1
|
Rissi DV, Ijaz M, Baschien C. Comparative Genomics of Fungi in Nectriaceae Reveals Their Environmental Adaptation and Conservation Strategies. J Fungi (Basel) 2024; 10:632. [PMID: 39330392 PMCID: PMC11433043 DOI: 10.3390/jof10090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This study presents the first genome assembly of the freshwater saprobe fungus Neonectria lugdunensis and a comprehensive phylogenomics analysis of the Nectriaceae family, examining genomic traits according to fungal lifestyles. The Nectriaceae family, one of the largest in Hypocreales, includes fungi with significant ecological roles and economic importance as plant pathogens, endophytes, and saprobes. The phylogenomics analysis identified 2684 single-copy orthologs, providing a robust evolutionary framework for the Nectriaceae family. We analyzed the genomic characteristics of 17 Nectriaceae genomes, focusing on their carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), and adaptations to environmental temperatures. Our results highlight the adaptation mechanisms of N. lugdunensis, emphasizing its capabilities for plant litter degradation and enzyme activity in varying temperatures. The comparative genomics of different Nectriaceae lifestyles revealed significant differences in genome size, gene content, repetitive elements, and secondary metabolite production. Endophytes exhibited larger genomes, more effector proteins, and BGCs, while plant pathogens had higher thermo-adapted protein counts, suggesting greater resilience to global warming. In contrast, the freshwater saprobe shows less adaptation to warmer temperatures and is important for conservation goals. This study underscores the importance of understanding fungal genomic adaptations to predict ecosystem impacts and conservation targets in the face of climate change.
Collapse
Affiliation(s)
- Daniel Vasconcelos Rissi
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Maham Ijaz
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Christiane Baschien
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| |
Collapse
|
2
|
Khalkho JP, Beck A, Priyanka, Panda B, Chandra R. Microbial allies: exploring fungal endophytes for biosynthesis of terpenoid indole alkaloids. Arch Microbiol 2024; 206:340. [PMID: 38960981 DOI: 10.1007/s00203-024-04067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Terpenoid indole alkaloids (TIAs) are natural compounds found in medicinal plants that exhibit various therapeutic activities, such as antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, anti-helminthic, and anti-tumor properties. However, the production of these alkaloids in plants is limited, and there is a high demand for them due to the increasing incidence of cancer cases. To address this research gap, researchers have focused on optimizing culture media, eliciting metabolic pathways, overexpressing genes, and searching for potential sources of TIAs in organisms other than plants. The insufficient number of essential genes and enzymes in the biosynthesis pathway is the reason behind the limited production of TIAs. As the field of natural product discovery from biological species continues to grow, endophytes are being investigated more and more as potential sources of bioactive metabolites with a variety of chemical structures. Endophytes are microorganisms (fungi, bacteria, archaea, and actinomycetes), that exert a significant influence on the metabolic pathways of both the host plants and the endophytic cells. Bio-prospection of fungal endophytes has shown the discovery of novel, high-value bioactive compounds of commercial significance. The discovery of therapeutically significant secondary metabolites has been made easier by endophytic entities' abundant but understudied diversity. It has been observed that fungal endophytes have better intermediate processing ability due to cellular compartmentation. This paper focuses on fungal endophytes and their metabolic ability to produce complex TIAs, recent advancements in this area, and addressing the limitations and future perspectives related to TIA production.
Collapse
Affiliation(s)
- Jaya Prabha Khalkho
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Abhishek Beck
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Priyanka
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Banishree Panda
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ramesh Chandra
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
3
|
Sohaib H, Fays M, Khatib A, Rivière J, El Aouad N, Desoignies N. Contribution to the characterization of the seed endophyte microbiome of Argania spinosa across geographical locations in Central Morocco using metagenomic approaches. Front Microbiol 2024; 15:1310395. [PMID: 38601940 PMCID: PMC11005822 DOI: 10.3389/fmicb.2024.1310395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Microbial endophytes are microorganisms that live inside plants, and some of them play important yet understudied roles in plant health, growth, and adaptation to environmental conditions. Their diversity within plants has traditionally been underestimated due to the limitations of culture-dependent techniques. Metagenomic profiling provides a culture-independent approach to characterize entire microbial communities. The argan tree (Argania spinosa) is ecologically and economically important in Morocco, yet its seed endophyte microbiome remains unexplored. This study aimed to compare the bacterial and fungal endophyte communities associated with argan seeds collected from six sites across Morocco using Illumina MiSeq sequencing of the 16S rRNA gene and ITS regions, respectively. Bacterial DNA was extracted from surface-sterilized seeds and amplified using universal primers, while fungal DNA was isolated directly from seeds. Bioinformatics analysis of sequencing data identified taxonomic profiles at the phylum to genus levels. The results indicated that bacterial communities were dominated by the genus Rhodoligotrophos, while fungal communities exhibited varying degrees of dominance between Ascomycota and Basidiomycota depending on site, with Penicillium being the most abundant overall. Distinct site-specific profiles were observed, with Pseudomonas, Bacillus, and Aspergillus present across multiple locations. Alpha diversity indices revealed variation in endophyte richness between seed sources. In conclusion, this first exploration of the argan seed endophyte microbiome demonstrated environmental influence on community structure. While facing limitations due to small sample sizes and lack of ecological metadata, it provides a foundation for future mechanistic investigations into how specific endophyte-host interactions shape argan adaptation across Morocco's diverse landscapes.
Collapse
Affiliation(s)
- Hourfane Sohaib
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Morgan Fays
- Phytopathology, Microbial and Molecular Farming Lab, Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
| | - Abderrezzak Khatib
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - John Rivière
- Laboratory of Biotechnology and Applied Biology, Haute Ecole Provinciale de Hainaut-Condorcet, Ath, Hainaut, Belgium
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Nicolas Desoignies
- Phytopathology, Microbial and Molecular Farming Lab, Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
- University of Liege - Gembloux Agro-Bio Tech, TERRA - Teaching and Research Center, Plant Sciences Axis, Gembloux, Belgium
| |
Collapse
|
4
|
Qin X, Xu J, An X, Yang J, Wang Y, Dou M, Wang M, Huang J, Fu Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit Rev Biotechnol 2024; 44:78-99. [PMID: 36592988 DOI: 10.1080/07388551.2022.2129579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.
Collapse
Affiliation(s)
- Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoli An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Meijia Dou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Minggang Wang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jin Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
5
|
De-la-Vega-Camarillo E, Hernández-García JA, Villa-Tanaca L, Hernández-Rodríguez C. Unlocking the hidden potential of Mexican teosinte seeds: revealing plant growth-promoting bacterial and fungal biocontrol agents. FRONTIERS IN PLANT SCIENCE 2023; 14:1247814. [PMID: 37860235 PMCID: PMC10582567 DOI: 10.3389/fpls.2023.1247814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
The bacterial component of plant holobiont maintains valuable interactions that contribute to plants' growth, adaptation, stress tolerance, and antagonism to some phytopathogens. Teosinte is the grass plant recognized as the progenitor of modern maize, domesticated by pre-Hispanic civilizations around 9,000 years ago. Three teosinte species are recognized: Zea diploperennis, Zea perennis, and Zea mays. In this work, the bacterial diversity of three species of Mexican teosinte seeds was explored by massive sequencing of 16S rRNA amplicons. Streptomyces, Acinetobacter, Olivibacter, Erwinia, Bacillus, Pseudomonas, Cellvibrio, Achromobacter, Devosia, Lysobacter, Sphingopyxis, Stenotrophomonas, Ochrobactrum, Delftia, Lactobacillus, among others, were the bacterial genera mainly represented. The bacterial alpha diversity in the seeds of Z. diploperennis was the highest, while the alpha diversity in Z. mays subsp. mexicana race was the lowest observed among the species and races. The Mexican teosintes analyzed had a core bacteriome of 38 bacterial genera, including several recognized plant growth promoters or fungal biocontrol agents such as Agrobacterium, Burkholderia, Erwinia, Lactobacillus, Ochrobactrum, Paenibacillus, Pseudomonas, Sphingomonas, Streptomyces, among other. Metabolic inference analysis by PICRUSt2 of bacterial genera showed several pathways related to plant growth promotion (PGP), biological control, and environmental adaptation. The implications of these findings are far-reaching, as they highlight the existence of an exceptional bacterial germplasm reservoir teeming with potential plant growth promotion bacteria (PGPB). This reserve holds the key to cultivating innovative bioinoculants and formidable fungal antagonistic strains, thereby paving the way for a more sustainable and eco-friendly approach to agriculture. Embracing these novel NGS-based techniques and understanding the profound impact of the vertical transference of microorganisms from seeds could revolutionize the future of agriculture and develop a new era of symbiotic harmony between plants and microbes.
Collapse
Affiliation(s)
| | | | | | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
6
|
Chi Y, Ma X, Wu J, Wang R, Zhang X, Chu S, Zhang D, Zhou P. Plant growth promoting endophyte promotes cadmium accumulation in Solanum nigrum L. by regulating plant homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131866. [PMID: 37329596 DOI: 10.1016/j.jhazmat.2023.131866] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
The homeostasis regulating mechanism of endophyte enhancing cadmium (Cd) extraction by hyperaccumulator is poorly understood. Here, an endophyte strain E3 that belonged to Pseudomonas was screened from Cd hyperaccumulator Solanum nigrum L., which significantly improved the Cd phytoextraction efficiency of S. nigrum by 40.26%. The content and translocation factor of nutrient elements indicated that endophyte might regulate Cd accumulation by affecting the uptake and transport of magnesium and iron in S. nigrum. Gene transcriptional expression profile further revealed that SnMGT, SnIRT1, and SnIRT2, etc., were the key genes involved in the regulation of S. nigrum elements uptake by endophyte. However, changes in elemental homeostasis did not negatively affect plant growth. Endophyte inoculation promoted plant growth by fortifying photosynthesis as well as recruiting specific bacteria in S. nigrum endosphere, e.g., Pseudonocardiaceae, Halomonas. Notably, PICRUSt2 analysis and biochemical characterization jointly suggested that endophyte regulated starch degradation in S. nigrum leaves to maintain photosynthetic balance. Our results demonstrated that microecological characteristics of hyperaccumulator could be reshaped by endophyte, also the homeostasis regulation in endophyte enhanced hyperaccumulator Cd phytoextraction was significant.
Collapse
Affiliation(s)
- Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianzhong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xia Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
8
|
Zhao Y, Mao W, Tang W, Soares MA, Li H. Wild Rosa Endophyte M7SB41-Mediated Host Plant's Powdery Mildew Resistance. J Fungi (Basel) 2023; 9:620. [PMID: 37367556 DOI: 10.3390/jof9060620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Our previous studies indicated that endophyte M7SB41 (Seimatosporium sp.) can significantly enhance host plants powdery mildew (PM) resistance. To recover the mechanisms, differentially expressed genes (DEGs) were compared between E+ (endophte-inoculated) and E- (endophyte-free) plants by transcriptomics. A total of 4094, 1200 and 2319 DEGs between E+ and E- were identified at 0, 24, and 72 h after plants had been infected with PM pathogen Golovinomyces cichoracearum, respectively. Gene expression pattern analysis displayed a considerable difference and temporality in response to PM stress between the two groups. Transcriptional profiling analysis revealed that M7SB41 induced plant resistance to PM through Ca2+ signaling, salicylic acid (SA) signaling, and the phenylpropanoid biosynthesis pathway. In particular, we investigated the role and the timing of the SA and jasmonic acid (JA)-regulated defensive pathways. Both transcriptomes and pot experiments showed that SA-signaling may play a prominent role in PM resistance conferred by M7SB41. Additionally, the colonization of M7SB41 could effectively increase the activities and the expression of defense-related enzymes under PM pathogen stress. Meanwhile, our study revealed reliable candidate genes from TGA (TGACG motif-binding factor), WRKY, and pathogenesis-related genes related to M7SB41-mediate resistance. These findings offer a novel insight into the mechanisms of endophytes in activating plant defense responses.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming 650500, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Marcos Antônio Soares
- Department of Botany and Ecology, Federal University of Mato Grosso, Cuiabá 78060-900, Brazil
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
9
|
Tang W, Gong W, Xiao R, Mao W, Zhao L, Song J, Awais M, Ji X, Li H. Endophytic Fungal Community of Stellera chamaejasme L. and Its Possible Role in Improving Host Plants' Ecological Flexibility in Degraded Grasslands. J Fungi (Basel) 2023; 9:jof9040465. [PMID: 37108919 PMCID: PMC10146894 DOI: 10.3390/jof9040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Stellera chamaejasme L. is a widely distributed poisonous plant in Chinese degraded grasslands. To investigate the role of endophytic fungi (EF) in S. chamaejasme's quick spread in grasslands, the endophytic fungal community of S. chamaejasme was studied through culture-dependent and culture-independent methods, and the plant-growth-promoting (PGP) traits of some culturable isolates were tested. Further, the growth-promoting effects of 8 isolates which showed better PGP traits were evaluated by pot experiments. The results showed that a total of 546 culturable EF were isolated from 1114 plant tissue segments, and the colonization rate (CR) of EF in roots (33.27%) was significantly higher than that in shoots (22.39%). Consistent with this, the number of specific types of EF was greater in roots (8 genera) than in shoots (1 genus). The same phenomenon was found in culture-independent study. There were 95 specific genera found in roots, while only 18 specific genera were found in shoots. In addition, the dominant EF were different between the two study methods. Cladosporium (18.13%) and Penicillium (15.93%) were the dominant EF in culture-dependent study, while Apiotrichum (13.21%) and Athelopsis (5.62%) were the dominant EF in culture-independent study. PGP trait tests indicated that 91.30% of the tested isolates (69) showed phosphorus solubilization, IAA production, or siderophores production activity. The benefit of 8 isolates on host plants' growth was further studied by pot experiments, and the results indicated that all of the isolates can improve host plants' growth. Among them, STL3G74 (Aspergillus niger) showed the best growth-promotion effect; it can increase the plant's shoot and root dry biomass by 68.44% and 74.50%, respectively, when compared with the controls. Our findings revealed that S. chamaejasme has a wide range of fungal endophytic assemblages, and most of them possess PGP activities, which may play a key role in its quick spread in degraded grasslands.
Collapse
Affiliation(s)
- Wenting Tang
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Weijun Gong
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Ruitong Xiao
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenqin Mao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Liangzhou Zhao
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinzhao Song
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Muhammad Awais
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuling Ji
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Haiyan Li
- Life Science and Technology & Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Tshikhudo PP, Ntushelo K, Mudau FN. Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review. Microorganisms 2023; 11:microorganisms11020453. [PMID: 36838418 PMCID: PMC9967847 DOI: 10.3390/microorganisms11020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Bacterial endophytes reside within the tissues of living plant species without causing any harm or disease to their hosts. These endophytes can be isolated, identified, characterized, and used as biofertilizers. Moreover, bacterial endophytes increase the plants' resistance against diseases, pests, and parasites, and are a promising source of pharmaceutically important bioactives. For instance, the production of antibiotics, auxins, biosurfactants, cytokinin's, ethylene, enzymes, gibberellins, nitric oxide organic acids, osmolytes, and siderophores is accredited to the existence of various bacterial strains. Thus, this manuscript intends to review the sustainable applications of endophytic bacteria to promote the growth, development, and chemical integrity of medicinal and herbal plants, as well as their role in plant physiology. The study of the importance of bacterial endophytes in the suppression of diseases in medicinal and herbal plants is crucial and a promising area of future investigation.
Collapse
Affiliation(s)
- Phumudzo Patrick Tshikhudo
- Department of Agriculture, Land Reform and Rural Development, Directorate Plant Health, Division Pest Risk Analysis, Arcadia, Pretoria 0001, South Africa
- Correspondence:
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Fhatuwani Nixwell Mudau
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
11
|
Tondera K, Chazarenc F, Brisson J, Chagnon PL. Structure and impact of root-associated fungi in treatment wetland mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159958. [PMID: 36343819 DOI: 10.1016/j.scitotenv.2022.159958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Root fungal endophytes have been shown to play a positive role in soil phytoremediation by immobilizing or degrading contaminants. In comparison, little is known about their ecological functions and possible role in improving plant performance in treatment wetlands. In a greenhouse study, we compared the structure of fungal communities associated with Phragmites australis roots in treatment wetland mesocosms fed with pre-treated wastewater to mesocosms fed with drinking water. We evaluated the role of water source as an environmental filter structuring fungal communities, and correlated the relative abundances of fungal taxa with key services delivered by the wetlands (i.e., biomass production and nutrient removal). Mesocosms fed with wastewater had higher fungal alpha-diversity. Contrary to expectations, many fungi were unique to drinking water-fed mesocosms, suggesting that the oligotrophic conditions prevailing in these mesocosms benefited specific fungal taxa. On the other hand, wastewater-fed mesocosms had a slightly higher proportion of sequence reads belonging to fungal species recognized as potential endophytes and phytopathogens, highlighting the potential role of wastewater as a source of plant-associated fungi. Interestingly, we found contrasted association patterns between fungal species' relative abundances and different treatment wetland services (e.g., N vs P removal), such that some fungi were positively associated with N removal but negatively associated with P removal. This suggests that fungal endophytes may be functionally complementary in their contribution to distinct mesocosm services, thus supporting arguments in favor of microbial diversity in phytotechnologies. Because of the wide alpha-diversity of fungal communities, and the fact that with current databases, most species remained unassigned to a specific function (or even guild), further investigation is needed to link fungal community structure and service delivery in treatment wetlands.
Collapse
Affiliation(s)
- Katharina Tondera
- INRAE, REVERSAAL, F-69625 Villeurbanne, France; IMT Atlantique Bretagne-Pays de Loire, Department of Energy Systems and Environment, 44307 Nantes, France.
| | | | - Jacques Brisson
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| | - Pierre-Luc Chagnon
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
12
|
Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:953836. [PMID: 35865289 PMCID: PMC9294639 DOI: 10.3389/fpls.2022.953836] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 05/14/2023]
Abstract
The agricultural sustainability concept considers higher food production combating biotic and abiotic stresses, socio-economic well-being, and environmental conservation. On the contrary, global warming-led climatic changes have appalling consequences on agriculture, generating shifting rainfall patterns, high temperature, CO2, drought, etc., prompting abiotic stress conditions for plants. Such stresses abandon the plants to thrive, demoting food productivity and ultimately hampering food security. Though environmental issues are natural and cannot be regulated, plants can still be enabled to endure these abnormal abiotic conditions, reinforcing the stress resilience in an eco-friendly fashion by incorporating fungal endophytes. Endophytic fungi are a group of subtle, non-pathogenic microorganisms establishing a mutualistic association with diverse plant species. Their varied association with the host plant under dynamic environments boosts the endogenic tolerance mechanism of the host plant against various stresses via overall modulations of local and systemic mechanisms accompanied by higher antioxidants secretion, ample enough to scavenge Reactive Oxygen Species (ROS) hence, coping over-expression of defensive redox regulatory system of host plant as an aversion to stressed condition. They are also reported to ameliorate plants toward biotic stress mitigation and elevate phytohormone levels forging them worthy enough to be used as biocontrol agents and as biofertilizers against various pathogens, promoting crop improvement and soil improvement, respectively. This review summarizes the present-day conception of the endophytic fungi, their diversity in various crops, and the molecular mechanism behind abiotic and biotic resistance prompting climate-resilient aided sustainable agriculture.
Collapse
Affiliation(s)
- Anamika Verma
- Amity Institute of Horticulture Studies and Research, Amity University Uttar Pradesh, Noida, India
| | - Nowsheen Shameem
- Department of Environmental Science, S.P. College, Srinagar, India
| | - Hanuman Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur, India
| | | | - Javid A. Parray
- Department of Environmental Science, Government Degree College Eidgah, Srinagar, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s SI Patil Arts, GB Patel Science and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
13
|
Kashyap S, Chandra R, Kumar B, Verma P. Biosorption efficiency of nickel by various endophytic bacterial strains for removal of nickel from electroplating industry effluents: an operational study. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:565-580. [PMID: 34184169 DOI: 10.1007/s10646-021-02445-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Realising the hazardous effect of nickel on human health, microbes and plants are effectively used for bioremediation. The endophytic microorganisms have an important role in the phytoremediation of nickel using Vigna radiata. Therefore, in order to harness the potential of microbial strains, the present study was designed to examine the metal biosorption ability of endophytic bacterial strains isolated from plants growing in nickel-contaminated soil. A total of six endophytic nickel resistance bacteria were isolated from the plant Vigna radiata. The metal tolerant bacterial strains were identified following 16 S rRNA gene sequence analysis. Nickel biosorption estimation and plant growth-promoting (PGP) activities of isolated strains were performed and found high nickel biosorption efficiency of 91.3 ± 0.72% at 600 mg L-1 using Bacillus safensis an isolated endophytic strain from Vigna radiata. Furthermore, high indole acetic acid (IAA) and exopolysaccharide (EPS) production were obtained in all the strains as compared to without nickel-containing medium used as control. Moreover, the production of high EPS suggests improved biosorption ability of isolated endophytic strains. In addition, a kinetic study was also performed to evaluate different adsorptions isotherms and support the nickel biosorption ability of endophytic strains. The treatment of nickel electroplating industrial effluent was also demonstrated by isolated endophytic strains. Among six (6) strains, B. cereus showed maximum 57.2 ± 0.62% biosorption efficiency of nickel which resulted in the removal of 1003.50 ± 0.90 mg L-1 of nickel from the electroplating industry effluents containing initial 1791 ± 0.90 mg L-1 of nickel. All other strains were also capable of significant nickel biosorption from electroplating industry effluents as well. Thus, isolated endophytic nickel tolerant strains can be further used at large-scale biosorption of nickel from electroplating industry effluent.
Collapse
Affiliation(s)
- Saket Kashyap
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Rachna Chandra
- Terrestrial Ecology Division, Gujarat Institute of Desert Ecology, Mundra Road, Bhuj, 370001, Gujarat, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
14
|
Parada R, Mendoza L, Cotoras M, Ortiz C. Endophytic fungi isolated from plants present on a mine tailing facility show a differential growth response to lead. Lett Appl Microbiol 2022; 75:345-354. [PMID: 35486037 DOI: 10.1111/lam.13730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Plants growing in metal polluted sites can be a source of microorganisms suitable for bio-assisted phytoremediation strategies. In this work, three endophytic fungi from the roots of Poa stuckertii and Poa pratensis, two grasses that naturally colonize a Lead-Zinc tailing storage facility in Southern Chile, were isolated and identified. The leachate of the tailing sands showed a Pb content of 1.36 ± 0.71 ppm, and a pH of 7.3. By amplifying the ITS1/ITS4 region of fungal ribosomal DNA, the isolates were identified as Bjerkandera sp., Microdochium sp. and Sarocladium sp. When the growth media was supplemented with 50 ppm of Pb at pH 4.5, Microdochium sp. showed an 80% decrease in the biomass, but the biomass production of Bjerkandera sp. and Sarocladium sp. was not affected by the same treatment. The accumulation of Pb in Microdochium sp. increased as a function of the concentration of the metal in the growth media, between 48.3 μM and 241.3 μM. We showed that two Poaceae plants growing on a Lead-Zinc tailing storage facility are a source of endophyte fungi, and that Pb had a differential effect on the growth of the isolated fungi independent of the plant of origin.
Collapse
Affiliation(s)
- Rodolfo Parada
- Facultad de Química y Biología Universidad de Santiago de Chile, Santiago, Chile Av. Bernardo O´Higgins 3363, Post-code 9170022, Estación Central, Chile
| | - Leonora Mendoza
- Facultad de Química y Biología Universidad de Santiago de Chile, Santiago, Chile Av. Bernardo O´Higgins 3363, Post-code 9170022, Estación Central, Chile
| | - Milena Cotoras
- Facultad de Química y Biología Universidad de Santiago de Chile, Santiago, Chile Av. Bernardo O´Higgins 3363, Post-code 9170022, Estación Central, Chile
| | - Claudia Ortiz
- Facultad de Química y Biología Universidad de Santiago de Chile, Santiago, Chile Av. Bernardo O´Higgins 3363, Post-code 9170022, Estación Central, Chile
| |
Collapse
|
15
|
Alcántara-Martínez N, Figueroa-Martínez F, Rivera-Cabrera F, Volke-Sepúlveda T. An unexpected guest: a green microalga associated with the arsenic-tolerant shrub Acacia farnesiana. FEMS Microbiol Ecol 2022; 98:6565283. [PMID: 35394028 DOI: 10.1093/femsec/fiac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The best-known plant endophytes include mainly fungi and bacteria, but there are also a few records of microalgae growing endophytically in vascular land plants, some of which belong to the genus Coccomyxa. In this study, we isolated a single-celled photosynthetic microorganism from the arsenic-tolerant shrub Acacia farnesiana, thus we hypothesized that it is an endophytic arsenic-tolerant microalga. The microorganism was identified as belonging to the genus Coccomyxa, and the observation of algal cells within the root tissues strongly suggests its endophytic nature. The alga's tolerance to arsenate (AsV) and its influence on the fitness of A. farnesiana in the presence of AsV were evaluated. Coccomyxa sp. can tolerate up to 2000 µM of AsV for periods shorter than 10 days, however, AsV-tolerance decreased significantly in longer exposure periods. The association with the microalga increased the pigment content in aboveground tissues of A. farnesiana seedlings exposed to AsV for 50 days, without changes in plant growth or arsenic accumulation. This work describes the association, probably endophytic, between an angiosperm and a microalga, confirming the ability of the genus Coccomyxa to form associations with land plants and broadening the known variety of plant endophytes.
Collapse
Affiliation(s)
- Nemi Alcántara-Martínez
- Department of Compared Biology, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán 04510, Mexico City, MEXICO
| | - Francisco Figueroa-Martínez
- CONACyT Research Fellow, Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Mexico City. MEXICO
| | - Fernando Rivera-Cabrera
- Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Mexico City. MEXICO
| | - Tania Volke-Sepúlveda
- CONACyT Research Fellow, Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Mexico City. MEXICO
| |
Collapse
|
16
|
Jiang Y, Li Q, Mao W, Tang W, White JF, Li H. Endophytic bacterial community of Stellera chamaejasme L. and its role in improving host plants' competitiveness in grasslands. Environ Microbiol 2022; 24:3322-3333. [PMID: 35001475 DOI: 10.1111/1462-2920.15897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/02/2023]
Abstract
Stellera chamaejasme has become a problematic weed in northern and south-western grasslands of China. To evaluate a possible role of endophytes in its strong competitive capacity, the endophytic bacterial community of S. chamaejasme was investigated by culture-dependent and independent methods, and the growth-promoting traits of some culturable isolates as well as the benefit of endophyte ST3CS3 (Brevundimonas sp.) on host plants growth were studied. The results showed that 823 OTUs were generated with a 97% similarity level in the culture-independent study. They were classified into 29 phyla, 61 classes, 147 orders, 237 families and 440 genera. Among them, Pseudomonas and Ralstonia were the most dominant genera in belowground parts (G) (64.25%) and aboveground parts (S) (26.54%) respectively. The diversity and species richness of endophytes in S were significantly higher than that of G (P < 0.001, t-test). Contrary to this, the number of culturable bacteria in S was a little lower than that of G (P > 0.05, t-test). Totally, 176 isolates belonging to 30 morphotypes were obtained in the culture-dependent study. Among them, Acinetobacter was the most dominant genus in G (51.30%), then followed by Pseudomonas (6.09%) and Brevundimonas (6.09%), while Lysinibacillus (21.31%) was the most dominant genus in S, followed by Pseudomonas (11.48%). Growth-promoting trait tests indicated that 93.65% of the tested isolates (63) exhibited nitrogen-fixing, IAA-synthesizing, phosphorus or potassium solubilizing capacity, in which 77.97% belonged to Proteobacteria, a phylum found to contain more active isolates. Pot experiments demonstrated that endophyte ST3CS3 can significantly improve host plants growth and increase its nitrogen and chlorophyll content (P < 0.01, t-test). Therefore, we suggest that strong competitiveness of S. chamaejasme may in part be due to possession of high ratios of plant growth-promoting proteobacterial endophytes such as Pseudomonas, Acinetobacter and Brevundimonas.
Collapse
Affiliation(s)
- Yuejuan Jiang
- Medical School of Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiaohong Li
- The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Wenqin Mao
- Medical School of Kunming University of Science and Technology, Kunming, 650500, China
| | - Wengting Tang
- Medical School of Kunming University of Science and Technology, Kunming, 650500, China
| | - James F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
17
|
Maitra S, Brestic M, Bhadra P, Shankar T, Praharaj S, Palai JB, Shah MMR, Barek V, Ondrisik P, Skalický M, Hossain A. Bioinoculants-Natural Biological Resources for Sustainable Plant Production. Microorganisms 2021; 10:51. [PMID: 35056500 PMCID: PMC8780112 DOI: 10.3390/microorganisms10010051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Agricultural sustainability is of foremost importance for maintaining high food production. Irresponsible resource use not only negatively affects agroecology, but also reduces the economic profitability of the production system. Among different resources, soil is one of the most vital resources of agriculture. Soil fertility is the key to achieve high crop productivity. Maintaining soil fertility and soil health requires conscious management effort to avoid excessive nutrient loss, sustain organic carbon content, and minimize soil contamination. Though the use of chemical fertilizers have successfully improved crop production, its integration with organic manures and other bioinoculants helps in improving nutrient use efficiency, improves soil health and to some extent ameliorates some of the constraints associated with excessive fertilizer application. In addition to nutrient supplementation, bioinoculants have other beneficial effects such as plant growth-promoting activity, nutrient mobilization and solubilization, soil decontamination and/or detoxification, etc. During the present time, high energy based chemical inputs also caused havoc to agriculture because of the ill effects of global warming and climate change. Under the consequences of climate change, the use of bioinputs may be considered as a suitable mitigation option. Bioinoculants, as a concept, is not something new to agricultural science, however; it is one of the areas where consistent innovations have been made. Understanding the role of bioinoculants, the scope of their use, and analysing their performance in various environments are key to the successful adaptation of this technology in agriculture.
Collapse
Affiliation(s)
- Sagar Maitra
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Preetha Bhadra
- Department of Biotechnology, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India;
| | - Tanmoy Shankar
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Subhashisa Praharaj
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Jnana Bharati Palai
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | | | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Peter Ondrisik
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Milan Skalický
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Akbar Hossain
- Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh;
| |
Collapse
|
18
|
Influence of Endophytic Bacterium, Cellulosimicrobium sp. FRR2 on Plant Growth of Amaranthus campestris L. and Bacterial Survival at Adverse Environmental Conditions. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endophytic microorganisms are believed to be an important bio-resource for modern agriculture because of their beneficial effects on plant growth promotion, biocontrol, stress tolerance, and diseases resistance. This study was focused to know the beneficial effect of endophytic bacterium (FRR2) isolated from the roots of Ficus religiosa L. on Amaranthus campestris L. and their tolerance ability against salinity and heavy metals. The strain FRR2 was recognized as Cellulosimicrobium sp. by 16s rRNA sequencing and phylogenetic study. The bacterial isolate FRR2 showed salt (at 150 mM NaCl) and metal (at 150 µM CuSO4 and 100 µM ZnSO4) tolerance ability and significantly higher growth rate of Amaranthus campestris in a green leafy vegetable might be due to the nitrogen fixation, indole acetic acid production, amylase and protease activities. In addition, the endophyte FRR2 application slightly increased the antioxidants activity than their controls. The results of this study revealed that Cellulosimicrobium sp. strain FRR2 would be an effective endophyte to increase the growth of green leafy vegetables.
Collapse
|
19
|
Fang Q, Huang T, Wang N, Ding Z, Sun Q. Effects of Herbaspirillum sp. p5-19 assisted with alien soil improvement on the phytoremediation of copper tailings by Vetiveria zizanioides L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64757-64768. [PMID: 34318414 DOI: 10.1007/s11356-021-15091-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial assisted phytoremediation and reclamation are both potential contaminated soil remediation technologies, but little is known about the combined application of the two technologies on real contaminated soils. This study investigated the potential of Herbaspirillum sp. p5-19 (p5-19) assisted with alien soil improvement on improving stress tolerance and enhancing the accumulation of Mn, Cu, Zn, and Cd by Vetiveria zizanioides L. in copper tailings. Phytoremediation potential was evaluated by plant biomass and the ability of plants to absorb and transfer heavy metals. Results showed that the biomass was increased by 19.64-173.81% in p5-19 inoculation treatments with and without alien soil improvement compared with control. Meanwhile, photosynthetic pigment contents were enhanced in co-inoculation treatment (p5-19 with alien soil improvement). In addition, the malondialdehyde (MDA) content was decreased, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were increased in p5-19 treatment, thereby alleviating the oxidative stress. Moreover, co-inoculation significantly (p < 0.05) increased the concentrations of Mn, Cu, Zn, and Cd in the roots and shoots of V. zizanioides. In particular, the highest concentrations of Mn, Zn, and Cd in the shoots (roots) were obtained in covering 10 cm combined with p5-19 inoculation treatment, which were 4.44- (2.71-), 4.73- (3.87-), and 5.93- (4.35-) fold as that of the controls, respectively. These results provided basis for the change of phytoremediation ability of V. zizanioides after inoculation. We concluded that p5-19 assisted with alien soil improvement was a potential strategy for enhancing phytoremediation ability in tailings.
Collapse
Affiliation(s)
- Qing Fang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Tao Huang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ning Wang
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Ziwei Ding
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China
| | - Qingye Sun
- College of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Key Laboratory of Wetland Ecological Protection and Restoration, Hefei, China.
- Mining Environmental Restoration and Wetland Ecological Security Collaborative Innovation Center, Hefei, China.
- Academy of Resources and Environmental Engineering, Anhui University, 111 JiuLong Road, 523, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
20
|
El-Mahdy OM, Mohamed HI, Mogazy AM. Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd- and Pb-contaminated soil and their physiological effects on Vicia faba L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67608-67631. [PMID: 34258698 DOI: 10.1007/s11356-021-15382-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is an important solution to soil pollution management. The goal of this study is to determine the biosorption ability of the two selected fungi (Aspergillus niger and Penicillium chrysosporium) under heavy metal stress on faba bean plants. The fungal strains produced phytohormones, siderophore, ACC deaminase, and secondary metabolites. The biosorption capacity of A. niger and P. chrysosporium was 0.09 and 0.06 mg g-1 and 0.5 and 0.4 mg g-1 in media containing Cd and Pb, respectively. Fourier transform infrared spectroscopy of the fungal cell wall show primary functional groups like hydroxyl, amide, carboxyl, phosphoryl, sulfhydryl, and nitro. Therefore, A. niger and P. chrysosporium were inoculated to soils, and then the faba bean seeds were sown. After 21 days of sowing, the plants were irrigated with water to severe as control, with 100 mg L-1 of Cd and 200 mg L-1 of Pb. The results show that Cd and Pb caused a significant reduction in morphological characteristics, auxin, gibberellins, photosynthetic pigments, minerals content, and antioxidant enzymes as compared to control plants but caused a substantial boost in abscisic acid, ethylene, electrolyte leakage, lipid peroxidation, glutathione, proline, superoxide dismutase, secondary metabolites, and antioxidant capacity. In inoculated plants, metal-induced oxidative stress was modulated by inhibiting the transport of metal and decreased electrolyte leakage and lipid peroxidation. Finally, the inoculation of endophytic fungi contributed actively to the absorption of heavy metals and decreased their content in soil and plants. This could be utilized as an excellent technique in the fields of heavy metal-contaminated sustainable agriculture.
Collapse
Affiliation(s)
- Omima M El-Mahdy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt.
| | - Asmaa M Mogazy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, El Makres St. Roxy, Cairo, 11341, Egypt
| |
Collapse
|
21
|
Padder SA, Mansoor S, Bhat SA, Baba TR, Rather RA, Wani SM, Popescu SM, Sofi S, Aziz MA, Hefft DI, Alzahrani OM, Noureldeen A, Darwish H. Bacterial Endophyte Community Dynamics in Apple ( Malus domestica Borkh.) Germplasm and Their Evaluation for Scab Management Strategies. J Fungi (Basel) 2021; 7:jof7110923. [PMID: 34829212 PMCID: PMC8623955 DOI: 10.3390/jof7110923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The large genetic evolution due to the sexual reproduction-mediated gene assortments and propensities has made Venturia inaequalis (causing apple scab) unique with respect to its management strategies. The resistance in apple germplasm against the scab, being controlled for by more than fifteen genes, has limited gene alteration-based investigations. Therefore, a biological approach of bacterial endophyte community dynamics was envisioned across the apple germplasm in context to the fungistatic behavior against V. inaequalis. A total of 155 colonies of bacterial endophytes were isolated from various plant parts of the apple, comprising 19 varieties, and after screening for antifungal behavior followed by morphological, ARDRA, and sequence analysis, a total of 71 isolates were selected for this study. The alpha diversity indices were seen to fluctuate greatly among the isolation samples in context to microflora with antifungal behavior. As all the isolates were screened for the presence of various metabolites and some relevant genes that directly or indirectly influence the fungistatic behavior of the isolated microflora, a huge variation among the isolated microflora was observed. The outstanding isolates showing highest percentage growth inhibition of V. inaequalis were exploited to raise a bio-formulation, which was tested against the scab prevalence in eight apple varieties under controlled growth conditions. The formulation at all the concentrations caused considerable reductions in both the disease severity and disease incidence in all the tested apple varieties. Red Delicious being most important cultivar of the northwestern Himalayas was further investigated for its biochemical behavior in formulation and the investigation revealed different levels of enzyme production, chlorophyll, and sugars against the non-inoculated control.
Collapse
Affiliation(s)
- Shahid A. Padder
- Division of Basic Sciences and Humanities, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India; (S.A.B.); (S.M.W.); (S.S.)
- Correspondence: (S.A.P.); (S.M.)
| | - Sheikh Mansoor
- Division of Biochemistry, FBSc, SKUAST-J, Jammu 180009, Jammu and Kashmir, India
- Correspondence: (S.A.P.); (S.M.)
| | - Sajad A. Bhat
- Division of Basic Sciences and Humanities, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India; (S.A.B.); (S.M.W.); (S.S.)
| | - Tawseef Rehman Baba
- Division of Fruit Science, SKUAST-Kashmir, Srinagar 190025, Jammu and Kashmir, India;
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India;
| | - Saima M. Wani
- Division of Basic Sciences and Humanities, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India; (S.A.B.); (S.M.W.); (S.S.)
| | - Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, 13, A.I. Cuza, 200585 Craiova, Romania;
| | - Shakeela Sofi
- Division of Basic Sciences and Humanities, FoH, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar 190025, Jammu and Kashmir, India; (S.A.B.); (S.M.W.); (S.S.)
| | - Malik Asif Aziz
- Division of Basic Sciences and Humanities FoA, Sher-e—Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura Sopore 193201, Jammu and Kashmir, India;
| | - Daniel Ingo Hefft
- University Centre Reaseheath, Reaseheath College, Nantwich CW5 6DF, UK;
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, P.O. Box 110099, Taif 21944, Saudi Arabia; (O.M.A.); (A.N.)
| | - Ahmed Noureldeen
- Department of Biology, College of Science, Taif University, P.O. Box 110099, Taif 21944, Saudi Arabia; (O.M.A.); (A.N.)
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 110099, Taif 21944, Saudi Arabia;
| |
Collapse
|
22
|
Żurek G, Wiewióra B, Rybka K, Prokopiuk K. Different response of perennial ryegrass-Epichloë endophyte symbiota to the elevated concentration of heavy metals in soil. J Appl Genet 2021; 63:47-59. [PMID: 34546560 PMCID: PMC8755660 DOI: 10.1007/s13353-021-00661-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023]
Abstract
The phenomenon of plant mutualistic symbiosis with microbes may have a positive effect on the improvement of plant tolerance to environmental stresses as well as on the ability of plants to accumulate heavy metal (HM) ions from soil. The influence of Epichloë fungal endophyte (Ascomycota, Clavicipitaceae) on perennial ryegrass (Lolium perenne L.) plants grown in the presence of elevated concentrations of HM ions (Cd2+, Pb2+, and Cu2+) in soil was studied. The presence of Epichloë in the host grass tissues resulted in different accumulation of HM ions in the aboveground parts of the plants. In some cases, endophyte infection positively affected ryegrass ability to accumulate HM ions from soil. In plants with (E +) and without (E -) endophytes, the hormesis effect was induced by the elevated concentration of Cu2+ ions, resulting in better growth and photosynthesis, as examined by measurements of Chl a fluorescence. The obtained results indicate that based on the laboratory evaluation of the efficiency of HM accumulation, we were able to choose the best associations of perennial ryegrass with endophytes for HM phytoremediation.
Collapse
Affiliation(s)
- Grzegorz Żurek
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute National Research Institute, Radzików, Poland
| | - Barbara Wiewióra
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute National Research Institute, Radzików, Poland.
| | - Krystyna Rybka
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute National Research Institute, Radzików, Poland
| | - Kamil Prokopiuk
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute National Research Institute, Radzików, Poland
| |
Collapse
|
23
|
Re-vitalizing of endophytic microbes for soil health management and plant protection. 3 Biotech 2021; 11:399. [PMID: 34422540 DOI: 10.1007/s13205-021-02931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Soil health management and increase crop productivity are challenging issues for researchers and scientists. Many research publications have given multiple technological solutions for improving soil health and crop productivity but main problem is sustainability of those technologies under field condition and different agro-climatic zone. Due to the random industrialization, deforestation, mining and other environmental factor reduce soil fertility and human health. Many alternative options e.g., crop rotation, green manuring, integrated farming, biofertilizer (plant-growth-promoting microorganism, microbial consortium of rhizosphere soils), and vermicomposting are available for adapting and improving the soil heath and crop productivity by farmers. Recent trends of new research dimension for sustainable agriculture, endophytic microbes and its consortium is one of the better alternative for increasing crop productivity, soil health and fertility management. However, current trends are focuses on the endophytic microbes, which are present mostly in all plant species. Endophytic microbes are isolated from plant parts-root, shoot, leaf, flower and seeds which have very potential ability of plant growth promotion and bio-controlling agent for enhancing plant growth and development. Mostly plant endophytes showed multi-dimensional (synergistic, mutualistic, symbiotic etc.) interactions within the host plants. It promotes the plant growth, protects from pathogen, and induces resistance against biotic and abiotic environmental stresses, and improves the soil fertility. Till date, most of the scientific research has been done on assuming that interaction of plant endophytes with the host is similar like the plant-growth-promoting microorganism (PGPM). It would be very interesting to explore the functional properties of plant endophytes to modulate the essential gene expression during biotic and abiotic stresses. Endophytes have the ability to induce the soil fertility by improving soil essential nutrient, enzymatic activity and influence the other physiochemical property. In this study, we have discussed details about functional properties of plant endophytes and their mechanism for enhancing plant productivity and soil health and fertility management under climate-resilient agricultural practices. Our main objective is to promote and explore the beneficial plant endophytes for enhancing sustainable agricultural productivity.
Collapse
|
24
|
Molecular identification and evaluation of gamma irradiation effect on modulating heavy metals tolerance in some of novel endophytic fungal strains. Arch Microbiol 2021; 203:4867-4878. [PMID: 34235584 DOI: 10.1007/s00203-021-02472-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Heavy metal (HM) pollution is a worldwide environmental issue. Given the urgent need to develop more powerful approaches for effective phytoremediation of HMs, isolation of novel endophytic strains from hyperaccumulator plants having potent HM tolerance is the main objective in this research. Moreover, the recovered strains were characterized and subjected to radiation mutagenesis to enhance their tolerance to HMs. Among 105 isolates, Alternaria alternata AUMC14431 was identified as the most effective Cd+2 tolerant strain having high recorded tolerance index (TI) (76.24%); in addition, the recorded minimum inhibitory concentration (MIC) was 300 ppm. Meanwhile, Chaetomium globosum AUMC14432 was identified as the most effective Pb+2 and Ni+2 tolerant strain having high recorded TI (97.46 and 93.34%, respectively); in addition, the evaluated MICs were 250 and 200 ppm, respectively. UV and gamma irradiation of the tested strains enhanced their Cd+2 and Pb+2 tolerance significantly (P ≤ 0.05). Meanwhile, irradiation had a negative impact on Ni+2 tolerance of C. globosum. The mutation incidence at the molecular level arising from exposure to irradiation was investigated. Genomic DNA of both the wild and mutated endophytic strains were isolated followed by random amplified polymorphic DNA (RAPD-PCR) analysis, using two short primers. A remarkable difference in DNA gel pattern between the wild type and mutated strains was observed. In conclusion, the novel isolated and irradiated endophytic strains, A. alternata S5 and C. globosum El26, having high efficiency in Cd+2 and Pb+2 tolerance, respectively, are considered to be prospective and powerful bioremediation candidates for potential application in microbially assisted phytoremediation.
Collapse
|
25
|
Tondera K, Chazarenc F, Chagnon PL, Brisson J. Bioaugmentation of treatment wetlands - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145820. [PMID: 33618303 DOI: 10.1016/j.scitotenv.2021.145820] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Bioaugmentation in the form of artificial mycorrhization of plant roots and bacterial inoculation has been successfully implemented in several fields including soil remediation or activated sludge treatment. Likewise, bioaugmentation seems a promising approach to improve the functioning of treatment wetlands, considering that natural mycorrhization has been detected in treatment wetlands and that bacteria are the main driver of contaminant degradation processes. However, to date, full scale implementation seems to be rare. This review synthesizes the effects of bioaugmentation on different types of treatment wetlands, to a large extent performed on a microcosm (<0.5 m2) or mesocosm scale (0.51 to 5 m2). While inoculation with arbuscular mycorrhizal fungi tended to show a positive effect on the growth of some wetland plants (e.g. Phragmites australis), the mechanisms underlying such positive effects are not well understood and the effects of upscaling to full scale treatment wetlands remain unknown. Bacterial inoculation tended to promote plant growth and pollutant degradation, but longer term data is required.
Collapse
Affiliation(s)
- Katharina Tondera
- INRAE, REVERSAAL, F-69625 Villeurbanne, France; IMT Atlantique Bretagne-Pays de Loire, Department of Energy Systems and Environment, 44307 Nantes, France.
| | | | - Pierre-Luc Chagnon
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| | - Jacques Brisson
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montréal, Canada.
| |
Collapse
|
26
|
Ramdass AC, Rampersad SN. Diversity and Oil Degradation Potential of Culturable Microbes Isolated from Chronically Contaminated Soils in Trinidad. Microorganisms 2021; 9:1167. [PMID: 34071489 PMCID: PMC8230346 DOI: 10.3390/microorganisms9061167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Trinidad and Tobago is the largest producer of oil and natural gas in Central America and the Caribbean. Natural crude oil seeps, in addition to leaking petroleum pipelines, have resulted in chronic contamination of the surrounding terrestrial environments since the time of petroleum discovery, production, and refinement in Trinidad. In this study, we isolated microbes from soils chronically contaminated with crude oil using a culture-dependent approach with enrichment. The sampling of eight such sites located in the southern peninsula of Trinidad revealed a diverse microbial composition and novel oil-degrading filamentous fungi and yeast as single-isolate degraders and naturally occurring consortia, with specific bacterial species not previously reported in the literature. Multiple sequence comparisons and phylogenetic analyses confirmed the identity of the top degraders. The filamentous fungal community based on culturable species was dominated by Ascomycota, and the recovered yeast isolates were affiliated with Basidiomycota (65.23%) and Ascomycota (34.78%) phyla. Enhanced biodegradation of petroleum hydrocarbons is maintained by biocatalysts such as lipases. Five out of seven species demonstrated extracellular lipase activity in vitro. Our findings could provide new insights into microbial resources from chronically contaminated terrestrial environments, and this information will be beneficial to the bioremediation of petroleum contamination and other industrial applications.
Collapse
Affiliation(s)
| | - Sephra N. Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, Trinidad and Tobago, West Indies;
| |
Collapse
|
27
|
Zhan H, Wan Q, Wang Y, Cheng J, Yu X, Ge J. An endophytic bacterial strain, Enterobacter cloacae TMX-6, enhances the degradation of thiamethoxam in rice plants. CHEMOSPHERE 2021; 269:128751. [PMID: 33139042 DOI: 10.1016/j.chemosphere.2020.128751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/23/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Thiamethoxam (TMX) has been widely used over the last two decades. TMX residue in the environment has drawn great public attention. An endophytic bacterial strain, TMX-6, capable of degrading TMX was isolated from wild Ophiopogon japonicus and was identified as Enterobacter cloacae by morphology and 16S ribosomal DNA sequence analysis. After being marked with green fluorescent protein plasmid, TMX-6 was successfully inoculated in the rice plants (Oryza sativa L.). The numbers of TMX-6 in non-TMX treated rice plants ranged from 3.9 to 4.6 log CFU g-1 in the roots, and from 2.7 to 4.0 log CFU g-1 in the shoots; while ranged from 3.9 to 5.3 log CFU g-1 in roots and from 2.7 to 4.1 log CFU g-1 in shoots of TMX treated rice plants. Nearly 28%, 33%, 77% and 99% of TMX was removed from the hydroponic medium (HM), HM with strain TMX-6, HM with uninoculated rice and HM with inoculated rice, respectively, at the end of a 21-day (d) experiment period, and the correspondent half-lives of TMX were 46.2, 38.5, 9.9 and 4.7 d, respectively. Eleven TMX metabolites were identified in both inoculated and uninoculated rice plants through metabolomics data analysis. The intensity of TMX- NH, TMX-urea and clothianidin increased more than 3 times in inoculated rice plants on day 6. This demonstrates the usefulness of the strain TMX-6 to enhance the degradation of TMX-contaminated substrates and reduce levels of toxic insecticides in crop plants.
Collapse
Affiliation(s)
- Honglin Zhan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China
| | - Qun Wan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China
| | - Ya Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China
| | - Jiangfeng Cheng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China
| | - Jing Ge
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, 50 Zhongling Street, Nanjing, 210014, China; School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
28
|
Diversity and Communities of Fungal Endophytes from Four Pinus Species in Korea. FORESTS 2021. [DOI: 10.3390/f12030302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal endophytes are ubiquitous in nature. They are known as potential sources of natural products, and possible agents for biocontrol attributing to their ability to produce a repertoire of bioactive compounds. In this study, we isolated fungal endophytes from three different tissues (needle, stem and root) of four Pinus species (Pinus densiflora, Pinus koraiensis, Pnus rigida, and Pinus thunbergii) across 18 sampling sites in Korea. A total number of 5872 culturable fungal endophytes were isolated using standard culturing techniques. Molecular identification based on the sequence analyses of the internal transcribed spacer (ITS) or 28S ribosomal DNA revealed a total of 234 different fungal species. The isolated fungal endophytes belonged to Ascomycota (91.06%), Basidiomycota (5.95%) and Mucoromycota (2.97%), with 144 operational taxonomic units (OTUs) and 88 different genera. In all sampling sites, the highest species richness (S) was observed in site 1T (51 OTUs) while the lowest was observed in site 4T (27 OTUs). In terms of diversity, as measured by Shannon diversity index (H’), the sampling site 2D (H′ = 3.216) showed the highest while the lowest H’ was observed in site 2K (H’ = 2.232). Species richness (S) in three different tissues revealed that root and needle tissues are highly colonized with fungal endophytes compared to stem tissue. No significant difference was observed in the diversity of endophytes in three different tissues. Among the four Pinus species, P. thunbergii exhibited the highest species richness and diversity of fungal endophytes. Our findings also revealed that the environmental factors have no significant impact in shaping the composition of the fungal endophytes. Furthermore, FUNGuild analysis revealed three major classifications of fungal endophytes based on trophic modes namely saprotrophs, symbiotrophs, and pathotrophs in four Pinus species, with high proportions of saprotrophs and pathothrops.
Collapse
|
29
|
Wiewióra B, Żurek G. The Response of the Associations of Grass and Epichloë Endophytes to the Increased Content of Heavy Metals in the Soil. PLANTS (BASEL, SWITZERLAND) 2021; 10:429. [PMID: 33668289 PMCID: PMC7996287 DOI: 10.3390/plants10030429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022]
Abstract
The rapid development of civilization increases the area of land exposed to the accumulation of toxic compounds, including heavy metals, both in water and soil. Endophytic fungi associated with many species of grasses are related to the resistance of plants to biotic and abiotic stresses, which include heavy metals. This paper reviews different aspects of symbiotic interactions between grass species and fungal endophytes from the genera Epichloë with special attention paid to the elevated concentration of heavy metals in growing substrates. The evidence shows the high resistance variation of plant endophyte symbiosis on the heavy metals in soil outcome. The fungal endophytes confer high heavy metal tolerance, which is the key feature in its practical application with their host plants, i.e., grasses in phytoremediation.
Collapse
Affiliation(s)
- Barbara Wiewióra
- Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute-NRI, Radzików, 05-870 Błonie, Poland
| | - Grzegorz Żurek
- Department of Grasses, Legumes and Energy Plants, Plant Breeding and Acclimatization Institute-NRI, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
30
|
Gupta S, Kaur G, Nirwan J. Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion: A Deep Insight. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Barberis L, Michalet S, Piola F, Binet P. Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress. Fungal Biol 2020; 125:326-345. [PMID: 33766311 DOI: 10.1016/j.funbio.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/12/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Metal trace elements accumulate in soils mainly because of anthropic activities, leading living organisms to develop strategies to handle metal toxicity. Plants often associate with root endophytic fungi, including nonmycorrhizal fungi, and some of these organisms are associated with metal tolerance. The lack of synthetic analyses of plant-endophyte-metal tripartite systems and the scant consideration for taxonomy led to this review aiming (1) to inventory non-mycorrhizal root fungal endophytes described with respect to their taxonomic diversity and (2) to determine the mutualistic roles of these plant-fungus associations under metal stress. More than 1500 species in 100 orders (mainly Hypocreales and Pleosporales) were reported from a wide variety of environments and hosts. Most reported endophytes had a positive effect on their host under metal stress, but with various effects on metal uptake or translocation and no clear taxonomic consistency. Future research considering the functional patterns and dynamics of these associations is thus encouraged.
Collapse
Affiliation(s)
- Louise Barberis
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Serge Michalet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5557 Écologie microbienne, Villeurbanne, France
| | - Florence Piola
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Philippe Binet
- Université de Bourgogne-Franche-Comté, CNRS-UFC, UMR6249 Chrono-environnement, Montbéliard, France.
| |
Collapse
|
32
|
Rattanapolsan L, Nakbanpote W, Sangdee A. Zinc- and cadmium-tolerant endophytic bacteria from Murdannia spectabilis (Kurz) Faden. studied for plant growth-promoting properties, in vitro inoculation, and antagonism. Arch Microbiol 2020; 203:1131-1148. [PMID: 33206216 DOI: 10.1007/s00203-020-02108-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/28/2023]
Abstract
This research aims to isolate and identify Zn- and Cd-tolerant endophytic bacteria from Murdannia spectabilis, identify their properties with and without Zn and Cd stress, and to investigate the effect of bacterial inoculation in an in vitro system. Twenty-four isolates could survive on trypticase soya agar (TSA) supplemented with Zn (250-500 mg L-1) and/or Cd (20-50 mg L-1) that belonged to the genera Bacillus, Pantoea, Microbacterium, Curtobacterium, Chryseobacterium, Cupriavidus, Siphonobacter, and Pseudomonas. Each strain had different indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and siderophore production, nitrogen fixation, phosphate solubilization, and lignocellulosic enzyme characteristics. Cupriavidus plantarum MDR5 and Chryseobacterium sp. MDR7 were selected for inoculation into plantlets that were already occupied by Curtobacterium sp. TMIL due to them have a high tolerance for Zn and Cd while showing no pathogenicity. As determined via an in vitro system, Cupriavidus plantarum MDR5 remained in the plants to a greater extent than Chryseobacterium sp. MDR7, while Curtobacterium sp. TMIL was the dominant species. The Zn plus Cd treatment supported the persistence of Cupriavidus plantarum MDR5. Dual and mixed cultivation showed no antagonistic effects between the endophytes. Although the plant growth and Zn/Cd accumulation were not significantly affected by the Zn-/Cd-tolerant endophytes, the inoculation did not weaken the plants. Therefore, Cupriavidus plantarum MDR5 could be applied in a bioaugmentation process.
Collapse
Affiliation(s)
- Ladawan Rattanapolsan
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Woranan Nakbanpote
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand.
| | - Aphidech Sangdee
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| |
Collapse
|
33
|
Yongpisanphop J, Babel S, Kurisu F, Kruatrachue M, Pokethitiyook P. Isolation and characterization of Pb-resistant plant growth promoting endophytic bacteria and their role in Pb accumulation by fast-growing trees. ENVIRONMENTAL TECHNOLOGY 2020; 41:3598-3606. [PMID: 31070994 DOI: 10.1080/09593330.2019.1615993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Lead (Pb) contamination is one of the major environmental problems on a global scale. Bacterial endophytes have been accepted as a promising technique to assist phytoremediation. In this study, three Pb-tolerant endophytic bacteria were isolated from the roots of Pityrogramma calomelanos. Based on partial 16S rRNA gene sequencing analysis, all isolates were similar to Pseudomonas and tolerated Pb concentration up to 1850mg/L, producing siderophores and solubilized phosphate. Among them, Pc isolate closely related to Pseudomonas psychrophila showed the highest water-soluble Pb in solution (Pb solubilization) and in contaminated soil. This isolate was chosen to study the effects on Pb accumulation in the roots of Acacia mangium and Eucalyptus camaldulensis by a hydroponic experiment. The results showed that, in the Hoagland nutrient solution with no Pb spiking, the roots showed no significant difference (p > 0.05), and the concentration of Pb ranged from 10 to 89 mg/kg. In the nutrient solution in the presence of 30 mg/L Pb, there were no significant changes in Pb contents in roots. However, A. mangium showed an increase in Pb concentration in the roots (6829 ± 697 mg/kg), compared to non-inoculation (6242 ± 272 mg/kg). E. camaldulensis inoculation showed a decrease in Pb content (3763 ± 592 mg/kg), compared to non-inoculation (4233 ± 264 mg/kg). These results suggest that the Pc isolate closely related to P. psychrophila was effective in promoting the phytoremediation potential of A. mangium, but it was not useful for E. camaldulensis.
Collapse
Affiliation(s)
- Jiraporn Yongpisanphop
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Sandhya Babel
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University-Rangsit Campus, Pathum Thani, Thailand
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Maleeya Kruatrachue
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
34
|
Effects of root endophytic fungus, Microdochium bolleyi on cadmium uptake, translocation and tolerance by Hordeum vulgare L. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00598-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit Rev Biotechnol 2020; 40:1210-1231. [PMID: 32862700 DOI: 10.1080/07388551.2020.1808584] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endophytic microbes are present in nearly all of the plant species known to date but how they enter and flourish inside a host plant and display multiple benefits like plant growth promotion (PGP), biodegradation, and stress alleviation are still unexplored. Until now, the majority of the research has been conducted assuming that the host-endophyte interaction is analogous to the PGP microbes, although, studies related to the mechanisms of their infection, colonization as well as conferring important traits to the plants are limited. It would be fascinating to explore the role of these endophytic microbes in host gene expression, metabolism, and the modulation of phenotypic traits, under abiotic and biotic stress conditions. In this review, we critically focused on the following areas: (i) endophytic lifestyle and the mechanism of their entry into plant tissues, (ii) how endophytes modulate the immune system of plants and affect the genotypic and phenotypic expression of host plants under abiotic and biotic stress condition, and (iii) the role of omics and other integrated genomic approaches in unraveling complex host-endophyte signaling crosstalk. Furthermore, we discussed their role in phytoremediation of heavy metal stress and whole genomic analysis based on an understanding of different metabolic pathways these endophytes utilize to combat stress.
Collapse
Affiliation(s)
- Anamika Dubey
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Ashwani Kumar
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| | - Selvadurai Dayanandan
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, India.,Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Mohammad Latif Khan
- Department of Botany, Metagenomics and Secretomics Research Laboratory, Dr. Harisingh Gour University (A Central University), Sagar, India
| |
Collapse
|
36
|
Ortega HE, Torres-Mendoza D, Cubilla-Rios L. Patents on Endophytic Fungi for Agriculture and Bio- and Phytoremediation Applications. Microorganisms 2020; 8:microorganisms8081237. [PMID: 32823804 PMCID: PMC7465599 DOI: 10.3390/microorganisms8081237] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Plant endophytic fungi spend all or part of their lives inside host tissues without causing disease symptoms. They can colonize the plant to protect against predators, pathogens and abiotic stresses generated by drought, salinity, high concentrations of heavy metals, UV radiation and temperature fluctuations. They can also promote plant growth through the biosynthesis of phytohormones and nutrient acquisition. In recent years, the study of endophytic fungi for biological control of plant diseases and pests has been intensified to try to reduce the ecological and public health impacts due the use of chemicals and the emergence of fungicide resistance. In this review, we examine 185 patents related to endophytic fungi (from January 1988 to December 2019) and discuss their applicability for abiotic stress tolerance and growth promotion of plants, as agents for biocontrol of herbivores and plant pathogens and bio- and phytoremediation applications.
Collapse
Affiliation(s)
- Humberto E. Ortega
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama; (H.E.O.); (D.T.-M.)
- Department of Organic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama
| | - Daniel Torres-Mendoza
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama; (H.E.O.); (D.T.-M.)
- Vicerrectoría de Investigación y Postgrado, University of Panama, Panama 0824, Panama
| | - Luis Cubilla-Rios
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural, Exact Sciences and Technology, University of Panama, Panama 0824, Panama; (H.E.O.); (D.T.-M.)
- Correspondence: ; Tel.: +507-6676-5824
| |
Collapse
|
37
|
Metagenomic profiling of the community structure, diversity, and nutrient pathways of bacterial endophytes in maize plant. Antonie van Leeuwenhoek 2020; 113:1559-1571. [PMID: 32803452 DOI: 10.1007/s10482-020-01463-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/11/2020] [Indexed: 01/06/2023]
Abstract
This study investigated the diversity, structure and nutrient pathways of the root-associated bacterial endophytes of maize plant cultivated using different fertilizers to verify the claim that inorganic fertilizers have some toxic effects on plant microbiome and not are ecofriendly. Whole DNA was extracted from the roots of maize plants cultivated with organic fertilizer, inorganic fertilizer and maize planted without any fertilizer at different planting sites in an experimental field and sequenced using shotgun metagenomics. Our results using the Subsystem database revealed a total of 28 phyla and different nutrient pathways in all the samples. The major phyla observed were Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, Tenericutes, Planctomycetes, Cyanobacteria, and Chlorobi. Bacteroidetes dominated maize from organic fertilizer sites, Firmicutes dominated the no fertilizers site while Proteobacteria dominated Inorganic fertilizer. The diversity analysis showed that the abundance of endophytic bacteria in all the sites is in the order organic fertilizer (FK) > no fertilizer (CK) > inorganic fertilizer (NK). Furthermore, the major nutrient cycling pathways identified are linked with nitrogen and phosphorus metabolism which were higher in FK samples. Going by the results obtained, this study suggests that organic fertilizer could be a boost to sustainable agricultural practices and should be encouraged. Also, a lot of novel endophytic bacteria groups were identified in maize. Mapping out strategies to isolate and purify this novel endophytic bacteria could help in promoting sustainable agriculture alongside biotechnological applications in future.
Collapse
|
38
|
Abdelrazek S, Choudhari S, Thimmapuram J, Simon P, Colley M, Mengiste T, Hoagland L. Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype. Sci Rep 2020; 10:13685. [PMID: 32792547 PMCID: PMC7426841 DOI: 10.1038/s41598-020-70683-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022] Open
Abstract
Fungal endophytes can influence production and post-harvest challenges in carrot, though the identity of these microbes as well as factors affecting their composition have not yet been determined, which prevents growers from managing these organisms to improve crop performance. Consequently, we characterized the endophytic mycobiome in the taproots of three carrot genotypes that vary in resistance to two pathogens grown in a trial comparing organic and conventional crop management using Illumina sequencing of the internal transcribed spacer (ITS) gene. A total of 1,480 individual operational taxonomic units (OTUs) were identified. Most were consistent across samples, indicating that they are part of a core mycobiome, though crop management influenced richness and diversity, likely in response to differences in soil properties. There were also differences in individual OTUs among genotypes and the nematode resistant genotype was most responsive to management system indicating that it has greater control over its endophytic mycobiome, which could potentially play a role in resistance. Members of the Ascomycota were most dominant, though the exact function of most taxa remains unclear. Future studies aimed at overcoming difficulties associated with isolating fungal endophytes are needed to identify these microbes at the species level and elucidate their specific functional roles.
Collapse
Affiliation(s)
- Sahar Abdelrazek
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA
| | - Sulbha Choudhari
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | | | - Philipp Simon
- USDA-ARS Agriculture Research Service, Madison, WI, USA
| | | | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
39
|
Gagnon V, Rodrigue-Morin M, Tremblay J, Wasserscheid J, Champagne J, Bellenger JP, Greer CW, Roy S. Life in mine tailings: microbial population structure across the bulk soil, rhizosphere, and roots of boreal species colonizing mine tailings in northwestern Québec. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01582-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Purpose
Mining activities have negative effects on soil characteristics and can result in low pH, high heavy metal content, and limited levels of essential nutrients. A tailings storage area located in northwestern Québec showed natural colonization by plants from the adjacent natural environment. The objective of the study was to determine the main edaphic parameters that structured microbial populations associated with the indigenous woody plants that had naturally colonized the site.
Methods
Microbial populations were studied in the bulk soil, the rhizosphere, and inside plant roots using Illumina sequencing, ordination analysis (i.e., redundancy analysis (RDA) and principal coordinates analysis (PCoA)), ternary plotting, and statistical analysis (MANOVA).
Results
The main variables that drove the microbial community patterns were plant species and the tailings pH. Indeed, the main bacterial classes were Gammaproteobacteria and Deltaproteobacteria in both the rhizosphere and root endosphere. Analysis revealed that some dominant operational taxonomic units (e.g., Pseudomonas sp., Acinetobacter sp., and Delftia sp.) were present in increased proportions in roots for each plant species under study. This study also revealed that many of the most abundant fungal genera (e.g., Claussenomyces, Eupenicillium, and Trichoderma) were more abundant in the rhizosphere than in the root endosphere.
Conclusions
This comprehensive study of the microbial community dynamics in the bulk soil, rhizosphere, and root endosphere of boreal trees and shrubs could be beneficial in facilitating the rehabilitation of disturbed ecosystems.
Collapse
|
40
|
Abstract
The ability of endophytes to colonize every plant tissue has led to the opportunity of using the microorganism in a lot of biological applications. Endophytes are beneficial to their host cells as such its application is observed in every aspects of life. This study therefore endeavored to give an analysis of endophytes, what they were and what they had been used for till the present time. Sampling of several literature studies in endophytes was done in this study to enable a complete understanding of the mechanism of application of the actions of endophytes, so as to be able to do a thorough assessment of the current state in the knowledge of the microbes. From the complete analysis of the literature on the application and use of endophytes, in nutrient asquition and increase the stress tolerance in plants. This study provided a platform for further research gaps through the presentation of what endophytes were, what they had been used for till date, the mechanism of operation of the micro-organism and the type of interaction between them and their hosts. There are still ways to improve on the methods of application of endophytes as a type of biological organism. This will be done by adjusting to the current trends in biological studies using molecular mechanization, following an intensive further study on endophyte mechanisms.
Collapse
|
41
|
Alishahi F, Alikhani HA, Khoshkholgh-Sima NA, Etesami H. Mining the roots of various species of the halophyte Suaeda for halotolerant nitrogen-fixing endophytic bacteria with the potential for promoting plant growth. Int Microbiol 2020; 23:415-427. [PMID: 31898032 DOI: 10.1007/s10123-019-00115-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
Abstract
Saline area may tend to be a productive land; however, many of salt-affected soils have nitrogen limitation and depend on plant-associated diazotrophs as their source of 'new' nitrogen. Herein, a total of 316 salinity tolerant nitrogen-fixing endophytic bacteria were isolated from roots of the halophyte Suaeda sp. sampled from 22 different areas of Iran to prepare the collection of nitrogen-fixing bacterial endophytes and evaluate the plant growth-promoting effect of effective isolates on growth of the halophyte Suaeda maritima. All of the identified nitrogen-fixing endophytes were classified to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes phylum while we did not detect common nitrogen-fixing endophyte of glycophytes like Azospirillum. The genera Pseudomonas and Microbacterium were both encountered in high abundance in all samples, indicating that they might play an advanced role in the micro-ecosystem of the halophyte Suaeda. In addition, the results also showed that not only soil salinity can affect halophyte endophytic composition but also other factors such as geographical location, plant species, and other soil properties may be involved. Interestingly, only Zhihengliuella halotolerans and Brachybacterium sp. belonging to Actinobacteria could grow in semi-solid N-free (NFb) medium supplemented with 6% NaCl and highly enhanced growth of S. maritima in vitro. Overall, this study offers useful new resources for nitrogen-fixing endophytic bacteria which may be utilized to improve approaches for providing bio-fertilizer useful in saline-based agriculture.
Collapse
Affiliation(s)
- Frashad Alishahi
- Department of Soil Science, Agriculture & Natural Resources Campus, Faculty of Agricultural Engineering & Technology, University of Tehran, Daneshkadeh Ave., Karaj, Tehran, 31587-77871, Iran
| | - Hossein Ali Alikhani
- Department of Soil Science, Agriculture & Natural Resources Campus, Faculty of Agricultural Engineering & Technology, University of Tehran, Daneshkadeh Ave., Karaj, Tehran, 31587-77871, Iran.
| | - Nayer Azam Khoshkholgh-Sima
- Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hassan Etesami
- Department of Soil Science, Agriculture & Natural Resources Campus, Faculty of Agricultural Engineering & Technology, University of Tehran, Daneshkadeh Ave., Karaj, Tehran, 31587-77871, Iran.
| |
Collapse
|
42
|
Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R. Current Scenario of Pb Toxicity in Plants: Unraveling Plethora of Physiological Responses. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 249:153-197. [PMID: 30900073 DOI: 10.1007/398_2019_25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lead (Pb) is an extremely toxic metal for all living forms including plants. It enters plants through roots from soil or soil solution. It is considered as one of the most eminent examples of anthropogenic environmental pollutant added in environment through mining and smelting of lead ores, coal burning, waste from battery industries, leaded paints, metal plating, and automobile exhaust. Uptake of Pb in plants is a nonselective process and is driven by H+/ATPases. Translocation of Pb metal ions occurs by apoplastic movement resulting in deposition of metal ions in the endodermis and is further transported by symplastic movement. Plants exposed to high concentration of Pb show toxic symptoms due to the overproduction of reactive oxygen species (ROS) through Fenton-Haber-Weiss reaction. ROS include superoxide anion, hydroxyl radical, and hydrogen peroxide, which reach to macro- and micro-cellular levels in the plant cells and cause oxidative damage. Plant growth and plethora of biochemical and physiological attributes including plant growth, water status, photosynthetic efficiency, antioxidative defense system, phenolic compounds, metal chelators, osmolytes, and redox status are adversely influenced by Pb toxicity. Plants respond to toxic levels of Pb in varied ways such as restricted uptake of metal, chelation of metal ions to the root endodermis, enhancement in activity of antioxidative defense, alteration in metal transporters expression, and involvement of plant growth regulators.
Collapse
Affiliation(s)
- Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| | - Neha Handa
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shagun Bali
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
43
|
Baoune H, Aparicio JD, Acuña A, El Hadj-Khelil AO, Sanchez L, Polti MA, Alvarez A. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109591. [PMID: 31514081 DOI: 10.1016/j.ecoenv.2019.109591] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Restoring polluted sites by petroleum hydrocarbons is a challenge because of their complexity and persistence in the environment. The main objective of the present study was to investigate the performance of plant-actinobacteria system for the remediation of crude petroleum and pure-polycyclic aromatic hydrocarbons (PAHs) contaminated soils. The endophytic strain Streptomyces sp. Hlh1 was tested for its ability to degrade model PAHs (phenanthrene, pyrene and anthracene) in liquid minimal medium. Streptomyces sp. Hlh1 demonstrated the ability to grow on PAHs as sole carbon and energy source, reaching hydrocarbons removal of 63%, 93% and 83% for phenanthrene, pyrene and anthracene, respectively. Maize plant was chosen to study the impact of Streptomyces sp. Hlh1 inoculation on the dissipation of contaminants and plant growth. Thus, maize seedlings grown in soils contaminated with crude petroleum and pure-PAHs were inoculated with Streptomyces sp. Hlh1. Results showed that the endophyte inoculation increased contaminants removal. Maximum hydrocarbons removal (70%) was achieved in inoculated and planted soil contaminated with crude oil, while 61%, 59%, and 46% of hydrocarbons dissipation were registered for phenanthrene, pyrene and anthracene, respectively. These degradations rates were significantly higher compared to non-inoculated systems in all the treatments evaluated. Further, it was revealed that hydrocarbons (C8-C30) were efficiently degraded in plant-Streptomyces Hlh1 system. Moreover, the inoculation with the actinobacteria resulted significant plant development and enhanced photosynthetic pigments compared to plants grown in the other experimental conditions. The present study provide evidence that the inoculation of maize plants with Streptomyces sp. Hlh1 play a remarkable role in the removal of petroleum hydrocarbons, enhancing plant development in contaminated soils.
Collapse
Affiliation(s)
- Hafida Baoune
- Laboratoire de Protection des écosystème en Zones Arides et Semi-arides, FNSV, Université Kasdi Merbah Ouragla, 30000, Algeria; Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina.
| | - Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina.
| | - Adrian Acuña
- Universidad Tecnológica Nacional, Av. de Los Inmigrantes 555, 9400, Santa Cruz, Argentina.
| | - Aminata Ould El Hadj-Khelil
- Laboratoire de Protection des écosystème en Zones Arides et Semi-arides, FNSV, Université Kasdi Merbah Ouragla, 30000, Algeria.
| | - Leandro Sanchez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| | - Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET. Av. Belgrano y Pasaje Casero., 4000, Tucumán, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, 4000, Tucumán, Argentina.
| |
Collapse
|
44
|
Changes of Root Endophytic Bacterial Community Along a Chronosequence of Intensively Managed Lei Bamboo ( Phyllostachys praecox) Forests in Subtropical China. Microorganisms 2019; 7:microorganisms7120616. [PMID: 31779125 PMCID: PMC6956015 DOI: 10.3390/microorganisms7120616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
Endophytic bacteria widely exist inside plant tissues and have an important role in plant growth and development and the alleviation of environmental stress. However, little is known about the response of root-associated bacterial endophytes of Lei bamboo (Phyllostachys praecox) to intensive management, which is a common management practice for high bamboo shoot production in subtropical China. In this study, we comparatively investigated the root endophytic bacterial community structures in a chronosequence of intensively managed (5a, 10a, 15a, and 20a) and extensively managed plantations (as control, Con). The results showed that endophytic Proteobacteria was the dominant bacterial phylum in the bamboo roots. Intensive management significantly increased (p < 0.05) the bacterial observed species and Chao1 (except 5a) indices associated with bamboo roots. The relative abundances of Firmicutes, Bacteroidetes, and Actinobacteria (except 15a) in the intensively managed bamboo roots significantly increased (p < 0.05) compared with those in Con, while the relative abundance of Proteobacteria significantly decreased in intensively managed bamboo roots (p < 0.05). The phyla Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were the biomarkers in Con, 5a, 15a, and 20a, respectively. Redundancy analysis (RDA) showed that soil alkali-hydrolysable N (AN), available phosphorus (AP), available K (AK), and total organic carbon (TOC) were significantly correlated (p < 0.05) with the bacterial community compositions. Our results suggest that the root endophytic microbiome of Lei bamboo was markedly influenced by intensive management practices, and the available nutrient status could be the main driving factor for such shifts. Although heavy fertilization in the intensive management system increased the diversity indices, the rapid changes in root endophyte communities and their relevant functions might indicate a high risk for sustainable management.
Collapse
|
45
|
Agricultural and Other Biotechnological Applications Resulting from Trophic Plant-Endophyte Interactions. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120779] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endophytic microbiota plays a role not only in supplying plants with the basic nutrients indispensable for their growth, but also helps them in the mechanisms of adaptation to various environmental stresses (i.e., salinity, drought), which is important in the aspect of crop yields. From the agricultural and biotechnological points of view, the knowledge of endophytes and their roles in increasing crop yields, plant resistance to diseases, and helping to survive environmental stress is extremely desirable. This paper reviews some of the beneficial plant–microbe interactions that might be potentially used in both agriculture (plant growth stimulation effect, adaptation of host organisms in salinity and drought conditions, and support of defense mechanisms in plants), and in biotechnology (bioactive metabolites, application of endophytes for bioremediation and biotransformation processes, and production of biofertilizers and biopreparations). Importantly, relatively recent reports on endophytes from the last 10 years are summarized in this paper.
Collapse
|
46
|
Lu L, Chai Q, He S, Yang C, Zhang D. Effects and mechanisms of phytoalexins on the removal of polycyclic aromatic hydrocarbons (PAHs) by an endophytic bacterium isolated from ryegrass. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:872-881. [PMID: 31349196 DOI: 10.1016/j.envpol.2019.07.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Plant-endophyte synergism has been demonstrated to play a key role in the phytoremediation of contaminated water and soil. Phytoalexins, a type of chemical component in the plant apoplast, can be produced by plants in response to stimulation by endophytes. Phytoalexins may have distinct effects on the nutritional and metabolic functions of endophytes; however, direct evidence is not available to prove the effect of phytoalexins on the hydrophobic organic contaminants (HOC)-degradation activity of endophytes. In this paper, three different types of phytoalexins, coumarin, resveratrol and rutin, were selected to study their effect on the removal of polycyclic aromatic hydrocarbons (PAHs) by an endophytic bacterium Methylobacterium extorquens C1. The effects of the three phytoalexins on bacterial sorption and intracellular enzymatic activities were tested to further analyze the mechanism by which the phytoalexins affect the PAH degradation performance of M. extorquens C1. The results showed that the removal rate of PAHs by M. extorquens C1 increased in the presence of low levels of the three phytoalexins. The most effective concentrations of coumarin, resveratrol and rutin were 0.20, 0.15, and 0.25 mg/L, respectively, and the removal rate of PAHs was increased by approximately 18.3-35.0%. At the optimal concentrations, the three phytoalexins significantly promoted the sorption of PAHs by M. extorquens C1, and also enhanced the activities of catechol dioxygenases and dehydrogenase of M. extorquens C1. The positive effect of phytoalexins on both bacterial sorption and intracellular enzymatic activities promotes the overall removal of PAHs from endophytes. These results may deepen our understanding of plant-microbe cooperative mechanisms in the degradation of organic pollutants and provide a new approach for chemically enhanced bioremediation in the future.
Collapse
Affiliation(s)
- Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiwei Chai
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shanying He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Chunping Yang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
47
|
Islam MN, Ali MS, Choi SJ, Hyun JW, Baek KH. Biocontrol of Citrus Canker Disease Caused by Xanthomonas citri subsp. citri Using an Endophytic Bacillus thuringiensis. THE PLANT PATHOLOGY JOURNAL 2019; 35:486-497. [PMID: 31632223 PMCID: PMC6788417 DOI: 10.5423/ppj.oa.03.2019.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/05/2019] [Accepted: 08/12/2019] [Indexed: 05/14/2023]
Abstract
Citrus canker is a devastating disease of citrus caused by Xanthomonas citri subsp. citri (Xcc). A total of 134 endophytic bacteria were isolated from various gymnospermic and angiospermic plants. They were screened for their antagonistic activities against three wild-type and six streptomycin-resistant Xcc strains. TbL-22 and TbL-26, both later identified as Bacillus thuringiensis, inhibited all the wild and resistant Xcc strains. TbL-22 exerted the highest antagonistic activity against XccW3 and XccM6 with inhibition zones of 20.64 ± 0.69 and 19.91 ± 0.87 mm, respectively. Similarly ethyl acetate extract of TbL-22 showed highest inhibition zones 15.31 ± 2.08 and 19.37 ± 3.17 mm against XccW3 and XccM6, respectively. TbL-22 reduced canker incidence on infected leaves by 64.05% relative to positive controls. Scanning electron microscopy revealed that the cell membranes of Xcc treated with ethyl acetate extract of TbL-22 were ruptured, lysed, and swollen. B. thuringiensis TbL-22 can effectively and sustainably controls streptomycin-resistant citrus canker.
Collapse
Affiliation(s)
- Md. Nurul Islam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541,
Korea
| | - Md. Sarafat Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541,
Korea
| | - Seong-Jin Choi
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan 38430,
Korea
| | - Jae-Wook Hyun
- Citrus Research Station, National Institute of Horticultural and Herbal Science, Rural Development Administration, Seogwipo 63607,
Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541,
Korea
- Corresponding author.: Phone) +82-53-810-3029, FAX) +82-53-810-4769, E-mail)
| |
Collapse
|
48
|
Ye D, Li T, Yi Y, Zhang X, Zou L. Characteristics of endophytic fungi from Polygonum hydropiper suggest potential application for P-phytoextraction. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Martinho V, dos Santos Lima LM, Barros CA, Ferrari VB, Passarini MRZ, Santos LA, de Souza Sebastianes FL, Lacava PT, de Vasconcellos SP. Enzymatic potential and biosurfactant production by endophytic fungi from mangrove forest in Southeastern Brazil. AMB Express 2019; 9:130. [PMID: 31428885 PMCID: PMC6702500 DOI: 10.1186/s13568-019-0850-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/02/2019] [Indexed: 11/17/2022] Open
Abstract
Microbial activity is the main route for cycling mangrove nutrients. In general, microorganisms have abilities to degrade lignocellulosic compounds. Among the biotechnological potential of the microbiota from mangroves, it is noteworthy about endophytic fungi, which can be considered as effective sources of different bioactive compounds. In this sense, thirty (30) endophytic fungi were isolated from mangrove forest sampling Cananeia, SP, Brazil. These microorganisms were analyzed about their enzymatic activities including: lignin peroxidase EC 1.11.1.14, manganese peroxidase EC 1.11.1.13 and laccase EC 1.10.3.2, as well endo-cellulase EC 3.2.1.4 and endo-xylanase EC 3.2.1.8. Besides that, production of bioactive secondary metabolites like biosurfactant and/or bioemulsifier was also investigated. As results, nineteen (19) isolates were selected about their ligninolytic abilities, nine (9) of them about cellulase activity and thirteen (13) showed xylanase abilities. The fungal isolate named as 3(3), characterized as Fusarium sambucinum, showed a prominent lignin peroxidase (42.4 U L-1) and manganese peroxidase (23.6 U L-1) activities. The isolate 63.1, also related to Fusarium sp. genera, was selected about its laccase activity (41.5 U L-1). From all the investigated fungi, the isolate 47(4) Trichoderma camerunense was selected about its cellulolytic and xylanolytic activities, showing 45.23 and 26.09 U mL-1, respectively. The same fungi also showed biosurfactant ability demonstrated by superficial tension decreasing to 38 mN/m. In addition, fifteen (15) fungi exhibited bioemulsifier activity, with E24 values up to 62.8%.
Collapse
Affiliation(s)
- Vivian Martinho
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R. São Nicolau, 210, Diadema, SP Zip Code 09913-030 Brazil
| | - Lidiane Maria dos Santos Lima
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R. São Nicolau, 210, Diadema, SP Zip Code 09913-030 Brazil
| | - Caroline Almeida Barros
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R. São Nicolau, 210, Diadema, SP Zip Code 09913-030 Brazil
| | - Vitor Baptista Ferrari
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R. São Nicolau, 210, Diadema, SP Zip Code 09913-030 Brazil
| | - Michel Rodrigo Zambrano Passarini
- Latin American Institute of Life Sciences and Nature, Federal University of Latin American Integration, Av. Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR Zip Code 85870-901 Brazil
| | - Leonardo André Santos
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R. São Nicolau, 210, Diadema, SP Zip Code 09913-030 Brazil
| | - Fernanda Luisa de Souza Sebastianes
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Center for Biological and Health Sciences, Federal University of São Carlos, Via Washington Luís km 235, PO BOX 676, São Carlos, SP 13565‑905 Brazil
| | - Paulo Teixeira Lacava
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Center for Biological and Health Sciences, Federal University of São Carlos, Via Washington Luís km 235, PO BOX 676, São Carlos, SP 13565‑905 Brazil
| | - Suzan Pantaroto de Vasconcellos
- Department of Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), R. São Nicolau, 210, Diadema, SP Zip Code 09913-030 Brazil
| |
Collapse
|
50
|
Talaromyces variabilis interferes with Pythium aphanidermatum growth and suppresses Pythium-induced damping-off of cucumbers and tomatoes. Sci Rep 2019; 9:11255. [PMID: 31375723 PMCID: PMC6677756 DOI: 10.1038/s41598-019-47736-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Pythium-induced damping-off disease is a major disease limiting cucumber and tomato production in different parts of the world. The current study investigated the efficiency of Talaromyces variabilis and its bioactive metabolites in suppressing Pythium-induced damping-off of cucumbers and tomatoes. T. variabilis inhibited the in vitro growth of P. aphanidermatum in solid and liquid media. In addition, abnormalities in P. aphanidermatum hyphae were observed as a result of T. variabilis. Extracts from T. variabilis induced cellular leakage and suppressed oospore production of P. aphanidermatum. Biochemical analyses of T. variabilis metabolites showed that T. variabilis produces glucanase, cellulase and siderophores, suggesting the contribution of these metabolites in the inhibition of P. aphandermatum growth and in hyphal abnormalities. Treating cucumber seeds with spore and mycelial suspension of T. variabilis isolates led to a significant improvement in the seedling survival of P. aphanidermatum-inoculated seedlings from 18 to 52% (improvement by 34%) for isolate 48 P and from 30–66% (improvement by 36%) for isolate 28 R. Similarly, treating tomato seeds with spore and mycelial suspension of T. variabilis isolates led to a significant improvement in the seedling survival of P. aphanidermatum-inoculated seedlings from 7 to 36% (improvement by 29%) for isolate 28 R and from 20 to 64% (improvement by 44%) for isolate 48 P. Differences in the percent improvement in seedling survival between experiments may be related to difference in the efficacy of the two different isolates or their interaction with the hosts and pathogen. The use of T. variabilis in the biocontrol of Pythium-induced diseases may offer alternatives to the currently used chemical control.
Collapse
|