1
|
Tang X, Jeewon R, Jayawardena RS, Gomdola D, Lu YZ, Xu RJ, Alrefaei AF, Alotibi F, Hyde KD, Kang JC. Additions to the genus Kirschsteiniothelia (Dothideomycetes); Three novel species and a new host record, based on morphology and phylogeny. MycoKeys 2024; 110:35-66. [PMID: 39502522 PMCID: PMC11535726 DOI: 10.3897/mycokeys.110.133450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
During a survey of microfungi associated with forest plants, four specimens related to Kirschsteiniothelia were collected from decaying wood in Guizhou, Hainan and Yunnan Provinces, China. Kirschsteiniothelia species have sexual and asexual forms. They are commonly found as saprophytes on decaying wood and have been reported as disease-causing pathogens in humans as well. In this study, we introduce three novel Kirschsteiniothelia species (K.bulbosapicalis, K.dendryphioides and K.longirostrata) and describe a new host record for K.atra, based on morphology and multi-gene phylogenetic analyses of a concatenated ITS, LSU and SSU rDNA sequence data. These taxa produced a dendryphiopsis- or sporidesmium-like asexual morph and detailed descriptions and micromorphological illustrations are provided. Furthermore, we provide a checklist for the accepted Kirschsteiniothelia species, including detailed host information, habitat preferences, molecular data, existing morphological type, country of origin and corresponding references.
Collapse
Affiliation(s)
- Xia Tang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Rajesh Jeewon
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Yong-Zhong Lu
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Abdulwahed Fahad Alrefaei
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province 550003, China
| | - Fatimah Alotibi
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province 550003, China
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province 550003, China
| | - Ji-Chuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
2
|
Gao Y, Zhong T, Eungwanichayapant PD, Jayawardena RS, Hyde KD, Faraj TK, Wanasinghe DN, Gui H. Two new species of Parastagonospora and a new species of Phaeoseptoriella (Phaeosphaeriaceae, Pleosporales) from grasslands in Yunnan Province, China. MycoKeys 2024; 109:239-263. [PMID: 39430415 PMCID: PMC11487144 DOI: 10.3897/mycokeys.109.134136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/31/2024] [Indexed: 10/22/2024] Open
Abstract
During our investigation of microfungi on grasslands in Yunnan Province, China, three new fungal taxa associated with grasses were collected. Morphological observations and phylogenetic analyses of the combined SSU, LSU, ITS, tef1-α, and rpb2 loci based on maximum likelihood and Bayesian inference were used to reveal the taxonomic placement of these fungal taxa. This study introduces Parastagonosporayunnanensis, Para.zhaotongensis, Phaeoseptoriellapoaceicola. Parastagonosporayunnanensis is characterized by ampulliform or globose to subglobose conidiogenous cells, with conidia that are cylindrical to subcylindrical, 0-1-septate, rounded at the apex and slightly truncate at the base. Parastagonosporazhaotongensis features similar globose to subglobose conidiogenous cells but with 0-3-septate, cylindrical to subcylindrical conidia. Phaeoseptoriellapoaceicola is distinguished by its globose to subglobose conidiogenous cells and phragmosporous conidia that are initially hyaline, turn pale yellowish at maturity, and are 7-septate, cylindrical to subcylindrical, either straight or slightly curved. These discoveries underscore the significance of exploring and accurately identifying fungal taxa within Ascomycota, highlighting the species richness and potential for new species discoveries in grass-based habitats. The findings from this study expand our understanding of the taxonomy and phylogeny of grassland-associated Ascomycota, providing a foundation for further ecological and taxonomic studies of these fungi within their natural environments.
Collapse
Affiliation(s)
- Ying Gao
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Tingfang Zhong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | | | | | - Kevin D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Turki Kh. Faraj
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dhanushka N. Wanasinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Gui
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Sun T, Chen Y, Wang D, Dai Y, Zou W, Luo R, Dong Q, Yu H. Mitogenomics, phylogeny and morphology reveal two new entomopathogenic species of Ophiocordyceps (Ophiocordycipitaceae, Hypocreales) from south-western China. MycoKeys 2024; 109:49-72. [PMID: 39372080 PMCID: PMC11450462 DOI: 10.3897/mycokeys.109.124975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
Ophiocordyceps encompasses over 300 species, demonstrating a wide range of morphological features, hosts and habitats within its species diversity. In this study, two novel species in Ophiocordyceps were revealed parasitising Hepialidae larva buried in soil. Ophiocordycepsalbastroma was morphologically characterised by white stromata, solitary and cylindrical conidiogenous cells and smooth ovoid or ellipsoidal conidia. Ophiocordycepsnigristroma was characterised by woody and dark brown stromata, monophialidic, swollen base and lageniform conidiogenous cells and smooth fusiform or oval conidia. The two new species formed a separate clade, respectively, based on the phylogenetic analyses of a combined dataset including nrSSU, nrLSU, rpb1, rpb2, and tef-1α, as well as a dataset of mitochondrial 14 protein coding genes (PCGs). They were all closely grouped with O.sinensis. The mitochondrial genomes of them were first reported. Their mitogenomes were all typical of circular molecules, with positive AT and GC skew, similar GC content, similar genetic composition, similar codon usage and conservative gene positions. However, the length of the mitogenomes varied. Changes in the length of the genes were the leading cause of changes in the length of mitochondrial genome of Ophiocordyceps. The discovery and identification of new Ophiocordyceps species and analysis their mitochondrial genomes may serve as foundations for phylogeny and diversity research within the genus Ophiocordyceps.
Collapse
Affiliation(s)
- Tao Sun
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Yue Chen
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Dong Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Yongdong Dai
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Weiqiu Zou
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Run Luo
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Quanying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
4
|
Song B, Raza M, Zhang LJ, Xu BQ, Zhang P, Zhu XF. A new brown rot disease of plum caused by Mucor xinjiangensis sp. nov. and screening of its chemical control. Front Microbiol 2024; 15:1458456. [PMID: 39318429 PMCID: PMC11419995 DOI: 10.3389/fmicb.2024.1458456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
A novel species of Mucor was identified as the causal agent of a brown rot of Prunus domestica (European plum), widely grown in the south of Xinjiang, China. This disease first appears as red spots after the onset of the fruits. With favorable environmental conditions, fruit with infected spots turn brown, sag, expand, wrinkle, and harden, resulting in fruit falling. Fungal species were isolated from infected fruits. A phylogenetic analysis based on internal transcribed spacer (ITS) regions and the large subunit (LSU) of the nuclear ribosomal RNA (rRNA) gene regions strongly supported that these isolates made a distinct evolutionary lineage in Mucor (Mucoromycetes, Mucoraceae) that represents a new taxonomic species, herein named as Mucor xinjiangensis. Microscopic characters confirmed that these strains were morphologically distinct from known Mucor species. The pathogenicity of M. xinjiangensis was confirmed by attaching an agar disk containing mycelium on fruits and re-isolation of the pathogen from symptomatic tissues. Later, fourteen fungicides were selected to determine the inhibitory effect on the pathogen. Further, results showed that difenoconazole had the best effect on the pathogen and the strongest toxicity with the smallest half maximal effective concentration (EC50) value, followed by a compound fungicide composed of difenoconazole with azoxystrobin, mancozeb, prochloraz with iprodione, pyraclostrobin with tebuconazole, and trifloxystrobin with tebuconazole and ethhylicin. Present study provides the basis for the prevention and control of the novel plum disease and its pathogen.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Mubashar Raza
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Li-Juan Zhang
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Bing-Qiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Pan Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Xiao-Feng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| |
Collapse
|
5
|
Habib K, Zhou X, Zeng W, Zhang X, Hu H, Wu Q, Liu L, Lin Y, Shen X, Kang J, Li Q. Stromatolinea, a new diatrypaceous fungal genus (Ascomycota, Sordariomycetes, Xylariales, Diatrypaceae) from China. MycoKeys 2024; 108:197-225. [PMID: 39268504 PMCID: PMC11391124 DOI: 10.3897/mycokeys.108.126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Molecular phylogeny and morphological characteristics of collections of diatrypaceous fungi from Guizhou Province, China, lead to the establishment of a new genus, Stromatolinea, and the identification of four new species and two new combinations. The taxa were found growing on the dead culms of Phyllostachys bamboo. The new genus is distinguished by its well-developed, discrete linear stromata with yellow interior tissue and allantoid subhyaline ascospores. The newly described species are Stromatolineagrisea, S.guizhouensis, S.hydei, and S.xishuiensis. Additionally, two new combinations, Stromatolinealinearis and S.phaselina, are proposed based on comparative analysis and morphology. Phylogenetic analyses were conducted using ITS and TUB2 sequences. The study includes comprehensive morphological descriptions, illustrations, and a phylogenetic tree depicting the placement of the new taxa.
Collapse
Affiliation(s)
- Kamran Habib
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
- Department of Botany, Khushal Khan Khattak University, Karak, KP, Pakistan
| | - Xin Zhou
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| | - Wenyu Zeng
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| | - Xu Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| | - Hongmin Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| | - Qianzhen Wu
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| | - Lili Liu
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| | - Yan Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| | - Jichuan Kang
- Immune Cells and Antibody Engineering Research Centre of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Gui'an New District, 561113, China
| | - Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| |
Collapse
|
6
|
Salvador-Montoya CA, Alves-Silva G, Kossmann T, Bittencourt F, Werner D, Martins-Cunha K, Popoff OF, Góes-Neto A, Rajchenberg M, Drechsler-Santos ER. A new and threatened species of Bondarzewia from the Brazilian cloud forests. Mycologia 2024; 116:775-791. [PMID: 38976827 DOI: 10.1080/00275514.2024.2355337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/10/2024] [Indexed: 07/10/2024]
Abstract
A new and threatened polypore species, Bondarzewia loguerciae, is described from the cloud forests of southern Brazil. It is characterized by single-pileate basidiomata that grow on dead branches and along living stems of standing trunks and present a context with dark lines and resinous tubes. When growing in axenic culture, this species also develops chlamydospores. We provide an illustrated morphological description and molecular analysis. Our specimens from Brazil form a monophyletic group among other species of the Southern Hemisphere. The conservation status of B. loguerciae is assessed and published as "Critically Endangered" based on the International Union for Conservation of Nature (IUCN) criteria. Additionally, a key to the species is provided.
Collapse
Affiliation(s)
- Carlos A Salvador-Montoya
- Instituto Criptogámico-Sección Micología, Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán 4000, Argentina
- Organización Juvenil "Hongos Perú," Av. Ejército B12, Santiago, Cusco, Peru
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB), Brazil
| | - Genivaldo Alves-Silva
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB), Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP 88040900, Florianópolis, Brazil
| | - Thiago Kossmann
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB), Brazil
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder 80309-0334, Colorado
| | - Felipe Bittencourt
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB), Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP 88040900, Florianópolis, Brazil
| | - Daniela Werner
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB), Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP 88040900, Florianópolis, Brazil
| | - Kelmer Martins-Cunha
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB), Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP 88040900, Florianópolis, Brazil
| | - Orlando F Popoff
- Laboratorio de Micología, Instituto de Botánica del Nordeste, Universidad Nacional del Nordeste, CC 209, Corrientes 3400, Argentina
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos (LBMCF), Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte 31270901, Brazil
| | - Mario Rajchenberg
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), CC14, Ruta 259 km 16.2, Esquel 9200, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Elisandro R Drechsler-Santos
- MIND.Funga (Monitoring and Inventorying Neotropical Diversity of Fungi), Laboratório de Micologia (MICOLAB), Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP 88040900, Florianópolis, Brazil
| |
Collapse
|
7
|
Hussain S, Al-Kharousi M, Al-Maqbali D, Al-Owaisi AA, Velazhahan R, Al-Sadi AM, Al-Yahya'ei MN. Notes on the Ecology and Distribution of Species of the Genera of Bondarzewiaceae ( Russulales and Basidiomycota) with an Emphasis on Amylosporus. J Fungi (Basel) 2024; 10:625. [PMID: 39330385 PMCID: PMC11433285 DOI: 10.3390/jof10090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The family Bondarzewiaceae is an important and diverse group of macrofungi associated with wood as white rotting fungi, and some species are forest tree pathogens. Currently, there are nine genera and approximately 89 species in the family, distributed in tropical, subtropical, and temperate climates. To address the phylogenetic relationships among the genera, a combined ITS-28S dataset was subjected to maximum likelihood (ML), Bayesian inference (BI), and time divergence analyses using the BEAST package. Both ML and BI analyses revealed two major clades, where one major clade consisted of Amylosporus, Stecchericium, and Wrightoporia austrosinensisa. The second major clade is composed of Bondarzewia, Heterobasidion, Gloiodon, Laurilia, Lauriliella, and Wrightoporia, indicating that these genera are phylogenetically similar. Wrightoporia austrosinensisa recovered outside of Wrightoporia, indicating that this species is phylogenetically different from the rest of the species of the genus. Similarly, time divergence analyses suggest that Bondarzewiaceae diversified around 114 million years ago (mya), possibly during the Early Cretaceous Epoch. The genus Amylosporus is well resolved within the family, with an estimated stem age of divergent around 62 mya, possibly during the Eocene Epoch. Further, the species of the genus are recovered in two sister clades. One sister clade consists of species with pileate basidiomata and generative hyphae with clamp connections, corresponding to the proposed section Amylosporus sect. Amylosporus. The other consists of species having resupinate basidiomata and generative hyphae without clamps, which is treated here as Amylosporus sect. Resupinati. We provided the key taxonomic characters, known distribution, number of species, and stem age of diversification of each section. Furthermore, we also described a new species, Amylosporus wadinaheezicus, from Oman, based on morphological characters of basidiomata and multigene sequence data of ITS, 28S, and Tef1-α. With pileate basidiomata and phylogenetic placement, the new species is classified under the proposed A. sect. Amylosporus. An identification key to the known species of Amylosporus is presented. Ecology and distribution of species of the genera in the family are discussed.
Collapse
Affiliation(s)
- Shah Hussain
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, AlKhoud 123, Oman
- Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 515, AlKhoud 123, Oman
| | - Moza Al-Kharousi
- Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 515, AlKhoud 123, Oman
| | - Dua'a Al-Maqbali
- Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 515, AlKhoud 123, Oman
| | - Arwa A Al-Owaisi
- Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 515, AlKhoud 123, Oman
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, AlKhoud 123, Oman
| | - Abdullah M Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, AlKhoud 123, Oman
- College of Agriculture, University of Al Dhaid, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohamed N Al-Yahya'ei
- Oman Animal and Plant Genetic Resources Center (Mawarid), Ministry of Higher Education, Research and Innovation, P.O. Box 515, AlKhoud 123, Oman
| |
Collapse
|
8
|
(SOSA) SOSA, Brandt A, Chen C, Engel L, Esquete P, Horton T, Jażdżewska AM, Johannsen N, Kaiser S, Kihara TC, Knauber H, Kniesz K, Landschoff J, Lörz AN, Machado FM, Martínez-Muñoz CA, Riehl T, Serpell-Stevens A, Sigwart JD, Tandberg AHS, Tato R, Tsuda M, Vončina K, Watanabe HK, Wenz C, Williams JD. Ocean Species Discoveries 1-12 - A primer for accelerating marine invertebrate taxonomy. Biodivers Data J 2024; 12:e128431. [PMID: 39171079 PMCID: PMC11336395 DOI: 10.3897/bdj.12.e128431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/23/2024] Open
Abstract
Background Discoveries of new species often depend on one or a few specimens, leading to delays as researchers wait for additional context, sometimes for decades. There is currently little professional incentive for a single expert to publish a stand-alone species description. Additionally, while many journals accept taxonomic descriptions, even specialist journals expect insights beyond the descriptive work itself. The combination of these factors exacerbates the issue that only a small fraction of marine species are known and new discoveries are described at a slow pace, while they face increasing threats from accelerating global change. To tackle this challenge, this first compilation of Ocean Species Discoveries (OSD) presents a new collaborative framework to accelerate the description and naming of marine invertebrate taxa that can be extended across all phyla. Through a mode of publication that can be speedy, taxonomy-focused and generate higher citation rates, OSD aims to create an attractive home for single species descriptions. This Senckenberg Ocean Species Alliance (SOSA) approach emphasises thorough, but compact species descriptions and diagnoses, with supporting illustrations and with molecular data when available. Even basic species descriptions carry key data for distributions and ecological interactions (e.g., host-parasite relationships) besides universally valid species names; these are essential for downstream uses, such as conservation assessments and communicating biodiversity to the broader public. New information This paper presents thirteen marine invertebrate taxa, comprising one new genus, eleven new species and one re-description and reinstatement, covering wide taxonomic, geographic, bathymetric and ecological ranges. The taxa addressed herein span three phyla (Mollusca, Arthropoda, Echinodermata), five classes, eight orders and twelve families. Apart from the new genus, an updated generic diagnosis is provided for four other genera. The newly-described species of the phylum Mollusca are Placiphorellamethanophila Vončina, sp. nov. (Polyplacophora, Mopaliidae), Lepetodrilusmarianae Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Lepetodrilidae), Shinkailepasgigas Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Phenacolepadidae) and Lyonsiellaillaesa Machado & Sigwart, sp. nov. (Bivalvia, Lyonsiellidae). The new taxa of the phylum Arthropoda are all members of the subphylum Crustacea: Lepechinellanaces Lörz & Engel, sp. nov. (Amphipoda, Lepechinellidae), Cuniculomaeragrata Tandberg & Jażdżewska, gen. et sp. nov. (Amphipoda, Maeridae), Pseudionellapumulaensis Williams & Landschoff, sp. nov. (Isopoda, Bopyridae), Mastigoniscusminimus Wenz, Knauber & Riehl, sp. nov. (Isopoda, Haploniscidae), Macrostylispapandreas Jonannsen, Riehl & Brandt, sp. nov. (Isopoda, Macrostylidae), Austroniscusindobathyasellus Kaiser, Kniesz & Kihara, sp. nov. (Isopoda, Nannoniscidae) and Apseudopsisdaria Esquete & Tato, sp. nov. (Tanaidacea, Apseudidae). In the phylum Echinodermata, the reinstated species is Psychropotesbuglossa E. Perrier, 1886 (Holothuroidea, Psychropotidae).The study areas span the North and Central Atlantic Ocean, the Indian Ocean and the North, East and West Pacific Ocean and depths from 5.2 m to 7081 m. Specimens of eleven free-living and one parasite species were collected from habitats ranging from an estuary to deep-sea trenches. The species were illustrated with photographs, line drawings, micro-computed tomography, confocal laser scanning microscopy and scanning electron microscopy images. Molecular data are included for nine species and four species include a molecular diagnosis in addition to their morphological diagnosis.The five new geographic and bathymetric distribution records comprise Lepechinellanaces Lörz & Engel, sp. nov., Cuniculomaeragrata Tandberg & Jażdżewska, sp. nov., Pseudionellapumulaensis Williams & Landschoff, sp. nov., Austroniscusindobathyasellus Kaiser, Kniesz & Kihara, sp. nov. and Psychropotesbuglossa E. Perrier, 1886, with the novelty spanning from the species to the family level. The new parasite record is Pseudionellapumulaensis Williams & Landschoff, sp. nov., found in association with the hermit crab Pagurusfraserorum Landschoff & Komai, 2018.
Collapse
Affiliation(s)
- Senckenberg Ocean Species Alliance (SOSA)
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
- Johann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, GermanyJohann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438Frankfurt am MainGermany
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, 237-0061, Yokosuka, Kanagawa, JapanX-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, 237-0061Yokosuka, KanagawaJapan
| | - Laura Engel
- Institute of Marine Ecosystem and Fishery Science (IMF) Center for Earth System Research and Sustainability (CEN) University of Hamburg, Große Elbstraße 133, 22767, Hamburg, GermanyInstitute of Marine Ecosystem and Fishery Science (IMF) Center for Earth System Research and Sustainability (CEN) University of Hamburg, Große Elbstraße 133, 22767HamburgGermany
| | - Patricia Esquete
- Departamento de Biologia & CESAM (Centro de estudos do Ambiente e do Mar), Universidade de Aveiro, Aveiro, PortugalDepartamento de Biologia & CESAM (Centro de estudos do Ambiente e do Mar), Universidade de AveiroAveiroPortugal
| | - Tammy Horton
- National Oceanography Centre, Southampton, United KingdomNational Oceanography CentreSouthamptonUnited Kingdom
| | - Anna M. Jażdżewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237, Łódź, PolandUniversity of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237ŁódźPoland
| | - Nele Johannsen
- Scharnhorststraße 44, 21335, Lüneburg, GermanyScharnhorststraße 44, 21335LüneburgGermany
| | - Stefanie Kaiser
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
| | - Terue C. Kihara
- Integrated Environmental Solutions UG—INES, c/o DZMB, Südstrand 44, 26382, Wilhelmshaven, GermanyIntegrated Environmental Solutions UG—INES, c/o DZMB, Südstrand 44, 26382WilhelmshavenGermany
| | - Henry Knauber
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
- Johann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, GermanyJohann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438Frankfurt am MainGermany
| | - Katharina Kniesz
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119, Rostock, GermanyLeibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119RostockGermany
- German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Südstrand 44, 26382, Wilhelmshaven, GermanyGerman Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Südstrand 44, 26382WilhelmshavenGermany
| | - Jannes Landschoff
- Sea Change Trust, Cape Town, Western Cape, South AfricaSea Change TrustCape Town, Western CapeSouth Africa
- Department of Botany and Zoology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, 7602, Matieland, South AfricaDepartment of Botany and Zoology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, 7602MatielandSouth Africa
| | - Anne-Nina Lörz
- Institute of Marine Ecosystem and Fishery Science (IMF) Center for Earth System Research and Sustainability (CEN) University of Hamburg, Große Elbstraße 133, 22767, Hamburg, GermanyInstitute of Marine Ecosystem and Fishery Science (IMF) Center for Earth System Research and Sustainability (CEN) University of Hamburg, Große Elbstraße 133, 22767HamburgGermany
| | - Fabrizio M. Machado
- Institute of Biology, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, BrazilInstitute of Biology, Universidade Estadual de Campinas, 13083-970Campinas, São PauloBrazil
| | - Carlos A. Martínez-Muñoz
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
| | - Torben Riehl
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
- Johann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, GermanyJohann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438Frankfurt am MainGermany
| | - Amanda Serpell-Stevens
- National Oceanography Centre, Southampton, United KingdomNational Oceanography CentreSouthamptonUnited Kingdom
| | - Julia D. Sigwart
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
- Johann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, GermanyJohann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438Frankfurt am MainGermany
| | - Anne Helene S. Tandberg
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
- University Museum of Bergen, University of Bergen, Bergen, NorwayUniversity Museum of Bergen, University of BergenBergenNorway
| | - Ramiro Tato
- Estación de Bioloxía Mariña de A Graña, Universidade de Santiago de Compostela, A Coruña, SpainEstación de Bioloxía Mariña de A Graña, Universidade de Santiago de CompostelaA CoruñaSpain
| | - Miwako Tsuda
- Project Team for Development of New-Generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, 237-0061, Yokosuka, Kanagawa, JapanProject Team for Development of New-Generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, 237-0061Yokosuka, KanagawaJapan
| | - Katarzyna Vončina
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
- Johann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, GermanyJohann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438Frankfurt am MainGermany
| | - Hiromi K. Watanabe
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, 237-0061, Yokosuka, Kanagawa, JapanX-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, 237-0061Yokosuka, KanagawaJapan
| | - Christian Wenz
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, GermanySenckenberg Research Institute and Natural History Museum Frankfurt, Department of Marine Zoology, Senckenberganlage 25, 60325Frankfurt am MainGermany
- Johann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, GermanyJohann Wolfgang Goethe University Frankfurt, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438Frankfurt am MainGermany
| | - Jason D. Williams
- Department of Biology, Hofstra University, 11549-1140, Hempstead, New York, United States of AmericaDepartment of Biology, Hofstra University, 11549-1140Hempstead, New YorkUnited States of America
| |
Collapse
|
9
|
Yin C, Zhang Z, Wang S, Ma L, Zhang X. Three new species of Pestalotiopsis (Amphisphaeriales, Sporocadaceae) were identified by morphology and multigene phylogeny from Hainan and Yunnan, China. MycoKeys 2024; 107:51-74. [PMID: 39036776 PMCID: PMC11258458 DOI: 10.3897/mycokeys.107.122026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Pestalotiopsis fungi are widely distributed all over the world, mainly as plant pathogens, endophytes or saprobes from multiple hosts. In this study, the sequence data analysis based on internal transcribed spacer (ITS), partial beta-tubulin (tub2) and partial regions of translation elongation factor 1 alpha (tef1α) combined with morphological characteristics was used to identify strains isolated from the diseased leaves of Aporosadioica and Rhaphiolepisindica, as well as some rotted leaves from Yunnan and Hainan Provinces in China as three new species, viz., Pestalotiopsisaporosae-dioicae sp. nov., P.nannuoensis sp. nov. and P.rhaphiolepidis sp. nov.
Collapse
Affiliation(s)
- Changzhun Yin
- College of Life Sciences, Shandong Normal University, Jinan, 250358, ChinaShandong Normal UniversityJinanChina
| | - Zhaoxue Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Shi Wang
- College of Life Sciences, Shandong Normal University, Jinan, 250358, ChinaShandong Normal UniversityJinanChina
| | - Liguo Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, ChinaShandong Academy of Agricultural SciencesJinanChina
| | - Xiuguo Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250358, ChinaShandong Normal UniversityJinanChina
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| |
Collapse
|
10
|
Tennakoon DS, Thambugala KM, de Silva NI, Song HY, Suwannarach N, Chen FS, Hu DM. An overview of Melanommataceae (Pleosporales, Dothideomycetes): Current insight into the host associations and geographical distribution with some interesting novel additions from plant litter. MycoKeys 2024; 106:43-96. [PMID: 38919541 PMCID: PMC11196893 DOI: 10.3897/mycokeys.106.125044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Melanommataceous species exhibit high diversity with a cosmopolitan distribution worldwide and show a prominent saprobic lifestyle. In this study, we explored five saprobic species collected from plant litter substrates from terrestrial habitats in China and Thailand. A combination of morphological characteristics and multi-locus phylogenetic analyses was used to determine their taxonomic classifications. Maximum Likelihood and Bayesian Inference analyses of combined LSU, SSU, ITS and tef1-α sequence data were used to clarify the phylogenetic affinities of the species. Byssosphaeriapoaceicola and Herpotrichiazingiberacearum are introduced as new species, while three new host records, Bertiellafici, By.siamensis and Melanommapopulicola are also reported from litter of Cinnamomumverum, Citrustrifoliata and Fagussylvatica, respectively. Yet, despite the rising interest in the melanommataceous species, there is a considerable gap in knowledge on their host associations and geographical distributions. Consequently, we compiled the host-species associations and geographical distributions of all the so far known melanommataceous species.
Collapse
Affiliation(s)
- Danushka S. Tennakoon
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kasun M. Thambugala
- Nanchang Key Laboratory of Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nimali I. de Silva
- Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hai-Yan Song
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nakarin Suwannarach
- Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fu-Sheng Chen
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dian-Ming Hu
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Wang ZQ, Ma JM, Yang ZL, Zhao J, Yu ZY, Li JH, Yu H. Morphological and Phylogenetic Analyses Reveal Three New Species of Entomopathogenic Fungi Belonging to Clavicipitaceae (Hypocreales, Ascomycota). J Fungi (Basel) 2024; 10:423. [PMID: 38921409 PMCID: PMC11204714 DOI: 10.3390/jof10060423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
This study aims to report three new species of Conoideocrella and Moelleriella from Yunnan Province, Southwestern China. Species of Conoideocrella and Moelleriella parasitize scale insects (Coccidae and Lecaniidae, Hemiptera) and whiteflies (Aleyrodidae, Hemiptera). Based on the phylogenetic analyses of the three-gene nrLSU, tef-1α, and rpb1, it showed one new record species (Conoideocrella tenuis) and one new species (Conoideocrella fenshuilingensis sp. nov.) in the genus Conoideocrella, and two new species, i.e., Moelleriella longzhuensis sp. nov. and Moelleriella jinuoana sp. nov. in the genus Moelleriella. The three new species were each clustered into separate clades that distinguished themselves from one another. All of them were distinguishable from their allied species based on their morphology. Morphological descriptions, illustrations, and comparisons of the allied taxa of the four species are provided in the present paper. In addition, calculations of intraspecific and interspecific genetic distances were performed for Moelleriella and Conoideocrella.
Collapse
Affiliation(s)
- Zhi-Qin Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| | - Jin-Mei Ma
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| | - Zhi-Li Yang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| | - Jing Zhao
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| | - Zhi-Yong Yu
- Yunnan Jinping Fenshuiling National Nature Reserve, Honghe 661500, China; (Z.-Y.Y.); (J.-H.L.)
| | - Jian-Hong Li
- Yunnan Jinping Fenshuiling National Nature Reserve, Honghe 661500, China; (Z.-Y.Y.); (J.-H.L.)
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 661500, China; (Z.-Q.W.); (J.-M.M.); (Z.-L.Y.); (J.Z.)
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 661500, China
| |
Collapse
|
12
|
Zheng ZW, Zhang QY, Zhang LR, Yuan HS, Wu F. Morphological and molecular data reveal Cerrenacaulinicystidiata sp. nov. and Polyporusminutissimus sp. nov. in Polyporales from Asia. MycoKeys 2024; 106:1-21. [PMID: 38910874 PMCID: PMC11190571 DOI: 10.3897/mycokeys.106.121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Two new species of Polyporales, Cerrenacaulinicystidiata and Polyporusminutissimus, are illustrated and described on the basis of morphological studies and phylogenetic analyses from southern China and Vietnam. C.caulinicystidiata is characterized by annual, resupinate, sometimes effused-reflexed basidiocarps, greyish orange to brownish orange pore surface, irregular pores (3-8 per mm), a trimitic hyphal system, pyriform to ventricose cystidia, and subglobose basidiospores 3.2-4.5 × 2.8-3.5 µm in size. P.minutissimus is characterized by annual, solitary, fan-shaped with a depressed center or infundibuliform basidiocarps, obvious black stipe, cream to buff yellow pileal surface with glabrous, occasionally zonate and radially aligned stripes, angular pores (6-9 per mm), a dimitic hyphal system, and cylindrical basidiospores, 5-9.2 × 2.2-4 μm. Detailed descriptions and illustrations of the two new species are provided. The differences between the two new species and their morphologically similar and phylogenetically related species are discussed.
Collapse
Affiliation(s)
- Zi-Wei Zheng
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Qiu-Yue Zhang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Li-Rong Zhang
- Center for Biodiversity and Nature Reserve, Chinese Academy of Environmental Planning, Beijing 100043, ChinaChinese Academy of Environmental PlanningBeijingChina
| | - Hai-Sheng Yuan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, ChinaInstitute of Applied Ecology, Chinese Academy of SciencesShenyangChina
| | - Fang Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
13
|
Vivekanandhan P, Alharbi SA, Ansari MJ. Toxicity, biochemical and molecular docking studies of Acacia nilotica L., essential oils against insect pests. Toxicon 2024; 243:107737. [PMID: 38677379 DOI: 10.1016/j.toxicon.2024.107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology College of Science King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), India
| |
Collapse
|
14
|
Zhao HJ, Doilom M, Mapook A, Wang G, Hyde KD, Dong W. New Insights into Tetraplosphaeriaceae Based on Taxonomic Investigations of Bambusicolous Fungi and Freshwater Fungi. J Fungi (Basel) 2024; 10:319. [PMID: 38786674 PMCID: PMC11121975 DOI: 10.3390/jof10050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Species within Tetraplosphaeriaceae have been frequently documented in recent years with the extensive investigations of microfungi along a latitudinal gradient from north to south in the Asian/Australian region. Both bamboo substrates and freshwater habitats serve as extensive reservoirs, hosting a rich diversity of fungi that exhibit broad geographical distributions. The most common fungi in these two environments are generally distributed in distinct families. However, our statistics have revealed an intriguingly distinct preference of Tetraplosphaeriaceae species for inhabiting both bamboo substrates and freshwater habitats. The genera Pseudotetraploa (100%) and Triplosphaeria (100%) exhibit a strong preference, followed by Shrungabeeja (71%) and Quadricrura (67%). Our taxonomic and phylogenetic study of microfungi in southern China have identified four additional novel species, viz., Aquatisphaeria bambusae sp. nov., Pseudotetraploa phyllostachydis sp. nov., Pseudotetraploa yangjiangensis sp. nov., and Tetraploa submersa sp. nov. from bamboo substrates and freshwater habitats. In addition, Aquatisphaeria thailandica has previously been documented from freshwater habitats in Thailand; however, we have once again isolated this species from decaying bamboo substrates in Guangdong, China. The new findings substantiate our hypothesis that the preference of Tetraplosphaeriaceae species for colonizing bamboo substrates and freshwater habitats will be more evident through more extensive investigations conducted in such environments.
Collapse
Affiliation(s)
- Hai-Jun Zhao
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mingkwan Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Gennuo Wang
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| | - Kevin D. Hyde
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
| |
Collapse
|
15
|
Senwanna C, Hongsanan S, Khuna S, Kumla J, Yarasheva M, Gafforov Y, Abdurazakov A, Suwannarach N. Insights into the molecular phylogeny and morphology of three novel Dothiora species, along with a worldwide checklist of Dothiora. Front Cell Infect Microbiol 2024; 14:1367673. [PMID: 38707512 PMCID: PMC11067756 DOI: 10.3389/fcimb.2024.1367673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 05/07/2024] Open
Abstract
Most species of Dothiora are known from the dead parts of various host plants as saprobic fungi in terrestrial habitats occurring in tropical and temperate regions. In the present study, samples of Dothiora were collected from dead twigs and branches of Capparis spinosa, Rhaponticum repens, and an unknown angiosperm plant from the Tashkent and Jizzakh regions of Uzbekistan. Multi-gene phylogenetic analyses based on a combined ITS, LSU, SSU, TEF1, and TUB2 sequence data revealed their taxonomic positions within the Dothideaceae. Three new species of Dothiora, namely, Dothiora capparis, Dothiora rhapontici, and Dothiora uzbekistanica were proposed by molecular and morphological data. Likewise, the phylogenetic relationship and morphology of Dothiora are discussed. In addition, we provide a list of accepted Dothiora species, including host information, distribution, morphology descriptions, and availability of sequence data, to enhance the current knowledge of the diversity within Dothiora.
Collapse
Affiliation(s)
- Chanokned Senwanna
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Sinang Hongsanan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Surapong Khuna
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Manzura Yarasheva
- Department of Education and Training Management, Tashkent International University of Education, Tashkent, Uzbekistan
| | - Yusufjon Gafforov
- Central Asian Center for Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Aziz Abdurazakov
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, Andijan, Uzbekistan
| | - Nakarin Suwannarach
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Fan Q, Yang T, Li H, Wang XM, Liao HF, Shen PH, Yang ZL, Zeng WB, Wang YB. Molecular phylogeny and morphology reveal two new entomopathogenic species of Ophiocordyceps (Ophiocordycipitaceae, Hypocreales) parasitic on termites from China. MycoKeys 2024; 103:1-24. [PMID: 38495949 PMCID: PMC10943269 DOI: 10.3897/mycokeys.103.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
Abstract
Two new termite-pathogenic species, Ophiocordycepsglobiperitheciata and O.longistipes, are described from Yunnan Province, China. Six-locus (ITS, nrSSU, nrLSU, tef-1α, rpb1 and rpb2) phylogenetic analyses in combination with morphological observations were employed to characterize these two species. Phylogenetically, O.globiperitheciata is most closely related to Hirsutellacryptosclerotium and O.communis, whereas O.longistipes shares a sister relationship with O.fusiformis. However, O.globiperitheciata differs from H.cryptosclerotium by parasitizing Blattodea and producing clavate, unbifurcated stromata. Ophiocordycepsglobiperitheciata is distinguished from O.communis by multiple stromata, shorter asci and ascospores. Ophiocordycepslongistipes differs from O.fusiformis in producing larger stromata, perithecia, asci and ascospores, as well as smaller citriform or oval conidia. Morphological descriptions of the two new species and a dichotomous key to the 19 termite-pathogenic Ophiocordyceps species are presented.
Collapse
Affiliation(s)
- Qi Fan
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Tao Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hui Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Xue-Mei Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - He-Fa Liao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Pei-Hong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhu-Liang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Wen-Bo Zeng
- College of Life Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Yuan-Bing Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
17
|
Huang Y, Wang H, Huo S, Lu J, Norvienyeku J, Miao W, Qin C, Liu W. Comparative Mitogenomics Analysis Revealed Evolutionary Divergence among Neopestalotiopsis Species Complex (Fungi: Xylariales). Int J Mol Sci 2024; 25:3093. [PMID: 38542068 PMCID: PMC10970013 DOI: 10.3390/ijms25063093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 11/11/2024] Open
Abstract
The genus Neopestalotiopsis consists of obligate parasites that cause ring spot, scab, and leaf blight diseases in higher plant species. We assembled the three complete mitogenomes for the guava fruit ring spot pathogen, Neopestalotiopsis cubana. The mitogenomes are circular, with sizes of 38,666 bp, 33,846 bp, and 32,593 bp. The comparative analyses with Pestalotiopsis fici showed that N. cubana differs greatly from it in the length of the mitogenomes and the number of introns. Moreover, they showed significant differences in the gene content and tRNAs. The two genera showed little difference in gene skewness and codon preference for core protein-coding genes (PCGs). We compared gene sequencing in the mitogenomes of the order Xylariales and found large-scale gene rearrangement events, such as gene translocations and the duplication of tRNAs. N. cubana shows a unique evolutionary position in the phylum Ascomycota constructed in phylogenetic analyses. We also found a more concentrated distribution of evolutionary pressures on the PCGs of Neopestalotiopsis in the phylum Ascomycota and that they are under little selective pressure compared to other species and are subjected to purifying selection. This study explores the evolutionary dynamics of the mitogenomes of Neopestalotiopsis and provides important support for genetic and taxonomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunxiu Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.H.); (H.W.); (S.H.); (J.L.); (J.N.); (W.M.)
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.H.); (H.W.); (S.H.); (J.L.); (J.N.); (W.M.)
| |
Collapse
|
18
|
Dai Y, Chen S, Wang Y, Wang Y, Yang Z, Yu H. Molecular phylogenetics of the Ophiocordyceps sinensis-species complex lineage (Ascomycota, Hypocreales), with the discovery of new species and predictions of species distribution. IMA Fungus 2024; 15:2. [PMID: 38336758 PMCID: PMC10858606 DOI: 10.1186/s43008-023-00131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Ophiocordyceps sinensis is a famous traditional Chinese medicine adapted to the alpine environment of the Qinghai-Tibet Plateau and adjacent regions. Clarification of the species diversity of Ophiocordyceps sinensis and its relatives could expand the traditional medicinal resources and provide insights into the speciation and adaptation. The study is prompted by the discovery of a new species, O. megala, described here from a biodiversity hotspot in the Hengduan Mountains, China. Combined morphological, ecological, and phylogenetic evidence supports its distinctiveness from O. sinensis, O. xuefengensis, and O. macroacicularis. Additionally, based on the phylogenetic construction of Ophiocordyceps, a special clade was focused phylogenetically on the more closely related O. sinensis complex, which was defined as the O. sinensis- species complex lineage. A total of 10 species were currently confirmed in this lineage. We made a comprehensive comparison of the sexual/asexual morphological structures among this species complex, distinguishing their common and distinctive features. Furthermore, using the method of species distribution modelling, we studied the species ocurrences in relation to climatic, edaphic, and altitudinal variables for the eight species in the O. sinensis-species complex, and determined that their potential distribution could extend from the southeastern Qinghai-Tibet Plateau to the Xuefeng Mountains without isolating barrier. Thus, the biodiversity corridor hypothesis was proposed around the O. sinensis-species complex. Our study highlights the phylogeny, species diversity, and suitable distribution of the O. sinensis-species complex lineage, which should have a positive implication for the resource discovery and adaptive evolution of this unique and valuable group.
Collapse
Affiliation(s)
- Yongdong Dai
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
- School of Basic Medical Science, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Siqi Chen
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
| | - Yuanbing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China
| | - Zhuliang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, Yunnan, China.
- , Kunming, China.
| |
Collapse
|
19
|
Xu R, Su W, Wang Y, Tian S, Li Y, Phukhamsakda C. Morphological characteristics and phylogenetic evidence reveal two new species and the first report of Comoclathris (Pleosporaceae, Pleosporales) on dicotyledonous plants from China. MycoKeys 2024; 101:95-112. [PMID: 38250088 PMCID: PMC10799302 DOI: 10.3897/mycokeys.101.113040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Two novel Comoclathris species were identified from dicotyledonous plants (Clematis sp. and Xanthocerassorbifolium) in China. The results were supported by morphological characters and Maximum Likelihood (ML) and Bayesian Inference (BI) analyses. Multi-gene phylogenetic analyses of the ITS, LSU, SSU and rpb2 sequences revealed two new species Comoclathrisclematidis and C.xanthoceratis, which are phylogenetically distinct. The new species are phylogenetically closely related to C.arrhenatheri. However, they are distinguishable from C.arrhenatheri by having comparatively larger asci and ascospores. This study improves our knowledge of Comoclathris as no species has been previously described from China. This suggests such taxa may be rare and it is likely that new taxa will be discovered from hosts and environments that have not yet been extensively investigated.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, ChinaJilin Agricultural UniversityChangchunChina
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Yang Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, ChinaShenyang Agricultural UniversityShenyangChina
| | - Shangqing Tian
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
| | - Yu Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, ChinaJilin Agricultural UniversityChangchunChina
| | - Chayanard Phukhamsakda
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, ChinaYangzhou UniversityYangzhouChina
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiThailand
| |
Collapse
|
20
|
Wang YX, Zhao H, Ding ZY, Ji XY, Zhang ZX, Wang S, Zhang XG, Liu XY. Three New Species of Gongronella ( Cunninghamellaceae, Mucorales) from Soil in Hainan, China Based on Morphology and Molecular Phylogeny. J Fungi (Basel) 2023; 9:1182. [PMID: 38132783 PMCID: PMC10744856 DOI: 10.3390/jof9121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The genus Gongronella is important in agriculture and industry by secreting various natural bioactive metabolites such as chitosanases and organic acids. During the most recent 8 years, a total of 14 new species have been described, remarkably enriching the diversity of this genus. In this study, we added three more new species to this valuable genus, based on a combination of morphological traits and phylogenetic information. Six strains of the genus Gongronella were isolated from soil collected in Hainan Province, China. Phylogenetic analyses of ITS and LSU rDNA sequences grouped these strains into three independent clades. According to their unique morphological characteristics, they were classified as G. multiramosa sp. nov., G. qichaensis sp. nov. and G. oleae sp. nov. The G. multiramosa was characterized by multiple branched sporangiophores and was closely related to G. pedratalhadensis. The G. qichaensis was characterized by obscure collars and closely related to G. butleri, G. hydei and G. banzhaoae. The G. oleae was characterized by the presence of oil droplets in the sporangiospores and was closely related to G. chlamydospora and G. multispora. Their descriptions and illustrations were provided, and their differences from morphological allies and phylogenetic-related species are discussed.
Collapse
Affiliation(s)
- Yi-Xin Wang
- College of Life Sciences, Shandong Normal University, Jinan 250358, China; (Y.-X.W.); (Z.-Y.D.); (X.-Y.J.); (S.W.); (X.-G.Z.)
| | - Heng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100081, China
| | - Zi-Ying Ding
- College of Life Sciences, Shandong Normal University, Jinan 250358, China; (Y.-X.W.); (Z.-Y.D.); (X.-Y.J.); (S.W.); (X.-G.Z.)
| | - Xin-Yu Ji
- College of Life Sciences, Shandong Normal University, Jinan 250358, China; (Y.-X.W.); (Z.-Y.D.); (X.-Y.J.); (S.W.); (X.-G.Z.)
| | - Zhao-Xue Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Shi Wang
- College of Life Sciences, Shandong Normal University, Jinan 250358, China; (Y.-X.W.); (Z.-Y.D.); (X.-Y.J.); (S.W.); (X.-G.Z.)
| | - Xiu-Guo Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250358, China; (Y.-X.W.); (Z.-Y.D.); (X.-Y.J.); (S.W.); (X.-G.Z.)
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan 250358, China; (Y.-X.W.); (Z.-Y.D.); (X.-Y.J.); (S.W.); (X.-G.Z.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
21
|
Tang X, Jeewon R, Lu YZ, Alrefaei AF, Jayawardena RS, Xu RJ, Ma J, Chen XM, Kang JC. Morphophylogenetic evidence reveals four new fungal species within Tetraplosphaeriaceae (Pleosporales, Ascomycota) from tropical and subtropical forest in China. MycoKeys 2023; 100:171-204. [PMID: 38098977 PMCID: PMC10719940 DOI: 10.3897/mycokeys.100.113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Tetraplosphaeriaceae (Pleosporales, Ascomycota) is a family with many saprobes recorded from various hosts, especially bamboo and grasses. During a taxonomic investigation of microfungi in tropical and subtropical forest regions of Guizhou, Hainan and Yunnan provinces, China, several plant samples were collected and examined for fungi. Four newly discovered species are described based on morphology and evolutionary relationships with their allies inferred from phylogenetic analyses derived from a combined dataset of LSU, ITS, SSU, and tub2 DNA sequence data. Detailed illustrations, descriptions and taxonomic notes are provided for each species. The four new species of Tetraplosphaeriaceae reported herein are Polyplosphaeriaguizhouensis, Polyplosphaeriahainanensis, Pseudotetraploayunnanensis, and Tetraploahainanensis. A checklist of Tetraplosphaeriaceae species with available details on their ecology is also provided.
Collapse
Affiliation(s)
- Xia Tang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Rajesh Jeewon
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Yong-Zhong Lu
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | | | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Jian Ma
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Xue-Mei Chen
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province550003, China
| | - Ji-Chuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
22
|
Afshari N, Karimi O, Gomes de Farias AR, Suwannarach N, Bhunjun CS, Zeng XY, Lumyong S. Additions to Diatrypaceae ( Xylariales): Novel Taxa and New Host Associations. J Fungi (Basel) 2023; 9:1151. [PMID: 38132752 PMCID: PMC10744582 DOI: 10.3390/jof9121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Diatrypaceae members have a broad distribution and are commonly found on decaying wood. Despite taxonomic and morphological challenges within this group, there has been a growing interest in Diatrypaceae in recent years. The dead branches of several plant hosts with fungal fruiting bodies were collected from Doi Tung National Park, Chiang Rai, and the Narathiwat Provinces in Thailand. Their morphological characteristics, coupled with a molecular phylogeny of combined ITS and tub2 sequence data, were used to introduce two novel Allodiatrype species (A. dalbergiae and A. eleiodoxae) and one new Melanostictus species (M. chiangraiensis). Moreover, four new host records, Diatrypella heveae, D. major, Melanostictus thailandicus, and Paraeutypella citricola on Microcos paniculata, Nayariophyton zizyphifolium, Dalbergia cultrata, and M. paniculata, respectively, as well as a new geographical record of D. major are reported. This research provides detailed descriptions of macro- and microcharacteristics, coupled with a phylogenetic tree for the newly introduced species and host records. The morphological features of Allodiatrype and Melanostictus are listed in the synoptic table.
Collapse
Affiliation(s)
- Naghmeh Afshari
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (O.K.); (C.S.B.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Omid Karimi
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (O.K.); (C.S.B.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Antonio R. Gomes de Farias
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (O.K.); (C.S.B.)
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (O.K.); (C.S.B.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xiang-Yu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
23
|
Wang SH, Li GJ, Phurbu D, He MQ, Zhang MZ, Zhu XY, Li JX, Zhao RL, Cao B. Four new species of Russula from the Xizang Autonomous Region and other provinces of China. Mycology 2023; 15:210-237. [PMID: 38813475 PMCID: PMC11132434 DOI: 10.1080/21501203.2023.2265667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/27/2023] [Indexed: 05/31/2024] Open
Abstract
Russula is the largest genus in the Russulales and is widespread throughout the world. Almost all Russula species are known to be ectomycorrhizal with high ecological and edible values, and some are lethal poisonous. In this study, four new species belonging to the subgenus Russula crown clade are identified based on morphological and phylogenetic evidence from the Xizang Autonomous Region and other provinces of China. Morphologically, Russula paragraveolens (sect. Polychromae, subsect. Xerampelinae) is mainly characterised by a cherry red to blood red pileus centre, a reddish orange pileus margin; R. pseudograveolens (sect. Polychromae, subsect. Xerampelinae) is characterised by a violet brown to brownish red pileus centre, a pale red to pastel red pileus margin and short basidia; R. shigatseensis (sect. Flavisiccantes, subsect. Lepidinae) is characterised by a brownish orange to madder red pileus centre, pinkish red pileus margin, and having lateral branches or branches of hyphal terminations in pileipellis; R. yadongensis (sect. Tenellae, subsect. Laricinae) is characterised by a dark purplish red pileus centre with brownish purple tints and having isolated to clustered spines of spore ornamentations. Their distinct taxonomic status is confirmed by the positions of the four new species in both the ITS and 4-locus (nucLSU, mtSSU, rpb2, tef1) phylogenetic trees.
Collapse
Affiliation(s)
- Shi-Hui Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Dorji Phurbu
- Tibet Plateau Institute of Biology, Lhasa, China
| | - Mao-Qiang He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yu Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Xin Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Shen HW, Bao DF, Boonmee S, Su XJ, Tian XG, Hyde KD, Luo ZL. Lignicolous Freshwater Fungi from Plateau Lakes in China (I): Morphological and Phylogenetic Analyses Reveal Eight Species of Lentitheciaceae, Including New Genus, New Species and New Records. J Fungi (Basel) 2023; 9:962. [PMID: 37888219 PMCID: PMC10607872 DOI: 10.3390/jof9100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
During the investigation of lignicolous freshwater fungi in plateau lakes in Yunnan Province, China, eight Lentitheciaceae species were collected from five lakes viz. Luguhu, Qiluhu, Xingyunhu, Cibihu, and Xihu lake. Based on morphological characters and phylogenetic analysis of combined ITS, LSU, SSU, and tef 1-α sequence data, a new genus Paralentithecium, two new species (Paralentithecium suae, and Setoseptoria suae), three new records (Halobyssothecium phragmitis, H. unicellulare, and Lentithecium yunnanensis) and three known species viz. Halobyssothecium aquifusiforme, Lentithecium pseudoclioninum, and Setoseptoria bambusae are reported.
Collapse
Affiliation(s)
- Hong-Wei Shen
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Dan-Feng Bao
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xi-Jun Su
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
| | - Xing-Guo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali 671003, China
| |
Collapse
|
25
|
Gajanayake AJ, Karunarathna SC, Jayawardena RS, Luangharn T, Balasuriya A. Fungicolous Mucor on mushrooms: One novel species and six host records from southwest China and northern Thailand. Mycologia 2023; 115:674-692. [PMID: 37409884 DOI: 10.1080/00275514.2023.2220166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023]
Abstract
Mucor species are a group of common soil-borne fungi, known to cause infections on humans and animals, interfere in food production, and act as useful agents in biotechnological applications. This study reports one new Mucor species, M. yunnanensis, which was found to be fungicolous on an Armillaria sp. from southwest China. Further, M. circinelloides on Phlebopus sp., M. hiemalis on Ramaria sp. and Boletus sp., M. irregularis on Pleurotus sp., M. nederlandicus on Russula sp., and M. yunnanensis on Boletus sp. are reported as new host records. Mucor yunnanensis and M. hiemalis have been collected from Yunnan Province in China, whereas M. circinelloides, M. irregularis, and M. nederlandicus have been collected from Chiang Mai and Chiang Rai Provinces in Thailand. All the Mucor taxa reported herein were identified based on both morphology and phylogenetic analyses of a combined nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and partial nuc 28S rDNA (28S) sequence matrix. Comprehensive descriptions, illustrations, and a phylogenetic tree are provided for all the taxa reported in the study to show the placements of taxa, and the new taxon is compared with its sister taxa.
Collapse
Affiliation(s)
- Achala J Gajanayake
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy, Sri Lanka
| | - Ruvishika S Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Abhaya Balasuriya
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
26
|
Suwannasai N, Sangvichien E, Phosri C, McCloskey S, Wangsawat N, Thamvithayakorn P, Ruchikachorn N, Thienhirun S, Mekkamol S, Sihanonth P, Whalley MA, Whalley AJS. Exploring the Xylariaceae and its relatives. BOTANICAL STUDIES 2023; 64:15. [PMID: 37382773 PMCID: PMC10310687 DOI: 10.1186/s40529-023-00389-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
The Xylariaceae and its relatives rank as one of the best-known members of the Ascomycota. They are now well recognized for their diversity, global distribution, ecological activities and their outstanding novel metabolites with wide ranging bioactivity.
Collapse
Affiliation(s)
- Nuttika Suwannasai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110, Thailand
| | - Ek Sangvichien
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Hua Mark Bangkapi, Bangkok, 10240, Thailand
| | - Cherdchai Phosri
- Department of Biology, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - Sirirath McCloskey
- National Products Research Unit, Centre of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Niwana Wangsawat
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110, Thailand
- Food Research Unit, CPF Food Research and Development Center, 359 Moo 4 Wang Noi, Phra Nakhon Si Ayutthaya, 13170, Thailand
- National Centre for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Bangkok, 12120, Pathumthani, Thailand
| | - Pisit Thamvithayakorn
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Wattana District, Bangkok, 10110, Thailand
| | - Nutthaporn Ruchikachorn
- The Institute for the Promotion of Teaching Science and Technology (IPST), 924 Sukhumvit Road, Phra Khanong Subdistrict, Klong Toei District, Bangkok, 10110, Thailand
| | - Surang Thienhirun
- Department of Royal Forest, Forest Products Research Division, Bangkok, 10900, Thailand
| | - Sureewan Mekkamol
- Plant Protection Program, Faculty of Agricultural Production, Maejo University, 63 Sansai-Phrao Road, Nongharn, Sansai District, Chiang Mai, 50290, Thailand
| | - Prakitsin Sihanonth
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Margaret A Whalley
- School of Pharmacy and Biomolecular Science, Liverpool John Moore University, Liverpool, L3 3AF, UK
| | - Anthony J S Whalley
- School of Pharmacy and Biomolecular Science, Liverpool John Moore University, Liverpool, L3 3AF, UK.
| |
Collapse
|
27
|
Tsai I, Thines M. Adding a missing piece to the puzzle of oomycete phylogeny: the placement of Rhipidium interruptum ( Rhipidiaceae). Fungal Syst Evol 2023; 11:95-108. [PMID: 38562587 PMCID: PMC10983831 DOI: 10.3114/fuse.2023.11.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 04/04/2024] Open
Abstract
Oomycetes are a group of fungus-like organisms, which phylogenetically comprise early diverging lineages that are mostly holocarpic, and two crown classes, the Peronosporomycetes and Saprolegniomycetes, including many well-investigated pathogens of plants and animals. However, there is a poorly studied group, the Rhipidiales, which placement amongst the crown oomycetes is ambiguous. It accommodates several taxa with a sophisticated vegetative and reproductive cycle, as well as structural organisation, that is arguably the most complex in the oomycete lineage. Despite the remarkable morphological complexity and their notable perseverance in the face of faster-growing saprotrophic oomycetes and fungi, the knowledge on Rhipidiales is limited to date, as the most complex members are not easily cultured, even by targeted approaches. This also leads to inadequate sequence data for the order, which was sourced from only the two least complex out of seven introduced genera, i.e. Sapromyces and Salispina. In the present study, ex-situ baiting was done using various fruit substrates, and naturally-shed twigs or fruits acquired from water bodies were examined. As a result of these efforts, the species Rhipidium interruptum was obtained and gross cultivation was accomplished using poplar (Populus nigra) twigs as substrate, which allowed further documentation of both asexual and sexual reproduction. This enabled phylogenetic and detailed morphological study, as well as an epitypification of the species. Phylogenetic analyses based on cox2 and nrLSU sequences revealed Rhipidium as the sister genus of Sapromyces. The morphological studies done support a conspecificity of R. interruptum and R. continuum, which might in turn be conspecific with R. americanum. Though several further studies will be required to fit the scattered missing pieces of knowledge on Rhipidiales together revealing a more complete picture of oomycete evolution, we hope that the current study can serve as a cornerstone for future investigations in the group. Citation: Tsai I, Thines M (2023). Adding a missing piece to the puzzle of oomycete phylogeny: the placement of Rhipidium interruptum (Rhipidiaceae). Fungal Systematics and Evolution 11: 95-108. doi: 10.3114/fuse.2023.11.08.
Collapse
Affiliation(s)
- I. Tsai
- Evolutionary Analyses and Biological Archives, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - M. Thines
- Evolutionary Analyses and Biological Archives, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
28
|
Liu YS, Liu JK, Kumla J, Suwannarach N, Lumyong S. Taxonomic Novelties and New Records of Amanita Subgenus Amanitina from Thailand. J Fungi (Basel) 2023; 9:601. [PMID: 37367537 DOI: 10.3390/jof9060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
The Amanita subgenus Amanitina contains six sections, and the species diversity of this subgenus has still not been explored in Thailand. Twenty samples collected in 2019 and 2020, which had the morphological characteristics of the Amanita subgen. Amanitina, were observed in this study. Both the microscopical characteristics and multi-gene phylogenetic analyses of the ITS, nrLSU, RPB2, TEF1-α, and TUB gene regions revealed that the 20 samples represented nine species and dispersed into four sections. Remarkably, three taxa were different from any other currently known species. Here, we describe them as new to science, namely A. albifragilis, A. claristriata, and A. fulvisquamea. Moreover, we also recognized six interesting taxa, including four records that were new to Thailand, viz. A. cacaina, A. citrinoannulata, A. griseofarinosa, and A. neoovoidea, as well as two previously recorded species, A. caojizong and A. oberwinkleriana. Moreover, we provide the first RPB2 and TEF1-α gene sequences for A. cacaina. Detailed descriptions, illustrations as line drawings, and comparisons with related taxa are provided.
Collapse
Affiliation(s)
- Yuan S Liu
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
29
|
Xu RJ, Zhu YA, Liu NG, Boonmee S, Zhou DQ, Zhao Q. Taxonomy and Phylogeny of Hyphomycetous Muriform Conidial Taxa from the Tibetan Plateau, China. J Fungi (Basel) 2023; 9:jof9050560. [PMID: 37233273 DOI: 10.3390/jof9050560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
During the investigation of lignicolous freshwater fungi in the Tibetan Plateau habitat, fifteen collections were isolated from submerged decaying wood. Fungal characteristics are commonly found as punctiform or powdery colonies with dark pigmented and muriform conidia. Multigene phylogenetic analyses of combined ITS, LSU, SSU and TEF DNA sequences showed that they belong to three families in Pleosporales. Among them, Paramonodictys dispersa, Pleopunctum megalosporum, Pl. multicellularum and Pl. rotundatum are established as new species. Paradictyoarthrinium hydei, Pleopunctum ellipsoideum and Pl. pseudoellipsoideum are reported as new records on the freshwater habitats in Tibetan Plateau, China. The morphological descriptions and illustrations of the new collections are provided.
Collapse
Affiliation(s)
- Rong-Ju Xu
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying-An Zhu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Ning-Guo Liu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Saranyaphat Boonmee
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - De-Qun Zhou
- Academy of Fanjing Mountain National Park, Tongren University, Tongren 554300, China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
30
|
Li QR, Long SH, Lin Y, Wu YP, Wu QZ, Hu HM, Shen XC, Zhang X, Wijayawardene NN, Kang JC, Kumla J, Kang YQ. Diversity, morphology, and molecular phylogeny of Diatrypaceae from southern China. Front Microbiol 2023; 14:1140190. [PMID: 37089547 PMCID: PMC10117915 DOI: 10.3389/fmicb.2023.1140190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
During an investigation of Diatrypaceae from southern China, 10 xylariales-like taxa have been collected. Morphological and multi-gene analyses confirmed that these taxa reside in Diatrypaceae and represent eight novel taxa and two new records belonging to six genera (viz., Allocryptovalsa, Diatrype, Diatrypella, Paraeutypella, Peroneutypa, and Vasilyeva gen. nov.). Vasilyeva gen. nov. was proposed to accommodate Vasilyeva cinnamomi sp. nov. Among the other collections, seven new species were introduced (viz., Diatrype camelliae-japonicae sp. nov., Diatrype rubi sp. nov., Diatrypella guiyangensis sp. nov., Diatrypella fatsiae-japonicae sp. nov., Paraeutypella subguizhouensis sp. nov., Peroneutypa hainanensis sp. nov., and Peroneutypa qianensis sp. nov.), while two were reported as new records from China (Allocryptovalsa rabenhorstii and Diatrype enteroxantha). For Diatrypaceae, the traditional taxonomic approach based on morphology may not be applicable.
Collapse
Affiliation(s)
- Qi-Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Si-Han Long
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yan Lin
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - You-Peng Wu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qian-Zhen Wu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Hong-Min Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiang-Chun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xu Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Nalin Nilusha Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
- Section of Microbiology, Institute for Research and Development in Health and Social Care, Battaramulla, Sri Lanka
| | - Ji-Chuan Kang
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, China
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ying-Qian Kang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou Medical University, Guiyang, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
31
|
Maia C, Jung T, Engelen A, Jung MH, Custódio L. Unravelling the Lipids Content and the Fatty Acid Profiles of Eight Recently Described Halophytophthora Species and H. avicennae from the South Coast of Portugal. Mar Drugs 2023; 21:227. [PMID: 37103366 PMCID: PMC10145237 DOI: 10.3390/md21040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
In this study, mycelia of eight recently described species of Halophytophthora and H. avicennae collected in Southern Portugal were analysed for lipids and fatty acids (FA) content to evaluate their possible use as alternative sources of FAs and understand how each species FAs profile relates to their phylogenetic position. All species had a low lipid percentage (0.06% in H. avicennae to 0.28% in H. frigida). Subclade 6b species contained more lipids. All species produced monounsaturated (MUFA), polyunsaturated (PUFA) and saturated (SFA) FAs, the latter being most abundant in all species. H. avicennae had the highest FA variety and was the only producer of γ-linolenic acid, while H. brevisporangia produced the lowest number of FAs. The best producer of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) was H. thermoambigua with 3.89% and 9.09% of total FAs, respectively. In all species, palmitic acid (SFA) was most abundant and among the MUFAs produced oleic acid had the highest relative percentage. Principal component analysis (PCA) showed partial segregation of species by phylogenetic clade and subclade based on their FA profile. H. avicennae (Clade 4) differed from all other Clade 6 species due to the production of γ-linolenic and lauric acids. Our results disclosed interesting FA profiles in the tested species, adequate for energy (biodiesel), pharmaceutical and food industries (bioactive FAs). Despite the low amounts of lipids produced, this can be boosted by manipulating culture growth conditions. The observed interspecific variations in FA production provide preliminary insights into an evolutionary background of its production.
Collapse
Affiliation(s)
- Cristiana Maia
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal; (C.M.); (A.E.)
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (T.J.); (M.H.J.)
- Phytophthora Research and Consultancy, 83131 Nußdorf, Germany
| | - Aschwin Engelen
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal; (C.M.); (A.E.)
| | - Marília Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic; (T.J.); (M.H.J.)
- Phytophthora Research and Consultancy, 83131 Nußdorf, Germany
| | - Luísa Custódio
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal; (C.M.); (A.E.)
| |
Collapse
|
32
|
Kar B, Torcan B. Isolation, morphological identification, and xylanase characteristics of anaerobic gut fungi Neocallimastix from Anatolian wild goat. J Basic Microbiol 2023; 63:377-388. [PMID: 36102627 DOI: 10.1002/jobm.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
This study shows the morphological identification of anaerobic fungal strains isolated from fecal samples of goats inhabiting Turkey and the effects of various metal ions and chemicals on extracellular xylanase production. Three different anaerobic gut fungi isolated from wild goats in Turkey were identified as Neocallimastix spp. xylanase, cellulase, and lichenase production were tested in culture supernatants, and the maximum-specific activities were found as 560.42 ± 9.39, 159.70 ± 3.88, and 157.36 ± 3.83 (μmol/min/mg protein), respectively. While the optimum temperature range of exo-xylanases was found as 40-50°C, their optimum pH range was determined as 6.0-6.5. Xylanase activity decreased in metal ions and other chemical reactants based on dose. The metal ion that significantly inhibited xylanase activity was Fe+3 . It was found that the ferric ions inhibited xylanase activity in all three anaerobic gut fungi by 30%-90% depending on molarity. On the contrary, the 1 mM concentrations of the Mn+2 , Ba+2 , Co+2 , Cu+2 , Sn+2 , and Mg+2 metal ions and the ethylenediaminetetraacetic acid and β-mercaptoethanol reagents had a positive effect at rates in the range of 3%-92%. In conclusion, these findings demonstrate that anaerobic gut fungus has very stable fibrolytic enzymes that need to be separated, as well and the existence of a unique resource for industrial applications.
Collapse
Affiliation(s)
- Bülent Kar
- Department of Organic Agriculture, Tunceli Vocational School, Munzur University, Tunceli, Turkey
| | - Berat Torcan
- Department of Organic Agriculture, Tunceli Vocational School, Munzur University, Tunceli, Turkey
| |
Collapse
|
33
|
Jayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, Doilom M, Duan WJ, Han SL, Huanraluek N, Jones EBG, Lakshmidevi N, Li Y, Lumyong S, Luo ZL, Khuna S, Kumla J, Manawasinghe IS, Mapook A, Punyaboon W, Tibpromma S, Lu YZ, Yan J, Wang Y. Fungal diversity notes 1512-1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2023; 117:1-272. [PMID: 36852303 PMCID: PMC9948003 DOI: 10.1007/s13225-022-00513-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 02/25/2023]
Abstract
This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.
Collapse
Affiliation(s)
- Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Song Wang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Ya-Ru Sun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O.Box: 811, Vientiane Capital, Lao PDR
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Pranami D. Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Vanessa P. Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - André Aptroot
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 Yunnan China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Dominik Begerow
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jean-Michel Bellanger
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, INSERM, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jadson D. P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, S/N, Setor Universitário, Goiânia, GO CEP: 74605-050 Brazil
| | - Digvijayini Bundhun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, 5023 Miagao, Iloilo Philippines
| | - Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Taimy Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, Feira de Santana, BA 44036-900 Brazil
| | - João L. V. R. Carvalho
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Napalai Chaiwan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Che-Chih Chen
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, 11529 Taipei Taiwan
| | - Régis Courtecuisse
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Ulrike Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Chun Y. Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Bandarupalli Devadatha
- Virus Diagnostic and Research Lab, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517501 India
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
| | - Nimali I. de Silva
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Lidiane A. dos Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Nawal K. Dubey
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Sylvain Dumez
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Himashi S. Ferdinandez
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - André L. Firmino
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Monte Carmelo, Minas Gerais Brazil
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- AKFA University, 264 Milliy Bog Street, Tashkent, Uzbekistan 111221
| | - Achala J. Gajanayake
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sugantha Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Shucheng-He
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Zin H. Htet
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Malarvizhi Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Martin Kemler
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Kezhocuyi Kezo
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Nuwan D. Kularathnage
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Marco Leonardi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Ji-Peng Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Chunfang Liao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | | | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Jian Ma
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Sede Iquique, Av. Luis Emilio Recabarren, 2477 Iquique, Chile
| | - S. Mahadevakumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Botanical Survey of India, Andaman and Nicobar Regional Centre, Haddo, Port Blair, South Andaman 744102 India
| | | | - Dimuthu S. Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - María P. Martín
- Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Niranjan Mekala
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Itanagar, Arunachal Pradesh 791112 India
| | | | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Pasouvang Pahoua
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Olinto L. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Wiphawanee Phonrob
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - Chayanard Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Walter Rossi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Binu C. Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Vemuri V. Sarma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 India
| | - Indunil C. Senanayake
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Archana Singh
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Maria F. Souza
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Adriano A. Spielmann
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Xia Tang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - XingGuo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Kasun M. Thambugala
- Generics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Danushka S. Tennakoon
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nopparat Wannathes
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - DingPeng Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Stéphane Welti
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hongde Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Yunhui Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
| | - Huang Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Jingyi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Abhaya Balasuriya
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Timur S. Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Jana Fabriciusa Str. 2/28, Krasnodar Region, Sochi, Russia 354002
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Erio Camporesi
- A.M.B, Circolo Micologico ‘‘Giovanni Carini’’, C.P. 314, 25121 Brescia, Italy
- A.M.B. Gruppo, Micologico Forlivese ‘‘Antonio Cicognani’’, via Roma 18, 47121 Forlì, Italy
- Società per gli Studi Naturalistici Della Romagna, C.P. 143, 48012 Bagnacavallo, RA Italy
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Y. S. Deepika
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Mingkwan Doilom
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Wei-Jun Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo, Zhejiang, 315012 PR China
- Ningbo Customs District, Ningbo, 315012 Zhejiang PR China
| | - Shi-Ling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - N. Lakshmidevi
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Zong-Long Luo
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Wilawan Punyaboon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - JiYe Yan
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
34
|
Rathnayaka AR, Chethana KWT, Phillips AJL, Liu JK, Samarakoon MC, Jones EBG, Karunarathna SC, Zhao CL. Re-Evaluating Botryosphaeriales: Ancestral State Reconstructions of Selected Characters and Evolution of Nutritional Modes. J Fungi (Basel) 2023; 9:184. [PMID: 36836299 PMCID: PMC9961722 DOI: 10.3390/jof9020184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Botryosphaeriales (Dothideomycetes, Ascomycota) occur in a wide range of habitats as endophytes, saprobes, and pathogens. The order Botryosphaeriales has not been subjected to evaluation since 2019 by Phillips and co-authors using phylogenetic and evolutionary analyses. Subsequently, many studies introduced novel taxa into the order and revised several families separately. In addition, no ancestral character studies have been conducted for this order. Therefore, in this study, we re-evaluated the character evolution and taxonomic placements of Botryosphaeriales species based on ancestral character evolution, divergence time estimation, and phylogenetic relationships, including all the novel taxa that have been introduced so far. Maximum likelihood, maximum parsimony, and Bayesian inference analyses were conducted on a combined LSU and ITS sequence alignment. Ancestral state reconstruction was carried out for conidial colour, septation, and nutritional mode. Divergence times estimates revealed that Botryosphaeriales originated around 109 Mya in the early epoch of the Cretaceous period. All six families in Botryosphaeriales evolved in the late epoch of the Cretaceous period (66-100 Mya), during which Angiosperms also appeared, rapidly diversified and became dominant on land. Families of Botryosphaeriales diversified during the Paleogene and Neogene periods in the Cenozoic era. The order comprises the families Aplosporellaceae, Botryosphaeriaceae, Melanopsaceae, Phyllostictaceae, Planistromellaceae and Saccharataceae. Furthermore, current study assessed two hypotheses; the first one being "All Botryosphaeriales species originated as endophytes and then switched into saprobes when their hosts died or into pathogens when their hosts were under stress"; the second hypothesis states that "There is a link between the conidial colour and nutritional mode in botryosphaerialean taxa". Ancestral state reconstruction and nutritional mode analyses revealed a pathogenic/saprobic nutritional mode as the ancestral character. However, we could not provide strong evidence for the first hypothesis mainly due to the significantly low number of studies reporting the endophytic botryosphaerialean taxa. Results also showed that hyaline and aseptate conidia were ancestral characters in Botryosphaeriales and supported the relationship between conidial pigmentation and the pathogenicity of Botryosphaeriales species.
Collapse
Affiliation(s)
- Achala R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Plant Medicine, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - K. W. Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Jian-Kui Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Chang-Lin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
35
|
Liu J, Hu Y, Luo X, Castañeda-Ruíz RF, Xia J, Xu Z, Cui R, Shi X, Zhang L, Ma J. Molecular Phylogeny and Morphology Reveal Four Novel Species of Corynespora and Kirschsteiniothelia ( Dothideomycetes, Ascomycota) from China: A Checklist for Corynespora Reported Worldwide. J Fungi (Basel) 2023; 9:jof9010107. [PMID: 36675928 PMCID: PMC9863821 DOI: 10.3390/jof9010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Plant debris are habitats favoring survival and multiplication of various microbial species. During continuing mycological surveys of saprobic microfungi from plant debris in Yunnan Province, China, several Corynespora-like and Dendryphiopsis-like isolates were collected from dead branches of unidentified perennial dicotyledonous plants. Four barcodes, i.e., ITS, LSU, SSU and tef1-α, were amplified and sequenced. Morphological studies and multigene phylogenetic analyses by maximum likelihood and Bayesian inference revealed three new Corynespora species (C. mengsongensis sp. nov., C. nabanheensis sp. nov. and C. yunnanensis sp. nov.) and a new Kirschsteiniothelia species (K. nabanheensis sp. nov.) within Dothideomycetes, Ascomycota. A list of identified and accepted species of Corynespora with major morphological features, host information and locality was compiled. This work improves the knowledge of species diversity of Corynespora and Kirschsteiniothelia in Yunnan Province, China.
Collapse
Affiliation(s)
- Jingwen Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yafen Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingxing Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rafael F. Castañeda-Ruíz
- Instituto de Investigaciones de Sanidad Vegetal, Calle 110 No. 514 e/5ta B y 5ta F, Playa, Havana 17200, Cuba
| | - Jiwen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Zhaohuan Xu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
36
|
Coomber A, Saville A, Carbone I, Ristaino JB. An open-access T-BAS phylogeny for emerging Phytophthora species. PLoS One 2023; 18:e0283540. [PMID: 37011062 PMCID: PMC10069789 DOI: 10.1371/journal.pone.0283540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Phytophthora species cause severe diseases on food, forest, and ornamental crops. Since the genus was described in 1876, it has expanded to comprise over 190 formally described species. There is a need for an open access phylogenetic tool that centralizes diverse streams of sequence data and metadata to facilitate research and identification of Phytophthora species. We used the Tree-Based Alignment Selector Toolkit (T-BAS) to develop a phylogeny of 192 formally described species and 33 informal taxa in the genus Phytophthora using sequences of eight nuclear genes. The phylogenetic tree was inferred using the RAxML maximum likelihood program. A search engine was also developed to identify microsatellite genotypes of P. infestans based on genetic distance to known lineages. The T-BAS tool provides a visualization framework allowing users to place unknown isolates on a curated phylogeny of all Phytophthora species. Critically, the tree can be updated in real-time as new species are described. The tool contains metadata including clade, host species, substrate, sexual characteristics, distribution, and reference literature, which can be visualized on the tree and downloaded for other uses. This phylogenetic resource will allow data sharing among research groups and the database will enable the global Phytophthora community to upload sequences and determine the phylogenetic placement of an isolate within the larger phylogeny and to download sequence data and metadata. The database will be curated by a community of Phytophthora researchers and housed on the T-BAS web portal in the Center for Integrated Fungal Research at NC State. The T-BAS web tool can be leveraged to create similar metadata enhanced phylogenies for other Oomycete, bacterial or fungal pathogens.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Functional Genomics Program, NC State University, Raleigh, North Carolina, United States of America
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Center for Integrated Fungal Research, NC State University, Raleigh, North Carolina, United States of America
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
37
|
Xu M, Ashley NA, Vaghefi N, Wilkinson I, Idnurm A. Isolation of strains and their genome sequencing to analyze the mating system of Ophiocordyceps robertsii. PLoS One 2023; 18:e0284978. [PMID: 37130139 PMCID: PMC10153710 DOI: 10.1371/journal.pone.0284978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
The fungal genus Ophiocordyceps contains a number of insect pathogens. One of the best known of these is Ophiocordyceps sinensis, which is used in Chinese medicine and its overharvesting threatens sustainability; hence, alternative species are being sought. Ophiocordyceps robertsii, found in Australia and New Zealand, has been proposed to be a close relative to O. sinensis, but little is known about this species despite being also of historical significance. Here, O. robertsii strains were isolated into culture and high coverage draft genome sequences obtained and analyzed. This species has a large genome expansion, as also occurred in O. sinensis. The mating type locus was characterized, indicating a heterothallic arrangement whereby each strain has an idiomorphic region of two (MAT1-2-1, MAT1-2-2) or three (MAT1-1-1, MAT1-1-2, MAT1-1-3) genes flanked by the conserved APN2 and SLA2 genes. These resources provide a new opportunity for understanding the evolution of the expanded genome in the homothallic species O. sinensis, as well as capabilities to explore the pharmaceutical potential in a species endemic to Australia and New Zealand.
Collapse
Affiliation(s)
- Melvin Xu
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Darling Heights, Queensland, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Ian Wilkinson
- GhostMothLabs, 20 Lynch Drive, Echuca, Victoria, Australia
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
38
|
Sun T, Zou W, Dong Q, Huang O, Tang D, Yu H. Morphology, phylogeny, mitogenomics and metagenomics reveal a new entomopathogenic fungus Ophiocordycepsnujiangensis (Hypocreales, Ophiocordycipitaceae) from Southwestern China. MycoKeys 2022; 94:91-108. [PMID: 36760544 PMCID: PMC9836510 DOI: 10.3897/mycokeys.94.89425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Ophiocordyceps contains the largest number of Cordyceps sensu lato, various species of which are of great medicinal value. In this study, a new entomopathogenic fungus, Ophiocordycepsnujiangensis, from Yunnan in southwestern China, was described using morphological, phylogenetic, and mitogenomic evidence, and its fungal community composition was identified. It was morphologically characterized by a solitary, woody, and dark brown stromata, smooth-walled and septate hyphae, solitary and gradually tapering conidiogenous cells with plenty of warty protrusions, and oval or fusiform conidia (6.4-11.2 × 3.7-6.4 µm) with mucinous sheath. The phylogenetic location of O.nujiangensis was determined based on the Bayesian inference (BI) and the maximum likelihood (ML) analyses by concatenating nrSSU, nrLSU, tef-1a, rpb1, and rpb2 datasets, and ten mitochondrial protein-coding genes (PCGs) datasets (atp6, atp9, cob, cox2, nad1, nad2, nad3, nad4, nad4L, and nad5). Phylogenetic analyses revealed that O.nujiangensis belonged to the Hirsutellasinensis subclade within the Hirsutella clade of Ophiocordyceps. And O.nujiangensis was phylogenetically clustered with O.karstii, O.liangshanensis, and O.sinensis. Simultaneously, five fungal phyla and 151 fungal genera were recognized in the analysis of the fungal community of O.nujiangensis. The fungal community composition differed from that of O.sinensis, and differences in the microbial community composition of closely related species might be appropriate as further evidence for taxonomy.
Collapse
Affiliation(s)
- Tao Sun
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Weiqiu Zou
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Quanying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Ou Huang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Dexiang Tang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Hong Yu
- School of Life Sciences, Yunnan University, Kunming 650504, Yunan, ChinaSchool of Ecology and Environmental ScienceKunmingChina
| |
Collapse
|
39
|
Peng C, Crous P, Jiang N, Fan X, Liang Y, Tian C. Diversity of Sporocadaceae (pestalotioid fungi) from Rosa in China. PERSOONIA 2022; 49:201-260. [PMID: 38234377 PMCID: PMC10792223 DOI: 10.3767/persoonia.2022.49.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Rosa (Rosaceae) is an important ornamental and medicinal plant genus worldwide, with several species being cultivated in China. Members of Sporocadaceae (pestalotioid fungi) are globally distributed and include endophytes, saprobes but also plant pathogens, infecting a broad range of host plants on which they can cause important plant diseases. Although several Sporocadaceae species were recorded to inhabit Rosa spp., the taxa occurring on Rosa remain largely unresolved. In this study, a total of 295 diseased samples were collected from branches, fruits, leaves and spines of eight Rosa species (R. chinensis, R. helenae, R. laevigata, R. multiflora, R. omeiensis, R. rugosa, R. spinosissima and R. xanthina) in Gansu, Henan, Hunan, Qinghai, Shaanxi Provinces and the Ningxia Autonomous Region of China. Subsequently 126 strains were obtained and identified based on comparisons of DNA sequence data. Based on these results 15 species residing in six genera of Sporocadaceae were delineated, including four known species (Pestalotiopsis chamaeropis, Pes. rhodomyrtus, Sporocadus sorbi and Spo. trimorphus) and 11 new species described here as Monochaetia rosarum, Neopestalotiopsis concentrica, N. subepidermalis, Pestalotiopsis tumida, Seimatosporium centrale, Seim. gracile, Seim. nonappendiculatum, Seim. parvum, Seiridium rosae, Sporocadus brevis, and Spo. spiniger. This study also represents the first report of Pes. chamaeropis, Pes. rhodomyrtus and Spo. sorbi on Rosa. The overall data revealed that Pestalotiopsis was the most prevalent genus, followed by Seimatosporium, while Pes. chamaeropis and Pes. rhodomyrtus were the two most prevalent species. Analysis of Sporocadaceae abundance on Rosa species and plant organs revealed that spines of R. chinensis had the highest species diversity. Citation: Peng C, Crous PW, Jiang N, et al. 2022. Diversity of Sporocadaceae (pestalotioid fungi) from Rosa in China. Persoonia 49: 201-260. https://doi.org/10.3767/persoonia.2022.49.07.
Collapse
Affiliation(s)
- C. Peng
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1,6708 PB Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - N. Jiang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Y.M. Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
40
|
Zhou H, Cheng GQ, Wang QT, Guo MJ, Zhuo L, Yan HF, Li GJ, Hou CL. Morphological Characteristics and Phylogeny Reveal Six New Species in Russula Subgenus Russula ( Russulaceae, Russulales) from Yanshan Mountains, North China. J Fungi (Basel) 2022; 8:jof8121283. [PMID: 36547616 PMCID: PMC9785408 DOI: 10.3390/jof8121283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Species of the genus Russula are key components of ectomycorrhizal ecosystems worldwide, some of which are famous edible fungi. Although many new species have been described in China, their diversity in North China is still poorly known. Based on the morphology observation of specimens and molecular phylogenetic analyses, combined with the current classification frame of Russula, six new species of Russula subgenus Russula are proposed from the Yanshan Mountains in northern Beijing and northern Hebei Province of China in this study: viz. Russula miyunensis (subsection Chamaeleontinae), R. plana (subsection Chamaeleontinae), R. sinoparva (subsection Puellarinae), R. sinorobusta (subsection Puellarinae), R. subversatilis (subsection Roseinae), and R. yanshanensis (subsection Puellarinae). This is the first report of the species of Russula subgenus Russula from the Yanshan Mountains. This study enriches the species diversity of Russula in North China and provides new data support for the systematic study of Russula in subsequent research, including research and development on edibility.
Collapse
Affiliation(s)
- Hao Zhou
- College of Life Science, Capital Normal University, Xisanhuan Beilu 105, Beijing 100048, China
| | - Gui-Qiang Cheng
- College of Life Science, Capital Normal University, Xisanhuan Beilu 105, Beijing 100048, China
| | - Qiu-Tong Wang
- College of Life Science, Capital Normal University, Xisanhuan Beilu 105, Beijing 100048, China
| | - Mei-Jun Guo
- College of Life Science, Capital Normal University, Xisanhuan Beilu 105, Beijing 100048, China
| | - Lan Zhuo
- College of Life Science, Capital Normal University, Xisanhuan Beilu 105, Beijing 100048, China
| | - Hui-Fang Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu 105, Beijing 100048, China
| | - Guo-Jie Li
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding 071001, China
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Xisanhuan Beilu 105, Beijing 100048, China
- Correspondence:
| |
Collapse
|
41
|
Multigene phylogeny, morphology, and pathogenicity trials reveal novel Cytospora species involved in perennial canker disease of apple trees in Iran. Fungal Biol 2022; 126:707-726. [PMID: 36517139 DOI: 10.1016/j.funbio.2022.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023]
Abstract
In recent years, canker and die-back diseases have become a growing threat for the productivity and longevity of apple orchards in Iran. In this study, 131 Cytospora isolates were recovered from symptomatic tissues of apple trees in apple orchards of Iran. Multigene phylogenetic inference based on combined sequence data of ITS, act, rpb2, and tef1-α loci, supplemented with morphological characteristics and pathogenicity assay revealed four novel Cytospora species which were described as C. avicennae, C. azerbaijanica, C. ershadii, and C. iranica, and four known species, namely C. chrysosperma, C. parasitica, C. paratranslucens, and C. sorbicola. Also, C. sorbicola is newly reported on apple trees worldwide. Koch's postulates were fulfilled to confirm that all eight species in this study were pathogenic on apple trees in Iran, among which C. sorbicola was the most intensive species. The results of this study further highlight rich diversity among Cytospora species occurring on apple trees, revealing several novel Cytospora species on this host. The host range, geographical distribution, and economic significance of novel species on apple industry remains to be studied.
Collapse
|
42
|
Bustamante MI, Osorio-Navarro C, Fernández Y, Bourret TB, Zamorano A, Henríquez-Sáez JL. First Record of Colletotrichum anthrisci Causing Anthracnose on Avocado Fruits in Chile. Pathogens 2022; 11:pathogens11101204. [PMID: 36297261 PMCID: PMC9611251 DOI: 10.3390/pathogens11101204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Anthracnose caused by Colletotrichum species is one of the most frequent and damaging fungal diseases affecting avocado fruits (Persea americana Mill.) worldwide. In Chile, the disease incidence has increased over the last decades due to the establishment of commercial groves in more humid areas. Since 2018, unusual symptoms of anthracnose have been observed on Hass avocado fruits, with lesions developing a white to gray sporulation. Morphological features and multi-locus phylogenetic analyses using six DNA barcodes (act, chs-1, gapdh, his3, ITS, and tub2) allowed the identification of the causal agent as Colletotrichum anthrisci, a member of the dematium species complex. Pathogenicity was confirmed by inoculating healthy Hass avocado fruits with representative isolates, reproducing the same symptoms initially observed, and successfully reisolating the same isolates from the margin of the necrotic pulp. Previously, several Colletotrichum species belonging to other species complexes have been associated with avocado anthracnose in other countries. To our knowledge, this is the first record of C. anthrisci and of a species of the dematium species complex causing anthracnose on avocado fruits in Chile and worldwide.
Collapse
Affiliation(s)
- Marcelo I. Bustamante
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
- Correspondence:
| | - Claudio Osorio-Navarro
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Ñuñoa 7800003, Santiago, Chile
| | - Ysadora Fernández
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| | - Tyler B. Bourret
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Alan Zamorano
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| | - José Luis Henríquez-Sáez
- Departament of Plant Health, Faculty of Agricultural Sciences, University of Chile, Avenida Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| |
Collapse
|
43
|
He YK, Yang Q, Sun YR, Zeng XY, Jayawardena RS, Hyde KD, Wang Y. Additions to Neopestalotiopsis (Amphisphaeriales, Sporocadaceae) fungi: two new species and one new host record from China. Biodivers Data J 2022; 10:e90709. [PMID: 36761578 PMCID: PMC9848506 DOI: 10.3897/bdj.10.e90709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background In this study, three Neopestalotiopsis taxa were identified, associated with leaves of Zingiberofficinale, Elaeagnuspungens and Salaccazalacca. New information Based on morphology and multi-gene analyses of the internal transcribed spacer (ITS), beta-tubulin (TUB2) and translation elongation factor 1-alpha (TEF1), the five strains of Neopestalotiopsis represent two novel and one known species. They are introduced with descriptions, illustrations and notes herein.
Collapse
Affiliation(s)
- Yu-Ke He
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai 57100Thailand,Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, ChinaDepartment of Plant Pathology, Agriculture College, Guizhou UniversityGuiyang, 550025China,School of Science, Mae Fah Luang University, Chiang Rai 57100, ThailandSchool of Science, Mae Fah Luang UniversityChiang Rai 57100Thailand
| | - Qi Yang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, ChinaDepartment of Plant Pathology, Agriculture College, Guizhou UniversityGuiyang, 550025China
| | - Ya-Ru Sun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai 57100Thailand
| | - Xiang-Yu Zeng
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, ChinaDepartment of Plant Pathology, Agriculture College, Guizhou UniversityGuiyang, 550025China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai 57100Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai 57100Thailand
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, ChinaDepartment of Plant Pathology, Agriculture College, Guizhou UniversityGuiyang, 550025China
| |
Collapse
|
44
|
Wu W, Diao Y. Anamorphic chaetosphaeriaceous fungi from China. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractChaetosphaeriaceae is one of the largest families in Sordariomycetes with its members commonly found on decaying leaf, fruit, branch, bark and wood in both terrestrial and submerged environment in nature. This paper reports our research result of diversity, taxonomy and phylogeny of anamorphic Chaetosphaeriaceae in China, which is based on a systematic study with an integrated approach of morphological observation and phylogenetic analysis for a large collection (> 1300 herbarium specimens and 1100 living strains). The family Chaetosphaeriaceae is expanded to accommodate 89 accepted genera, including 22 new genera and 10 newly assigned genera. Most of these genera (except for Chaetosphaeria and several other relatively large genera) are delimitated as monophyletic genera with well-defined diagnostic characters in morphology. The phylogenetic connection of non-phialidic Sporidesmium-like fungi is further confirmed and expanded to 10 different genera. The polyphyletic Codinaea/Dictyochaeta/Tainosphaeria complex is further resolved with a taxonomic framework of 28 monophyletic genera by redelimitation of Codinaea and Dictyochaeta with narrower concept, acceptance of the 16 established genera, and finally introduction of 10 new genera. Chloridium is phylogenetically redefined as monophyletic genus with narrower concept as typified by the type species, but a systematic review in both generic and species level is still needed. For biodiversity of chaetosphaeriaceous fungi, a total of 369 species in 76 genera, including 119 new species, 47 new combinations, and one new name, are documented. The identification keys are provided for most genera, especially the large genera such as Codinaea s. str., Codinaeella, Stilbochaeta, Cryptophiale, Thozetella, Dinemasporium and Pseudolachnella. In addition, ten known species were excluded from the family and reclassified. Systematic revision of several relatively large polyphyletic genera should be conducted in future studies, including Bahusutrabeeja, Ellisembia, Stanjehughesia, Cacumisporium, Chaetosphaeria, Chloridium, Craspedodidymum, Cryptophiale, Cryptophialoidea, Dictyochaetopsis, Minimidochium, and many published species of Codinaea and Dictyochaeta.
Collapse
|
45
|
Basit F, Asghar S, Ahmed T, Ijaz U, Noman M, Hu J, Liang X, Guan Y. Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51281-51297. [PMID: 35614352 DOI: 10.1007/s11356-022-20950-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 05/27/2023]
Abstract
Nutrient fertilization plays a major role in improving crop productivity and maintaining soil fertility. In the last few decades, the productivity of current agricultural practices highly depends on the use of chemical fertilizers. Major drawback of traditional fertilizers is their low crop nutrient use efficiency and high loss into water. Nanomaterial in agriculture is a multipurpose tool for increasing growth, development, and yield of plants. Nanotechnology facilitates the amplifying of agriculture production by reducing relevant losses and improving the input efficiency. Nanotechnology has emerged as an attractive field of research and has various agriculture applications, especially the use of nano-agrochemicals to increase nutrient use efficiency and agricultural yield. Nanofertilizers are more effective as compared to chemical fertilizers due to their cost-efficient, eco-friendly, non-toxic, and more stable in nature. Overall, this chapter focuses on synthesis of nanofertilizers through physical, chemical, and biological methods. This chapter will also explore the use of nano-enabled fertilizers to enhance the nutrient use efficiency for sustainable crop production, and global food safety.
Collapse
Affiliation(s)
- Farwa Basit
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Sana Asghar
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Temoor Ahmed
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Usman Ijaz
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Muhammad Noman
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jin Hu
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yajing Guan
- Institute of Crop Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China.
- Hainan Research Institute, Zhejiang University, Sanya, 572025, People's Republic of China.
| |
Collapse
|
46
|
Hanafy RA, Dagar SS, Griffith GW, Pratt CJ, Youssef NH, Elshahed MS. Taxonomy of the anaerobic gut fungi ( Neocallimastigomycota): a review of classification criteria and description of current taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35776761 DOI: 10.1099/ijsem.0.005322] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the anaerobic gut fungi (Neocallimastigomycota) reside in the rumen and alimentary tract of larger mammalian and some reptilian, marsupial and avian herbivores. The recent decade has witnessed a significant expansion in the number of described Neocallimastigomycota genera and species. However, the difficulties associated with the isolation and maintenance of Neocallimastigomycota strains has greatly complicated comparative studies to resolve inter- and intra-genus relationships. Here, we provide an updated outline of Neocallimastigomycota taxonomy. We critically evaluate various morphological, microscopic and phylogenetic traits previously and currently utilized in Neocallimastigomycota taxonomy, and provide an updated key for quick characterization of all genera. We then synthesize data from taxa description manuscripts, prior comparative efforts and molecular sequence data to present an updated list of Neocallimastigomycota genera and species, with an emphasis on resolving relationships and identifying synonymy between recent and historic strains. We supplement data from published manuscripts with information and illustrations from strains in the authors' collections. Twenty genera and 36 species are recognized, but the status of 10 species in the genera Caecomyces, Piromyces, Anaeromyces and Cyllamyces remains uncertain due to the unavailability of culture and conferre (cf.) strains, lack of sequence data, and/or inadequacy of available microscopic and phenotypic data. Six cases of synonymy are identified in the genera Neocallimastix and Caecomyces, and two names in the genus Piromyces are rejected based on apparent misclassification.
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Sumit S Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | - Gareth W Griffith
- Institute of Biological, Environmental, and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, Wales, UK
| | - Carrie J Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
47
|
Elshahed MS, Hanafy RA, Cheng Y, Dagar SS, Edwards JE, Flad V, Fliegerová KO, Griffith GW, Kittelmann S, Lebuhn M, O'Malley MA, Podmirseg SM, Solomon KV, Vinzelj J, Young D, Youssef NH. Characterization and rank assignment criteria for the anaerobic fungi (Neocallimastigomycota). Int J Syst Evol Microbiol 2022; 72. [PMID: 35852502 DOI: 10.1099/ijsem.0.005449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Establishing a solid taxonomic framework is crucial for enabling discovery and documentation efforts. This ensures effective communication between scientists as well as reproducibility of results between laboratories, and facilitates the exchange and preservation of biological material. Such framework can only be achieved by establishing clear criteria for taxa characterization and rank assignment. Within the anaerobic fungi (phylum Neocallimastigomycota), the need for such criteria is especially vital. Difficulties associated with their isolation, maintenance and long-term storage often result in limited availability and loss of previously described taxa. To this end, we provide here a list of morphological, microscopic, phylogenetic and phenotypic criteria for assessment and documentation when characterizing newly obtained Neocallimastigomycota isolates. We also recommend a polyphasic rank-assignment scheme for novel genus-, species- and strain-level designations for newly obtained Neocallimastigomycota isolates.
Collapse
Affiliation(s)
- Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA, USA
| | - Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark DE, USA
| | - Yanfen Cheng
- College of Animal Science and Technology, Nanjing Agricultural University., Nanjing, Jiangsu, PR China
| | - Sumit S Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | | | - Veronika Flad
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | | | - Gareth W Griffith
- Institute of Biological, Environmental, and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, Wales, UK
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - Michelle A O'Malley
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sabine Marie Podmirseg
- Department of Microbiology, University of Innsbruck, Technikerstraße, Innsbruck, Austria
| | - Kevin V Solomon
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark DE, USA
| | - Julia Vinzelj
- Department of Microbiology, University of Innsbruck, Technikerstraße, Innsbruck, Austria
| | - Diana Young
- Bavarian State Research Center for Agriculture (LfL), Central Department for Quality Assurance and Analytics, 85354 Freising, Germany
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA, USA
| |
Collapse
|
48
|
Phookamsak R, Jiang H, Suwannarach N, Lumyong S, Xu J, Xu S, Liao CF, Chomnunti P. Bambusicolous Fungi in Pleosporales: Introducing Four Novel Taxa and a New Habitat Record for Anastomitrabeculia didymospora. J Fungi (Basel) 2022; 8:630. [PMID: 35736113 PMCID: PMC9225195 DOI: 10.3390/jof8060630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
While conducting a survey of bambusicolous fungi in northern Thailand and southwestern China, several saprobic fungi were collected from dead branches, culms and twigs of bamboos, which were preliminarily identified as species belonging to Pleosporales (Dothideomycetes) based on a morphological approach. Multigene phylogenetic analyses based on ITS, LSU, SSU, rpb2, tef1-α and tub2 demonstrated four novel taxa belonging to the families Parabambusicolaceae, Pyrenochaetopsidaceae and Tetraploasphaeriaceae. Hence, Paramultiseptospora bambusae sp. et gen. nov., Pyrenochaetopsis yunnanensis sp. nov. and Tetraploa bambusae sp. nov. are introduced. In addition, Anastomitrabeculia didymospora found on bamboo twigs in terrestrial habitats is reported for the first time. Detailed morphological descriptions and updated phylogenetic trees of each family are provided herein.
Collapse
Affiliation(s)
- Rungtiwa Phookamsak
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.P.); (H.J.); (C.-F.L.)
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China;
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China
| | - Hongbo Jiang
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.P.); (H.J.); (C.-F.L.)
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China;
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.L.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China;
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China
| | - Sheng Xu
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China;
- East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming 650201, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming 650201, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chun-Fang Liao
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.P.); (H.J.); (C.-F.L.)
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu, Guangzhou 510225, China
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.P.); (H.J.); (C.-F.L.)
| |
Collapse
|
49
|
Nguyen TTT, Lee HB. Discovery of Three New Mucor Species Associated with Cricket Insects in Korea. J Fungi (Basel) 2022; 8:jof8060601. [PMID: 35736084 PMCID: PMC9224827 DOI: 10.3390/jof8060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Species in the genus Mucor have a worldwide distribution and are isolated from various substrata and hosts, including soil, dung, freshwater, and fruits. However, their diversity from insects is still much too little explored. The aim of this study was to characterize three new species of Mucor: Mucor grylli sp. nov., M. hyangburmii sp. nov., and M. kunryangriensis sp. nov., discovered in Kunryang-ri, Cheongyang in the Chungnam Province of Korea, during an investigation of Mucorales from cricket insects. The new species are described using morphological characters and molecular data including ITS and LSU rDNA regions. Mucor grylli is characterized by the highly variable shape of its columellae, which are subglobose to oblong, obovoid, strawberry-shaped, and sometimes slightly or strongly constricted in the center. Mucor hyangburmii is characterized by the production of azygospores and growth at 40 °C. Mucor kunryangriensis is characterized by the variable shape of its columellae, which are elongated-conical, obovoid, cylindrical ellipsoid, cylindrical, and production of abundant yeast-like cells on PDA, MEA, and SMA media. Based on the sequence analysis of two genetic markers, our phylogenic assessment strongly supported M. grylli, M. hyangburmii, and M. kunryangriensis as new species. Detailed descriptions, illustrations, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Thuong T T Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
50
|
Dhanjal DS, Mehra P, Bhardwaj S, Singh R, Sharma P, Nepovimova E, Chopra C, Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. Int J Nanomedicine 2022; 17:2505-2533. [PMID: 35677678 PMCID: PMC9170235 DOI: 10.2147/ijn.s363282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022] Open
Abstract
In today's time, nanotechnology is being utilized to develop efficient products in the cosmetic and pharmaceutical industries. The application of nanotechnology in transforming bioactive material into nanoscale products substantially improves their biocompatibility and enhances their effectiveness, even when used in lower quantities. There is a significant global market potential for these nanoparticles because of which research teams around the world are interested in the advancements in nanotechnology. These recent advances have shown that fungi can synthesize metallic nanoparticles via extra- and intracellular mechanisms. Moreover, the chemical and physical properties of novel metallic nanoparticles synthesised by fungi are improved by regulating the surface chemistry, size, and surface morphology of the nanoparticles. Compared to chemical synthesis, the green synthesis of nanoparticles offers a safe and sustainable approach for developing nanoparticles. Biosynthesised nanoparticles can potentially enhance the bioactivities of different cellular fractions, such as plant extracts, fungal extracts, and metabolites. The nanoparticles synthesised by fungi offer a wide range of applications. Recently, the biosynthesis of nanoparticles using fungi has become popular, and various ways are being explored to maximize nanoparticles synthesis. This manuscript reviews the characteristics and applications of the nanoparticles synthesised using the different taxa of fungi. The key focus is given to the applications of these nanoparticles in medicine and cosmetology.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parul Mehra
- Central Research Institute, Kasauli, Himachal Pradesh, India
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Parvarish Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| |
Collapse
|