1
|
Letafati A, Bahavar A, Tabarraei A, Norouzi M, Amiri A, Mozhgani SH. Human T-cell lymphotropic virus type 1 (HTLV-1) grip on T-cells: investigating the viral tapestry of activation. Infect Agent Cancer 2024; 19:23. [PMID: 38734673 PMCID: PMC11088018 DOI: 10.1186/s13027-024-00584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Human T-cell Lymphotropic virus type 1 (HTLV-1) belongs to retroviridae which is connected to two major diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and Adult T-cell leukemia/lymphoma (ATLL). This study aims to investigate the mRNA expressions of key proteins correlated to T-cell activation in asymptomatic carriers (ACs) HTLV-1 infected patients, shedding light on early molecular events and T-cell activation following HTLV-1 infection. MATERIAL AND METHODS The study involved 40 participants, including 20 ACs and 20 healthy subjects. Blood samples were collected, ELISA assessment for screening and confirmation with PCR for Trans-activating transcriptional regulatory protein (Tax) and HTLV-1 basic leucine zipper factor (HBZ) of the HTLV-1 were done. mRNA expressions of C-terminal Src kinase (CSK), Glycogen Synthase Kinase-3 Beta (GSK3β), Mitogen-Activated Protein Kinase 14 (MAP3K14 or NIK), Phospholipase C Gamma-1 (PLCG1), Protein Tyrosine Phosphatase non-Receptor Type 6 (PTPN6) and Mitogen-Activated Protein Kinase Kinase Kinase-7 (SLP-76) and Mitogen-Activated Protein Kinase14 (MAP3K7 or TAK1) were assayed using RT-qPCR. Statistical analyses were performed using PRISM and SPSS software. RESULTS While there were no significant upregulation in CSK and PTPN6 in ACs compared to healthy individuals, expression levels of GSK3β, MAP3K14, PLCG1, SLP-76, and TAK1 were significantly higher in ACs compared to healthy subjects which directly contributes to T-cell activation in the HTLV-1 ACs. CONCLUSION HTLV-1 infection induces differential mRNA expressions in key proteins associated with T-cell activation. mRNAs related to T-cell activation showed significant upregulation compared to PTPN6 and CSK which contributed to T-cell regulation. Understanding these early molecular events in ACs may provide potential markers for disease progression and identify therapeutic targets for controlling viral replication and mitigating associated diseases. The study contributes novel insights to the limited literature on T-cell activation and HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Atefeh Bahavar
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Abdollah Amiri
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Parisi F, Freer G, Mazzanti CM, Pistello M, Poli A. Mouse Mammary Tumor Virus (MMTV) and MMTV-like Viruses: An In-depth Look at a Controversial Issue. Viruses 2022; 14:v14050977. [PMID: 35632719 PMCID: PMC9147501 DOI: 10.3390/v14050977] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
Since its discovery as a milk factor, mouse mammary tumor virus (MMTV) has been shown to cause mammary carcinoma and lymphoma in mice. MMTV infection depends upon a viral superantigen (sag)-induced immune response and exploits the immune system to establish infection in mammary epithelial cells when they actively divide. Simultaneously, it avoids immune responses, causing tumors through insertional mutagenesis and clonal expansion. Early studies identified antigens and sequences belonging to a virus homologous to MMTV in human samples. Several pieces of evidence fulfill a criterion for a possible causal role for the MMTV-like virus in human breast cancer (BC), though the controversy about whether this virus was linked to BC has raged for over 40 years in the literature. In this review, the most important issues related to MMTV, from its discovery to the present days, are retraced to fully explore such a controversial issue. Furthermore, the hypothesis of an MMTV-like virus raised the question of a potential zoonotic mouse–man transmission. Several studies investigate the role of an MMTV-like virus in companion animals, suggesting their possible role as mediators. Finally, the possibility of an MMTV-like virus as a cause of human BC opens a new era for prevention and therapy.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale Delle Piagge, 2, 56124 Pisa, Italy;
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Savi 10, 56126 Pisa, Italy; (G.F.); (M.P.)
| | - Chiara Maria Mazzanti
- Fondazione Pisana per la Scienza, Via Ferruccio Giovannini, 13, 56017 San Giuliano Terme, Italy;
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Savi 10, 56126 Pisa, Italy; (G.F.); (M.P.)
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale Delle Piagge, 2, 56124 Pisa, Italy;
- Correspondence:
| |
Collapse
|
3
|
Issrani R, Reddy J, Dabah THEM, Prabhu N. Role of Oral Microbiota in Carcinogenesis: A Short Review. J Cancer Prev 2022; 27:16-21. [PMID: 35419305 PMCID: PMC8984651 DOI: 10.15430/jcp.2022.27.1.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
A strong and healthy microbiome is responsible for homeostasis between the host and microbiota which is necessary to achieve the normal functioning of the body. Dysbiosis provokes prevalence of pathogenic microbes, leading to alterations in gene expression profiles and metabolic processes. This in turn results in anomalous immune responses of the host. Dysbiosis may be associated with a wide variety of diseases like irritable bowel syndrome, coeliac disease, allergic conditions, bronchitis, asthma, heart diseases and oncogenesis. Presently, the links between oral microbial consortia and their functions, not only in the preservation of homeostasis but also pathogenesis of several malignancies have gained much awareness from the scientific community. The primary intent of this review is to highlight the dynamic role of oral microbiome in oncogenesis and its progression through various mechanisms. A literature search was conducted using multiple databases comprising of PubMed, Scopus, Google Scholar, and Cochrane electronic databases with keywords including microbiome, microbiota, carcinogenesis, tumorigenesis, and immunosuppression. Current and the past literature has pointed out the role of microorganisms in oncogenesis. It may be put forth that both the commensal and pathogenic strains of oral microbiome play an undeniably conspicuous role in carcinogenesis at different body sites.
Collapse
Affiliation(s)
- Rakhi Issrani
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
- Department of Oral Medicine & Radiology, Indira Gandhi Institute of Dental Sciences, SBV University, Pondicherry, India
| | - Jagat Reddy
- Department of Oral Medicine & Radiology, Indira Gandhi Institute of Dental Sciences, SBV University, Pondicherry, India
| | - Tarek H. El-Metwally Dabah
- Medical Biochemistry Division, Department of Pathology, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Namdeo Prabhu
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
5
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
6
|
Ducasa N, Grasso D, Benencio P, Papademetrio DL, Biglione M, Kashanchi F, Berini C, Garcia MN. Autophagy in Human T-Cell Leukemia Virus Type 1 (HTLV-1) Induced Leukemia. Front Oncol 2021; 11:641269. [PMID: 33869030 PMCID: PMC8045967 DOI: 10.3389/fonc.2021.641269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Viruses play an important role in the development of certain human cancers. They are estimated to contribute 16% to all human cancers. Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be discovered and is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive T-cell malignancy with poor prognosis. HTLV-1 viral proteins interact with mechanisms and proteins present in host cells for their own benefit, evading the immune system and promoting the establishment of disease. Several viruses manipulate the autophagy pathway to achieve their infective goals, and HTLV-1 is not the exception. HTLV-1 Tax viral protein engages NF-κB and autophagy pathways prone favoring viral replication and T cell transformation. In this review we focus on describing the relationship of HTLV-1 with the autophagy machinery and its implication in the development of ATLL.
Collapse
Affiliation(s)
- Nicolás Ducasa
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Grasso
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Paula Benencio
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela L. Papademetrio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirna Biglione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Carolina Berini
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Noé Garcia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Castro-Gonzalez S, Shi Y, Colomer-Lluch M, Song Y, Mowery K, Almodovar S, Bansal A, Kirchhoff F, Sparrer K, Liang C, Serra-Moreno R. HIV-1 Nef counteracts autophagy restriction by enhancing the association between BECN1 and its inhibitor BCL2 in a PRKN-dependent manner. Autophagy 2021; 17:553-577. [PMID: 32097085 PMCID: PMC8007141 DOI: 10.1080/15548627.2020.1725401] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy/autophagy is an auto-digestive pro-survival pathway activated in response to stress to target cargo for lysosomal degradation. In recent years, autophagy has become prominent as an innate antiviral defense mechanism through multiple processes, such as targeting virions and viral components for elimination. These exciting findings have encouraged studies on the ability of autophagy to restrict HIV. However, the role of autophagy in HIV infection remains unclear. Whereas some reports indicate that autophagy is detrimental for HIV, others have claimed that HIV deliberately activates this pathway to increase its infectivity. Moreover, these contrasting findings seem to depend on the cell type investigated. Here, we show that autophagy poses a hurdle for HIV replication, significantly reducing virion production. However, HIV-1 uses its accessory protein Nef to counteract this restriction. Previous studies have indicated that Nef affects autophagy maturation by preventing the fusion between autophagosomes and lysosomes. Here, we uncover that Nef additionally blocks autophagy initiation by enhancing the association between BECN1 and its inhibitor BCL2, and this activity depends on the cellular E3 ligase PRKN. Remarkably, the ability of Nef to counteract the autophagy block is more frequently observed in pandemic HIV-1 and its simian precursor SIVcpz infecting chimpanzees than in HIV-2 and its precursor SIVsmm infecting sooty mangabeys. In summary, our findings demonstrate that HIV-1 is susceptible to autophagy restriction and define Nef as the primary autophagy antagonist of this antiviral process.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin, beta; ATG16L1: autophagy related 16 like 1; BCL2: bcl2 apoptosis regulator; BECN1: beclin 1; cDNA: complementary DNA; EGFP: enhanced green fluorescence protein; ER: endoplasmic reticulum; Gag/p55: group-specific antigen; GFP: green fluorescence protein; GST: glutathione S transferase; HA: hemagglutinin; HIV: human immunodeficiency virus; IP: immunoprecipitation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nef: negative factor; PRKN: parkin RBR E3 ubiquitin ligase; PtdIns3K: phosphatidylinositol 3 kinase; PtdIns3P: phosphatidylinositol 3 phosphate; PTM: post-translational modification; RT-qPCR: reverse transcription followed by quantitative PCR; RUBCN: rubicon autophagy regulator; SEM: standard error of the mean; SERINC3: serine incorporator 3; SERINC5: serine incorporator 5; SIV: simian immunodeficiency virus; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; UVRAG: UV radiation resistance associated gene; VSV: vesicular stomatitis virus; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yuhang Shi
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Ying Song
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaitlyn Mowery
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Immunology and Molecular Microbiology, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - Anju Bansal
- Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, University of Ulm, Ulm, Germany
| | | | - Chengyu Liang
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruth Serra-Moreno
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
8
|
Panfil AR, Green PL, Yoder KE. CRISPR Genome Editing Applied to the Pathogenic Retrovirus HTLV-1. Front Cell Infect Microbiol 2020; 10:580371. [PMID: 33425776 PMCID: PMC7785941 DOI: 10.3389/fcimb.2020.580371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
CRISPR editing of retroviral proviruses has been limited to HIV-1. We propose human T-cell leukemia virus type 1 (HTLV-1) as an excellent model to advance CRISPR/Cas9 genome editing technologies against actively expressing and latent retroviral proviruses. HTLV-1 is a tumorigenic human retrovirus responsible for the development of both leukemia/lymphoma (ATL) and a neurological disease (HAM/TSP). The virus immortalizes and persists in CD4+ T lymphocytes that survive for the lifetime of the host. The most important drivers of HTLV-1-mediated transformation and proliferation are the tax and hbz viral genes. Tax, transcribed from the plus-sense or genome strand, is essential for de novo infection and cellular immortalization. Hbz, transcribed from the minus-strand, supports proliferation and survival of infected cells in both its protein and mRNA forms. Abrogating the function or expression of tax and/or hbz by genome editing and mutagenic double-strand break repair may disable HTLV-1-infected cell growth/survival and prevent immune modulatory effects and ultimately HTLV-1-associated disease. In addition, the HTLV-1 viral genome is highly conserved with remarkable sequence homogeneity, both within the same host and even among different HTLV isolates. This offers more focused guide RNA targeting. In addition, there are several well-established animal models for studying HTLV-1 infection in vivo as well as cell immortalization in vitro. Therefore, studies with HTLV-1 may provide a better basis to assess and advance in vivo genome editing against retroviral infections.
Collapse
Affiliation(s)
- Amanda R Panfil
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Patrick L Green
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.,Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Kristine E Yoder
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Fochi S, Ciminale V, Trabetti E, Bertazzoni U, D’Agostino DM, Zipeto D, Romanelli MG. NF-κB and MicroRNA Deregulation Mediated by HTLV-1 Tax and HBZ. Pathogens 2019; 8:E290. [PMID: 31835460 PMCID: PMC6963194 DOI: 10.3390/pathogens8040290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
The risk of developing adult T-cell leukemia/lymphoma (ATLL) in individuals infected with human T-cell lymphotropic virus 1 (HTLV-1) is about 3-5%. The mechanisms by which the virus triggers this aggressive cancer are still an area of intensive investigation. The viral protein Tax-1, together with additional regulatory proteins, in particular HTLV-1 basic leucine zipper factor (HBZ), are recognized as relevant viral factors required for both viral replication and transformation of infected cells. Tax-1 deregulates several cellular pathways affecting the cell cycle, survival, and proliferation. The effects of Tax-1 on the NF-κB pathway have been thoroughly studied. Recent studies also revealed the impact of Tax-1 and HBZ on microRNA expression. In this review, we summarize the recent progress in understanding the contribution of HTLV-1 Tax- and HBZ-mediated deregulation of NF-κB and the microRNA regulatory network to HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy;
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, 37134 Verona, Italy; (S.F.); (E.T.); (U.B.); (D.Z.)
| |
Collapse
|
10
|
Fochi S, Bergamo E, Serena M, Mutascio S, Journo C, Mahieux R, Ciminale V, Bertazzoni U, Zipeto D, Romanelli MG. TRAF3 Is Required for NF-κB Pathway Activation Mediated by HTLV Tax Proteins. Front Microbiol 2019; 10:1302. [PMID: 31244811 PMCID: PMC6581700 DOI: 10.3389/fmicb.2019.01302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Human T-cell leukemia viruses type 1 (HTLV-1) and type 2 (HTLV-2) share a common genome organization and expression strategy but have distinct pathological properties. HTLV-1 is the etiological agent of Adult T-cell Leukemia (ATL) and of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), whereas HTLV-2 does not cause hematological disorders and is only sporadically associated with cases of subacute myelopathy. Both HTLV genomes encode two regulatory proteins that play a pivotal role in pathogenesis: the transactivating Tax-1 and Tax-2 proteins and the antisense proteins HBZ and APH-2, respectively. We recently reported that Tax-1 and Tax-2 form complexes with the TNF-receptor associated factor 3, TRAF3, a negative regulator of the non-canonical NF-κB pathway. The NF-κB pathway is constitutively activated by the Tax proteins, whereas it is inhibited by HBZ and APH-2. The antagonistic effects of Tax and antisense proteins on NF-κB activation have not yet been fully clarified. Here, we investigated the effect of TRAF3 interaction with HTLV regulatory proteins and in particular its consequence on the subcellular distribution of the effector p65/RelA protein. We demonstrated that Tax-1 and Tax-2 efficiency on NF-κB activation is impaired in TRAF3 deficient cells obtained by CRISPR/Cas9 editing. We also found that APH-2 is more effective than HBZ in preventing Tax-dependent NF-κB activation. We further observed that TRAF3 co-localizes with Tax-2 and APH-2 in cytoplasmic complexes together with NF-κB essential modulator NEMO and TAB2, differently from HBZ and TRAF3. These results contribute to untangle the mechanism of NF-κB inhibition by HBZ and APH-2, highlighting the different role of the HTLV-1 and HTLV-2 regulatory proteins in the NF-κB activation.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Elisa Bergamo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Simona Mutascio
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Chloé Journo
- Retroviral Oncogenesis Laboratory, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, Equipe Labellisée "Fondation pour la Recherche Médicale", UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Renaud Mahieux
- Retroviral Oncogenesis Laboratory, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, Equipe Labellisée "Fondation pour la Recherche Médicale", UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Pleet ML, Branscome H, DeMarino C, Pinto DO, Zadeh MA, Rodriguez M, Sariyer IK, El-Hage N, Kashanchi F. Autophagy, EVs, and Infections: A Perfect Question for a Perfect Time. Front Cell Infect Microbiol 2018; 8:362. [PMID: 30406039 PMCID: PMC6201680 DOI: 10.3389/fcimb.2018.00362] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/28/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy, a highly conserved process, serves to maintain cellular homeostasis in response to an extensive variety of internal and external stimuli. The classic, or canonical, pathway of autophagy involves the coordinated degradation and recycling of intracellular components and pathogenic material. Proper regulation of autophagy is critical to maintain cellular health, as alterations in the autophagy pathway have been linked to the progression of a variety of physiological and pathological conditions in humans, namely in aging and in viral infection. In addition to its canonical role as a degradative pathway, a more unconventional and non-degradative role for autophagy has emerged as an area of increasing interest. This process, known as secretory autophagy, is gaining widespread attention as many viruses are believed to use this pathway as a means to release and spread viral particles. Moreover, secretory autophagy has been found to intersect with other intracellular pathways, such as the biogenesis and secretion of extracellular vesicles (EVs). Here, we provide a review of the current landscape surrounding both degradative autophagy and secretory autophagy in relation to both aging and viral infection. We discuss their key features, while describing their interplay with numerous different viruses (i.e. hepatitis B and C viruses, Epstein-Barr virus, SV40, herpesviruses, HIV, chikungunya virus, dengue virus, Zika virus, Ebola virus, HTLV, Rift Valley fever virus, poliovirus, and influenza A virus), and compare secretory autophagy to other pathways of extracellular vesicle release. Lastly, we highlight the need for, and emphasize the importance of, more thorough methods to study the underlying mechanisms of these pathways to better advance our understanding of disease progression.
Collapse
Affiliation(s)
- Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Heather Branscome
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Daniel O Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Mohammad Asad Zadeh
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Ilker Kudret Sariyer
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
12
|
Abstract
AbstractAutophagy is a highly conserved pathway for physiological metabolism. Bilayer vesicles transport their contents to lysosomes for degradation. Autophagy is therefore a means of removing intracellular viruses and other pathogens in mammalian cells. However, the role of autophagy in virus infection is complex. Several viruses have developed a way to escape autophagy-dependent degradation and replicate themselves through autophagy. This article summarizes the fundamental mechanism and function of autophagy and its role in infection with viruses such as HIV, HTLV-1, and other retroviruses.
Collapse
|
13
|
Panfil AR, Al-Saleem J, Howard CM, Shkriabai N, Kvaratskhelia M, Green PL. Stability of the HTLV-1 Antisense-Derived Protein, HBZ, Is Regulated by the E3 Ubiquitin-Protein Ligase, UBR5. Front Microbiol 2018; 9:80. [PMID: 29441057 PMCID: PMC5797633 DOI: 10.3389/fmicb.2018.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/12/2018] [Indexed: 12/25/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) encodes a protein derived from the antisense strand of the proviral genome designated HBZ (HTLV-1 basic leucine zipper factor). HBZ is the only viral gene consistently expressed in infected patients and adult T-cell leukemia/lymphoma (ATL) tumor cell lines. It functions to antagonize many activities of the Tax viral transcriptional activator, suppresses apoptosis, and supports proliferation of ATL cells. Factors that regulate the stability of HBZ are thus important to the pathophysiology of ATL development. Using affinity-tagged protein and shotgun proteomics, we identified UBR5 as a novel HBZ-binding partner. UBR5 is an E3 ubiquitin-protein ligase that functions as a key regulator of the ubiquitin proteasome system in both cancer and developmental biology. Herein, we investigated the role of UBR5 in HTLV-1-mediated T-cell transformation and leukemia/lymphoma development. The UBR5/HBZ interaction was verified in vivo using over-expression constructs, as well as endogenously in T-cells. shRNA-mediated knockdown of UBR5 enhanced HBZ steady-state levels by stabilizing the HBZ protein. Interestingly, the related HTLV-2 antisense-derived protein, APH-2, also interacted with UBR5 in vivo. However, knockdown of UBR5 did not affect APH-2 protein stability. Co-immunoprecipitation assays identified ubiquitination of HBZ and knockdown of UBR5 resulted in a decrease in HBZ ubiquitination. MS/MS analysis identified seven ubiquitinated lysines in HBZ. Interestingly, UBR5 expression was upregulated in established T lymphocytic leukemia/lymphoma cell lines and the later stage of T-cell transformation in vitro. Finally, we demonstrated loss of UBR5 decreased cellular proliferation in transformed T-cell lines. Overall, our study provides evidence for UBR5 as a host cell E3 ubiquitin-protein ligase responsible for regulating HBZ protein stability. Additionally, our data suggests UBR5 plays an important role in maintaining the proliferative phenotype of transformed T-cell lines.
Collapse
Affiliation(s)
- Amanda R Panfil
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Jacob Al-Saleem
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Cory M Howard
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Patrick L Green
- Department of Veterinary Biosciences, Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood 2017; 129:1071-1081. [PMID: 28115366 PMCID: PMC5374731 DOI: 10.1182/blood-2016-09-692574] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1, PRKCB, and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4+ T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated.
Collapse
Affiliation(s)
- Toshiki Watanabe
- Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Moles R, Bai XT, Chaib-Mezrag H, Nicot C. WRN-targeted therapy using inhibitors NSC 19630 and NSC 617145 induce apoptosis in HTLV-1-transformed adult T-cell leukemia cells. J Hematol Oncol 2016; 9:121. [PMID: 27829440 PMCID: PMC5103433 DOI: 10.1186/s13045-016-0352-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATLL), a lymphoproliferative malignancy with a dismal prognosis and limited therapeutic options. Recent evidence shows that HTLV-1-transformed cells present defects in both DNA replication and DNA repair, suggesting that these cells might be particularly sensitive to treatment with a small helicase inhibitor. Because the “Werner syndrome ATP-dependent helicase” encoded by the WRN gene plays important roles in both cellular proliferation and DNA repair, we hypothesized that inhibition of WRN activity could be used as a new strategy to target ATLL cells. Methods Our analysis demonstrates an apoptotic effect induced by the WRN helicase inhibitor in HTLV-1-transformed cells in vitro and ATL-derived cell lines. Inhibition of cellular proliferation and induction of apoptosis were demonstrated with cell cycle analysis, XTT proliferation assay, clonogenic assay, annexin V staining, and measurement of mitochondrial transmembrane potential. Results Targeted inhibition of the WRN helicase induced cell cycle arrest and apoptosis in HTLV-1-transformed leukemia cells. Treatment with NSC 19630 (WRN inhibitor) induces S-phase cell cycle arrest, disruption of the mitochondrial membrane potential, and decreased expression of anti-apoptotic factor Bcl-2. These events were associated with activation of caspase-3-dependent apoptosis in ATL cells. We identified some ATL cells, ATL-55T and LMY1, less sensitive to NSC 19630 but sensitive to another WRN inhibitor, NSC 617145. Conclusions WRN is essential for survival of ATL cells. Our studies suggest that targeting the WRN helicase with small inhibitors is a novel promising strategy to target HTLV-1-transformed ATL cells.
Collapse
Affiliation(s)
- R Moles
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - X T Bai
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - H Chaib-Mezrag
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - C Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA. .,Department of Pathology and Laboratory Medicine, Center for Viral Oncology, KU Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
16
|
El-Saghir J, Nassar F, Tawil N, El-Sabban M. ATL-derived exosomes modulate mesenchymal stem cells: potential role in leukemia progression. Retrovirology 2016; 13:73. [PMID: 27760548 PMCID: PMC5070229 DOI: 10.1186/s12977-016-0307-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Background Exosomes are membrane nano-vesicles secreted by a multitude of cells that harbor biological constituents such as proteins, lipids, mRNA and microRNA. Exosomes can potentially transfer their cargo to other cells, implicating them in many patho-physiological processes. Mesenchymal stem cells (MSCs), residents of the bone marrow and metastatic niches, potentially interact with cancer cells and/or their derived exosomes. In this study, we investigated whether exosomes derived from adult T-cell leukemia/lymphoma (ATL) cells act as intercellular messengers delivering leukemia-related genes that modulate the properties of human MSCs in favor of leukemia. We hypothesized that the cargo of ATL-derived exosomes is transferred to MSCs and alter their functional behavior to support the establishment of the appropriate microenvironment for leukemia. Results We showed that both ATL cells (C81 and HuT-102) and patient-derived cells released Tax-containing exosomes. The cargo of HuT-102-derived exosomes consisted of miR-21, miR-155 and vascular endothelial growth factor. We demonstrated that HuT-102-derived exosomes not only deliver Tax to recipient MSCs, but also induce NF-κB activation leading to a change in cellular morphology, increase in proliferation and the induction of gene expression of migration and angiogenic markers. Conclusions This study demonstrates that ATL-derived exosomes deliver Tax and other leukemia-related genes to MSCs and alter their properties to presumably create a more conducive milieu for leukemia. These findings highlight the contribution of leukemia-derived exosomes in cellular transformation and their potential value as biomarkers and targets in therapeutic strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0307-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamal El-Saghir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Nassar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadim Tawil
- Department of Internal Medicine and Experimental Pathology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
17
|
Fuggetta MP, Bordignon V, Cottarelli A, Macchi B, Frezza C, Cordiali-Fei P, Ensoli F, Ciafrè S, Marino-Merlo F, Mastino A, Ravagnan G. Downregulation of proinflammatory cytokines in HTLV-1-infected T cells by Resveratrol. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:118. [PMID: 27448598 PMCID: PMC4957876 DOI: 10.1186/s13046-016-0398-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/14/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Human T-cell leukemia virus (HTLV-1) is a lymphotropic retrovirus associated to adult T cell leukemia (ATL) and to non-neoplastic inflammatory conditions affecting the central nervous system, lung or skin. The inflammatory disorders associated to HTLV-1 are mediated by different proinflammatory cytokines as IL-1α, IL-6, TNF-α. The release and the role of IL-17 is still debated. Aims of this study were to analyze IL-17 induction by HTLV-1 infection and to determine whether resveratrol (RES) is able to down regulate the pathway of cytokines production either in HTLV-1 chronically infected MT-2 cell line or in human CD4+ cells infected in vitro with HTLV-1. METHODS MT-2 and HTLV-1 infected CD4+ cells were analyzed for proinflammatory cytokine production before or after RES treatment. The concentrations of IL-17, IL-1α, IL-6, and TNF-α were measured in cell culture supernatants by ELISA and SearchLight™ technology. The IL-17 mRNA expression was evaluated by RT-PCR. NF-kB activation was detected by non-radioactive, Electro Mobility Shift Assay (EMSA). HTLV-1 RNA expression was detected by Real-time-PCR (RQ-PCR). RESULTS We found that RES is capable of inducing a dose-dependent inhibition of IL-1α, IL-6 and TNF-α production in vitro and can down regulate the expression of IL-17 at both mRNA and protein levels in HTLV-1 infected cells. This effect was associated with a dose-dependent inhibition of the of the nuclear factor kappa-B (NF-kB) activity. Conversely, RES did not apparently affect HTLV-1 proliferation. CONCLUSIONS These results support the anti-inflammatory properties of RES, suggesting that it might be a useful therapeutic agent for the treatment of HTLV-1 related inflammatory diseases.
Collapse
Affiliation(s)
- Maria Pia Fuggetta
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| | - Valentina Bordignon
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Andrea Cottarelli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Beatrice Macchi
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Caterina Frezza
- Department of Biochemical Science and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Cordiali-Fei
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Fabrizio Ensoli
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Dermatologic Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Stefania Ciafrè
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Antonio Mastino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.,Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Giampietro Ravagnan
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| |
Collapse
|
18
|
El-Araby AM, Fouad AA, Hanbal AM, Abdelwahab SM, Qassem OM, El-Araby ME. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises. Arch Pharm (Weinheim) 2016; 349:73-90. [PMID: 26754591 DOI: 10.1002/ardp.201500375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.
Collapse
Affiliation(s)
- Amr M El-Araby
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Amr M Hanbal
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Omar M Qassem
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanya, Jeddah, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
19
|
Panfil AR, Al-Saleem J, Howard CM, Mates JM, Kwiek JJ, Baiocchi RA, Green PL. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival. Viruses 2015; 8:E7. [PMID: 26729154 PMCID: PMC4728567 DOI: 10.3390/v8010007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 11/16/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2-3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Cory M Howard
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jessica M Mates
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Jesse J Kwiek
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology and Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA.
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Quaresma JAS, Yoshikawa GT, Koyama RVL, Dias GAS, Fujihara S, Fuzii HT. HTLV-1, Immune Response and Autoimmunity. Viruses 2015; 8:v8010005. [PMID: 26712781 PMCID: PMC4728565 DOI: 10.3390/v8010005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/27/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATL). Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM) is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus (SLE), and Sjögren's Syndrome (SS). The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4⁺ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4⁺ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity.
Collapse
Affiliation(s)
- Juarez A S Quaresma
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - Gilberto T Yoshikawa
- Science Health Institute, Federal University of Pará, Praça Camilo Salgado, 1, Belém, Pará 66055-240, Brazil.
| | - Roberta V L Koyama
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - George A S Dias
- Science Center of Health and Biology. Pará State University, Rua Perebebuí, 2623, Belém, Pará 66087-670, Brazil.
| | - Satomi Fujihara
- Tropical Medicine Center, Federal University of Pará, Av. Generalíssimo Deodoro, 92, Belém, Pará 66055-240, Brazil.
| | - Hellen T Fuzii
- Tropical Medicine Center, Federal University of Pará, Av. Generalíssimo Deodoro, 92, Belém, Pará 66055-240, Brazil.
| |
Collapse
|
21
|
Minarovits J, Demcsák A, Banati F, Niller HH. Epigenetic Dysregulation in Virus-Associated Neoplasms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 879:71-90. [DOI: 10.1007/978-3-319-24738-0_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Couronné L, Bastard C, Gaulard P, Hermine O, Bernard O. [Molecular pathogenesis of peripheral T cell lymphoma (2): extranodal NK/T cell lymphoma, nasal type, adult T cell leukemia/lymphoma and enteropathy associated T cell lymphoma]. Med Sci (Paris) 2015; 31:1023-33. [PMID: 26576610 DOI: 10.1051/medsci/20153111017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCL) belong to the group of non-Hodgkin lymphoma and particularly that of mature T /NK cells lymphoproliferative neoplasms. The 2008 WHO classification describes different PTCL entities with varying prevalence. With the exception of histologic subtype "ALK positive anaplastic large cell lymphoma", PTCL are characterized by a poor prognosis. The mechanisms underlying the pathogenesis of these lymphomas are not yet fully understood, but development of genomic high-throughput analysis techniques now allows to extensively identify the molecular abnormalities present in tumor cells. This review aims to summarize the current knowledge and recent advances about the molecular events occurring at the origin or during the natural history of main entities of PTCL. The first part published in the October issue was focused on the three more frequent entities, i.e. angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma, not otherwise specified, and anaplastic large cell lymphoma. The second part presented herein will describe other subtypes less frequent and of poor prognosis : extranodal NK/T-cell lymphoma, nasal type, adult T-cell leukemia/lymphoma, and enteropathy-associated T-cell lymphoma.
Collapse
Affiliation(s)
- Lucile Couronné
- Service d'hématologie adultes, Assistance publique-Hôpitaux de Paris (APHP), Hôpital Necker, Paris, France - Inserm UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France - Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Christian Bastard
- Département de pathologie, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Créteil, France ; Université Paris-Est, Faculté de médecine, Créteil, France ; Inserm U955, Institut Mondor de recherche biomédicale, Créteil, France
| | - Philippe Gaulard
- Inserm U918 ; Université de Rouen ; Centre Henri Becquerel, Rouen, France
| | - Olivier Hermine
- Service d'hématologie adultes, Assistance publique-Hôpitaux de Paris (APHP), Hôpital Necker, Paris, France - Inserm UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France - Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Olivier Bernard
- UMR 1170 ; Institut Gustave Roussy, 94805, Villejuif ; Université Paris Sud 11, Orsay, France
| |
Collapse
|
23
|
Bai XT, Moles R, Chaib-Mezrag H, Nicot C. Small PARP inhibitor PJ-34 induces cell cycle arrest and apoptosis of adult T-cell leukemia cells. J Hematol Oncol 2015; 8:117. [PMID: 26497583 PMCID: PMC4619390 DOI: 10.1186/s13045-015-0217-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/13/2015] [Indexed: 01/17/2023] Open
Abstract
Background HTLV-I is associated with the development of an aggressive form of lymphocytic leukemia known as adult T-cell leukemia/lymphoma (ATLL). A major obstacle for effective treatment of ATLL resides in the genetic diversity of tumor cells and their ability to acquire resistance to chemotherapy regimens. As a result, most patients relapse and current therapeutic approaches still have limited long-term survival benefits. Hence, the development of novel approaches is greatly needed. Methods In this study, we found that a small molecule inhibitor of poly (ADP-ribose) polymerase (PARP), PJ-34, is very effective in activating S/G2M cell cycle checkpoints, resulting in permanent cell cycle arrest and reactivation of p53 transcription functions and caspase-3-dependent apoptosis of HTLV-I-transformed and patient-derived ATLL tumor cells. We also found that HTLV-I-transformed MT-2 cells are resistant to PJ-34 therapy associated with reduced cleaved caspase-3 activation and increased expression of RelA/p65. Conclusion Since PJ-34 has been tested in clinical trials for the treatment of solid tumors, our results suggest that some ATLL patients may be good candidates to benefit from PJ-34 therapy.
Collapse
Affiliation(s)
- Xue Tao Bai
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Ramona Moles
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Hassiba Chaib-Mezrag
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia. J Virol 2015; 89:11786-800. [PMID: 26378177 PMCID: PMC4645320 DOI: 10.1128/jvi.01356-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25(+) T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4(+) cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4(+) T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4(+) malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. IMPORTANCE Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In this study, we developed a recombinant strain of vesicular stomatitis virus (VSV) that specifically targets transformed CD4(+) T cells through replacement of the G protein of VSV with a hybrid fusion protein, combining domains from gp160 of HIV-1 and VSV-G. This modification eliminated the normally broad tropism of VSV and restricted infection to primarily the transformed CD4(+) cell population. This effect greatly reduced neurotoxic risk associated with VSV infection while still allowing VSV to effectively target ATL cells.
Collapse
|
25
|
Mori N, Ishikawa C, Senba M. Activation of PKC-δ in HTLV-1-infected T cells. Int J Oncol 2015; 46:1609-18. [PMID: 25625567 DOI: 10.3892/ijo.2015.2848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/06/2014] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC)-δ is a member of the PKC family. It has been implicated in tumor suppression as well as survival of various cancers. The aggressive malignancy of T lymphocytes known as adult T-cell leukemia (ATL) is associated with human T-cell leukemia virus type 1 (HTLV-1) infection. In this study, we show that HTLV-1-infected T cells are characterized by phosphorylation and nuclear translocation of PKC-δ. Expression of HTLV-1 regulatory protein Tax increased PKC-δ phosphorylation. Blockade of PKC-δ by rottlerin suppressed PKC-δ phosphorylation and inhibited cell viability in HTLV-1-infected T-cell lines and primary ATL cells. Rottlerin induced cell cycle arrest at the G1 phase and caspase-mediated apoptosis of HTLV-1-infected T cells. Rottlerin downregulated the expression of proteins involved in G1/S cell cycle transition, cyclin D2, CDK4 and 6, and c-Myc, resulting in dephosphorylation of retinoblastoma protein (pRb). Furthermore, rottlerin reduced the expression of important anti-apoptotic proteins (e.g., survivin, XIAP, Bcl-xL and c-FLIP) and Bcl-2 phosphorylation, and activated the pro-apoptotic protein Bax. Our results showed that permanent activation of nuclear factor-κB (NF-κB) by HTLV-1 Tax allows infected cells to escape cell cycle arrest and apoptosis and that PKC-δ mediates Tax-induced activation of NF-κB. Based on these findings, new therapies designed to target PKC-δ could be potentially useful in the treatment of ATL.
Collapse
Affiliation(s)
- Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903‑0215, Japan
| | - Chie Ishikawa
- Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa 903‑0213, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852‑8523, Japan
| |
Collapse
|
26
|
The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax. Virology 2014; 464-465:98-110. [DOI: 10.1016/j.virol.2014.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/30/2014] [Accepted: 06/19/2014] [Indexed: 12/18/2022]
|
27
|
Ciminale V, Rende F, Bertazzoni U, Romanelli MG. HTLV-1 and HTLV-2: highly similar viruses with distinct oncogenic properties. Front Microbiol 2014; 5:398. [PMID: 25120538 PMCID: PMC4114287 DOI: 10.3389/fmicb.2014.00398] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
HTLV-1 and HTLV-2 share broad similarities in their overall genetic organization and expression pattern, but they differ substantially in their pathogenic properties. This review outlines distinctive features of HTLV-1 and HTLV-2 that might provide clues to explain their distinct clinical outcomes. Differences in the kinetics of viral mRNA expression, functional properties of the regulatory and accessory proteins, and interactions with cellular factors and signal transduction pathways are discussed.
Collapse
Affiliation(s)
- Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
| | - Francesca Rende
- Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Maria G Romanelli
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| |
Collapse
|
28
|
Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 2014; 289:22284-305. [PMID: 24939845 DOI: 10.1074/jbc.m114.549659] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells.
Collapse
Affiliation(s)
- Elizabeth Jaworski
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Aarthi Narayanan
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Rachel Van Duyne
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, the Department of Microbiology, Immunology, and Tropical Medicine and
| | - Shabana Shabbeer-Meyering
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Sergey Iordanskiy
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110, the Department of Microbiology, Immunology, and Tropical Medicine and
| | - Mohammed Saifuddin
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Ravi Das
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Philippe V Afonso
- the Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie, Institut Pasteur, F-75015 Paris, France, CNRS, UMR3569, F-75015 Paris, France, and
| | - Gavin C Sampey
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Myung Chung
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Anastas Popratiloff
- the Department of Chemistry, George Washington University, Washington, D. C. 20037
| | - Bindesh Shrestha
- Center for Microscopy and Image Analysis, George Washington University Medical Center, Washington, D. C. 20037
| | - Mohit Sehgal
- the Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania 18902
| | - Pooja Jain
- the Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania 18902
| | - Akos Vertes
- Center for Microscopy and Image Analysis, George Washington University Medical Center, Washington, D. C. 20037
| | - Renaud Mahieux
- the Equipe Oncogenèse Rétrovirale, Equipe labelisée "Ligue Nationale Contre le Cancer," International Center for Research in Infectiology, INSERM U1111-CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon 69364 Cedex 07, France
| | - Fatah Kashanchi
- From the School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110,
| |
Collapse
|
29
|
Human T-cell leukemia virus type 3 (HTLV-3) and HTLV-4 antisense-transcript-encoded proteins interact and transactivate Jun family-dependent transcription via their atypical bZIP motif. J Virol 2014; 88:8956-70. [PMID: 24872589 DOI: 10.1128/jvi.01094-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human T-cell leukemia virus types 3 and 4 (HTLV-3 and HTLV-4) are recently isolated retroviruses. We have previously characterized HTLV-3- and HTLV-4-encoded antisense genes, termed APH-3 and APH-4, respectively, which, in contrast to HBZ, the HTLV-1 homologue, do not contain a typical bZIP domain (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). As HBZ differentially modulates the transactivation potential of various Jun family members, the effect of APH-3 and APH-4 on JunD-, c-Jun-, and JunB-mediated transcriptional activation was investigated. We first showed that APH-3 and APH-4 upregulated the transactivation potential of all tested Jun family members. Using an human telomerase catalytic subunit (hTERT) promoter construct, our results also highlighted that, unlike HBZ, which solely modulates hTERT expression via JunD, both APH-3 and APH-4 acted positively on the transactivation of the hTERT promoter mediated by tested Jun factors. Coimmunoprecipitation experiments demonstrated that these Jun proteins interacted with APH-3 and APH-4. Although no activation domain was identified for APH proteins, the activation domain of c-Jun was very important in the observed upregulation of its activation potential. We further showed that APH-3 and APH-4 required their putative bZIP-like domains and corresponding leucine residues for interaction and modulation of the transactivation potential of Jun factors. Our results demonstrate that HTLV-encoded antisense proteins behave differently, and that the bZIP-like domains of both APH-3 and APH-4 have retained their interaction potential for Jun members. These studies are important in assessing the differences between HBZ and other antisense proteins, which might further contribute to determining the role of HBZ in HTLV-1-associated diseases. IMPORTANCE HBZ, the antisense transcript-encoded protein from HTLV-1, is now well recognized as a potential factor for adult T-cell leukemia/lymphoma development. In order to better appreciate the mechanism of action of HBZ, comparison to antisense proteins from other HTLV viruses is important. Little is known in relation to the seemingly nonpathogenic HTLV-3 and HTLV-4 viruses, and studies of their antisense proteins are limited to our previously reported study (M. Larocque É Halin, S. Landry, S. J. Marriott, W. M. Switzer, and B. Barbeau, J. Virol. 85:12673-12685, 2011, doi:10.1128/JVI.05296-11). Here, we demonstrate that Jun transcription factors are differently affected by APH-3 and APH-4 compared to HBZ. These intriguing findings suggest that these proteins act differently on viral replication but also on cellular gene expression, and that highlighting their differences of action might lead to important information allowing us to understand the link between HTLV-1 HBZ and ATL in infected individuals.
Collapse
|
30
|
Niller HH, Banati F, Nagy K, Buzas K, Minarovits J. Update on microbe-induced epigenetic changes: bacterial effectors and viral oncoproteins as epigenetic dysregulators. Future Virol 2013. [DOI: 10.2217/fvl.13.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pathoepigenetics is a new discipline describing how disturbances in epigenetic regulation alter the epigenotype and gene-expression pattern of human, animal or plant cells. Such ‘epigenetic reprogramming’ may play an important role in the initiation and progression of a wide variety of diseases. Infectious diseases also belong to this category: recent data demonstrated that microbial pathogens, including bacteria and viruses, are capable of dysregulating the epigenetic machinery of their host cell. The resulting heritable changes in host cell gene expression may favor the colonization, growth or spread of infectious pathogens. It may also facilitate the establishment of latency and malignant cell transformation. In this article, we review how bacterial epigenetic effectors and inflammatory processes elicited by bacteria alter the host cell epigenotype, and describe how oncoproteins encoded by human tumor viruses act as epigenetic dysregulators to alter the phenotype and behavior of host cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology & Hygiene, University of Regensburg, Franz-Josef-Strauss Allee 11, Regensburg D93053, Germany
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, H-9200 Mosonmagyarovar, Pozsonyi út 88, Hungary
| | - Katalin Nagy
- University of Szeged, Faculty of Dentistry, Department of Oral Surgery, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Krisztina Buzas
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| |
Collapse
|
31
|
Romanelli MG, Diani E, Bergamo E, Casoli C, Ciminale V, Bex F, Bertazzoni U. Highlights on distinctive structural and functional properties of HTLV Tax proteins. Front Microbiol 2013; 4:271. [PMID: 24058363 PMCID: PMC3766827 DOI: 10.3389/fmicb.2013.00271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 12/15/2022] Open
Abstract
Human T cell leukemia viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or HTLV-4. HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis, whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-κB (nuclear factor kappa-B) pathway, and interactions with host factors.
Collapse
|
32
|
Faure M, Lafont F. Pathogen-induced autophagy signaling in innate immunity. J Innate Immun 2013; 5:456-70. [PMID: 23652193 PMCID: PMC6741472 DOI: 10.1159/000350918] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 12/25/2022] Open
Abstract
Innate immunity induces rapid responses to fight invading pathogens. To eliminate intracellular bacteria or viruses, innate cellular responses lead to the production of nuclear factor-κB-dependent inflammatory cytokines, inflammasome activation, type I interferon synthesis, and/or eventually death of the infected cells. Autophagy emerged as another component of innate immunity, as it offers an immediate autonomous cell defense mechanism by degrading intracellular pathogens. In addition, autophagy participates in the regulation of immune and inflammatory cell responses. Instead of providing a comprehensive status of the art that has already been addressed elsewhere, we chose to highlight some recent issues brought up in the field.
Collapse
Affiliation(s)
- Mathias Faure
- International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon 1, Lyon, France
| | - Frank Lafont
- Cellular Microbiology of Infectious Pathogens, Center for Infection and Immunity of Lille, CNRS UM8204, INSERM U1019, Institut Pasteur de Lille, PRES Université Lille-Nord de France, Lille, France
| |
Collapse
|
33
|
The cellular autophagy pathway modulates human T-cell leukemia virus type 1 replication. J Virol 2012; 87:1699-707. [PMID: 23175371 DOI: 10.1128/jvi.02147-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy, a general homeostatic process for degradation of cytosolic proteins or organelles, has been reported to modulate the replication of many viruses. The role of autophagy in human T-cell leukemia virus type 1 (HTLV-1) replication has, however, been uncharacterized. Here, we report that HTLV-1 infection increases the accumulation of autophagosomes and that this accumulation increases HTLV-1 production. We found that the HTLV-1 Tax protein increases cellular autophagosome accumulation by acting to block the fusion of autophagosomes to lysosomes, preventing the degradation of the former by the latter. Interestingly, the inhibition of cellular autophagosome-lysosome fusion using bafilomycin A increased the stability of the Tax protein, suggesting that cellular degradation of Tax occurs in part through autophagy. Our current findings indicate that by interrupting the cell's autophagic process, Tax exerts a positive feedback on its own stability.
Collapse
|
34
|
Tang SW, Ducroux A, Jeang KT, Neuveut C. Impact of cellular autophagy on viruses: Insights from hepatitis B virus and human retroviruses. J Biomed Sci 2012; 19:92. [PMID: 23110561 PMCID: PMC3495035 DOI: 10.1186/1423-0127-19-92] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a protein degradative process important for normal cellular metabolism. It is apparently used also by cells to eliminate invading pathogens. Interestingly, many pathogens have learned to subvert the cell’s autophagic process. Here, we review the interactions between viruses and cells in regards to cellular autophagy. Using findings from hepatitis B virus and human retroviruses, HIV-1 and HTLV-1, we discuss mechanisms used by viruses to usurp cellular autophagy in ways that benefit viral replication.
Collapse
Affiliation(s)
- Sai-Wen Tang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0460, USA
| | | | | | | |
Collapse
|