested at 150 mg/kg were toxic to G. mellonella, with 20% survival and 40% survival after 5 days, respectively. The findings of this project suggest that pyridoxatin may serve as a lead compound for the development of antimicrobials against A. baumannii. They also demonstrate the value of the phenotypic screening approach employed herein.
Collapse
Affiliation(s)
- Heather L. Winter
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kristóf B. Cank
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - William J. Crandall
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Fridah C. Rotich
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Madeline N. Tillman
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
7
|
Nascimento Brito V, Lana Alves J, Sírio Araújo K, de Souza Leite T, Borges de Queiroz C, Liparini Pereira O, de Queiroz MV. Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front Microbiol 2023; 14:1095199. [PMID: 37143529 PMCID: PMC10151590 DOI: 10.3389/fmicb.2023.1095199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Fungi belonging to the genus Trichoderma have been widely recognized as efficient controllers of plant diseases. Although the majority of isolates currently deployed, thus far, have been isolated from soil, endophytic Trichoderma spp. is considered to be a promising option for application in biocontrol. In this study, 30 endophytic Trichoderma isolates-obtained from the leaves, stems, and roots of wild Hevea spp. in the Brazilian Amazon-were analyzed using specific DNA barcodes: sequences of internal transcribed spacers 1 and 2 of rDNA (ITS region), genes encoding translation elongation factor 1-α (TEF1-α), and the second largest subunit of RNA polymerase II (RPB2). The genealogical concordance phylogenetic species recognition (GCPSR) concept was used for species delimitation. A phylogenetic analysis showed the occurrence of Trichoderma species, such as T. erinaceum, T. ovalisporum, T. koningiopsis, T. sparsum, T. lentiforme, T. virens, and T. spirale. Molecular and morphological features resulted in the discovery of four new species, such as T. acreanum sp. nov., T. ararianum sp. nov., T. heveae sp. nov., and T. brasiliensis sp. nov. The BI and ML analyses shared a similar topology, providing high support to the final trees. The phylograms show three distinct subclades, namely, T. acreanum and T. ararianum being paraphyletic with T. koningiopsis; T. heveae with T. subviride; and T. brasiliensis with T. brevicompactum. This study adds to our knowledge of the diversity of endophytic Trichoderma species in Neotropical forests and reveals new potential biocontrol agents for the management of plant diseases.
Collapse
Affiliation(s)
| | - Janaina Lana Alves
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Kaliane Sírio Araújo
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tiago de Souza Leite
- Instituto Federal do Sudeste de Minas Gerais—Campus Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Casley Borges de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia Agrícola, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
8
|
Guzmán-Guzmán P, Kumar A, de los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030432. [PMID: 36771517 PMCID: PMC9921048 DOI: 10.3390/plants12030432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 06/02/2023]
Abstract
Biocontrol agents (BCA) have been an important tool in agriculture to prevent crop losses due to plant pathogens infections and to increase plant food production globally, diminishing the necessity for chemical pesticides and fertilizers and offering a more sustainable and environmentally friendly option. Fungi from the genus Trichoderma are among the most used and studied microorganisms as BCA due to the variety of biocontrol traits, such as parasitism, antibiosis, secondary metabolites (SM) production, and plant defense system induction. Several Trichoderma species are well-known mycoparasites. However, some of those species can antagonize other organisms such as nematodes and plant pests, making this fungus a very versatile BCA. Trichoderma has been used in agriculture as part of innovative bioformulations, either just Trichoderma species or in combination with other plant-beneficial microbes, such as plant growth-promoting bacteria (PGPB). Here, we review the most recent literature regarding the biocontrol studies about six of the most used Trichoderma species, T. atroviride, T. harzianum, T. asperellum, T. virens, T. longibrachiatum, and T. viride, highlighting their biocontrol traits and the use of these fungal genera in Trichoderma-based formulations to control or prevent plant diseases, and their importance as a substitute for chemical pesticides and fertilizers.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Ajay Kumar
- Department of Postharvest Science, ARO, Volcani Center, Bet Dagan 50250, Israel
| | | | - Fannie I. Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ciudad Obregón 85000, Mexico
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Sajjad Hyder
- Department of Botany, Government College Women University Sialkot, Sialkot 51310, Pakistan
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| |
Collapse
|
9
|
Tang GT, Li Y, Zhou Y, Zhu YH, Zheng XJ, Chang XL, Zhang SR, Gong GS. Diversity of Trichoderma species associated with soil in the Zoige alpine wetland of Southwest China. Sci Rep 2022; 12:21709. [PMID: 36522367 PMCID: PMC9755243 DOI: 10.1038/s41598-022-25223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The ecology of soil fungi is poorly understood, and recent comprehensive reports on Trichoderma are unavailable for any region, including the Zoige alpine wetland ecological region in China. One hundred soil samples were collected from different soil types and soil layers in Zoige alpine wetland ecological regions. Using the traditional suspension plating method, 80 Trichoderma strains were chosen to analyze species diversity. After a preliminary classification of morphological characteristics and the genes glyceraldehyde-3-phosphate dehydrogenase (gpd), 57 representative strains were selected and eventually identified as seven species via phylogenetic analyses of multilocus sequences based on the genes transcription elongation factor 1 alpha (tef1), encoding RNA polymerase II subunit B (rpb2) and ATP citrate lyase (acl1). Among them, T. harzianum was the dominant species isolated from five soil layers and four soil types, and had the highest isolation frequency (23%) in this zone, while T. polysporum and T. pyramidale were rare species, with isolation frequencies of less than 1%. Our detailed morphological observation and molecular phylogenetic analyses support the recognition of Trichoderma zoigense was described for the first time as a new species, while T. atrobrunneum as a new record for China was found. Our results will be used as a reference for a greater understanding of soil microbial resources, ecological rehabilitation and reconstructions in the Zoige alpine wetland.
Collapse
Affiliation(s)
- Gui-Ting Tang
- grid.80510.3c0000 0001 0185 3134College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China ,grid.506923.b0000 0004 1808 3190Southeast Chongqing Academy of Agricultural Sciences, Fuling, 408099 China
| | - Ying Li
- grid.80510.3c0000 0001 0185 3134College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - You Zhou
- grid.453499.60000 0000 9835 1415Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| | - Yu-Hang Zhu
- grid.80510.3c0000 0001 0185 3134College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiao-Juan Zheng
- grid.80510.3c0000 0001 0185 3134College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiao-Li Chang
- grid.80510.3c0000 0001 0185 3134College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shi-Rong Zhang
- grid.80510.3c0000 0001 0185 3134College of Environment, Sichuan Agricultural University, Chengdu, 611130 China
| | - Guo-Shu Gong
- grid.80510.3c0000 0001 0185 3134College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
10
|
Szczepkowski A, Gierczyk B, Kujawa A, Ślusarczyk T. Contribution to the Knowledge of Fungi of the Kampinos National Park (Central Poland): Part 6 – With Particular Emphasis on the Species Occurring on Windthrown Areas. ACTA MYCOLOGICA 2022. [DOI: 10.5586/am.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract
We identified 17 species of fungi that are new to Kampinos National Park. Sixteen were found during surveys of areas damaged by a strong wind in 2017. The remaining species was found outside the windthrow area. Descriptions of four species new to Poland (
Cortinarius subcompar
,
Hyaloscypha quercicola
,
Hypocrea tremelloides
, and
Trechispora
aff.
invisitata
) are also provided. The current number of macromycetes taxa identified in Kampinos National Park is 1,654.
Collapse
|
11
|
Cardoza RE, Mayo-Prieto S, Martínez-Reyes N, McCormick SP, Carro-Huerga G, Campelo MP, Rodríguez-González Á, Lorenzana A, Proctor RH, Casquero PA, Gutiérrez S. Effects of trichothecene production by Trichoderma arundinaceum isolates from bean-field soils on the defense response, growth and development of bean plants ( Phaseolus vulgaris). FRONTIERS IN PLANT SCIENCE 2022; 13:1005906. [PMID: 36452093 PMCID: PMC9702529 DOI: 10.3389/fpls.2022.1005906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
The trichothecene toxin-producing fungus Trichoderma arundinaceum has potential as a biological control agent. However, most biocontrol studies have focused only on one strain, IBT 40837. In the current study, three Trichoderma isolates recovered from bean-field soils produced the trichothecene harzianum A (HA) and trichodermol, the latter being an intermediate in the HA biosynthesis. Based on phylogenetic analysis, the three isolates were assigned to the species T. arundinaceum. Their genome sequences had a high degree of similarity to the reference IBT 40837 strain, in terms of total genome size, number of predicted genes, and diversity of putative secondary metabolite biosynthetic gene clusters. HA production by these bean-field isolates conferred significant in vitro antifungal activity against Rhizoctonia solani and Sclerotinia sclerotiorum, which are some of the most important bean pathogens. Furthermore, the bean-field isolates stimulated germination of bean seeds and subsequent growth of above ground parts of the bean plant. Transcriptomic analysis of bean plants inoculated with these T. arundinaceum bean-field soil isolates indicated that HA production significantly affected expression of plant defense-related genes; this effect was particularly significant in the expression of chitinase-encoding genes. Together, these results indicate that Trichoderma species producing non-phytotoxic trichothecenes can induce defenses in plants without negatively affecting germination and development.
Collapse
Affiliation(s)
- Rosa E. Cardoza
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| | - Sara Mayo-Prieto
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Natalia Martínez-Reyes
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utiization Research, Agriculture Research Service, U.S. Department of Agriculture, Peoria, IL, United States
| | - Guzmán Carro-Huerga
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - M. Piedad Campelo
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Álvaro Rodríguez-González
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Alicia Lorenzana
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utiization Research, Agriculture Research Service, U.S. Department of Agriculture, Peoria, IL, United States
| | - Pedro A. Casquero
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Santiago Gutiérrez
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| |
Collapse
|
12
|
Biocontrol of Phytophthora xcambivora on Castanea sativa: Selection of Local Trichoderma spp. Isolates for the Management of Ink Disease. FORESTS 2022. [DOI: 10.3390/f13071065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Ink disease is a devastating disease of chestnut (Castanea sativa) worldwide, caused by Phytophthora species. The only management measures of this disease are chemical and agronomic interventions. This work focuses on the evaluation of the in vitro antagonistic capacity of 20 isolates of Trichoderma spp. selected in a diseased chestnut orchard in Tuscan Apennines (San Godenzo, Italy) for the biocontrol of Phytophthora xcambivora. Each Trichoderma isolate was tested to investigate pathogen inhibition capability by antagonism in dual cultures and antibiosis by secondary metabolites production (diffusible and Volatile Organic Compounds). The six most performing isolates of Trichoderma spp. were further assessed for their aptitude to synthesize chitinase, glucanase and cellulase, and to act as mycoparasite. All six selected isolates displayed the capability to control the pathogen in vitro by synergistically coupling antibiosis and mycoparasitism at different levels regardless of the species they belong to, but rather, in relation to specific features of the single genotypes. In particular, T. hamatum SG18 and T. koningiopsis SG6 displayed the most promising results in pathogen inhibition, thus further investigations are needed to confirm their in vivo efficacy.
Collapse
|
13
|
Phylogenetic Analysis of Trichoderma Species Associated with Green Mold Disease on Mushrooms and Two New Pathogens on Ganoderma sichuanense. J Fungi (Basel) 2022; 8:jof8070704. [PMID: 35887460 PMCID: PMC9318549 DOI: 10.3390/jof8070704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Edible and medicinal mushrooms are extensively cultivated and commercially consumed around the world. However, green mold disease (causal agent, Trichoderma spp.) has resulted in severe crop losses on mushroom farms worldwide in recent years and has become an obstacle to the development of the Ganoderma industry in China. In this study, a new species and a new fungal pathogen on Ganoderma sichuanense fruitbodies were identified based on the morphological characteristics and phylogenetic analysis of two genes, the translation elongation factor 1-α (TEF1) and the second-largest subunit of RNA polymerase II (RPB2) genes. The new species, Trichoderma ganodermatigerum sp. nov., belongs to the Harzianum clade, and the new fungal pathogen was identified as Trichoderma koningiopsis. Furthermore, in order to better understand the interaction between Trichoderma and mushrooms, as well as the potential biocontrol value of pathogenic Trichoderma, we summarized the Trichoderma species and their mushroom hosts as best as possible, and the phylogenetic relationships within mushroom pathogenic Trichoderma species were discussed.
Collapse
|
14
|
Zhang GZ, Yang HT, Zhang XJ, Zhou FY, Wu XQ, Xie XY, Zhao XY, Zhou HZ. Five new species of Trichoderma from moist soils in China. MycoKeys 2022; 87:133-157. [PMID: 35221753 PMCID: PMC8873192 DOI: 10.3897/mycokeys.87.76085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
Trichoderma isolates were collected from moist soils near a water source in different areas of China. ITS sequences were submitted to MIST (Multiloci Identification System for Trichoderma) and meets the Trichoderma [ITS76] standard. Combined analyses of phylogenetic analyses of both phylograms (tef1-α and rpb2) and morphological characteristics, revealed five new species of Trichoderma, namely Trichoderma hailarense, T. macrofasciculatum, T. nordicum, T. shangrilaense and T. vadicola. Phylogenetic analyses showed T. macrofasciculatum and T. shangrilaense belong to the Polysporum clade, T. hailarense, while T. nordicum and T. vadicola belong to the Viride clade. Each new taxon formed a distinct clade in phylogenetic analysis and have unique sequences of tef1-α and rpb2 that meet the Trichoderma new species standard. The conidiation of T. macrofasciculatum typically appeared in white pustules in concentric rings on PDA or MEA and its conidia had one or few distinctly verrucose. Conidiophores of T. shangrilaense are short and rarely branched, phialides usually curved and irregularly disposed. The aerial mycelium of T. hailarense and T. vadicola formed strands to floccose mat, conidiation tardy and scattered in tufts, conidiophores repeatedly rebranching in dendriform structure. The phialides of T. nordicum lageniform are curved on PDA and its conidia are globose to obovoidal and large.
Collapse
|
15
|
Dou K, Pang G, Cai F, Chenthamara K, Zhang J, Liu H, Druzhinina IS, Chen J. Functional Genetics of Trichoderma Mycoparasitism. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Cai F, Dou K, Wang P, Chenthamara K, Chen J, Druzhinina IS. The Current State of Trichoderma Taxonomy and Species Identification. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Trichoderma Green Mould Disease of Cultivated Mushrooms. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Cai F, Zhao Z, Gao R, Chen P, Ding M, Jiang S, Fu Z, Xu P, Chenthamara K, Shen Q, Bayram Akcapinar G, Druzhinina IS. The pleiotropic functions of intracellular hydrophobins in aerial hyphae and fungal spores. PLoS Genet 2021; 17:e1009924. [PMID: 34788288 PMCID: PMC8635391 DOI: 10.1371/journal.pgen.1009924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/01/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Peijie Chen
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
| | - Zhifei Fu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Pingyong Xu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- * E-mail: (QS); (ISD)
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irina S. Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- * E-mail: (QS); (ISD)
| |
Collapse
|
19
|
Barrera VA, Iannone L, Romero AI, Chaverri P. Expanding the Trichoderma harzianum species complex: Three new species from Argentine natural and cultivated ecosystems. Mycologia 2021; 113:1136-1155. [PMID: 34473608 DOI: 10.1080/00275514.2021.1947641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A study was performed on a collection of 84 isolates from decaying plant tissues and soils in Argentina previously identified as Trichoderma harzianum. Based on multiple phenotypic characters and multilocus phylogenetic analyses, 10 species were distinguished, three of which are described as new species: T. austroindianum, T. hortense, and T. syagri. Among the remaining seven identified species, the following five can be added to the Argentine mycobiota: T. afarasin, T. afroharzianum, T. endophyticum, T. guizhouense, and T. neotropicale. Trichoderma afroharzianum and T. endophyticum were the most frequent species found in the samples. In addition, a collection of isolates previously identified as T. harzianum with antagonistic abilities were reidentified as T. afroharzianum, thus highlighting the importance of correct identification of biocontrol species.
Collapse
Affiliation(s)
- Viviana A Barrera
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, N. Repetto y De los Reseros, CC25 (1712), Castelar, Buenos Aires, Argentina
| | - Leopoldo Iannone
- Instituto de Micología y Botánica-Consejo Nacional de Investigaciones Científicas y Técnicas (INMIBO-CONICET), Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Int. Güiraldes 2620, Buenos Aires C1428EHA, Argentina
| | - Andrea Irene Romero
- Instituto de Micología y Botánica-Consejo Nacional de Investigaciones Científicas y Técnicas (INMIBO-CONICET), Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Int. Güiraldes 2620, Buenos Aires C1428EHA, Argentina
| | - Priscila Chaverri
- Escuela de Biología and Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San Pedro, San José, Costa Rica.,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
20
|
Bustamante DE, Calderon MS, Leiva S, Mendoza JE, Arce M, Oliva M. Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia 2021; 113:1056-1072. [PMID: 34128770 DOI: 10.1080/00275514.2021.1917243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The hyperdiverse genus Trichoderma is one of most useful groups of microbes for a number of human activities, and their accurate identification is crucial. The structural simplicity and lack of distinctive phenotypic variation in this group enable the use of DNA-based species delimitation methods in combination with phylogenies (and morphology when feasible) to establish well-supported boundaries among species. Our study employed a multilocus phylogeny and four DNA-based methods (automated barcode gap discovery [ABGD], statistical parsimony [SPN], generalized mixed Yule coalescent [GMYC], and Bayesian phylogenetics and phylogeography [BPP]) for four molecular markers (acl1, act, rpb2, and tef1) to delimit species of two lineages of Trichoderma. Although incongruence among these methods was observed in our analyses, the genetic distance (ABGD) and coalescence (BPP) methods and the multilocus phylogeny strongly supported and confirmed recognition of 108 and 39 different species in the Harzianum and Longibrachiatum lineages, including three new species associated with cacao farms in northern Peru, namely, T.awajun, sp. nov., T. jaklitschii, sp. nov., and T. peruvianum, sp. nov. Morphological distinctions between the new species and their close relatives are primarily related to growth rates, colony appearance, and size of phialides and conidia. This study confirmed that an integrative approach (DNA-based methods, multilocus phylogeny, and phenotype) is more likely to reliably verify supported species boundaries in Trichoderma.
Collapse
Affiliation(s)
- Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.,Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.,Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Santos Leiva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Jani E Mendoza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Marielita Arce
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Manuel Oliva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| |
Collapse
|
21
|
Zheng H, Qiao M, Lv Y, Du X, Zhang KQ, Yu Z. New Species of Trichoderma Isolated as Endophytes and Saprobes from Southwest China. J Fungi (Basel) 2021; 7:jof7060467. [PMID: 34207925 PMCID: PMC8230185 DOI: 10.3390/jof7060467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023] Open
Abstract
During the investigation of endophytic fungi diversity in aquatic plants and the fungal diversity in soil in southwest China, we obtained 208 isolates belonging to Trichoderma, including 28 isolates as endophytes from aquatic plants and 180 isolates as saprobes from soil, respectively. Finally, 23 new species of Trichoderma are recognized by further studies. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha (tef1) and gene encoding of the second largest nuclear RNA polymerase subunit (rpb2). The results revealed that the 23 new species are distributed in nine known clades. The morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives were compared and discussed. These include: Trichoderma achlamydosporum, T. amoenum, T. anaharzianum, T. anisohamatum, T. aquatica, T. asiaticum, T. asymmetricum, T. inaequilaterale, T. inconspicuum, T. insigne, T. obovatum, T. paraviride, T. pluripenicillatum, T. propepolypori, T. pseudoasiaticum, T. pseudoasperelloides, T. scorpioideum, T. simile, T. subazureum, T. subuliforme, T. supraverticillatum, T. tibetica, and T. uncinatum.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Min Qiao
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
| | - Yifan Lv
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- Correspondence:
| |
Collapse
|
22
|
Del Carmen H Rodríguez M, Evans HC, de Abreu LM, de Macedo DM, Ndacnou MK, Bekele KB, Barreto RW. New species and records of Trichoderma isolated as mycoparasites and endophytes from cultivated and wild coffee in Africa. Sci Rep 2021; 11:5671. [PMID: 33707461 PMCID: PMC7952591 DOI: 10.1038/s41598-021-84111-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/04/2021] [Indexed: 01/23/2023] Open
Abstract
A survey for species of the genus Trichoderma occurring as endophytes of Coffea, and as mycoparasites of coffee rusts (Hemileia), was undertaken in Africa; concentrating on Cameroon and Ethiopia. Ninety-four isolates of Trichoderma were obtained during this study: 76 as endophytes of healthy leaves, stems and berries and, 18 directly from colonized rust pustules. A phylogenetic analysis of all isolates used a combination of three genes: translation elongation factor-1α (tef1), rpb2 and cal for selected isolates. GCPSR criteria were used for the recognition of species; supported by morphological and cultural characters. The results reveal a previously unrecorded diversity of Trichoderma species endophytic in both wild and cultivated Coffea, and mycoparasitic on Hemileia rusts. Sixteen species were delimited, including four novel taxa which are described herein: T. botryosum, T. caeruloviride, T. lentissimum and T. pseudopyramidale. Two of these new species, T. botryosum and T. pseudopyramidale, constituted over 60% of the total isolations, predominantly from wild C. arabica in Ethiopian cloud forest. In sharp contrast, not a single isolate of Trichoderma was obtained using the same isolation protocol during a survey of coffee in four Brazilian states, suggesting the existence of a 'Trichoderma void' in the endophyte mycobiota of coffee outside of Africa. The potential use of these African Trichoderma isolates in classical biological control, either as endophytic bodyguards-to protect coffee plants from Hemileia vastatrix, the fungus causing coffee leaf rust (CLR)-or to reduce its impact through mycoparasitism, is discussed, with reference to the on-going CLR crisis in Central America.
Collapse
Affiliation(s)
| | - Harry C Evans
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
- CAB International, Bakeham Lane, Egham, Surrey, TW20 9TY, UK.
| | - Lucas M de Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Davi M de Macedo
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Miraine K Ndacnou
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- IRAD-Institut de Recheche Agricole pour le Developpement, BP 2067, Yaoundé, Cameroon
| | - Kifle B Bekele
- Department of Horticulture and Plant Science, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 397, Jimma, Ethiopia
- Ethiopian Institute of Agriculture Research, P.O. Box 192, Jimma, Ethiopia
| | - Robert W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
23
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
24
|
Hinterdobler W, Li G, Spiegel K, Basyouni-Khamis S, Gorfer M, Schmoll M. Trichoderma reesei Isolated From Austrian Soil With High Potential for Biotechnological Application. Front Microbiol 2021; 12:552301. [PMID: 33584603 PMCID: PMC7876326 DOI: 10.3389/fmicb.2021.552301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Fungi of the genus Trichoderma are of high importance for biotechnological applications, in biocontrol and for production of homologous and heterologous proteins. However, sexual crossing under laboratory conditions has so far only been achieved with the species Trichoderma reesei, which was so far only isolated from tropical regions. Our isolation efforts aimed at the collection of Trichoderma strains from Austrian soils surprisingly also yielded 12 strains of the species T. reesei, which was previously not known to occur in Europe. Their identity was confirmed with tef1- and rpb2-sequencing and phylogenetic analysis. They could clearly be distinguished from tropical strains including the common laboratory wildtypes by UP-PCR and genetic variations adjacent to the mating type locus. The strains readily mated with reference strains derived from CBS999.97. Secreted cellulase and xylanase levels of these isolates were up to six-fold higher than those of QM6a indicating a high potential for strain improvement. The strains showed different responses to injury in terms of induction of sporulation, but a correlation to alterations in the nox1-gene sequence was not detected. Several synonymous SNPs were found in the sequence of the regulator gene noxR of the soil isolates compared to QM6a. Only in one strain, non-synonymous SNPs were found which impact a PEST sequence of NoxR, suggesting altered protein stability. The availability of sexually fertile strains from middle Europe naturally producing decent amounts of plant cell wall degrading enzymes opens up novel perspectives for non-GMO strain improvement and biological pretreatment of plant biomass for bioethanol production. Moreover, the varied response of these strains to injury in terms of sporulation, which is independent of Nox1 and NoxR suggests that additional regulators impact this phenomenon in T. reesei.
Collapse
Affiliation(s)
- Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Guofen Li
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Katharina Spiegel
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Samira Basyouni-Khamis
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria.,Department of Sustainable Agricultural Systems, Institute of Agricultural Engineering, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Markus Gorfer
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
25
|
Ecological Genomics and Evolution of Trichoderma reesei. Methods Mol Biol 2021; 2234:1-21. [PMID: 33165775 DOI: 10.1007/978-1-0716-1048-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) is an efficient industrial cell factory for the production of cellulolytic enzymes used for biofuel and other applications. Therefore, researches addressing T. reesei are relatively advanced compared to other Trichoderma spp. because of the significant bulk of available knowledge, multiple genomic data, and gene manipulation techniques. However, the established role of T. reesei in industry has resulted in a frequently biased understanding of the biology of this fungus. Thus, the recent studies unexpectedly show that the superior cellulolytic activity of T. reesei and other Trichoderma species evolved due to multiple lateral gene transfer events, while the innate ability to parasitize other fungi (mycoparasitism) was maintained in the genus, including T. reesei. In this chapter, we will follow the concept of ecological genomics and describe the ecology, distribution, and evolution of T. reesei, as well as critically discuss several common misconceptions that originate from the success of this species in applied sciences and industry.
Collapse
|
26
|
Cai F, Gao R, Zhao Z, Ding M, Jiang S, Yagtu C, Zhu H, Zhang J, Ebner T, Mayrhofer-Reinhartshuber M, Kainz P, Chenthamara K, Akcapinar GB, Shen Q, Druzhinina IS. Evolutionary compromises in fungal fitness: hydrophobins can hinder the adverse dispersal of conidiospores and challenge their survival. THE ISME JOURNAL 2020; 14:2610-2624. [PMID: 32632264 PMCID: PMC7490268 DOI: 10.1038/s41396-020-0709-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Fungal evolutionary biology is impeded by the scarcity of fossils, irregular life cycles, immortality, and frequent asexual reproduction. Simple and diminutive bodies of fungi develop inside a substrate and have exceptional metabolic and ecological plasticity, which hinders species delimitation. However, the unique fungal traits can shed light on evolutionary forces that shape the environmental adaptations of these taxa. Higher filamentous fungi that disperse through aerial spores produce amphiphilic and highly surface-active proteins called hydrophobins (HFBs), which coat spores and mediate environmental interactions. We exploited a library of HFB-deficient mutants for two cryptic species of mycoparasitic and saprotrophic fungi from the genus Trichoderma (Hypocreales) and estimated fungal development, reproductive potential, and stress resistance. HFB4 and HFB10 were found to be relevant for Trichoderma fitness because they could impact the spore-mediated dispersal processes and control other fitness traits. An analysis in silico revealed purifying selection for all cases except for HFB4 from T. harzianum, which evolved under strong positive selection pressure. Interestingly, the deletion of the hfb4 gene in T. harzianum considerably increased its fitness-related traits. Conversely, the deletion of hfb4 in T. guizhouense led to the characteristic phenotypes associated with relatively low fitness. The net contribution of the hfb4 gene to fitness was found to result from evolutionary tradeoffs between individual traits. Our analysis of HFB-dependent fitness traits has provided an evolutionary snapshot of the selective pressures and speciation process in closely related fungal species.
Collapse
Affiliation(s)
- Feng Cai
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Renwei Gao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Zheng Zhao
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Mingyue Ding
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Siqi Jiang
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Civan Yagtu
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Hong Zhu
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | - Jian Zhang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China
| | | | | | | | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
| | - Günseli Bayram Akcapinar
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Irina S Druzhinina
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China.
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, A1060, Vienna, Austria.
| |
Collapse
|
27
|
MIST: a Multilocus Identification System for Trichoderma. Appl Environ Microbiol 2020; 86:AEM.01532-20. [PMID: 32680870 DOI: 10.1128/aem.01532-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Due to the rapid expansion in microbial taxonomy, precise identification of common industrially and agriculturally relevant fungi such as Trichoderma species is challenging. In this study, we introduce the online multilocus identification system (MIST) for automated detection of 349 Trichoderma species based on a set of three DNA barcodes. MIST is based on the reference databases of validated sequences of three commonly used phylogenetic markers collected from public databases. The databases consist of 414 complete sequences of the nuclear rRNA internal transcribed spacers (ITS) 1 and 2, 583 sequence fragments of the gene encoding translation elongation factor 1-alpha (tef1), and 534 sequence fragments of the gene encoding RNA polymerase subunit 2 (rpb2). Through MIST, information from different DNA barcodes can be combined and the identification of Trichoderma species can be achieved based on the integrated parametric sequence similarity search (blastn) performed in the manner of a decision tree classifier. In the verification process, MIST provided correct identification for 44 Trichoderma species based on DNA barcodes consisting of tef1 and rpb2 markers. Thus, MIST can be used to obtain an automated species identification as well as to retrieve sequences required for manual identification by means of phylogenetic analysis.IMPORTANCE The genus Trichoderma is important to humankind, with a wide range of applications in industry, agriculture, and bioremediation. Thus, quick and accurate identification of Trichoderma species is paramount, since it is usually the first step in Trichoderma-based research. However, it frequently becomes a limitation, especially for researchers who lack taxonomic knowledge of fungi. Moreover, as the number of Trichoderma-based studies has increased, a growing number of unidentified sequences have been stored in public databases, which has made the species identification more ambiguous. In this study, we provide an easy-to-use tool, MIST, for automated species identification, a list of Trichoderma species, and corresponding sequences of reference DNA barcodes. Therefore, this study will facilitate the research on the biodiversity and applications of the genus Trichoderma.
Collapse
|
28
|
Gierczyk B, Kujawa A. Contribution to the Knowledge of Mycobiota of the Wielkopolski National Park (W Poland). ACTA MYCOLOGICA 2020. [DOI: 10.5586/am.5515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The Wielkopolski National Park is located in western Poland, near Poznań City. Its unique postglacial landforms are covered with various (semi)natural and anthropogenic ecosystems. The mycobiota of this Park has been studied for 90 years; however, current state knowledge is still insufficient. In 2018, a few-year- long project on the chorology, richness, and diversity of fungal biota of this area was started. In the first year, 312 taxa of macromycetes were found. Among them, 140 taxa were new for the biota of the Wielkopolski National Park. Five species (<em>Botryobasidium robustius</em>, <em>Hebeloma subtortum</em>, <em>Leccinum brunneogriseolum</em>, <em>Pachyella violaceonigra</em>, and <em>Sistotrema athelioides</em>) were new for Poland, and 26 taxa were new for the Wielkopolska region.
Collapse
|
29
|
Baturo-Cieśniewska A, Pusz W, Patejuk K. Problems, Limitations, and Challenges in Species Identification of Ascomycota Members on the Basis of ITS Regions. ACTA MYCOLOGICA 2020. [DOI: 10.5586/am.5512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The internal transcribed spacer (ITS) region is regarded as a formal fungal primary barcode with a high probability of the correct identification for a broad group of fungi. ITS sequences have been widely used to determine many fungal species and analysis of rDNA ITS is still one of the most popular tools used in mycology. However, this region is not equally variable in all groups of fungi; therefore, identification may be problematic and result in ambiguous data, especially in some species-rich genera of Ascomycota. For these reasons, identification based on rDNA ITS is usually complemented by morphological observations and analysis of additional genes. Reliable species identification of Ascomycota members is essential in diagnosing plant diseases, verifying air quality and the effectiveness of agronomic practices, or analyzing relationships between microorganisms. Therefore, the present study aimed to verify, using specific examples, the extent to which ITS sequence analysis is useful in species identification of pathogens and saprobionts from Ascomycota and demonstrate problems related to such identification in practice. We analyzed 105 ITS sequences of isolates originating from air and plant material. Basic local alignment search tool (BLASTn) significantly contributed to the reliable species identification of nearly 80% of isolates such as <em>Arthrinium arundinis</em>, <em>Beauveria bassiana</em>, <em>Boeremia exigua</em>, <em>Cladosporium cladosporioides</em>, <em>Epicoccum nigrum</em>, <em>Nigrospora oryzae</em>, <em>Sclerotinia sclerotiorum</em>, or <em>Sordaria fimicola </em>and members of the genera <em>Alternaria </em>and <em>Trichoderma</em>. However, for most isolates, additional morphological observations, information regarding the isolate origin and, where possible, a PCR with species-specific primers were helpful and complementary. Using our practical approach, we determined that ITS-based species identification and comparative analysis with GenBank sequences significantly helps identifying Ascomycota members. However, in many cases, this should be regarded as suggestive of a taxon because the data usually require the use of additional tools to verify the results of such analysis.
Collapse
|
30
|
Diversity of Trichoderma spp. in Marine Environments and Their Biological Potential for Sustainable Industrial Applications. SUSTAINABILITY 2020. [DOI: 10.3390/su12104327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms are regarded as a sustainable source of biologically active molecules. Among them, Trichoderma spp. have been an attractive source of biological compounds. However, the study of marine-derived Trichoderma has developed slowly because of the difficulty in isolating the fungi. In our study, 30 strains of marine-derived Trichoderma were identified through the translation elongation factor 1-alpha (EF1α) sequences, and their biological activities, such as antioxidant activity by ABTS and DPPH assays, antifungal activity against Asteromyces cruciatus and Lindra thalassiae, and tyrosinase inhibition activity, were investigated. As a result, the 30 marine Trichoderma species were classified into 21 taxa, including three new species candidates. Three strains of T. asperellum showed the highest ABTS radical scavenging activity and antifungal activity. T. bissettii SFC20170821-M05 and T. guizhouense SFC20180619-M23 showed notable DPPH radical scavenging activity and tyrosinase inhibition activity, respectively. This study showed the potential of marine-derived Trichoderma as a source of bioactive compounds.
Collapse
|
31
|
Towards the Biological Control of Devastating Forest Pathogens from the Genus Armillaria. FORESTS 2019. [DOI: 10.3390/f10111013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research Highlights: A large scale effort to screen, characterize, and select Trichoderma strains with the potential to antagonize Armillaria species revealed promising candidates for field applications. Background and Objectives: Armillaria species are among the economically most relevant soilborne tree pathogens causing devastating root diseases worldwide. Biocontrol agents are environment-friendly alternatives to chemicals in restraining the spread of Armillaria in forest soils. Trichoderma species may efficiently employ diverse antagonistic mechanisms against fungal plant pathogens. The aim of this paper is to isolate indigenous Trichoderma strains from healthy and Armillaria-damaged forests, characterize them, screen their biocontrol properties, and test selected strains under field conditions. Materials and Methods: Armillaria and Trichoderma isolates were collected from soil samples of a damaged Hungarian oak and healthy Austrian spruce forests and identified to the species level. In vitro antagonism experiments were performed to determine the potential of the Trichoderma isolates to control Armillaria species. Selected biocontrol candidates were screened for extracellular enzyme production and plant growth-promoting traits. A field experiment was carried out by applying two selected Trichoderma strains on two-year-old European Turkey oak seedlings planted in a forest area heavily overtaken by the rhizomorphs of numerous Armillaria colonies. Results: Although A. cepistipes and A. ostoyae were found in the Austrian spruce forests, A. mellea and A. gallica clones dominated the Hungarian oak stand. A total of 64 Trichoderma isolates belonging to 14 species were recovered. Several Trichoderma strains exhibited in vitro antagonistic abilities towards Armillaria species and produced siderophores and indole-3-acetic acid. Oak seedlings treated with T. virens and T. atrobrunneum displayed better survival under harsh soil conditions than the untreated controls. Conclusions: Selected native Trichoderma strains, associated with Armillaria rhizomorphs, which may also have plant growth promoting properties, are potential antagonists of Armillaria spp., and such abilities can be exploited in the biological control of Armillaria root rot.
Collapse
|
32
|
Zeng ZQ, Zhuang WY. Two New Species and a New Chinese Record of Hypocreaceae as Evidenced by Morphological and Molecular Data. MYCOBIOLOGY 2019; 47:280-291. [PMID: 31565464 PMCID: PMC6758621 DOI: 10.1080/12298093.2019.1641062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
To explore species diversity of Hypocreaceae, collections from Guangdong, Hubei, and Tibet of China were examined and two new species and a new Chinese record were discovered. Morphological characteristics and DNA sequence analyses of the ITS, LSU, EF-1α, and RPB2 regions support their placements in Hypocreaceae and the establishments of the new species. Hypomyces hubeiensis sp. nov. is characterized by occurrence on fruitbody of Agaricus sp., concentric rings formed on MEA medium, verticillium-like conidiophores, subulate phialides, rod-shaped to narrowly ellipsoidal conidia, and absence of chlamydospores. Trichoderma subiculoides sp. nov. is distinguished by effuse to confluent rudimentary stromata lacking of a well-developed flank and not changing color in KOH, subcylindrical asci containing eight ascospores that disarticulate into 16 dimorphic part-ascospores, verticillium-like conidiophores, subcylindrical phialides, and subellipsoidal to rod-shaped conidia. Morphological distinctions between the new species and their close relatives are discussed. Hypomyces orthosporus is found for the first time from China.
Collapse
Affiliation(s)
- Zhao Qing Zeng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Wen Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
33
|
Dou K, Gao J, Zhang C, Yang H, Jiang X, Li J, Li Y, Wang W, Xian H, Li S, Liu Y, Hu J, Chen J. Trichoderma biodiversity in major ecological systems of China. J Microbiol 2019; 57:668-675. [DOI: 10.1007/s12275-019-8357-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 10/26/2022]
|
34
|
Zhang J, Miao Y, Rahimi MJ, Zhu H, Steindorff A, Schiessler S, Cai F, Pang G, Chenthamara K, Xu Y, Kubicek CP, Shen Q, Druzhinina IS. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi. Environ Microbiol 2019; 21:2644-2658. [PMID: 30815928 PMCID: PMC6850483 DOI: 10.1111/1462-2920.14575] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/01/2022]
Abstract
When resources are limited, the hypocrealean fungus Trichoderma guizhouense can overgrow another hypocrealean fungus Fusarium oxysporum, cause sporadic cell death and arrest growth. A transcriptomic analysis of this interaction shows that T. guizhouense undergoes a succession of metabolic stresses while F. oxysporum responded relatively neutrally but used the constitutive expression of several toxin‐encoding genes as a protective strategy. Because of these toxins, T. guizhouense cannot approach it is potential host on the substrate surface and attacks F. oxysporum from above. The success of T. guizhouense is secured by the excessive production of hydrogen peroxide (H2O2), which is stored in microscopic bag‐like guttation droplets hanging on the contacting hyphae. The deletion of NADPH oxidase nox1 and its regulator, nor1 in T. guizhouense led to a substantial decrease in H2O2 formation with concomitant loss of antagonistic activity. We envision the role of NOX proteins in the antagonism of T. guizhouense as an example of metabolic exaptation evolved in this fungus because the primary function of these ancient proteins was probably not linked to interfungal relationships. In support of this, F. oxysporum showed almost no transcriptional response to T. guizhouense Δnox1 strain indicating the role of NOX/H2O2 in signalling and fungal communication.
Collapse
Affiliation(s)
- Jian Zhang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Mohammad Javad Rahimi
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Hong Zhu
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Andrei Steindorff
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Sabine Schiessler
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Feng Cai
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Guan Pang
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - Yu Xu
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Christian P Kubicek
- Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria.,Steinschoetelgasse 7,1100, Vienna, Austria
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Irina S Druzhinina
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China.,Microbiology and Applied Genomics Group, Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| |
Collapse
|
35
|
Yuan M, Huang Y, Ge W, Jia Z, Song S, Zhang L, Huang Y. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genomics 2019; 20:144. [PMID: 30777003 PMCID: PMC6379975 DOI: 10.1186/s12864-019-5513-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Background Trichoderma spp. are effective biocontrol agents for many plant pathogens, thus the mechanism of Trichoderma-induced plant resistance is not fully understood. In this study, a novel Trichoderma strain was identified, which could promote plant growth and reduce the disease index of gray mold caused by Botrytis cinerea in cucumber. To assess the impact of Trichoderma inoculation on the plant response, a multi-omics approach was performed in the Trichoderma-inoculated cucumber plants through the analyses of the plant transcriptome, proteome, and phytohormone content. Results A novel Trichoderma strain was identified by morphological and molecular analysis, here named T. longibrachiatum H9. Inoculation of T. longibrachiatum H9 to cucumber roots promoted plant growth in terms of root length, plant height, and fresh weight. Root colonization of T. longibrachiatum H9 in the outer layer of epidermis significantly inhibited the foliar pathogen B. cinerea infection in cucumber. The plant transcriptome and proteome analyses indicated that a large number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified in cucumber plants 96 h post T. longibrachiatum H9 inoculation. Up-regulated DEGs and DEPs were mainly associated with defense/stress processes, secondary metabolism, and phytohormone synthesis and signaling, including jasmonic acid (JA), ethylene (ET) and salicylic acid (SA), in the T. longibrachiatum H9-inoculated cucumber plants in comparison to untreated plants. Moreover, the JA and SA contents significantly increased in cucumber plants with T. longibrachiatum H9 inoculation. Conclusions Application of T. longibrachiatum H9 to the roots of cucumber plants effectively promoted plant growth and significantly reduced the disease index of gray mold caused by B. cinerea. The analyses of the plant transcriptome, proteome and phytohormone content demonstrated that T. longibrachiatum H9 mediated plant systemic resistance to B. cinerea challenge through the activation of signaling pathways associated with the phytohormones JA/ET and SA in cucumber. Electronic supplementary material The online version of this article (10.1186/s12864-019-5513-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Yuan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Yuanyuan Huang
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
| | - Weina Ge
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China
| | - Lan Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Yali Huang
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, 050081, People's Republic of China.
| |
Collapse
|
36
|
Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HYH, Lu GD. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 2019; 129:7-18. [PMID: 30710672 DOI: 10.1016/j.micpath.2019.01.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Fungal diseases cause considerable damage to the economically important crops worldwide thus posing continuous threat to global food security. Management of these diseases is normally done via utilization of chemicals that have severe negative impact upon human health and surrounding ecosystems. Finding eco-friendly alternatives has led the researchers to focus towards biological control of fungal diseases through biocontrol agents such as antagonistic fungi (AF) and other microorganisms. AF include various genera of fungi that cure the fungal diseases on plants effectively. Furthermore, they play a regulatory role in various plant physiological pathways and interactions. AF are highly host specific having negligible effects on non-target organisms and have fast mass production capability. However, understanding the mechanisms of the effects of AF on plant diseases is a prerequisite for their effective utilization as biocontrol agent. Trichoderma is one of the most important fungal genera known for its antagonistic activity against disease causing fungal pathogens. Therefore, in this review, we have focused upon Trichoderma-mediated fungal diseases management via illustrating its taxonomy, important strains, biodiversity and mode of action. Furthermore, we have assessed the criteria to be followed for selection of AF and the factors influencing their efficiency. Finally, we evaluated the advantages and limitations of Trichoderma as AF. We conclude that effective AF utilization against fungal pathogens can serve as a safe strategy for our Planet.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan
| | - Asad Shabbir
- The University of Sydney, School of Life and Environmental Sciences, Narrabri, 2390, Australia; University of the Punjab, Department of Botany, Lahore, 54590, Pakistan
| | - Khalid Ali Khan
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd., Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
37
|
Qiao M, Du X, Zhang Z, Xu J, Yu Z. Three new species of soil-inhabiting Trichoderma from southwest China. MycoKeys 2018:63-80. [PMID: 30595658 PMCID: PMC6303281 DOI: 10.3897/mycokeys.44.30295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/24/2018] [Indexed: 01/20/2023] Open
Abstract
Fungi in the genus Trichoderma are widely distributed in China, including in Yunnan province. In this study, we report three new soil-inhabiting species in Trichoderma, named as T.kunmingense, T.speciosum and T.zeloharzianum. Their colony and mycelial morphology, including features of asexual states, were described. For each species, their DNA sequences were obtained from three loci, the internal transcribed spacer (ITS) regions of the ribosomal DNA, the translation elongation factor 1-α encoding gene (tef1) and the gene encoding the second largest nuclear RNA polymerase subunit (rpb2). Our analyses indicated that the three new species showed consistent divergence amongst each other and from other known and closely related species. Amongst the three, T.speciosum and T.kunmingense belong to the Viride Clade. Specifically, T.speciosum is related to three species – T.hispanicum, T.samuelsii and T.junci and is characterised by tree-like conidiophores, generally paired branches, curved terminal branches, spindly to fusiform phialides and subglobose to globose conidia. In contrast, T.kunmingense morphologically resembles T.asperellum and T.yunnanense and is distinguished by its pyramidal conidiophores, ampulliform to tapered phialides, discrete branches and ovoidal, occasionally ellipsoid, smooth-walled conidia. The third new species, T.zeloharzianum, is a new member of the Harzianum Clade and is closely associated with T.harzianum, T.lixii and T.simmonsii but distinguished from them by having smaller, subglobose to globose, thin-walled conidia.
Collapse
Affiliation(s)
- Min Qiao
- School of Life Sciences, Yunnan University, No. 2 North, Kunming, Yunnan, 650091, P. R. China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, P. R. China
| | - Zhe Zhang
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, P. R. China
| | - JianPing Xu
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, P. R. China.,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - ZeFen Yu
- School of Life Sciences, Yunnan University, No. 2 North, Kunming, Yunnan, 650091, P. R. China.,Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, P. R. China
| |
Collapse
|
38
|
Oh SY, Park MS, Cho HJ, Lim YW. Diversity and effect of Trichoderma isolated from the roots of Pinus densiflora within the fairy ring of pine mushroom (Tricholoma matsutake). PLoS One 2018; 13:e0205900. [PMID: 30403694 PMCID: PMC6221287 DOI: 10.1371/journal.pone.0205900] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/03/2018] [Indexed: 02/03/2023] Open
Abstract
Pine mushroom (PM, Tricholoma matsutake) is an important ectomycorrhizal fungus in Asia primarily due to its value as a food delicacy. Recent studies have shown that fairy rings of PM have distinctive fungal communities, which suggests that other fungi influence the growth of PM. Trichoderma is a well-known saprotrophic fungus commonly found in pine roots within PM fairy rings; however, little is known about the diversity of Trichoderma associated with PM and how these species influence PM growth. This study focused on diversity of Trichoderma isolated from pine roots within PM fairy rings and how these species affect the growth of PM isolate. Based on tef1a phylogenetic analyses, nine Trichoderma species (261 isolates) were identified. Trichoderma songyi and T. spirale were the dominant species, and Trichoderma community varied geographically. Growth experiments indicated that metabolites from five Trichoderma species had a significant influence on the growth of PM isolates. Metabolites of two Trichoderma species increased PM growth, while those of three Trichoderma species suppressed the growth. Within the fairy rings, Trichoderma that had a positive or neutral effect comprised the majority of Trichoderma communities. The results of this study suggest that various Trichoderma species co-exist within PM fairy rings and that these species influence PM growth.
Collapse
Affiliation(s)
- Seung-Yoon Oh
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Hae Jin Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
39
|
MARECIK ROMAN, BŁASZCZYK LIDIA, BIEGAŃSKA-MARECIK RÓŻA, PIOTROWSKA-CYPLIK AGNIESZKA. Screening and Identification of Trichoderma Strains Isolated from Natural Habitats with Potential to Cellulose and Xylan Degrading Enzymes Production. Pol J Microbiol 2018; 67:181-190. [PMID: 30015456 PMCID: PMC7256729 DOI: 10.21307/pjm-2018-021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/27/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
A total of 123 Trichoderma strains were isolated from different habitats and tested for their ability to degrade cellulose and xylan by simple plate screening method. Among strains, more than 34 and 45% respectively, exhibited higher cellulolytic and xylanolytic activity, compared to the reference strain T. reesei QM 9414. For strains efficiently degrading cellulose, a highest enzyme activity was confirmed using filter paper test, and it resulted in a range from 1.01 to 7.15 FPU/ml. Based on morphological and molecular analysis, the isolates were identified as Trichoderma. The most frequently identified strains belonged to Trichoderma harzianum species. Among all strains, the most effective in degradation of cellulose and xylose was T. harzianum and T. virens, especially those isolated from forest wood, forest soil or garden and mushroom compost. The results of this work confirmed that numerous strains from the Trichoderma species have high cellulose and xylan degradation potential and could be useful for lignocellulose biomass conversion e.g. for biofuel production.
Collapse
Affiliation(s)
- ROMAN MARECIK
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - LIDIA BŁASZCZYK
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - RÓŻA BIEGAŃSKA-MARECIK
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, Poland
| | | |
Collapse
|
40
|
du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K. The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 2018; 110:559-583. [PMID: 29902390 DOI: 10.1080/00275514.2018.1463059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fourteen Trichoderma (Hypocreales) species were identified during a survey of the genus in South Africa. These include T. afroharzianum, T. asperelloides, T. asperellum, T. atrobrunneum, T. atroviride, T. camerunense, T. gamsii, T. hamatum, T. koningii, T. koningiopsis, T. saturnisporum, T. spirale, T. virens, and T. viride. Ten of these species were not known to occur in South Africa prior to this investigation. Five additional species were novel and are described here as T. beinartii, T. caeruleimontis, T. chetii, T. restrictum, and T. undulatum. These novel Trichoderma species display morphological traits that are typical of the genus. Based on molecular identification using calmodulin, endochitinase, nuc rDNA internal transcribed spacers (ITS1-5.8S-ITS2), RNA polymerase II subunit B, and translation elongation factor 1-α gene sequence data, T. beinartii, T. caeruleimontis, and T. chetii were found to belong to the Longibrachiatum clade, whereas T. restrictum is a member of the Hamatum clade. Trichoderma undulatum occupies a distinct lineage distantly related to other Trichoderma species. Strains of T. beinartii and T. chetii were isolated previously in Hawaii and Israel; however, T. caeruleimontis, T. restrictum, and T. undulatum are so far known only from South Africa.
Collapse
Affiliation(s)
- Ihan L du Plessis
- a Department of Microbiology , University of Stellenbosch , Private Bag X1, Matieland, 7602 , South Africa
| | - Irina S Druzhinina
- b Microbiology Group, Research Area Biochemical Technology , Institute of Chemical and Biological Engineering , Technische Universität Wien, Gumpendorferstrasse 1a, A1060 , Vienna , Austria
| | - Lea Atanasova
- c Institute of Microbiology , University of Innsbruck , Technikerstraße 25, A-6020 , Innsbruck , Austria
| | - Oded Yarden
- d Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment , The Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Karin Jacobs
- a Department of Microbiology , University of Stellenbosch , Private Bag X1, Matieland, 7602 , South Africa
| |
Collapse
|
41
|
Chen K, Zhuang WY. Discovery from a large-scaled survey of Trichoderma in soil of China. Sci Rep 2017; 7:9090. [PMID: 28831112 PMCID: PMC5567330 DOI: 10.1038/s41598-017-07807-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/30/2017] [Indexed: 01/29/2023] Open
Abstract
The first large-scaled survey of soil-inhabiting Trichoderma is conducted in 23 provinces of China. Twenty-three new species belonging to the green-ascospored clades are discovered. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha and the second largest RNA polymerase subunit encoding genes. Morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives are compared and discussed. They are named as: T. aggregatum, T. alpinum, T. bannaense, T. breve, T. brevicrassum, T. byssinum, T. chlamydosporicum, T. concentricum, T. ganodermatis, T. hainanense, T. hengshanicum, T. hirsutum, T. hunanense, T. ingratum, T. liberatum, T. linzhiense, T. longisporum, T. polypori, T. pseudodensum, T. simplex, T. solum, T. undatipile and T. zayuense.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
Chen K, Zhuang WY. Three New Soil-inhabiting Species of Trichoderma in the Stromaticum Clade with Test of Their Antagonism to Pathogens. Curr Microbiol 2017. [PMID: 28631173 DOI: 10.1007/s00284-017-1282-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichoderma is a dominant component of the soil mycoflora. During the field investigations of northern, central, and southwestern China, three new species in the Stromaticum clade were encountered from soil, and named as T. hebeiense, T. sichuanense, and T. verticillatum. Their phylogenetic positions were determined by analyses of the combined two genes: partial sequences of translation elongation factor 1-alpha and the second largest RNA polymerase subunit-encoding genes. Distinctions between the new species and their close relatives were discussed. Trichoderma hebeiense appeared as a separate terminal branch. The species is distinctive by its oblong conidia and aggregated pustules in culture. Trichoderma sichuanense features in concentric colony and produces numerous clean exudates on aerial mycelium in culture. Trichoderma verticillatum is characterized by its verticillium-like synanamorph and production of abundant chlamydospores. In vitro antagonism towards the new species was tested by dual culture technique.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
43
|
Ryu SM, Lee HM, Song EG, Seo YH, Lee J, Guo Y, Kim BS, Kim JJ, Hong JS, Ryu KH, Lee D. Antiviral Activities of Trichothecenes Isolated from Trichoderma albolutescens against Pepper Mottle Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4273-4279. [PMID: 28490172 DOI: 10.1021/acs.jafc.7b01028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A bioassay-guided isolation using a green fluorescence protein (GFP)-tagged pepper mottle virus (PepMoV-GFP) based leaf-disk method to obtain new antiviral agents led to the isolation of trichodermin, 1, and a new compound trichoderminol, 2, from EtOAc extract of Trichoderma albolutescens culture medium. The structures of compounds 1 and 2 were determined by MS and NMR experiments, and the absolute configurations of the compounds were established by experimental and calculated vibrational circular dichroism spectra. Compounds 1 and 2 were evaluated for their anti-PepMoV potential in systemic host plants, such as tobacco and pepper, by PepMoV-GFP based systemic host method. All compounds exhibited inactivation effects against PepMoV. Furthermore, compound 1 showed protective effects against PepMoV.
Collapse
Affiliation(s)
| | - Hae Min Lee
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University , Seoul 01797, Republic of Korea
| | - Eun Gyeong Song
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University , Seoul 01797, Republic of Korea
| | - Young Hye Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon 34054, Republic of Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea
| | - Jun Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine , Daejeon 34054, Republic of Korea
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology , Seoul 02792, Republic of Korea
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University , Tianjin 300350, People's Republic of China
| | | | | | - Jin Sung Hong
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University , Chunchon 24341, Republic of Korea
| | - Ki Hyun Ryu
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University , Seoul 01797, Republic of Korea
| | | |
Collapse
|
44
|
Jang S, Jang Y, Kim CW, Lee H, Hong JH, Heo YM, Lee YM, Lee DW, Lee HB, Kim JJ. Five New Records of Soil-Derived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. MYCOBIOLOGY 2017; 45:1-8. [PMID: 28435347 PMCID: PMC5395494 DOI: 10.5941/myco.2017.45.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/16/2016] [Accepted: 01/24/2017] [Indexed: 06/01/2023]
Abstract
Despite the huge worldwide diversity of Trichoderma (Hypocreaceae, Ascomycota), only about 22 species have been reported in Korea. Thus, between 2013 and 2015, soil-derived Trichoderma spp. were isolated to reveal the diversity of Korean Trichoderma. Phylogenetic analysis of translation elongation factor 1 alpha gene was used for identification. Among the soil-derived Trichoderma, Trichoderma albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum have not been previously reported in Korea. Thus, we report the five Trichoderma species as new in Korea with morphological descriptions and images.
Collapse
Affiliation(s)
- Seokyoon Jang
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Yeongseon Jang
- Division of Wood Chemistry & Microbiology, National Institute of Forest Science, Seoul 02455, Korea
| | - Chul-Whan Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Joo-Hyun Hong
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Young Min Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Dong Wan Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyang Burm Lee
- Division of Food Technology, Biotechnology, and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
45
|
|
46
|
Robbertse B, Strope PK, Chaverri P, Gazis R, Ciufo S, Domrachev M, Schoch CL. Improving taxonomic accuracy for fungi in public sequence databases: applying 'one name one species' in well-defined genera with Trichoderma/Hypocrea as a test case. Database (Oxford) 2017; 2017:4553317. [PMID: 29220466 PMCID: PMC5641268 DOI: 10.1093/database/bax072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/18/2023]
Abstract
The ITS (nuclear ribosomal internal transcribed spacer) RefSeq database at the National Center for Biotechnology Information (NCBI) is dedicated to the clear association between name, specimen and sequence data. This database is focused on sequences obtained from type material stored in public collections. While the initial ITS sequence curation effort together with numerous fungal taxonomy experts attempted to cover as many orders as possible, we extended our latest focus to the family and genus ranks. We focused on Trichoderma for several reasons, mainly because the asexual and sexual synonyms were well documented, and a list of proposed names and type material were recently proposed and published. In this case study the recent taxonomic information was applied to do a complete taxonomic audit for the genus Trichoderma in the NCBI Taxonomy database. A name status report is available here: https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi. As a result, the ITS RefSeq Targeted Loci database at NCBI has been augmented with more sequences from type and verified material from Trichoderma species. Additionally, to aid in the cross referencing of data from single loci and genomes we have collected a list of quality records of the RPB2 gene obtained from type material in GenBank that could help validate future submissions. During the process of curation misidentified genomes were discovered, and sequence records from type material were found hidden under previous classifications. Source metadata curation, although more cumbersome, proved to be useful as confirmation of the type material designation. Database URL:http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353
Collapse
Affiliation(s)
- Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pooja K Strope
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Romina Gazis
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Stacy Ciufo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Domrachev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
A new species of Trichoderma hypoxylon harbours abundant secondary metabolites. Sci Rep 2016; 6:37369. [PMID: 27869187 PMCID: PMC5116760 DOI: 10.1038/srep37369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/27/2016] [Indexed: 02/08/2023] Open
Abstract
Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature.
Collapse
|
48
|
Jiang Y, Wang JL, Chen J, Mao LJ, Feng XX, Zhang CL, Lin FC. Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species. PLoS One 2016; 11:e0160613. [PMID: 27482910 PMCID: PMC4970770 DOI: 10.1371/journal.pone.0160613] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/21/2016] [Indexed: 02/05/2023] Open
Abstract
We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon–Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the application of Trichoderma biocontrol strains.
Collapse
Affiliation(s)
- Yuan Jiang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Liang Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Juan Mao
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Xiao Feng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chu-Long Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (CLZ); (FCL)
| | - Fu-Cheng Lin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail: (CLZ); (FCL)
| |
Collapse
|
49
|
|
50
|
Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci Rep 2016; 6:27074. [PMID: 27245694 PMCID: PMC4888246 DOI: 10.1038/srep27074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed.
Collapse
|