1
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
2
|
Gong M, Peng C, Yang C, Wang Z, Qian H, Hu X, Zhou P, Shan C, Ding Q. Genome-wide CRISPR/Cas9 screen identifies SLC39A9 and PIK3C3 as crucial entry factors for Ebola virus infection. PLoS Pathog 2024; 20:e1012444. [PMID: 39173055 PMCID: PMC11341029 DOI: 10.1371/journal.ppat.1012444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
The Ebola virus (EBOV) has emerged as a significant global health concern, notably during the 2013-2016 outbreak in West Africa. Despite the clinical approval of two EBOV antibody drugs, there is an urgent need for more diverse and effective antiviral drugs, along with comprehensive understanding of viral-host interactions. In this study, we harnessed a biologically contained EBOVΔVP30-EGFP cell culture model which could recapitulate the entire viral life cycle, to conduct a genome-wide CRISPR/Cas9 screen. Through this, we identified PIK3C3 (phosphatidylinositide 3-kinase) and SLC39A9 (zinc transporter) as crucial host factors for EBOV infection. Genetic depletion of SLC39A9 and PIK3C3 lead to reduction of EBOV entry, but not impact viral genome replication, suggesting that SLC39A9 and PIK3C3 act as entry factors, facilitating viral entry into host cells. Moreover, PIK3C3 kinase activity is indispensable for the internalization of EBOV virions, presumably through the regulation of endocytic and autophagic membrane traffic, which has been previously recognized as essential for EBOV internalization. Notably, our study demonstrated that PIK3C3 kinase inhibitor could effectively block EBOV infection, underscoring PIK3C3 as a promising drug target. Furthermore, biochemical analysis showed that recombinant SLC39A9 protein could directly bind viral GP protein, which further promotes the interaction of viral GP protein with cellular receptor NPC1. These findings suggests that SLC39A9 plays dual roles in EBOV entry. Initially, it serves as an attachment factor during the early entry phase by engaging with the viral GP protein. Subsequently, SLC39A9 functions an adaptor protein, facilitating the interaction between virions and the NPC1 receptor during the late entry phase, prior to cathepsin cleavage on the viral GP. In summary, this study offers novel insights into virus-host interactions, contributing valuable information for the development of new therapies against EBOV infection.
Collapse
Affiliation(s)
- Mingli Gong
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Yang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Zhenhua Wang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwu Qian
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Ding
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Habeichi NJ, Amin G, Lakkis B, Kataya R, Mericskay M, Booz GW, Zouein FA. Potential Alternative Receptors for SARS-CoV-2-Induced Kidney Damage: TLR-4, KIM-1/TIM-1, and CD147. FRONT BIOSCI-LANDMRK 2024; 29:8. [PMID: 38287815 PMCID: PMC10924798 DOI: 10.31083/j.fbl2901008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/31/2024]
Abstract
Kidney damage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur even in patients with no underlying kidney disease. Signs of kidney problems can progress to a state that demands dialysis and hampering recovery. Although not without controversy, emerging evidence implicates direct infectivity of SARS-CoV-2 in the kidney. At the early stage of the pandemic, consideration was mainly on the well-recognized angiotensin-converting enzyme 2 (ACE2) receptor as being the site for viral interaction and subsequent cellular internalization. Despite the abundance of ACE2 receptors in the kidneys, researchers have expanded beyond ACE2 and identified novel viral entry pathways that could be advantageously explored as therapeutic targets. This review presents the potential involvement of toll-like receptor 4 (TLR-4), kidney injury molecule-1/T cell immunoglobulin mucin domain 1 (KIM-1/TIM-1), and cluster of differentiation 147 (CD147) in SARS-CoV-2-associated renal damage. In this context, we address the unresolved issues surrounding SARS-CoV-2 renal infectivity.
Collapse
Affiliation(s)
- Nada J. Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- MatriceLab Innove Laboratory, Immeuble Les Gemeaux, 94000 Creteil, France
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bachir Lakkis
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, 1107-2020 Beirut, Lebanon
| | - Rayane Kataya
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, 1107-2020 Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, 1107-2020 Beirut, Lebanon
- Department of Signaling and Cardiovascular Pathophysiology, University Paris Saclay, INSERM UMR_1180, 91400 Orsay, France
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
4
|
Liang Z, Pan J, Xie S, Yang X, Cao R. Interaction between hTIM-1 and Envelope Protein Is Important for JEV Infection. Viruses 2023; 15:1589. [PMID: 37515282 PMCID: PMC10383738 DOI: 10.3390/v15071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic virus, is one of the most important causes of human viral encephalitis. JEV relies on various attachment or entry co-factors to enter host cells. Among these co-factors, hTIM-1 has been identified as an attachment factor to promote JEV infection through interacting with phosphatidylserine (PS) on the viral envelope. However, the reasons why JEV prefers to use hTIM-1 over other PS binding receptors are unknown. Here, we demonstrated that hTIM-1 can directly interact with JEV E protein. The interaction between hTIM-1 and JEV relies on specific binding sites, respectively, ND114115 in the hTIM-1 IgV domain and K38 of the E protein. Furthermore, during the early stage of infection, hTIM-1 and JEV are co-internalized into cells and transported into early and late endosomes. Additionally, we found that the hTIM-1 soluble ectodomain protein effectively inhibits JEV infection in vitro. Moreover, hTIM-1-specific antibodies have been shown to downregulate JEV infectivity in cells. Taken together, these findings suggested that hTIM-1 protein directly interacts with JEV E protein and mediates JEV infection, in addition to the PS-TIM-1 interaction.
Collapse
Affiliation(s)
- Zhenjie Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhui Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Popovic M. Why doesn't Ebola virus cause pandemics like SARS-CoV-2? MICROBIAL RISK ANALYSIS 2022; 22:100236. [PMID: 36312211 PMCID: PMC9597532 DOI: 10.1016/j.mran.2022.100236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 06/01/2023]
Abstract
Ebola virus is among the most dangerous, contagious and deadly etiological causes of viral diseases. However, Ebola virus has never extensively spread in human population and never have led to a pandemic. Why? The mechanistic biophysical model revealing the biothermodynamic background of virus-host interaction) could help us to understand pathogenesis of Ebola virus disease (earlier known as the Ebola hemorrhagic fever). In this paper for the first time the empirical formula, thermodynamic properties of biosynthesis (including the driving force of virus multiplication in the susceptible host), binding constant and thermodynamic properties of binding are reported. Thermodynamic data for Ebola virus were compared with data for SARS-CoV-2 to explain why SARS-CoV-2 has caused a pandemic, while Ebola remains on local epidemic level. The empirical formula of the Ebola virus was found to be CH1.569O0.3281N0.2786P0.00173S0.00258. Standard Gibbs energy of biosynthesis of the Ebola virus nucleocapsid is -151.59 kJ/C-mol.
Collapse
Affiliation(s)
- Marko Popovic
- School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Hattori T, Saito T, Miyamoto H, Kajihara M, Igarashi M, Takada A. Single Nucleotide Variants of the Human TIM-1 IgV Domain with Reduced Ability to Promote Viral Entry into Cells. Viruses 2022; 14:v14102124. [PMID: 36298679 PMCID: PMC9611583 DOI: 10.3390/v14102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human T-cell immunoglobulin mucin 1 (hTIM-1) is known to promote cellular entry of enveloped viruses. Previous studies suggested that the polymorphisms of hTIM-1 affected its function. Here, we analyzed single nucleotide variants (SNVs) of hTIM-1 to determine their ability to promote cellular entry of viruses using pseudotyped vesicular stomatitis Indiana virus (VSIV). We obtained hTIM-1 sequences from a public database (Ensembl genome browser) and identified 35 missense SNVs in 3 loops of the hTIM-1 immunoglobulin variable (IgV) domain, which had been reported to interact with the Ebola virus glycoprotein (GP) and phosphatidylserine (PS) in the viral envelope. HEK293T cells transiently expressing wildtype hTIM-1 or its SNV mutants were infected with VSIVs pseudotyped with filovirus or arenavirus GPs, and their infectivities were compared. Eleven of the thirty-five SNV substitutions reduced the efficiency of hTIM-1-mediated entry of pseudotyped VSIVs. These SNV substitutions were found not only around the PS-binding pocket but also in other regions of the molecule. Taken together, our findings suggest that some SNVs of the hTIM-1 IgV domain have impaired ability to interact with PS and/or viral GPs in the viral envelope, which may affect the hTIM-1 function to promote viral entry into cells.
Collapse
Affiliation(s)
- Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Correspondence: ; Tel.: +81-11-706-9502; Fax: +81-11-706-7310
| |
Collapse
|
7
|
Jiao W, Xie S, Liang Z, Pan J, Yang X, Tong H, Zhao Y, Cao R. P34L Mutation of swine TIM-1 enhances its ability to mediate Japanese encephalitis virus infection. Vet Microbiol 2022; 274:109555. [PMID: 36095877 DOI: 10.1016/j.vetmic.2022.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 10/31/2022]
Abstract
Japanese encephalitis virus (JEV) is a major causative agent of neurological infection affecting humans and pigs. Human T Cell Immunoglobulin and Mucin Domain 1 (hTIM-1) enhances the infection of JEV through virion-associated phosphatidylserine (PS) binding. Here, five swine TIM-1 (sTIM-1) gene variants were cloned from pig lung tissues by reverse-transcriptase polymerase chain reaction (RT-PCR). Sequence alignment analysis revealed that the gene homology between the sTIM-1 and hTIM-1 was 42.3-43.8%. Furthermore, ectopic expression of all five sTIM-1 variants in 293 T cells can promote JEV entry and infection. However, sTIM-1 V3 exhibited significantly less potent at promoting virus entry compared to the other four variants. Further studies revealed that the 34th amino acid of sTIM-1is critical for the entry of JEV, which is Pro34 in sTIM-1V3 while Leu34 in other four sTIM-1 variants. Mechanically, leucine at locus 34 was associated with the membrane distribution of sTIM-1, thereby affecting viral entry and infection. In total, our findings provide evidence that the PS receptor sTIM-1 promotes the infection of JEV and that the 34th amino acid position is critical for sTIM-1 to mediate viral infection.
Collapse
Affiliation(s)
- Wenlong Jiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhenjie Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhui Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - He Tong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yundi Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Zhang M, Wang X, Hu L, Zhang Y, Zheng H, Wu H, Wang J, Luo L, Xiao H, Qiao C, Li X, Huang W, Wang Y, Feng J, Chen G. TIM-1 Augments Cellular Entry of Ebola Virus Species and Mutants, Which Is Blocked by Recombinant TIM-1 Protein. Microbiol Spectr 2022; 10:e0221221. [PMID: 35384693 PMCID: PMC9241846 DOI: 10.1128/spectrum.02212-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Ebola virus, a member of the Filoviridae family, utilizes the attachment factors on host cells to support its entry and cause severe tissue damage. TIM-1 has been identified as a predominant attachment factor via interaction with phosphatidylserine (PS) localized on the viral envelope and glycoprotein (GP). In this study, we give the first demonstration that TIM-1 enhances the cellular entry of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). Furthermore, two TIM-1 variants (i.e., TIM-1-359aa and TIM-1-364aa) had comparable effects on promoting Zaire Ebola virus (EBOV) attachment, internalization, and infection. Importantly, recombinant TIM-1 ectodomain (ECD) protein could decrease the infectivity of Ebola virus and display synergistic inhibitory effects with ADI-15946, a monoclonal antibody with broad neutralizing activity to Ebola virus. Of note, EBOV strains harboring GP mutations (K510E and D552N), which were refractory to antibody treatment, were still sensitive to TIM-1 protein-mediated impairment of infectivity, indicating that TIM-1 protein may represent an alternative therapeutic regimen when antibody evasion occurs. IMPORTANCE The viral genome has acquired numerous mutations with the potential to increase transmission during the 2013-to-2016 outbreak of Ebola virus. EBOV strains harboring GP mutations (A82V, T544I, and A82V T544I), which have been identified to increase viral infectivity in humans, have attracted our attention. Herein, we give the first report that polymorphic TIM-1 enhances the infectivity of three species of Ebola virus, as well as those harboring GP mutations (A82V, T544I, and A82V T544I). We show that recombinant TIM-1 ECD protein could decrease the infectivity of Ebola virus with or without a point mutation and displays synergistic inhibitory effects with ADI-15946. Furthermore, TIM-1 protein potently blocked cell entry of antibody-evading Ebola virus species. These findings highlight the role of TIM-1 in Ebola virus infection and indicate that TIM-1 protein represents a potential therapeutic avenue for Ebola virus and its mutated species.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinwei Wang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Linhan Hu
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yuting Zhang
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Hang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
9
|
Zhang Q, Yang J, Tillieux S, Guo Z, Natividade RDS, Koehler M, Petitjean S, Cui Z, Alsteens D. Stepwise Enzymatic-Dependent Mechanism of Ebola Virus Binding to Cell Surface Receptors Monitored by AFM. NANO LETTERS 2022; 22:1641-1648. [PMID: 35108019 DOI: 10.1021/acs.nanolett.1c04677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ebola virus (EBOV) is responsible for several outbreaks of hemorrhagic fever with high mortality, raising great public concern. Several cell surface receptors have been identified to mediate EBOV binding and internalization, including phosphatidylserine (PS) receptors (TIM-1) and C-type lectin receptors (DC-SIGNR). However, the role of TIM-1 during early cell surface binding remains elusive and in particular whether TIM-1 acts as a specific receptor for EBOV. Here, we used force-distance curve-based atomic force microscopy (FD-based AFM) to quantify the binding between TIM-1/DC-SIGNR and EBOV glycoprotein (GP) and observed that both receptors specifically bind to GP with high-affinity. Since TIM-1 can also directly interact with PS at the single-molecule level, we also confirmed that TIM-1 acts as dual-function receptors of EBOV. These results highlight the direct involvement of multiple high-affinity receptors in the first steps of binding to cell surfaces, thus offering new perspectives for the development of anti-EBOV therapeutic molecules.
Collapse
Affiliation(s)
- Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Sueli Tillieux
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Simon Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre 1300, Belgium
| |
Collapse
|
10
|
Bhattacharyya S. Mechanisms of Immune Evasion by Ebola Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:15-22. [PMID: 34661889 DOI: 10.1007/978-3-030-67452-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The 2013-2016 Ebola virus epidemic in West Africa, which also spread to the USA, UK and Europe, was the largest reported outbreak till date (World Health Organization. 2016. https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1 ). The recent Ebola outbreak in the Democratic Republic of the Congo has raised immense global concern on this severe and often fatal infection. Although sporadic, the severity and lethality of Ebola virus disease outbreaks has led to extensive research worldwide on this virus. Vaccine (World Health Organization. 2016. https://www.who.int/en/news-room/detail/23-12-2016-final-trial-results-confirm-ebola-vaccine-provides-high-protection-against-disease ; Henao-Restrepo et al. Lancet 389:505-518, 2017) and drug (Hayden. Nature, 557, 475-476, 2018; Dyall et al. J Infect Dis 218(suppl_5), S672-S678, 2018) development efforts against Ebola virus are research hotspots, and a few approved therapeutics are currently available (Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/clinicians/vaccine/index.html; Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/treatment/index.html). Ebola virus has evolved several mechanisms of host immune evasion, which facilitate its replication and pathogenesis. This chapter describes the Ebola virus morphology, genome, entry, replication, pathogenesis and viral proteins involved in host immune evasion. Further understanding of the underlying molecular mechanisms of immune evasion may facilitate development of additional novel and sustainable strategies against this deadly virus.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
11
|
Mier A, Maffucci I, Merlier F, Prost E, Montagna V, Ruiz‐Esparza GU, Bonventre JV, Dhal PK, Tse Sum Bui B, Sakhaii P, Haupt K. Molecularly Imprinted Polymer Nanogels for Protein Recognition: Direct Proof of Specific Binding Sites by Solution STD and WaterLOGSY NMR Spectroscopies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alejandra Mier
- CNRS Enzyme and Cell Engineering Laboratory Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Irene Maffucci
- CNRS Enzyme and Cell Engineering Laboratory Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Franck Merlier
- CNRS Enzyme and Cell Engineering Laboratory Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Elise Prost
- CNRS Enzyme and Cell Engineering Laboratory Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Valentina Montagna
- CNRS Enzyme and Cell Engineering Laboratory Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Guillermo U. Ruiz‐Esparza
- Divisions of Engineering in Medicine and Renal Medicine Department of Medicine Harvard Medical School, Brigham and Women's Hospital Boston MA 02115 USA
- Division of Health Science and Technology Harvard University—Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Joseph V. Bonventre
- Divisions of Engineering in Medicine and Renal Medicine Department of Medicine Harvard Medical School, Brigham and Women's Hospital Boston MA 02115 USA
- Division of Health Science and Technology Harvard University—Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Pradeep K. Dhal
- US Early Development Sanofi Global R&D 153 Second Avenue Waltham MA 02451 USA
| | - Bernadette Tse Sum Bui
- CNRS Enzyme and Cell Engineering Laboratory Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| | - Peyman Sakhaii
- R&D Global CMC Development—Synthetics—Early Development Frankfurt Sanofi-Aventis (Deutschland) GmbH Industriepark Hoechst Frankfurt am Main Germany
| | - Karsten Haupt
- CNRS Enzyme and Cell Engineering Laboratory Université de Technologie de Compiègne Rue du Docteur Schweitzer, CS 60319 60203 Compiègne Cedex France
| |
Collapse
|
12
|
Mier A, Maffucci I, Merlier F, Prost E, Montagna V, Ruiz-Esparza GU, Bonventre JV, Dhal PK, Tse Sum Bui B, Sakhaii P, Haupt K. Molecularly Imprinted Polymer Nanogels for Protein Recognition: Direct Proof of Specific Binding Sites by Solution STD and WaterLOGSY NMR Spectroscopies. Angew Chem Int Ed Engl 2021; 60:20849-20857. [PMID: 34296498 PMCID: PMC8562893 DOI: 10.1002/anie.202106507] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Molecularly imprinted polymers (MIPs) are tailor-made synthetic antibodies possessing specific binding cavities designed for a target molecule. Currently, MIPs for protein targets are synthesized by imprinting a short surface-exposed fragment of the protein, called epitope or antigenic determinant. However, finding the epitope par excellence that will yield a peptide "synthetic antibody" cross-reacting exclusively with the protein from which it is derived, is not easy. We propose a computer-based rational approach to unambiguously identify the "best" epitope candidate. Then, using Saturation Transfer Difference (STD) and WaterLOGSY NMR spectroscopies, we prove the existence of specific binding sites created by the imprinting of this peptide epitope in the MIP nanogel. The optimized MIP nanogel could bind the epitope and cognate protein with a high affinity and selectivity. The study was performed on Hepatitis A Virus Cell Receptor-1 protein, also known as KIM-1 and TIM-1, for its ubiquitous implication in numerous pathologies.
Collapse
Affiliation(s)
- Alejandra Mier
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203, Compiègne Cedex, France
| | - Irene Maffucci
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203, Compiègne Cedex, France
| | - Franck Merlier
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203, Compiègne Cedex, France
| | - Elise Prost
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203, Compiègne Cedex, France
| | - Valentina Montagna
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203, Compiègne Cedex, France
| | - Guillermo U Ruiz-Esparza
- Divisions of Engineering in Medicine and Renal Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Health Science and Technology, Harvard University-Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joseph V Bonventre
- Divisions of Engineering in Medicine and Renal Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Health Science and Technology, Harvard University-Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pradeep K Dhal
- US Early Development, Sanofi Global R&D, 153 Second Avenue, Waltham, MA, 02451, USA
| | - Bernadette Tse Sum Bui
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203, Compiègne Cedex, France
| | - Peyman Sakhaii
- R&D Global CMC Development-Synthetics-Early Development Frankfurt, Sanofi-Aventis (Deutschland) GmbH, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Karsten Haupt
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, CS 60319, 60203, Compiègne Cedex, France
| |
Collapse
|
13
|
Lu X. Structure and functions of T-cell immunoglobulin-domain and mucin- domain protein 3 in cancer. Curr Med Chem 2021; 29:1851-1865. [PMID: 34365943 DOI: 10.2174/0929867328666210806120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND T-cell immunoglobulin (Ig)-domain and mucin-domain (TIM) proteins represent a family of receptors expressed on T-cells that play essential cellular immunity roles. The TIM proteins span across the membrane belonging to type I transmembrane proteins. The N terminus contains an Ig-like V-type domain and a Ser/Thr-rich mucin stalk as a co-inhibitory receptor. The C-terminal tail oriented toward the cytosol predominantly mediates intracellular signaling. METHODS This review discusses the structural features and functions of TIM-3, specifically on its role in mediating immune responses in different cell types, and the rationale for TIM-3-targeted cancer immunotherapy. RESULTS TIM-3 has gained significant importance to be a potential biomarker in cancer immunotherapy. It has been shown that blockade with checkpoint inhibitors promotes anti-tumor immunity and inhibits tumor growth in several preclinical tumor models. CONCLUSION TIM-3 is an immune regulating molecule expressed on several cell types, including IFNγ-producing T-cells, FoxP3+ Treg cells, and innate immune cells. The roles of TIM-3 in immunosuppression support its merit as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR. United Kingdom
| |
Collapse
|
14
|
Kirui J, Abidine Y, Lenman A, Islam K, Gwon YD, Lasswitz L, Evander M, Bally M, Gerold G. The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry. Cells 2021; 10:cells10071828. [PMID: 34359995 PMCID: PMC8303237 DOI: 10.3390/cells10071828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.
Collapse
Affiliation(s)
- Jared Kirui
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Yara Abidine
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Annasara Lenman
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Koushikul Islam
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Lisa Lasswitz
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Gisa Gerold
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Correspondence:
| |
Collapse
|
15
|
Yang C, Zhang Y, Zeng X, Chen H, Chen Y, Yang D, Shen Z, Wang X, Liu X, Xiong M, Chen H, Huang K. Kidney injury molecule-1 is a potential receptor for SARS-CoV-2. J Mol Cell Biol 2021; 13:185-196. [PMID: 33493263 PMCID: PMC7928767 DOI: 10.1093/jmcb/mjab003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 patients present high incidence of kidney abnormalities, which are associated with poor prognosis and mortality. The identification of SARS-CoV-2 in the kidney of COVID-19 patients suggests renal tropism of SARS-CoV-2. However, whether there is a specific target of SARS-CoV-2 in the kidney remains unclear. Herein, by using in silico simulation, coimmunoprecipitation, fluorescence resonance energy transfer, fluorescein isothiocyanate labeling, and rational design of antagonist peptides, we demonstrate that kidney injury molecule-1 (KIM1), a molecule dramatically upregulated upon kidney injury, binds with the receptor-binding domain (RBD) of SARS-CoV-2 and facilitates its attachment to cell membrane, with the immunoglobulin variable Ig-like (Ig V) domain of KIM1 playing a key role in this recognition. The interaction between SARS-CoV-2 RBD and KIM1 is potently blockaded by a rationally designed KIM1-derived polypeptide AP2. In addition, our results also suggest interactions between KIM1 Ig V domain and the RBDs of SARS-CoV and MERS-CoV, pathogens of two severe infectious respiratory diseases. Together, these findings suggest KIM1 as a novel receptor for SARS-CoV-2 and other coronaviruses. We propose that KIM1 may thus mediate and exacerbate the renal infection of SARS-CoV-2 in a ‘vicious cycle’, and KIM1 could be further explored as a therapeutic target.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Zeng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huijing Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuchen Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ziwei Shen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomu Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinran Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Tongji-RongCheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
16
|
Densumite J, Phanthong S, Seesuay W, Sookrung N, Chaisri U, Chaicumpa W. Engineered Human Monoclonal scFv to Receptor Binding Domain of Ebolavirus. Vaccines (Basel) 2021; 9:vaccines9050457. [PMID: 34064480 PMCID: PMC8147973 DOI: 10.3390/vaccines9050457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/29/2023] Open
Abstract
(1) Background: Ebolavirus (EBOV) poses as a significant threat for human health by frequently causing epidemics of the highly contagious Ebola virus disease (EVD). EBOV glycoprotein (GP), as a sole surface glycoprotein, needs to be cleaved in endosomes to fully expose a receptor-binding domain (RBD) containing a receptor-binding site (RBS) for receptor binding and genome entry into cytoplasm for replication. RBDs are highly conserved among EBOV species, so they are an attractive target for broadly effective anti-EBOV drug development. (2) Methods: Phage display technology was used as a tool to isolate human single-chain antibodies (HuscFv) that bind to recombinant RBDs from a human scFv (HuscFv) phage display library. The RBD-bound HuscFvs were fused with cell-penetrating peptide (CPP), and cell-penetrating antibodies (transbodies) were made, produced from the phage-infected E. coli clones and characterized. (3) Results: Among the HuscFvs obtained from phage-infected E. coli clones, HuscFvs of three clones, HuscFv4, HuscFv11, and HuscFv14, the non-cell-penetrable or cell-penetrable HuscFv4 effectively neutralized cellular entry of EBOV-like particles (VLPs). While all HuscFvs were found to bind cleaved GP (GPcl), their presumptive binding sites were markedly different, as determined by molecular docking. (4) Conclusions: The HuscFv4 could be a promising therapeutic agent against EBOV infection.
Collapse
Affiliation(s)
- Jaslan Densumite
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Siratcha Phanthong
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watee Seesuay
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (J.D.); (S.P.); (W.S.)
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitat Sookrung
- Biomedical Research Incubation Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Topical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +662-419-2936; Fax: +662-419-6470
| |
Collapse
|
17
|
Villa TG, Abril AG, Sánchez S, de Miguel T, Sánchez-Pérez A. Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch Microbiol 2021; 203:443-464. [PMID: 32989475 PMCID: PMC7521576 DOI: 10.1007/s00203-020-02040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/29/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
RNA viruses, in general, exhibit high mutation rates; this is mainly due to the low fidelity displayed by the RNA-dependent polymerases required for their replication that lack the proofreading machinery to correct misincorporated nucleotides and produce high mutation rates. This lack of replication fidelity, together with the fact that RNA viruses can undergo spontaneous mutations, results in genetic variants displaying different viral morphogenesis, as well as variation on their surface glycoproteins that affect viral antigenicity. This diverse viral population, routinely containing a variety of mutants, is known as a viral 'quasispecies'. The mutability of their virions allows for fast evolution of RNA viruses that develop antiviral resistance and overcome vaccines much more rapidly than DNA viruses. This also translates into the fact that pathogenic RNA viruses, that cause many diseases and deaths in humans, represent the major viral group involved in zoonotic disease transmission, and are responsible for worldwide pandemics.
Collapse
Affiliation(s)
- T G Villa
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain.
| | - Ana G Abril
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - S Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - T de Miguel
- Department of Microbiology, Faculty of Pharmacy, University of Santiago de Compostela, 5706, Santiago de Compostela, Spain
| | - A Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
18
|
Gale P. How virus size and attachment parameters affect the temperature sensitivity of virus binding to host cells: Predictions of a thermodynamic model for arboviruses and HIV. MICROBIAL RISK ANALYSIS 2020; 15:100104. [PMID: 32292808 PMCID: PMC7110232 DOI: 10.1016/j.mran.2020.100104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/14/2023]
Abstract
Virus binding to host cells involves specific interactions between viral (glyco)proteins (GP) and host cell surface receptors (Cr) (protein or sialic acid (SA)). The magnitude of the enthalpy of association changes with temperature according to the change in heat capacity (ΔCp) on GP/Cr binding, being little affected for avian influenza virus (AIV) haemagglutinin (HA) binding to SA (ΔCp = 0 kJ/mol/K) but greatly affected for HIV gp120 binding to CD4 receptor (ΔCp = -5.0 kJ/mol/K). A thermodynamic model developed here predicts that values of ΔCp from 0 to ~-2.0 kJ/mol/K have relatively little impact on the temperature sensitivity of the number of mosquito midgut cells with bound arbovirus, while intermediate values of ΔCp of ~-3.0 kJ/mol/K give a peak binding at a temperature of ~20 °C as observed experimentally for Western equine encephalitis virus. More negative values of ΔCp greatly decrease arbovirus binding at temperatures below ~20 °C. Thus to promote transmission at low temperatures, arboviruses may benefit from ΔCp ~ 0 kJ/mol/K as for HA/SA and it is interesting that bluetongue virus binds to SA in midge midguts. Large negative values of ΔCp as for HIV gp120:CD4 diminish binding at 37 °C. Of greater importance, however, is the decrease in entropy of the whole virus (ΔSa_immob) on its immobilisation on the host cell surface. ΔSa_immob presents a repulsive force which the enthalpy-driven GP/Cr interactions weakened at higher temperatures struggle to overcome. ΔSa_immob is more negative (less favourable) for larger diameter viruses which therefore show diminished binding at higher temperatures than smaller viruses. It is proposed that small size phenotype through a less negative ΔSa_immob is selected for viruses infecting warmer hosts thus explaining the observation that virion volume decreases with increasing host temperature from 0 °C to 40 °C in the case of dsDNA viruses. Compared to arboviruses which also infect warm-blooded vertebrates, HIV is large at 134 nm diameter and thus would have a large negative ΔSa_immob which would diminish its binding at human body temperature. It is proposed that prior non-specific binding of HIV through attachment factors takes much of the entropy loss for ΔSa_immob so enhancing subsequent specific gp120:CD4 binding at 37 °C. This is consistent with the observation that HIV attachment factors are not essential but augment infection. Antiviral therapies should focus on increasing virion size, for example through binding of zinc oxide nanoparticles to herpes simplex virus, hence making ΔSa_immob more negative, and thus reducing binding affinity at 37 °C.
Collapse
Key Words
- AIV, avian influenza virus
- Antivirals
- BBF, brush border fragments from midgut
- BTV, bluetongue virus
- C.VT, number of host cells with bound virus at temperature T
- CD4, host cell receptor for HIV
- Cp, heat capacity at constant pressure
- Cr, host cell receptor
- Ctotal, number of host cells which can bind virus in a given volume of host fluid (midgut or blood)
- DENV, Dengue virus
- EA, activation energy
- EBOV, Zaire ebolavirus
- EM, electron microscopy
- Entropy
- Env, HIV gp120 trimer envelope protein which binds to a single CD4 molecule
- FcT, fraction of arthropod midgut cells with bound virus at temperature T
- GP, viral (glyco)protein on virus surface that binds to Cr
- HA, haemagglutinin
- HIV, human immunodeficiency virus
- HSV-2, herpes simplex virus type 2
- Heat capacity
- Ka_virus_T, association constant for binding of virus to host cells at temperature T
- Kd_receptor_T, dissociation constant for GP from Cr at temperature T
- Kd_virus, dissociation constant for virus from host cell
- M, molar (moles dm-3)
- R, ideal gas constant
- SA, sialic acid
- SIV, simian immunodeficiency virus
- Temperature
- Vfree, virus not bound to cells
- Virus size
- Vtotal, virus challenge dose in volume of host fluid
- WEEV, Western equine encephalitis virus
- WNV, West Nile virus
- ZnOT, zinc oxide tetrapod
- n, number of GP/Cr contacts made on virus binding to cell
- pcompleteT, probability given a virion has bound to the surface of a midgut cell that that midgut cell becomes infected and that its progeny viruses go on to infect the salivary gland so completing the arthropod infection process within the life time of the arthropod at temperature T
- ptransmissionT, probability of successful infection of the arthropod salivary glands after oral exposure at temperature T
- ΔCp, change in heat capacity
- ΔGa_virus_T, change in Gibbs free energy on association of virus and host cell at temperature T
- ΔHa_receptor_T, change in enthalpy for binding of virus GP to host Cr receptor at a temperature T
- ΔHa_virus_T, change in enthalpy for binding of virus to host cell at temperature T
- ΔSa_immob, change in entropy on immobilization of whole virus to cell surface
- ΔSa_non_specific, change in entropy on immobilization of virus to cell surface through non-specific binding
- ΔSa_receptor_T, change in entropy for binding of virus GP to host Cr receptor
- ΔSa_specific, change in entropy on immobilization of virus to cell surface through specific GP/Cr-driven binding
- ΔSa_virus_T, change in entropy for binding of virus to host cell at temperature T
Collapse
Affiliation(s)
- Paul Gale
- Independent Scientist, 15 Weare Close, Portland, Dorset, DT5 1JP, United Kingdom
| |
Collapse
|
19
|
HAVCR1 Affects the MEK/ERK Pathway in Gastric Adenocarcinomas and Influences Tumor Progression and Patient Outcome. Gastroenterol Res Pract 2019; 2019:6746970. [PMID: 31885544 PMCID: PMC6914876 DOI: 10.1155/2019/6746970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/16/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023] Open
Abstract
The hepatitis A virus cellular receptor 1 (HAVCR1) gene as a sensitive and specific biomarker has been reported in various diseases. Especially, HAVCR1 overexpression promotes the development and progression of several human cancers. Hence, we aimed to detect the effects of HAVCR1 on gastric adenocarcinoma (GAC). We first determined the expression of HAVCR1 in GAC tissues compared with normal gastric tissues based on the Cancer Genome Atlas (TCGA) database using bioinformatics analysis methods. Then, we assessed the biological function of HAVCR1 in GAC cells using quantitative real-time reverse transcription-PCR (qRT-PCR), western blot, cell counting kit-8- (CCK-) 8, colony formation assay, wound healing assay, and transwell assay. Our results showed that HAVCR1 expression was upregulated in GAC tissues and positively associated with poor survival. Loss-of-function analyses indicated that knockdown of HAVCR1 inhibited the proliferation, colony formation, migration, and invasion of GAC cells. Furthermore, reduction of HAVCR1 in GAC cells can decrease the expression of phosphorylated MEK/ERK. These findings suggested that HAVCR1 may represent a potential biomarker for GAC prognosis, as well as a novel therapeutic target for GAC treatment.
Collapse
|
20
|
Cryo-EM Structures of Eastern Equine Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization. Cell Rep 2019; 25:3136-3147.e5. [PMID: 30540945 PMCID: PMC6302666 DOI: 10.1016/j.celrep.2018.11.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Alphaviruses are enveloped pathogens that cause arthritis and encephalitis. Here, we report a 4.4-Å cryoelectron microscopy (cryo-EM) structure of eastern equine encephalitis virus (EEEV), an alphavirus that causes fatal encephalitis in humans. Our analysis provides insights into viral entry into host cells. The envelope protein E2 showed a binding site for the cellular attachment factor heparan sulfate. The presence of a cryptic E2 glycan suggests how EEEV escapes surveillance by lectin-expressing myeloid lineage cells, which are sentinels of the immune system. A mechanism for nucleocapsid core release and disassembly upon viral entry was inferred based on pH changes and capsid dissociation from envelope proteins. The EEEV capsid structure showed a viral RNA genome binding site adjacent to a ribosome binding site for viral genome translation following genome release. Using five Fab-EEEV complexes derived from neutralizing antibodies, our investigation provides insights into EEEV host cell interactions and protective epitopes relevant to vaccine design. EEEV cryo-EM structure shows the basis of receptor binding and pH-triggered disassembly Cryptic envelope protein glycosylation interferes with immune detection EEEV RNA genome binding site on capsid protein has an extended conformation Antibody inhibition of EEEV entry involves cross-linking of viral envelope proteins
Collapse
|
21
|
Gale P. Towards a thermodynamic mechanistic model for the effect of temperature on arthropod vector competence for transmission of arboviruses. MICROBIAL RISK ANALYSIS 2019; 12:27-43. [PMID: 32289057 PMCID: PMC7104215 DOI: 10.1016/j.mran.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/03/2019] [Accepted: 03/03/2019] [Indexed: 05/21/2023]
Abstract
Arboviruses such as West Nile virus (WNV), bluetongue virus (BTV), dengue virus (DENV) and chikungunya virus (CHIKV) infect their arthropod vectors over a range of average temperatures depending on the ambient temperature. How the transmission efficiency of an arbovirus (i.e. vector competence) varies with temperature influences not only the short term risk of arbovirus outbreaks in humans and livestock but also the long term impact of climate change on the geographical range of the virus. The strength of the interaction between viral surface (glyco)protein (GP) and the host cell receptor (Cr) on binding of virus to host cell is defined by the thermodynamic dissociation constant Kd_receptor which is assumed to equal 10-3 M (at 37 °C) for binding of a sialic acid (SA) on the arthropod midgut epithelial cell surface to a SA-binding site on the surface of BTV, for example. Here virus binding affinity is modelled with increasing number of GP/Cr contacts at temperatures from 10 °C to 35 °C taking into account the change in entropy on immobilization of the whole virus on binding (ΔSa_immob). Based on published data, three thermodynamic GP/Cr binding scenarios, namely enthalpy-driven, entropy-assisted and entropy-driven, are shown to affect the temperature sensitivity of virus binding in different ways. Thus for enthalpy-driven GP/Cr binding, viruses bind host cells much more strongly at 10 °C than 35 °C. A mechanistic model is developed for the number of arthropod midgut cells with bound virus and by building in a kinetic component for the rate of arbovirus replication and subsequent spread to the arthropod salivary glands, a model for the effect of temperature on vector competence is developed. The model separates the opposing effects of temperature on midgut cell binding affinity from the kinetic component of virogenesis. It successfully accommodates both increases in vector competence with temperature as for DENV and WNV in mosquitoes and decreases as for the CHIKV 2010-1909 strain in various populations of Aedes albopictus mosquitoes. Enhanced cell binding at lower temperatures through enthalpy-driven GP/Cr binding compensates for the lower replication rate to some degree such that some transmission can still occur at lower temperatures. In contrast, the strength of entropy-driven GP/Cr binding diminishes at low temperatures although there is no minimum temperature threshold for transmission efficiency. The magnitude of ΔSa_immob is an important data gap. It is concluded that thermodynamic and kinetic data obtained at the molecular level will prove important in modelling vector competence with temperature.
Collapse
Key Words
- AIV, avian influenza virus
- Arbovirus
- BBF, brush border fragments from midgut
- C.VT, number of arthropod midgut cells with bound arbovirus at temperature T
- CHIKV, chikungunya virus
- Cfree, number of midgut epithelial cells which can bind virus with no virus bound
- Cr, host cell receptor
- Ctotal_midgut, number of midgut epithelial cells which can bind virus
- DENV, dengue fever virus
- EA, activation energy
- EBOV, Zaire ebolavirus
- EIP, extrinsic incubation period
- Enthalpy
- Entropy
- Fc, fraction of arthropod midgut cells with bound virus at temperature T
- GP, viral (glyco)protein on virus surface that binds to Cr
- HA, haemagglutinin
- HRV3, human rhinovirus serotype 3
- ICAM-1, intercellular adhesion molecule-1
- IDR, intrinsically disordered region of a protein
- Ka, binding affinity for virus to host cells at temperature T
- Kd_receptor, dissociation constant for GP from Cr
- Kd_virus, dissociation constant for virus from host cell
- M, molar (moles dm−3)
- NA, neuraminidase
- R, ideal gas constant
- RdRp, RNA dependent RNA polymerase
- SA, sialic acid
- Temperature
- VEEV, Venezuelan equine encephalitis virus
- VSV, vesicular stomatitis virus
- Vector competence
- Vfree, virus not bound to cells
- Vtotal, virus challenge dose to midgut
- WEEV, Western equine encephalitis virus
- WNV, West Nile virus
- k, rate of reaction
- n, number of GP/Cr contacts made on virus binding to cell
- pcompleteT, probability, given a virion has bound to the surface of a midgut cell, that that midgut cell becomes infected and that its progeny viruses go on to infect the salivary gland so completing the arthropod infection process within the life time of the arthropod at temperature T
- pfu, plaque-forming unit
- ptransmissionT, probability of successful infection of the arthropod salivary glands given oral exposure at temperature T
- ΔGa_receptor, change in Gibbs free energy on association of GP and Cr receptor
- ΔHa_receptor, change in enthalpy for binding of virus GP to host Cr receptor
- ΔHa_virus, change in enthalpy for binding of virus to host cell
- ΔSa_immob, change in entropy on immobilization of virus to cell surface
- ΔSa_receptor, change in entropy for binding of virus GP to host Cr receptor
- ΔSa_virus, change in entropy for binding of virus to host cell
- ΔSconf, change in conformation entropy within GP or Cr
Collapse
Affiliation(s)
- Paul Gale
- 15 Weare Close, Portland, Dorset DT5 1JP, United Kingdom
| |
Collapse
|
22
|
Perez-Zsolt D, Erkizia I, Pino M, García-Gallo M, Martin MT, Benet S, Chojnacki J, Fernández-Figueras MT, Guerrero D, Urrea V, Muñiz-Trabudua X, Kremer L, Martinez-Picado J, Izquierdo-Useros N. Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry. Nat Microbiol 2019; 4:1558-1570. [PMID: 31160823 DOI: 10.1038/s41564-019-0453-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Several Ebola viruses cause outbreaks of lethal haemorrhagic fever in humans, but developing therapies tackle only Zaire Ebola virus. Dendritic cells (DCs) are targets of this infection in vivo. Here, we found that Ebola virus entry into activated DCs requires the sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169), which recognizes sialylated gangliosides anchored to viral membranes. Blockage of the Siglec-1 receptor by anti-Siglec-1 monoclonal antibodies halted Ebola viral uptake and cytoplasmic entry, offering cross-protection against other ganglioside-containing viruses such as human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Pino
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Mónica García-Gallo
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria Teresa Martin
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Susana Benet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - María Teresa Fernández-Figueras
- Department of Pathology, Hospital Universitari General de Catalunya-Grupo Quirón Salud, Barcelona, Spain.,Universitat Internacional de Catalunya, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Dolores Guerrero
- Otorhinolaryngology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Xabier Muñiz-Trabudua
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Leonor Kremer
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain. .,University of Vic-Central University of Catalonia, Vic, Spain. .,Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain. .,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
23
|
Oliveira LG, Peron JPS. Viral receptors for flaviviruses: Not only gatekeepers. J Leukoc Biol 2019; 106:695-701. [PMID: 31063609 DOI: 10.1002/jlb.mr1118-460r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arboviruses have been a huge threat for human health since the discovery of yellow fever virus in 1901. Arboviruses are arthropod born viruses, mainly transmitted by mosquitoes and ticks, responsible for more than thousands of deaths annually. The Flavivirideae family is probably the most clinically relevant, as it is composed of very important agents, such as dengue, yellow fever, West Nile, Japanese encephalitis, and, recently, Zika virus. Intriguingly, despite their structural and genomic similarities, flaviviruses may cause conditions ranging from mild infections with fever, cutaneous rash, and headache, to very severe cases, such as hemorrhagic fever, encephalitis, Guillain-Barré syndrome, and microcephaly. These differences may greatly rely on viral burden, tissue tropism, and mechanisms of immune evasion that may depend on both viral and host genetic factors. Unfortunately, very little is known about the biology of these factors, and how they orchestrate these differences. In this context, viral structural proteins and host cellular receptors may have a great relevance, as their interaction dictates not only viral tissue tropism, but also a plethora on intracellular mechanisms that may greatly account for either failure or success of infection. A great number of viral receptors have been described so far, although there is still a huge gap in understanding their overall role during infection. Here we discuss some important aspects triggered after the interaction of flaviviruses and host membrane receptors, and how they change the overall outcome of the infection.
Collapse
Affiliation(s)
- Lilian G Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - Jean Pierre Schatzmann Peron
- Immunopathology and Alergy PostGraduate Program, School of Medicine, University of São Paulo, Brazil.,Scientific Platform Pasteur, USP, São Paulo, Brazil
| |
Collapse
|
24
|
Song J, Yu J, Prayogo GW, Cao W, Wu Y, Jia Z, Zhang A. Understanding kidney injury molecule 1: a novel immune factor in kidney pathophysiology. Am J Transl Res 2019; 11:1219-1229. [PMID: 30972157 PMCID: PMC6456506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Kidney injury molecule 1 (KIM-1) is a type I membrane protein, comprising an extracellular portion and a cytoplasmic portion. It is also named as HAVCR1 (Hepatitis A virus cellular receptor 1) or TIM1 (T-cell immunoglobulin mucin receptor 1), and is expressed in the kidney, liver, and spleen. KIM-1 plays different roles via various molecular targets in immune diseases and kidney injury. KIM-1 is involved in HAV infections, autoimmunity, immune tolerance, and atopic diseases. The urinary KIM-1 level is closely related to its tissue level, and correspondingly related to kidney tissue damage. KIM-1 is not only an early biomarker of acute kidney injury (AKI), but also has a potential role in predicting the long-term renal outcome. In this review, we provide a summary of KIM-1's activities, focusing on the latest studies concerning the important roles of KIM-1 in the immune system and kidney diseases.
Collapse
Affiliation(s)
- Jiayu Song
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| | - Jing Yu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| | - Gabriella Wenda Prayogo
- Department of Endocrinology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
| | - Weidong Cao
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| | - Yimei Wu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical UniversityNanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical UniversityNanjing 210029, China
| |
Collapse
|
25
|
High resolution X-ray and NMR structural study of human T-cell immunoglobulin and mucin domain containing protein-3. Sci Rep 2018; 8:17512. [PMID: 30504845 PMCID: PMC6269442 DOI: 10.1038/s41598-018-35754-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
T-cell immunoglobulin and mucin domain containing protein-3 (TIM-3) is an important immune regulator. Here, we describe a novel high resolution (1.7 Å) crystal structure of the human (h)TIM-3 N-terminal variable immunoglobulin (IgV) domain with bound calcium (Ca++) that was confirmed by nuclear magnetic resonance (NMR) spectroscopy. Significant conformational differences were observed in the B-C, C'-C″ and C'-D loops of hTIM-3 compared to mouse (m)TIM-3, hTIM-1 and hTIM-4. Further, the conformation of the C-C' loop of hTIM-3 was notably different from hTIM-4. Consistent with the known metal ion-dependent binding of phosphatidylserine (PtdSer) to mTIM-3 and mTIM-4, the NMR spectral analysis and crystal structure of Ca++-bound hTIM-3 revealed that residues in the hTIM-3 F-G loop coordinate binding to Ca++. In addition, we established a novel biochemical assay to define hTIM-3 functionality as determined by binding to human carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). These studies provide new insights useful for understanding and targeting hTIM-3.
Collapse
|
26
|
Halder AK, Dutta P, Kundu M, Basu S, Nasipuri M. Review of computational methods for virus-host protein interaction prediction: a case study on novel Ebola-human interactions. Brief Funct Genomics 2018; 17:381-391. [PMID: 29028879 PMCID: PMC7109800 DOI: 10.1093/bfgp/elx026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identification of potential virus-host interactions is useful and vital to control the highly infectious virus-caused diseases. This may contribute toward development of new drugs to treat the viral infections. Recently, database records of clinically and experimentally validated interactions between a small set of human proteins and Ebola virus (EBOV) have been published. Using the information of the known human interaction partners of EBOV, our main objective is to identify a set of proteins that may interact with EBOV proteins. Here, we first review the state-of-the-art, computational methods used for prediction of novel virus-host interactions for infectious diseases followed by a case study on EBOV-human interactions. The assessment result shows that the predicted human host proteins are highly similar with known human interaction partners of EBOV in the context of structure and semantics and are responsible for similar biochemical activities, pathways and host-pathogen relationships.
Collapse
Affiliation(s)
- Anup Kumar Halder
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Pritha Dutta
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mahantapas Kundu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, India
| |
Collapse
|
27
|
Niu J, Jiang Y, Xu H, Zhao C, Zhou G, Chen P, Cao R. TIM-1 Promotes Japanese Encephalitis Virus Entry and Infection. Viruses 2018; 10:E630. [PMID: 30441759 PMCID: PMC6265761 DOI: 10.3390/v10110630] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 01/23/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne Flavivirus, the leading cause of viral-induced encephalitis. Several host molecules have been identified as the JEV attachment factor; however, the molecules involved in JEV entry remain poorly understood. In the present study, we demonstrate that TIM-1 is important for efficient infection by JEV. Firstly, three TIM-1 variants (V1, V2, and V3) were cloned from A549 cells, and we revealed that only ectopically TIM-1 V2 expression in 293T cells significantly promotes JEV attachment, entry and infection. Point mutation of phosphatidylserine (Ptdser) binding pocket in the TIM-1 IgV domain dampened JEV entry, indicating that TIM-1-mediated JEV infection is Ptdser-dependent. Furthermore, we found the cytoplasmic domain of TIM-1 is also required for enhancing JEV entry. Additionally, knock down of TIM-1 expression in A549 cells impaired JEV entry and infection, but not attachment, suggesting that additional factors exist in A549 cells that allow the virus to bind. In conclusion, our findings demonstrate that TIM-1 promotes JEV infection as an entry cofactor, and the polymorphism of TIM-1 is associated with JEV susceptibility to host cells.
Collapse
Affiliation(s)
- Jichen Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ya Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hao Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changjing Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Guodong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Puyan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Xu F, Bandara A, Akiyama H, Eshaghi B, Stelter D, Keyes T, Straub JE, Gummuluru S, Reinhard BM. Membrane-wrapped nanoparticles probe divergent roles of GM3 and phosphatidylserine in lipid-mediated viral entry pathways. Proc Natl Acad Sci U S A 2018; 115:E9041-E9050. [PMID: 30190430 PMCID: PMC6166840 DOI: 10.1073/pnas.1804292115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gold nanoparticles (NPs) wrapped in a membrane can be utilized as artificial virus nanoparticles (AVNs) that combine the large nonblinking or bleaching optical cross-section of the NP core with the biological surface properties and functionalities provided by a self-assembled lipid membrane. We used these hybrid nanomaterials to test the roles of monosialodihexosylganglioside (GM3) and phosphatidylserine (PS) for a lipid-mediated targeting of virus-containing compartments (VCCs) in macrophages. GM3-presenting AVNs bind to CD169 (Siglec-1)-expressing macrophages, but inclusion of PS in the GM3-containing AVN membrane decreases binding. Molecular dynamics simulations of the AVN membrane and experimental binding studies of CD169 to GM3-presenting AVNs reveal Na+-mediated interactions between GM3 and PS as a potential cause of the antagonistic action on binding by the two negatively charged lipids. GM3-functionalized AVNs with no or low PS content localize to tetherin+, CD9+ VCC in a membrane composition-depending fashion, but increasing amounts of PS in the AVN membrane redirect the NP to lysosomal compartments. Interestingly, this compartmentalization is highly GM3 specific. Even AVNs presenting the related monosialotetrahexosylganglioside (GM1) fail to achieve an accumulation in VCC. AVN localization to VCC was observed for AVN with gold NP core but not for liposomes, suggesting that NP sequestration into VCC has additional requirements beyond ligand (GM3)-receptor (CD169) recognition that are related to the physical properties of the NP core. Our results confirm AVN as a scalable platform for elucidating the mechanisms of lipid-mediated viral entry pathways and for selective intracellular targeting.
Collapse
Affiliation(s)
- Fangda Xu
- Department of Chemistry, Boston University, Boston, MA 02215
- The Photonics Center, Boston University, Boston, MA 02215
| | - Asanga Bandara
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Hisashi Akiyama
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02215
| | - Behnaz Eshaghi
- Department of Chemistry, Boston University, Boston, MA 02215
- The Photonics Center, Boston University, Boston, MA 02215
| | - David Stelter
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Tom Keyes
- Department of Chemistry, Boston University, Boston, MA 02215
| | - John E Straub
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Suryaram Gummuluru
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02215
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215;
- The Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
29
|
Gale P. Using thermodynamic parameters to calibrate a mechanistic dose-response for infection of a host by a virus. MICROBIAL RISK ANALYSIS 2018; 8:1-13. [PMID: 32289059 PMCID: PMC7103988 DOI: 10.1016/j.mran.2018.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 05/21/2023]
Abstract
Assessing the risk of infection from emerging viruses or of existing viruses jumping the species barrier into novel hosts is limited by the lack of dose response data. The initial stages of the infection of a host by a virus involve a series of specific contact interactions between molecules in the host and on the virus surface. The strength of the interaction is quantified in the literature by the dissociation constant (Kd) which is determined experimentally and is specific for a given virus molecule/host molecule combination. Here, two stages of the initial infection process of host intestinal cells are modelled, namely escape of the virus in the oral challenge dose from the innate host defenses (e.g. mucin proteins in mucus) and the subsequent binding of any surviving virus to receptor molecules on the surface of the host epithelial cells. The strength of virus binding to host cells and to mucins may be quantified by the association constants, Ka and Kmucin, respectively. Here, a mechanistic dose-response model for the probability of infection of a host by a given virus dose is constructed using Ka and Kmucin which may be derived from published Kd values taking into account the number of specific molecular interactions. It is shown that the effectiveness of the mucus barrier is determined not only by the amount of mucin but also by the magnitude of Kmucin. At very high Kmucin values, slight excesses of mucin over virus are sufficient to remove all the virus according to the model. At lower Kmucin values, high numbers of virus may escape even with large excesses of mucin. The output from the mechanistic model is the probability (p1) of infection by a single virion which is the parameter used in conventional dose-response models to predict the risk of infection of the host from the ingested dose. It is shown here how differences in Ka (due to molecular differences in an emerging virus strain or new host) affect p1, and how these differences in Ka may be quantified in terms of two thermodynamic parameters, namely enthalpy and entropy. This provides the theoretical link between sequencing data and risk of infection. Lack of data on entropy is a limitation at present and may also affect our interpretation of Kd in terms of infectivity. It is concluded that thermodynamic approaches have a major contribution to make in developing dose-response models for emerging viruses.
Collapse
Key Words
- Asp, aspartate
- CRD, carbohydrate-recognition domain
- Cr, host cell receptor
- Dose-response
- EBOV, Zaire ebolavirus
- Enthalpy
- Entropy
- G, Gibbs free energy
- GI, gastrointestinal
- GP, glycoprotein
- H, enthalpy
- HA, haemagglutinin
- HBGA, histoblood group antigen
- HeV, Hendra virus
- Ka, Kmucin, association constants
- Kd, dissociation constant for two molecules bound to each other
- L, Avogadro number
- M, molar (moles dm−3)
- MBP, mannose binding protein
- MERS-CoV, MERS coronavirus
- MRA, microbiological risk assessment
- Mucin
- NPC1, Niemann-Pick C1 protein
- NiV, Nipah virus
- NoV, norovirus
- PL, phospholipid
- PRR, pathogen recognition receptor
- Phe, phenylalanine
- R, ideal gas constant
- S, entropy
- SPR, surface plasmon resonance
- T, temperature
- TIM-1, T-cell immunoglobulin and mucin domain protein 1
- VSV, vesicular stomatitis virus
- Virus
- k, on/off rate constant
- n, number of GP/Cr molecular contacts per virus/host cell binding
- pfu, plaque-forming unit
- ΔGa, change in Gibbs free energy on association of virus and cell
- ΔHa, change in enthalpy on association of virus and cell
- ΔSa, change in entropy on association of virus and cell
- ΔΔHa, change in ΔHa
Collapse
|
30
|
Dutta P, Halder AK, Basu S, Kundu M. A survey on Ebola genome and current trends in computational research on the Ebola virus. Brief Funct Genomics 2017; 17:374-380. [DOI: 10.1093/bfgp/elx020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
31
|
Shelby T, Banerjee T, Zegar I, Santra S. Highly Sensitive, Engineered Magnetic Nanosensors to Investigate the Ambiguous Activity of Zika Virus and Binding Receptors. Sci Rep 2017; 7:7377. [PMID: 28785095 PMCID: PMC5547150 DOI: 10.1038/s41598-017-07620-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of this research is twofold: 1) to shed light on zika's binding and entry mechanism while 2) demonstrating the effectiveness of our magnetic relaxation platform to achieve this goal. Magnetic relaxation-sensitive nanoparticles (MRNPs) are used in a novel fashion to analyze binding interactions between the zika envelope protein (ZENV) and proposed host cell receptors: AXL, HSP70, and TIM-1. Computational analysis is also utilized to examine these binding interactions for the first time. In addition, the role of crizotinib as a potential binding inhibitor is demonstrated and the possibility of ligand-independent phosphatidylserine-mediated binding is explored. Our findings suggest that while the extracellular domain of AXL has the highest affinity for ZENV; HSP70, TIM-1, and phosphatidylserine might also play active roles in zika tropism, which offers a potential explanation for the variety of zika-associated symptoms. This is, to our knowledge, the first time that MRNPs have been used to examine and quantify host-zika interactions. Our magnetic relaxation platform allows for timely and sensitive analysis of these intricate binding relationships, and it is easily customizable for further examination of additional host-pathogen interactions.
Collapse
Affiliation(s)
- Tyler Shelby
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Irene Zegar
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS, 66762, USA.
| |
Collapse
|
32
|
|
33
|
Liang J, Jangra RK, Bollinger L, Wada J, Radoshitzky SR, Chandran K, Jahrling PB, Kuhn JH, Jensen KS. Candidate medical countermeasures targeting Ebola virus cell entry. Future Virol 2017. [DOI: 10.2217/fvl-2016-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical countermeasures (MCMs) against virus infections ideally prevent the adsorption or entry of virions into target cells, thereby circumventing infection. Recent significant advances in elucidating the mechanism of Ebola virus (EBOV) host-cell penetration include the involvement of two-pore channels at the early stage of entry, and identification of cellular proteases for EBOV spike glycoprotein maturation and the intracellular EBOV receptor, Niemann–Pick type C1. This improved understanding of the initial steps of EBOV infection is now increasingly applied to rapid development of candidate MCMs, some of which have already entered the clinic. Candidate MCMs discussed include antibodies, small molecules and peptides that target various stages of the described EBOV cell-entry pathway. In this review, we summarize the currently known spectrum of EBOV cell-entry inhibitors, describe their mechanism of action and evaluate their potential for future development.
Collapse
Affiliation(s)
- Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Rohit K Jangra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laura Bollinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Kartik Chandran
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Kenneth S Jensen
- Integrated Research Facility at Fort Detrick, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
34
|
Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site. Proc Natl Acad Sci U S A 2017; 114:770-775. [PMID: 28074040 PMCID: PMC5278457 DOI: 10.1073/pnas.1616502114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.
Collapse
|
35
|
Differential transcriptional responses to Ebola and Marburg virus infection in bat and human cells. Sci Rep 2016; 6:34589. [PMID: 27713552 PMCID: PMC5054393 DOI: 10.1038/srep34589] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/15/2016] [Indexed: 01/04/2023] Open
Abstract
The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.
Collapse
|
36
|
Filovirus proteins for antiviral drug discovery: A structure/function analysis of surface glycoproteins and virus entry. Antiviral Res 2016; 135:1-14. [PMID: 27640102 PMCID: PMC7113884 DOI: 10.1016/j.antiviral.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
This review focuses on the recent progress in our understanding of filovirus protein structure/function and its impact on antiviral research. Here we focus on the surface glycoprotein GP1,2 and its different roles in filovirus entry. We first describe the latest advances on the characterization of GP gene-overlapping proteins sGP, ssGP and Δ-peptide. Then, we compare filovirus surface GP1,2 proteins in terms of structure, synthesis and function. As they bear potential in drug-design, the discovery of small organic compounds inhibiting filovirus entry is a currently very active field. Although it is at an early stage, the development of antiviral drugs against Ebola and Marburg virus entry might prove essential to reduce outbreak-associated fatality rates through post-exposure treatment of both suspected and confirmed cases. The filovirus surface glycoprotein is the key player protein responsible for viral entry. Secreted forms of the glycoprotein have been suggested to participate to filovirus virus pathogenicity. Recent structural insights of the filovirus surface glycoprotein highlight new antiviral perspectives. Interesting compounds and innovative antiviral strategies emerge from research and development to inhibit filovirus entry.
Collapse
|
37
|
Structure of human Aichi virus and implications for receptor binding. Nat Microbiol 2016; 1:16150. [DOI: 10.1038/nmicrobiol.2016.150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
|
38
|
Affiliation(s)
- Angela L. Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington 98109;
| |
Collapse
|
39
|
Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry. J Virol 2016; 90:6097-6111. [PMID: 27122575 DOI: 10.1128/jvi.00100-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion-TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. IMPORTANCE With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many enveloped viruses, including EBOV. TIM family member TIM-4 is expressed on macrophages and dendritic cells, which are early cellular targets during EBOV infection. Here, we performed a mutagenesis screening of the IgV domain of murine and human TIM-4 to identify residues that are critical for EBOV entry. Surprisingly, we identified more human than murine TIM-4 IgV domain residues that are required for EBOV entry. Defining the TIM IgV residues needed for EBOV entry clarifies the virus-receptor interactions and paves the way for the development of novel therapeutics targeting virus binding to this cell surface receptor.
Collapse
|