1
|
Da Silva D, van Rensburg MJ, Crous A, Abrahamse H. Photobiomodulation: a novel approach to promote trans-differentiation of adipose-derived stem cells into neuronal-like cells. Neural Regen Res 2025; 20:598-608. [PMID: 38819070 PMCID: PMC11317946 DOI: 10.4103/nrr.nrr-d-23-01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/07/2023] [Accepted: 02/18/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00035/figure1/v/2024-05-28T214302Z/r/image-tiff Photobiomodulation, originally used red and near-infrared lasers, can alter cellular metabolism. It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation, near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration, which is necessary for the cells homing to the site of injury. In this in vitro study, we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries. We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2. As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects. Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers, with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group. Interestingly, green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation, while near-infrared photobiomodulation notably increased the expression of neuronal markers. Through biochemical analysis and enzyme-linked immunosorbent assays, we observed marked improvements in viability, proliferation, membrane permeability, and mitochondrial membrane potential, as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor. Overall, our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells, offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Madeleen Jansen van Rensburg
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
2
|
Pan C, Wang K, Hong R, Wang X, Zhang Y, Fan Z, Shi Y, Liu T, Chen H. Chronic microcystin-leucine-arginine exposure induces osteoporosis by breaking the balance of osteoblasts and osteoclasts. ENVIRONMENTAL RESEARCH 2024; 263:120098. [PMID: 39366441 DOI: 10.1016/j.envres.2024.120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Microcystin-leucine-arginine (MC-LR) produced by cyanobacterial harmful algal blooms are hazardous materials. However, the toxicity and mechanisms of continuous exposure to MC-LR on the occurrence of osteoporosis remains poorly documented. In this study, to mimic the chronic influences of MC-LR on the bone tissues in humans, an animal model was constructed in which mice were treated with MC-LR through drinking water at an environmentally relevant level (1-30 μg/L) for 6 months. MC-LR was enriched in the skeletal system, leading to the destruction of bone microstructure, the decrease of bone trabecular number, the reduction of osteoblasts, the enhanced content of lipid droplets, and the activation of osteoclasts, which is the characteristic of osteoporosis. Herein, we revealed ferroptosis is a vital mechanism of osteoblast death in mouse models of MC-LR. MC-LR exposure activates AMPK/ULK1 signaling, further promotes ferritin selective autophagy, causes free iron release and lipid peroxidation deposition, and eventually leads to ferroptosis of osteoblasts. Importantly, the use of AMPK or ferroptosis inhibitors in vivo markedly reduced MC-LR-induced osteoblast death and impaired osteogenic differentiation. Interestingly, MC-LR exposure promotes iron uptake in bone marrow macrophages through the TF-TFR1 pathway, leading to its transformation to TRAP-positive pre-osteoclast cells, thereby promoting bone resorption. Overall, our data innovatively revealed the core mechanism of MC-LR-induced osteoporosis, providing the bi-directional regulation of MC-LR on osteoblast-osteoclast from the perspective of iron homeostasis imbalance.
Collapse
Affiliation(s)
- Chun Pan
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Kehan Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Runyang Hong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xinglong Wang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yao Zhang
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Zhencheng Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujie Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tingting Liu
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hao Chen
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Zhou H, Xiang W, Zhou G, Rodrigues-Lima F, Guidez F, Wang L. Metabolic dysregulation in myelodysplastic neoplasm: impact on pathogenesis and potential therapeutic targets. Med Oncol 2024; 42:23. [PMID: 39644425 DOI: 10.1007/s12032-024-02575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Despite significant advancements in the research of the pathogenesis mechanisms of Myelodysplastic Neoplasm (MDS) in recent years, there are still many gaps to fill. The advancement of metabolomics studies has led to a research booming in clarifying the impact of metabolic abnormalities during the pathogenesis of MDS. The present review primarily focuses on the dysregulated metabolic pathways, exploring the influences on the pathogenesis of MDS and their roles during the course of the disease. Furthermore, we discuss the potential of relevant metabolic pathways as therapeutic targets, along with the latest metabolic-related treatment drugs and approaches.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle Et Adaptative, 75013, Paris, France
| | - Fabien Guidez
- Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_S1131, 75010, Paris, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
4
|
McMinimy R, Manford AG, Gee CL, Chandrasekhar S, Mousa GA, Chuang J, Phu L, Shih KY, Rose CM, Kuriyan J, Bingol B, Rapé M. Reactive oxygen species control protein degradation at the mitochondrial import gate. Mol Cell 2024; 84:4612-4628.e13. [PMID: 39642856 DOI: 10.1016/j.molcel.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
While reactive oxygen species (ROS) have long been known to drive aging and neurodegeneration, their persistent depletion below basal levels also disrupts organismal function. Cells counteract loss of basal ROS via the reductive stress response, but the identity and biochemical activity of ROS sensed by this pathway remain unknown. Here, we show that the central enzyme of the reductive stress response, the E3 ligase Cullin 2-FEM1 homolog B (CUL2FEM1B), specifically acts at mitochondrial TOM complexes, where it senses ROS produced by complex III of the electron transport chain (ETC). ROS depletion during times of low ETC activity triggers the localized degradation of CUL2FEM1B substrates, which sustains mitochondrial import and ensures the biogenesis of the rate-limiting ETC complex IV. As complex III yields most ROS when the ETC outpaces metabolic demands or oxygen availability, basal ROS are sentinels of mitochondrial activity that help cells adjust their ETC to changing environments, as required for cell differentiation and survival.
Collapse
Affiliation(s)
- Rachael McMinimy
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Srividya Chandrasekhar
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Gergey Alzaem Mousa
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Joelle Chuang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Lilian Phu
- Genentech Inc. South San Francisco, South San Francisco, CA 94080, USA
| | - Karen Y Shih
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | - John Kuriyan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Baris Bingol
- Genentech Inc. South San Francisco, South San Francisco, CA 94080, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Wu X, Wang K, Chen H, Cao B, Wang Y, Wang Z, Dai C, Yao M, Ji X, Jiang X, Zhang W, Pan Z, Xue D. Hypoxia-induced mitochondrial fission regulates the fate of bone marrow mesenchymal stem cells by maintaining HIF1α stabilization. Free Radic Biol Med 2024; 225:127-144. [PMID: 39366470 DOI: 10.1016/j.freeradbiomed.2024.10.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
For mesenchymal stem cells derived from bone marrow, a controlled reduction in ambient oxygen concentration has been recognized as a facilitator of osteogenic differentiation and the formation of calcium nodules. However, the specific molecular mechanisms underlying this phenotype remain unclear. The aim of this study was to elucidate the impact of hypoxia on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and to explore the involvement of mitophagy and the regulation of mitochondrial dynamics mediated by the mitochondrial dynamic regulatory factor FUN14 domain-containing 1 (FUNDC1). Our findings suggest that FUNDC1 is required for promoting osteogenic differentiation in BMSCs under hypoxic conditions. However, this effect was not dependent on FUNDC1-mediated mitophagy but rather on FUNDC1-mediated regulation of mitochondrial fission. At the mechanistic level, FUNDC1 binds more DNM1L and less OPA1 under hypoxic conditions, leading to an upsurge in mitochondrial division. This heightened mitochondrial division culminates in the increased translocation of Parkin to mitochondria, diminishing its interactions with HIF1α in the cytoplasm and consequently facilitating HIF1α deubiquitination and stabilization. In summary, FUNDC1-regulated mitochondrial division in hypoxic culture emerges as a critical determinant for the translocation of Parkin to mitochondria, ultimately maintaining HIF1α stabilization and promoting osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaoyong Wu
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Kanbin Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Hongyu Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Binhao Cao
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Yibo Wang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongxiang Wang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Chengxin Dai
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Minjun Yao
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Xiaoxiao Ji
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Xiaowen Jiang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Weijun Zhang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Zhijun Pan
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China.
| | - Deting Xue
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
6
|
Yang Y, Jian Y, Liu Y, Ma M, Guo J, Xu B, Yue C. Mitochondrial maintenance as a novel target for treating steroid-induced osteonecrosis of femoral head: a narrative review. EFORT Open Rev 2024; 9:1013-1022. [PMID: 39513701 PMCID: PMC11619724 DOI: 10.1530/eor-24-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
The pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) remains unclear; however, emerging evidence suggests that mitochondrial injury plays a significant role. This review aims to elucidate the involvement of mitochondrial dysfunction in SONFH and explore potential therapeutic targets. A comprehensive literature search was conducted in PubMed, Web of Science, and Elsevier ScienceDirect, focusing on mitochondrial homeostasis, including mitophagy, mitochondrial biogenesis, mitochondrial dynamics, and oxidative stress in SONFH. Ultimately, we included and analyzed a total of 16 studies. Glucocorticoids initially promote but later inhibit mitochondrial biogenesis in osteoblasts, leading to excessive ROS production and mitochondrial dysfunction. This dysfunction impairs osteoblast survival and bone formation, contributing to SONFH progression. Key proteins such as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) are potential therapeutic targets for promoting mitochondrial biogenesis and reducing ROS-induced damage. Enhancing mitochondrial function and reducing oxidative stress in osteoblasts may prevent or slow the progression of SONFH. Future research should focus on developing these strategies.
Collapse
Affiliation(s)
- Yidan Yang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
| | - Yi Jian
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People’s Republic of China
| | - Youwen Liu
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, People’s Republic of China
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People’s Republic of China
| | - Maoxiao Ma
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People’s Republic of China
| | - Jiayi Guo
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People’s Republic of China
| | - Bin Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chen Yue
- Department of Orthopedics, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People’s Republic of China
| |
Collapse
|
7
|
Xiu H, Yang K, Dong L, Lai H, Zhu Z, Jiang D, Yan J, Shi C, Pan S, Yin Z, Yuwen L, Liang B. Near-Infrared Light-Responsive Cu 2MoS 4@GelMA Hydrogel with Photothermal Therapy, Antibacterial Effect and Bone Immunomodulation for Accelerating Infection Elimination and Fracture Healing. Adv Healthc Mater 2024:e2403205. [PMID: 39506453 DOI: 10.1002/adhm.202403205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Managing fracture infections is a significant challenge in trauma orthopedics, given the limited self-healing capacity of fractures and the difficulty in eradicating infections. In this study, Cu2MoS4 nanoparticles (CMSs) with are prepared enzyme-like activity and both pH and near-infrared (NIR) light responsiveness. These CMSs are combined with methacrylated gelatin (GelMA) to synthesize CMSs hydrogels (CMSs@Gel) with antimicrobial and bone tissue repair-promoting capabilities. In vitro and in vivo experiments, the CMSs@Gel demonstrated good biocompatibility; peroxidase-like (POD), oxidase-like (OXD), and catalase-like (CAT) activities; excellent photothermal conversion efficiency; and immunomodulatory capacity. Furthermore, the CMSs@Gel exhibited slow degradation, enabling it to exert different pH-responsive enzyme activities and modulate the production of reactive oxygen species (ROS) and the polarization of macrophages throughout the treatment process. Notably, these effects are significantly enhanced under near-infrared (NIR) light. Additionally, under NIR irradiation, the CMSs@Gel maintained the fracture environment at a mild temperature (40-42 °C), promoting osteogenesis and angiogenesis. In summary, the CMSs@Gel enhances bactericidal activity during fracture infection and effectively promotes fracture healing after infection control, providing long-term therapeutic effects. This study offers a robust theoretical basis for the staged and long-term treatment of fracture infections in the future.
Collapse
Affiliation(s)
- Haonan Xiu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Kaili Yang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Li Dong
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Haohua Lai
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Zhangyu Zhu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Dongdong Jiang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Junwei Yan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Chen Shi
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Shaowei Pan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Zhaowei Yin
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Bin Liang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
8
|
Zhang H, Hao J, Hong H, Gu W, Li Z, Sun J, Zhan H, Wei X, Zhou L. Redox signaling regulates the skeletal tissue development and regeneration. Biotechnol Genet Eng Rev 2024; 40:2308-2331. [PMID: 37043672 DOI: 10.1080/02648725.2023.2199244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Skeletal tissue development and regeneration in mammals are intricate, multistep, and highly regulated processes. Various signaling pathways have been implicated in the regulation of these processes, including redox. Redox signaling is the signal transduction by electron transfer reactions involving free radicals or related species. Redox homeostasis is essential to cell metabolic states, as the ROS not only regulates cell biological processes but also mediates physiological processes. Following a bone fracture, redox signaling is also triggered to regulate bone healing and regeneration by targeting resident stromal cells, osteoblasts, osteoclasts and endothelial cells. This review will focus on how the redox signaling impact the bone development and bone regeneration.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Jin Hao
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - HaiPing Hong
- FangTa Hospital of Traditional Chinese Medicine, Songjiang Branch, Shanghai, East China, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | | | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Hongsheng Zhan
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| |
Collapse
|
9
|
Song Y, Zhu M, Islam MA, Gu W, Alim K, Cheng CS, Chen J, Xu Y, Xu H. Glutathione peroxidase 3 is essential for countering senescence in adipose remodelling by maintaining mitochondrial homeostasis. Redox Biol 2024; 77:103365. [PMID: 39312866 PMCID: PMC11447410 DOI: 10.1016/j.redox.2024.103365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
Adipose tissue senescence is a precursor to organismal aging and understanding adipose remodelling contributes to discovering novel anti-aging targets. Glutathione peroxidase 3 (GPx3), a critical endogenous antioxidant enzyme, is diminished in the subcutaneous adipose tissue (sWAT) with white adipose expansion. Based on the active role of the antioxidant system in counteracting aging, we investigated the involvement of GPx3 in adipose senescence. We determined that knockdown of GPx3 in adipose tissue by adeno-associated viruses impaired mitochondrial function in mice, increased susceptibility to obesity, and exacerbated adipose tissue senescence. Impairment of GPx3 may cause mitochondrial dysfunction through inner mitochondrial membrane disruption. Adipose reshaping management (cold stimulation and intermittent diet) counteracted the aging of tissues, with an increase in GPx3 expression. Overall metabolic improvement induced by cold stimulation was partially attenuated when GPx3 was depleted. GPx3 may be involved in adipose browning by interacting with UCP1, and GPx3 may be a limiting factor for intracellular reactive oxygen species (ROS) accumulation during stem cell browning. Collectively, these findings emphasise the importance of restoring the imbalanced redox state in adipose tissue to counteract aging and that GPx3 may be a potential target for maintaining mitochondrial homeostasis and longevity.
Collapse
Affiliation(s)
- Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Md Ariful Islam
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Wenyi Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Kavsar Alim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Chien-Shan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, 20025, China
| | - Jingxian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, 20025, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China; Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Cai W, Mao S, Wang Y, Gao B, Zhao J, Li Y, Chen Y, Zhang D, Yang J, Yang G. An Engineered Hierarchical Hydrogel with Immune Responsiveness and Targeted Mitochondrial Transfer to Augmented Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406287. [PMID: 39258577 PMCID: PMC11558138 DOI: 10.1002/advs.202406287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 09/12/2024]
Abstract
Coordinating the immune response and bioenergy metabolism in bone defect environments is essential for promoting bone regeneration. Mitochondria are important organelles that control internal balance and metabolism. Repairing dysfunctional mitochondria has been proposed as a therapeutic approach for disease intervention. Here, an engineered hierarchical hydrogel with immune responsiveness can adapt to the bone regeneration environment and mediate the targeted mitochondria transfer between cells. The continuous supply of mitochondria by macrophages can restore the mitochondrial bioenergy of bone marrow mesenchymal stem cells (BMSC). Fundamentally solving the problem of insufficient energy support of BMSCs caused by local inflammation during bone repair and regeneration. This discovery provides a new therapeutic strategy for promoting bone regeneration and repair, which has research value and practical application prospects in the treatment of various diseases caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Wenjin Cai
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Shihua Mao
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
- Zhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Ying Wang
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Bicong Gao
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Jiaying Zhao
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Yongzheng Li
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Yani Chen
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30318USA
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing TechnologyCollege of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guoli Yang
- Stomatology HospitalSchool of StomatologyZhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral DiseasesKey Laboratory of Oral Biomedical Research of Zhejiang ProvinceCancer Center of Zhejiang UniversityEngineering Research Center of Oral Biomaterials and Devices of Zhejiang ProvinceHangzhou310000P. R. China
| |
Collapse
|
11
|
Landspersky T, Stein M, Saçma M, Geuder J, Braitsch K, Rivière J, Hettler F, Romero Marquez S, Vilne B, Hameister E, Richter D, Schönhals E, Tuckermann J, Verbeek M, Herhaus P, Hecker JS, Bassermann F, Götze KS, Enard W, Geiger H, Oostendorp RAJ, Schreck C. Targeting CDC42 reduces skeletal degeneration after hematopoietic stem cell transplantation. Blood Adv 2024; 8:5400-5414. [PMID: 39159429 PMCID: PMC11526086 DOI: 10.1182/bloodadvances.2024012879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 08/21/2024] Open
Abstract
ABSTRACT Osteopenia and osteoporosis are common long-term complications of the cytotoxic conditioning regimen for hematopoietic stem cell transplantation (HSCT). We examined mesenchymal stem and progenitor cells (MSPCs), which include skeletal progenitors, from mice undergoing HSCT. Such MSPCs showed reduced fibroblastic colony-forming units frequency, increased DNA damage, and enhanced occurrence of cellular senescence, whereas there was a reduced bone volume in animals that underwent HSCT. This reduced MSPC function correlated with elevated activation of the small Rho guanosine triphosphate hydrolase CDC42, disorganized F-actin distribution, mitochondrial abnormalities, and impaired mitophagy in MSPCs. Changes and defects similar to those in mice were also observed in MSPCs from humans undergoing HSCT. A pharmacological treatment that attenuated the elevated activation of CDC42 restored F-actin fiber alignment, mitochondrial function, and mitophagy in MSPCs in vitro. Finally, targeting CDC42 activity in vivo in animals undergoing transplants improved MSPC quality to increase both bone volume and trabecular bone thickness. Our study shows that attenuation of CDC42 activity is sufficient to attenuate reduced function of MSPCs in a BM transplant setting.
Collapse
Affiliation(s)
- Theresa Landspersky
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mehmet Saçma
- Institute of Molecular Medicine, Stem Cells, and Aging, Ulm University, Ulm, Germany
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Krischan Braitsch
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Jennifer Rivière
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Franziska Hettler
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Sandra Romero Marquez
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Baiba Vilne
- Bioinformatics Laboratory, Rīga Stradiņš University, Riga, Lettland
| | - Erik Hameister
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Daniel Richter
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Emely Schönhals
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mareike Verbeek
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Peter Herhaus
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Judith S. Hecker
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Katharina S. Götze
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Stem Cells, and Aging, Ulm University, Ulm, Germany
| | - Robert A. J. Oostendorp
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Christina Schreck
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Zhu X, Qin Z, Zhou M, Li C, Jing J, Ye W, Gan X. The Role of Mitochondrial Permeability Transition in Bone Metabolism, Bone Healing, and Bone Diseases. Biomolecules 2024; 14:1318. [PMID: 39456250 PMCID: PMC11506728 DOI: 10.3390/biom14101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Bone is a dynamic organ with an active metabolism and high sensitivity to mitochondrial dysfunction. The mitochondrial permeability transition pore (mPTP) is a low-selectivity channel situated in the inner mitochondrial membrane (IMM), permitting the exchange of molecules of up to 1.5 kDa in and out of the IMM. Recent studies have highlighted the critical role of the mPTP in bone tissue, but there is currently a lack of reviews concerning this topic. This review discusses the structure and function of the mPTP and its impact on bone-related cells and bone-related pathological states. The mPTP activity is reduced during the osteogenic differentiation of mesenchymal stem cells (MSCs), while its desensitisation may underlie the mechanism of enhanced resistance to apoptosis in neoplastic osteoblastic cells. mPTP over-opening triggers mitochondrial swelling, regulated cell death, and inflammatory response. In particular, mPTP over-opening is involved in dexamethasone-induced osteoblast dysfunction and bisphosphonate-induced osteoclast apoptosis. In vivo, the mPTP plays a significant role in maintaining bone homeostasis, with many bone disorders linked to its excessive opening. Genetic deletion or pharmacological inhibition of the over-opening of mPTP has shown potential in enhancing bone injury recovery and alleviating bone diseases. Here, we review the findings on the relationship of the mPTP and bone at both the cellular and disease levels, highlighting novel avenues for pharmacological approaches targeting mitochondrial function to promote bone healing and manage bone-related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xueqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.Z.)
| |
Collapse
|
13
|
Irwin-Huston JM, Bourebaba L, Bourebaba N, Tomal A, Marycz K. Sex hormone-binding globulin promotes the osteogenic differentiation potential of equine adipose-derived stromal cells by activating the BMP signaling pathway. Front Endocrinol (Lausanne) 2024; 15:1424873. [PMID: 39483986 PMCID: PMC11524885 DOI: 10.3389/fendo.2024.1424873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Musculoskeletal injuries and chronic degenerative diseases pose significant challenges in equine health, impacting performance and overall well-being. Sex Hormone-Binding Globulin (SHBG) is a glycoprotein determining the bioavailability of sex hormones in the bloodstream, and exerting critical metabolic functions, thus impacting the homeostasis of many tissues including the bone. Methods In this study, we investigated the potential role of SHBG in promoting osteogenesis and its underlying mechanisms in a model of equine adipose-derived stromal cells (ASCs). An SHBG-knocked down model has been established using predesigned siRNA, and cells subjected to osteogenic induction medium in the presence of exogenous SHBG protein. Changes in differentiation events where then screened using various analytical methods. Results We demonstrated that SHBG treatment enhances the expression of key osteoconductive regulators in equine ASCs CD34+ cells, suggesting its therapeutic potential for bone regeneration. Specifically, SHBG increased the cellular expression of BMP2/4, osteocalcin (OCL), alkaline phosphatase (ALP), and osteopontin (OPN), crucial factors in early osteogenesis. Furthermore, SHBG treatment maintained adequate apoptosis and enhanced autophagy during osteogenic differentiation, contributing to bone formation and remodeling. SHBG further targeted mitochondrial dynamics, and promoted the reorganization of the mitochondrial network, as well as the expression of dynamics mediators including PINK, PARKIN and MFN1, suggesting its role in adapting cells to the osteogenic milieu, with implications for osteoblast maturation and differentiation. Conclusion Overall, our findings provide novel insights into SHBG's role in bone formation and suggest its potential therapeutic utility for bone regeneration in equine medicine.
Collapse
Affiliation(s)
- Jennifer M. Irwin-Huston
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Artur Tomal
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Wang K, Ho C, Li X, Hou J, Luo Q, Wu J, Yang Y, Zhang X. Matrix stiffness regulates mitochondria-lysosome contacts to modulate the mitochondrial network, alleviate the senescence of MSCs. Cell Prolif 2024:e13746. [PMID: 39353686 DOI: 10.1111/cpr.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
The extracellular microenvironment encompasses the extracellular matrix, neighbouring cells, cytokines, and fluid components. Anomalies in the microenvironment can trigger aging and a decreased differentiation capacity in mesenchymal stem cells (MSCs). MSCs can perceive variations in the firmness of the extracellular matrix and respond by regulating mitochondrial function. Diminished mitochondrial function is intricately linked to cellular aging, and studies have shown that mitochondria-lysosome contacts (M-L contacts) can regulate mitochondrial function to sustain cellular equilibrium. Nonetheless, the influence of M-L contacts on MSC aging under varying matrix stiffness remains unclear. In this study, utilizing single-cell RNA sequencing and atomic force microscopy, we further demonstrate that reduced matrix stiffness in older individuals leads to MSC aging and subsequent decline in osteogenic ability. Mechanistically, augmented M-L contacts under low matrix stiffness exacerbate MSC aging by escalating mitochondrial oxidative stress and peripheral division. Moreover, under soft matrix stiffness, cytoskeleton reorganization facilitates rapid movement of lysosomes. The M-L contacts inhibitor ML282 ameliorates MSC aging by reinstating mitochondrial network and function. Overall, our findings confirm that MSC aging is instigated by disruption of the mitochondrial network and function induced by matrix stiffness, while also elucidating the potential mechanism by which M-L Contact regulates mitochondrial homeostasis. Crucially, this presents promise for cellular anti-aging strategies centred on mitochondria, particularly in the realm of stem cell therapy.
Collapse
Affiliation(s)
- Kang Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Chingchun Ho
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Xiangyu Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jianfeng Hou
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qipei Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Jiahong Wu
- School of Medicine, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Yuxin Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
16
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
17
|
Pei Y, Liu F, Zhao Y, Lin H, Huang X. Role of hedgehog signaling in the pathogenesis and therapy of heterotopic ossification. Front Cell Dev Biol 2024; 12:1454058. [PMID: 39364140 PMCID: PMC11447292 DOI: 10.3389/fcell.2024.1454058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process that generates ectopic bone in soft tissues. Hedgehog signaling (Hh signaling) is a signaling pathway that plays an important role in embryonic development and involves three ligands: sonic hedgehog (Shh), Indian hedgehog (Ihh) and desert hedgehog (Dhh). Hh signaling also has an important role in skeletal development. This paper discusses the effects of Hh signaling on the process of HO formation and describes several signaling molecules that are involved in Hh-mediated processes: parathyroid Hormone-Related Protein (PTHrP) and Fkbp10 mediate the expression of Hh during chondrogenesic differentiation. Extracellular signal-regulated kinase (ERK), GNAs and Yes-Associated Protein (YAP) interact with Hh signaling to play a role in osteogenic differentiation. Runt-Related Transcription Factor 2 (Runx2), Mohawk gene (Mkx) and bone morphogenetic protein (BMP) mediate Hh signaling during both chondrogenic and osteogenic differentiation. This paper also discusses possible therapeutic options for HO, lists several Hh inhibitors and explores whether they could serve as emerging targets for the treatment of HO.
Collapse
Affiliation(s)
- Yiran Pei
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Fangzhou Liu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yike Zhao
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyan Huang
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Wang W, Yang H, Fan Z, Shi R. NQO1 promotes osteogenesis and suppresses angiogenesis in DPSCs via MAPK pathway modulation. Stem Cell Res Ther 2024; 15:306. [PMID: 39285500 PMCID: PMC11406740 DOI: 10.1186/s13287-024-03929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Influence on stem cells' angiogenesis and osteogenesis of NAD(P)H Quinone Dehydrogenase 1(NQO1) has been established, but its impact on dental pulp stem cells (DPSCs) is unexplored. An important strategy for the treatment of arteriosclerosis is to inhibit calcium deposition and to promote vascular repair and angiogenesis. This study investigated the function and mechanism of NQO1 on angiogenesis and osteogenesis of DPSCs, so as to provide a new ideal for the treatment of arteriosclerosis. METHODS Co-culture of human DPSCs and human umbilical vein endothelial cells (HUVECs) was used to detect the angiogenesis ability. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS), and transplantation of HA/tricalcium phosphate with DPSCs were used to detect osteogenesis. RESULTS NQO1 suppressed in vitro tubule formation, migration, chemotaxis, and in vivo angiogenesis, as evidenced by reduced CD31 expression. It also enhanced ALP activity, ARS, DSPP expression and osteogenesis and boosted mitochondrial function in DPSCs. CoQ10, an electron transport chain activator, counteracted the effects of NQO1 knockdown on these processes. Additionally, NQO1 downregulated MAPK signaling, which was reversed by CoQ10 supplementation in DPSCs-NQO1sh. CONCLUSIONS NQO1 inhibited angiogenesis and promoted the osteogenesis of DPSCs by suppressing MAPK signaling pathways and enhancing mitochondrial respiration.
Collapse
Affiliation(s)
- Wanqing Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
19
|
Tao YA, Long L, Gu JX, Wang PY, Li X, Li XL, Fan P, Wang Y. Associations of oxidative balance score with lumbar spine osteopenia in 20-40 years adults: NHANES 2011-2018. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08424-1. [PMID: 39168893 DOI: 10.1007/s00586-024-08424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Current research suggests that oxidative stress may decrease bone mineral density (BMD) by disrupting bone metabolism balance. However, no study investigated the relationship between systemic oxidative stress status and adult BMD. This study aims to investigate whether oxidative balance score (OBS) is associated with BMD in adults under 40. METHODS 3963 participants were selected from the National Health and Nutrition Survey (NHANES) from 2011 to 2018. OBS is scored based on 20 dietary and lifestyle factors. Weighted multiple logistic regression and restricted cubic splines were used to assess the correlation between OBS and osteopenia. RESULTS After adjusting for confounding factors, the weighted logistic regression results showed that compared with the first tertile of OBS, the highest tertile had a 38% (OR: 0.62, 95% CI: 0.47-0.82) lower risk of osteopenia. The restrictive cubic spline curve indicates a significant nonlinear correlation between OBS and the risk of osteopenia. CONCLUSION The research findings emphasize the relationship between OBS and the risk of osteopenia in young adults. Adopting an antioxidant diet and lifestyle may help young adults to maintain bone mass.
Collapse
Affiliation(s)
- Yu-Ao Tao
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China
| | - Ling Long
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Jia-Xiang Gu
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Pei-Yang Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China
| | - Xi Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China
| | - Xiao-Long Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China
| | - Pan Fan
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China.
| | - Yuntao Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China.
| |
Collapse
|
20
|
Li P, Wang Y, Liang Y, Jiang X, Tang T, Fan X, Wang R, Yang M, Liu Y, Qi K, Zhang Y. Imbalance of early-life vitamin D intake targets ROS-mediated crosstalk between mitochondrial dysfunction and differentiation potential of MSCs associated the later obesity. Stem Cell Res Ther 2024; 15:252. [PMID: 39135105 PMCID: PMC11321190 DOI: 10.1186/s13287-024-03860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Obesity is characterized by excessive fat accumulation, which is related with abnormal pluripotency of mesenchymal stem cells (MSCs). Recently, there is growing evidence that the disorder of maternal vitamin D (VD) intake is a well-known risk factor for long-term adverse health outcomes to their offspring. Otherwise, less is known of its repercussion and underlying mechanisms on the different differentiation potential of MSCs. METHODS Four-week-old female C57BL/6J mice were fed with different VD reproductive diets throughout the whole pregnancy and lactation. The characteristics of BMSCs from their seven-day male offspring, VDR knockdown establishment of HuMSCs and HuMSCs under the different VD interventions in vitro were confirmed by flow cytometry, RT-PCR, and immunofluorescence. The roles of VD on their mitochondrial dysfunction and differentiation potential were also investigated. Then their remaining weaned male pups were induced by administrating high-fat-diet (HFD) for 16 weeks and normal fat diet was simultaneously as controls. Their lipid accumulation and adipocytes hypertrophy were determined by histological staining and related gene expressions. RESULTS Herein, it was proved that imbalance of early-life VD intake could significantly aggravate the occurrence of obesity by inducing the adipogenesis through affecting the VD metabolism and related metabolites (P < 0.05). Moreover, abnormally maternal VD intake might be involved on the disorders of differentiation potential to inhibit the maintenance of MSCs stemness through increasing the productions of ROS, which was accompanied by impairing the expression of related genes on the adipo-osteogenic differentiation (P < 0.05). Moreover, it was along with increasing potential of adipogenic differentiation of MSCs as higher ROS in the state of VD deficiency, while excessive maternal VD status could conversely enhance the osteogenic differentiation with slightly lower ROS (P < 0.05). Furthermore, the underlying mechanisms might be involved on the mitochondria dysfunctional, especially the mitophagy, by activating the LC3b, P62 and etc. using in vivo and in vitro studies (P < 0.05). CONCLUSION These findings demonstrated that imbalance of early-life VD intake could target ROS-mediated crosstalk between mitochondrial dysfunction and differentiation potential of MSCs, which was significantly associated with the later obesity. Obviously, our results could open up an attractive modality for the benefits of suitable VD intake during the pregnancy and lactation.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China.
| | - Yang Wang
- Department of Stem Cell & Regeneration Medicine, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Tai-Ping Road, Beijing, 100091, China
| | - Yueqing Liang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Xueyi Jiang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Mengyi Yang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China
| | - Yuanlin Liu
- Department of Stem Cell & Regeneration Medicine, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Tai-Ping Road, Beijing, 100091, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children's Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-Li-Shi Road, Beijing, 100045, China.
| | - Yi Zhang
- Department of Stem Cell & Regeneration Medicine, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, No.27 Tai-Ping Road, Beijing, 100091, China.
| |
Collapse
|
21
|
Wang D, Jiang J, Wang M, Li K, Liang H, Wang N, Liu W, Wang M, Zhou S, Zhang M, Xiao Y, Shen X, Li Z, Wu W, Lin X, Xiang X, Xie Q, Liu W, Zhou X, Tang Q, Zhou W, Yang L, Chuong CM, Lei M. Mitophagy Promotes Hair Regeneration by Activating Glutathione Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0433. [PMID: 39091635 PMCID: PMC11292124 DOI: 10.34133/research.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024]
Abstract
Mitophagy maintains tissue homeostasis by self-eliminating defective mitochondria through autophagy. How mitophagy regulates stem cell activity during hair regeneration remains unclear. Here, we found that mitophagy promotes the proliferation of hair germ (HG) cells by regulating glutathione (GSH) metabolism. First, single-cell RNA sequencing, mitochondrial probe, transmission electron microscopy, and immunofluorescence staining showed stronger mitochondrial activity and increased mitophagy-related gene especially Prohibitin 2 (Phb2) expression at early-anagen HG compared to the telogen HG. Mitochondrial inner membrane receptor protein PHB2 binds to LC3 to initiate mitophagy. Second, molecular docking and functional studies revealed that PHB2-LC3 activates mitophagy to eliminate the damaged mitochondria in HG. RNA-seq, single-cell metabolism, immunofluorescence staining, and functional validation discovered that LC3 promotes GSH metabolism to supply energy for promoting HG proliferation. Third, transcriptomics analysis and immunofluorescence staining indicated that mitophagy was down-regulated in the aged compared to young-mouse HG. Activating mitophagy and GSH pathways through small-molecule administration can reactivate HG cell proliferation followed by hair regeneration in aged hair follicles. Our findings open up a new avenue for exploring autophagy that promotes hair regeneration and emphasizes the role of the self-elimination effect of mitophagy in controlling the proliferation of HG cells by regulating GSH metabolism.
Collapse
Affiliation(s)
- Dehuan Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Nian’ou Wang
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Siyi Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Man Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Xinyu Shen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Zeming Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Xia Lin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Xun Zhou
- Department of Dermatology and Cosmetology,
The First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine, Chongqing 400021, China
| | - Qu Tang
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,
Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine,
University of Southern California, Los Angeles, CA 90033, USA
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| |
Collapse
|
22
|
Wang W, Zhou Z, Ding T, Feng S, Liu H, Liu M, Ge S. Capsaicin attenuates Porphyromonas gingivalis-suppressed osteogenesis of periodontal ligament stem cells via regulating mitochondrial function and activating PI3K/AKT/mTOR pathway. J Periodontal Res 2024; 59:798-811. [PMID: 38699845 DOI: 10.1111/jre.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Prevention of periodontal bone resorption triggered by Porphyromonas gingivalis (P. gingivalis) is crucial for dental stability. Capsaicin, known as the pungent ingredient of chili peppers, can activate key signaling molecules involved in osteogenic process. However, the effect of capsaicin on osteogenesis of periodontal ligament stem cells (PDLSCs) under inflammation remains elusive. METHODS P. gingivalis culture suspension was added to mimic the inflammatory status after capsaicin pretreatment. The effects of capsaicin on the osteogenesis of PDLSCs, as well as mitochondrial morphology, Ca2+ level, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and osteogenesis-regulated protein expression levels were analyzed. Furthermore, a mouse experimental periodontitis model was established to evaluate the effect of capsaicin on alveolar bone resorption and the expression of osteogenesis-related proteins. RESULTS Under P. gingivalis stimulation, capsaicin increased osteogenesis of PDLSCs. Not surprisingly, capsaicin rescued the damage to mitochondrial morphology, decreased the concentration of intracellular Ca2+ and ROS, enhanced MMP and activated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. The in vivo results showed that capsaicin significantly attenuated alveolar bone loss and augmented the expression of bone associated proteins. CONCLUSION Capsaicin increases osteogenesis of PDLSCs under inflammation and reduces alveolar bone resorption in mouse experimental periodontitis.
Collapse
Affiliation(s)
- Weijia Wang
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhiyan Zhou
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Tian Ding
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Susu Feng
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Hongrui Liu
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Mengmeng Liu
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology & Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
23
|
Zhang Q, Pan RL, Wang H, Wang JJ, Lu SH, Zhang M. Nanoporous Titanium Implant Surface Accelerates Osteogenesis via the Piezo1/Acetyl-CoA/β-Catenin Pathway. NANO LETTERS 2024; 24:8257-8267. [PMID: 38920296 PMCID: PMC11247543 DOI: 10.1021/acs.nanolett.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of β-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.
Collapse
Affiliation(s)
- Qian Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Run-Long Pan
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Hui Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Jun-Jun Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Song-He Lu
- Scientific
Research Department, Air Force Medical University, Xi’an 710032, China
| | - Min Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
24
|
Daga P, Thurakkal B, Rawal S, Das T. Matrix stiffening promotes perinuclear clustering of mitochondria. Mol Biol Cell 2024; 35:ar91. [PMID: 38758658 PMCID: PMC11244172 DOI: 10.1091/mbc.e23-04-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Mechanical cues from the tissue microenvironment, such as the stiffness of the extracellular matrix, modulate cellular forms and functions. As numerous studies have shown, this modulation depends on the stiffness-dependent remodeling of cytoskeletal elements. In contrast, very little is known about how the intracellular organelles such as mitochondria respond to matrix stiffness and whether their form, function, and localization change accordingly. Here, we performed an extensive quantitative characterization of mitochondrial morphology, subcellular localization, dynamics, and membrane tension on soft and stiff matrices. This characterization revealed that while matrix stiffness affected all these aspects, matrix stiffening most distinctively led to an increased perinuclear clustering of mitochondria. Subsequently, we could identify the matrix stiffness-sensitive perinuclear localization of filamin as the key factor dictating this perinuclear clustering. The perinuclear and peripheral mitochondrial populations differed in their motility on soft matrix but surprisingly they did not show any difference on stiff matrix. Finally, perinuclear mitochondrial clustering appeared to be crucial for the nuclear localization of RUNX2 and hence for priming human mesenchymal stem cells towards osteogenesis on a stiff matrix. Taken together, we elucidate a dependence of mitochondrial localization on matrix stiffness, which possibly enables a cell to adapt to its microenvironment.
Collapse
Affiliation(s)
- Piyush Daga
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Basil Thurakkal
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Simran Rawal
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| |
Collapse
|
25
|
Luo S, Zhang C, Xiong W, Song Y, Wang Q, Zhang H, Guo S, Yang S, Liu H. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat 2024; 47:191-206. [PMID: 39040489 PMCID: PMC11261049 DOI: 10.1016/j.jot.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.
Collapse
Affiliation(s)
- Songyang Luo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi Medical University, Shihezi, 832000, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang, 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Huanye Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| |
Collapse
|
26
|
Wang S, Liu J, Zhou L, Xu H, Zhang D, Zhang X, Wang Q, Zhou Q. Research progresses on mitochondrial-targeted biomaterials for bone defect repair. Regen Biomater 2024; 11:rbae082. [PMID: 39055307 PMCID: PMC11272180 DOI: 10.1093/rb/rbae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the regulation of the cell microenvironment has opened up new avenues for bone defect repair. Researchers have developed novel biomaterials to influence the behavior of osteoblasts and immune cells by regulating the microenvironment, aiming to achieve efficient bone repair. Mitochondria, as crucial organelles involved in energy conversion, biosynthesis and signal transduction, play a vital role in maintaining bone integrity. Dysfunction of mitochondria can have detrimental effects on the transformation of the immune microenvironment and the differentiation of stem cells, thereby hindering bone tissue regeneration. Consequently, targeted therapy strategies focusing on mitochondria have emerged. This approach offers a wide range of applications and reliable therapeutic effects, thereby providing a new treatment option for complex and refractory bone defect diseases. In recent studies, more biomaterials have been used to restore mitochondrial function and promote positive cell differentiation. The main directions are mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial quality control. In this review, we investigated the biomaterials used for mitochondria-targeted treatment of bone defect repair in recent years from the perspective of progress and strategies. We also summarized the micro-molecular mechanisms affected by them. Through discussions on energy metabolism, oxidative stress regulation and autophagy regulation, we emphasized the opportunities and challenges faced by mitochondria-targeted biomaterials, providing vital clues for developing a new generation of bone repair materials.
Collapse
Affiliation(s)
- Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Jialin Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Hao Xu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
27
|
Liu ZX, Liu GQ, Lin ZX, Chen YQ, Chen P, Hu YJ, Yu B, Jiang N. Effects of Staphylococcus aureus on stem cells and potential targeted treatment of inflammatory disorders. Stem Cell Res Ther 2024; 15:187. [PMID: 38937829 PMCID: PMC11210046 DOI: 10.1186/s13287-024-03781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Due to the advanced studies on stem cells in developmental biology, the roles of stem cells in the body and their phenotypes in related diseases have not been covered clearly. Meanwhile, with the intensive research on the mechanisms of stem cells in regulating various diseases, stem cell therapy is increasingly being attention because of its effectiveness and safety. As one of the most widely used stem cell in stem cell therapies, hematopoietic stem cell transplantation shows huge advantage in treatment of leukemia and other blood-malignant diseases. Besides, due to the effect of anti-inflammatory and immunomodulatory, mesenchymal stem cells could be a potential therapeutic strategy for variety infectious diseases. In this review, we summarized the effects of Staphylococcus aureus (S. aureus) and its components on different types of adult stem cells and their downstream signaling pathways. Also, we reviewed the roles of different kinds of stem cells in various disease models caused by S. aureus, providing new insights for applying stem cell therapy to treat infectious diseases.
Collapse
Affiliation(s)
- Zi-Xian Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Guan-Qiao Liu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ze-Xin Lin
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Ying-Qi Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Peng Chen
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Yan-Jun Hu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China
| | - Bin Yu
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| | - Nan Jiang
- Division of Orthopaedics & Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Bessa-Andrês C, Pinto-Cardoso R, Tarasova K, Pereira-Gonçalves AL, Gaio-Ferreira-Castro JM, Carvalho LS, Costa MA, Ferreirinha F, Canadas-Sousa A, Marinhas J, Freitas R, Lemos R, Vilaça A, Oliveira A, Correia-de-Sá P, Noronha-Matos JB. Mechanical stimulation-induced purinome priming fosters osteogenic differentiation and osteointegration of mesenchymal stem cells from the bone marrow of post-menopausal women. Stem Cell Res Ther 2024; 15:168. [PMID: 38886849 PMCID: PMC11184869 DOI: 10.1186/s13287-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Mechanical stimulation (MS) significantly increases the release of adenine and uracil nucleotides from bone marrow-derived mesenchymal stem cells (BM-MSCs) undergoing osteogenic differentiation. Released nucleotides acting via ionotropic P2X7 and metabotropic P2Y6 purinoceptors sensitive to ATP and UDP, respectively, control the osteogenic commitment of BM-MSCs and, thus, bone growth and remodelling. Yet, this mechanism is impaired in post-menopausal (Pm)-derived BM-MSCs, mostly because NTPDase3 overexpression decreases the extracellular accumulation of nucleotides below the levels required to activate plasma membrane-bound P2 purinoceptors. This prompted us to investigate whether in vitro MS of BM-MSCs from Pm women could rehabilitate their osteogenic commitment and whether xenotransplantation of MS purinome-primed Pm cells promote repair of critical bone defects in an in vivo animal model. METHODS BM-MSCs were harvested from the neck of femora of Pm women (70 ± 3 years old) undergoing total hip replacement. The cells grew, for 35 days, in an osteogenic-inducing medium either submitted (SS) or not (CTR) to MS (90 r.p.m. for 30 min) twice a week. Increases in alkaline phosphatase activity and in the amount of osteogenic transcription factors, osterix and osteopontin, denoted osteogenic cells differentiation, while bone nodules formation was ascertain by the alizarin red-staining assay. The luciferin-luciferase bioluminescence assay was used to quantify extracellular ATP. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC. The density of P2Y6 and P2X7 purinoceptors in the cells was assessed by immunofluorescence confocal microscopy. MS-stimulated BM-MSCs from Pm women were xenotransplanted into critical bone defects drilled in the great trochanter of femora of one-year female Wistar rats; bone repair was assessed by histological analysis 10 days after xenotransplantation. RESULTS MS-stimulated Pm BM-MSCs in culture (i) release 1.6-fold higher ATP amounts, (ii) overexpress P2X7 and P2Y6 purinoceptors, (iii) exhibit higher alkaline phosphatase activity and overexpress the osteogenic transcription factors, osterix and osteopontin, and (iv) form larger bone nodules, than CTR cells. Selective blockage of P2X7 and P2Y6 purinoceptors with A438079 (3 µM) and MRS 2578 (0.1 µM), respectively, prevented the osteogenic commitment of cultured Pm BM-MSCs. Xenotransplanted MS purinome-primed Pm BM-MSCs accelerated the repair of critical bone defects in the in vivo rat model. CONCLUSIONS Data suggest that in vitro MS restores the purinergic cell-to-cell communication fostering the osteogenic differentiation and osteointegration of BM-MSCs from Pm women, a strategy that may be used in bone regeneration and repair tactics.
Collapse
Affiliation(s)
- Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Karyna Tarasova
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Ana Luísa Pereira-Gonçalves
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Joana Maria Gaio-Ferreira-Castro
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Liliana S Carvalho
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - Ana Canadas-Sousa
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia - Espinho, Vila Nova de Gaia, 4434-502, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia - Espinho, Vila Nova de Gaia, 4434-502, Portugal
| | - Rui Lemos
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia - Espinho, Vila Nova de Gaia, 4434-502, Portugal
| | - Adélio Vilaça
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, Porto, 4099-001, Portugal
| | - António Oliveira
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, Porto, 4099-001, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal.
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, 4050-313, Portugal.
| |
Collapse
|
29
|
Qiu H, Xiong H, Zheng J, Peng Y, Wang C, Hu Q, Zhao F, Chen K. Sr-Incorporated Bioactive Glass Remodels the Immunological Microenvironment by Enhancing the Mitochondrial Function of Macrophage via the PI3K/AKT/mTOR Signaling Pathway. ACS Biomater Sci Eng 2024; 10:3923-3934. [PMID: 38766805 DOI: 10.1021/acsbiomaterials.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. In vivo, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr2+-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.
Collapse
Affiliation(s)
- Huanhuan Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Huacui Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jiafu Zheng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuqi Peng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Qing Hu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ke Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
30
|
Bai Y, Zhang W, Hao L, Zhao Y, Tsai IC, Qi Y, Xu Q. Acetyl-CoA-dependent ac 4C acetylation promotes the osteogenic differentiation of LPS-stimulated BMSCs. Int Immunopharmacol 2024; 133:112124. [PMID: 38663312 DOI: 10.1016/j.intimp.2024.112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The impaired osteogenic capability of bone marrow mesenchymal stem cells (BMSCs) caused by persistent inflammation is the main pathogenesis of inflammatory bone diseases. Recent studies show that metabolism is disturbed in osteogenically differentiated BMSCs in response to Lipopolysaccharide (LPS) treatment, while the mechanism involved remains incompletely revealed. Herein, we demonstrated that BMSCs adapted their metabolism to regulate acetyl-coenzyme A (acetyl-CoA) availability and RNA acetylation level, ultimately affecting osteogenic differentiation. The mitochondrial dysfunction and impaired osteogenic potential upon inflammatory conditions accompanied by the reduced acetyl-CoA content, which in turn suppressed N4-acetylation (ac4C) level. Supplying acetyl-CoA by sodium citrate (SC) addition rescued ac4C level and promoted the osteogenic capacity of LPS-treated cells through the ATP citrate lyase (ACLY) pathway. N-acetyltransferase 10 (NAT10) inhibitor remodelin reduced ac4C level and consequently impeded osteogenic capacity. Meanwhile, the osteo-promotive effect of acetyl-CoA-dependent ac4C might be attributed to fatty acid oxidation (FAO), as evidenced by activating FAO by L-carnitine supplementation counteracted remodelin-induced inhibition of osteogenesis. Further in vivo experiments confirmed the promotive role of acetyl-CoA in the endogenous bone regeneration in rat inflammatory mandibular defects. Our study uncovered a metabolic-epigenetic axis comprising acetyl-CoA and ac4C modification in the process of inflammatory osteogenesis of BMSCs and suggested a new target for bone tissue repair in the context of inflammatory bone diseases.
Collapse
Affiliation(s)
- Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Lili Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - I-Chen Tsai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Yipin Qi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
31
|
Dong Z, Han W, Jiang P, Hao L, Fu X. Regulation of mitochondrial network architecture and function in mesenchymal stem cells by micropatterned surfaces. Regen Biomater 2024; 11:rbae052. [PMID: 38854681 PMCID: PMC11162196 DOI: 10.1093/rb/rbae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondrial network architecture, which is closely related to mitochondrial function, is mechanically sensitive and regulated by multiple stimuli. However, the effects of microtopographic cues on mitochondria remain poorly defined. Herein, polycaprolactone (PCL) surfaces were used as models to investigate how micropatterns regulate mitochondrial network architecture and function in rat adipose-derived stem cells (rASCs). It was found that large pit (LP)-induced rASCs to form larger and more complex mitochondrial networks. Consistently, the expression of key genes related to mitochondrial dynamics revealed that mitochondrial fusion (MFN1 and MFN2) and midzone fission (DRP1 and MFF) were increased in rASCs on LP. In contrast, the middle pit (MP)-enhanced mitochondrial biogenesis, as evidenced by the larger mitochondrial area and higher expression of PGC-1. Both LP and MP promoted ATP production in rASCs. It is likely that LP increased ATP levels through modulating mitochondrial network architecture while MP stimulated mitochondria biogenesis to do so. Our study clarified the regulation of micropatterned surfaces on mitochondria, highlighting the potential of LP and MP as a simple platform to stimulate mitochondria and the subsequent cellular function of MSCs.
Collapse
Affiliation(s)
- Zixuan Dong
- The Second Affiliated Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Weiju Han
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Panyu Jiang
- The Second Affiliated Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Lijing Hao
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoling Fu
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Liu Y, Chen P, Zhou T, Zeng J, Liu Z, Wang R, Xu Y, Yin W, Rong M. Co-culture of STRO1 + human gingival mesenchymal stem cells and human umbilical vein endothelial cells in 3D spheroids: enhanced in vitro osteogenic and angiogenic capacities. Front Cell Dev Biol 2024; 12:1378035. [PMID: 38770153 PMCID: PMC11102987 DOI: 10.3389/fcell.2024.1378035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Stem cell spheroid is a promising graft substitute for bone tissue engineering. Spheroids obtained by 3D culture of STRO1+ Gingival Mesenchymal Stem Cells (sGMSCs) (sGMSC spheroids, GS) seldom express angiogenic factors, limiting their angiogenic differentiation in vivo. This study introduced a novel stem cell spheroid with osteogenic and angiogenic potential through 3D co-culture of sGMSCs and Human Umbilical Vein Endothelial Cells (HUVECs) (sGMSC/HUVEC spheroids, GHS). GHS with varying seeding ratios of sGMSCs to HUVECs (GHR) were developed. Cell fusion within the GHS system was observed via immunofluorescence. Calcein-AM/PI staining and chemiluminescence assay indicated cellular viability within the GHS. Furthermore, osteogenic and angiogenic markers, including ALP, OCN, RUNX2, CD31, and VEGFA, were quantified and compared with the control group comprising solely of sGMSCs (GS). Incorporating HUVECs into GHS extended cell viability and stability, initiated the expression of angiogenic factors CD31 and VEGFA, and upregulated the expression of osteogenic factors ALP, OCN, and RUNX2, especially when GHS with a GHR of 1:1. Taken together, GHS, derived from the 3D co-culture of sGMSCs and HUVECs, enhanced osteogenic and angiogenic capacities in vitro, extending the application of cell therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tengfei Zhou
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ruijie Wang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yiwei Xu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou, China
| | - Wuwei Yin
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
33
|
Liu X, Wan X, Sui B, Hu Q, Liu Z, Ding T, Zhao J, Chen Y, Wang ZL, Li L. Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation. Bioact Mater 2024; 35:346-361. [PMID: 38379699 PMCID: PMC10876489 DOI: 10.1016/j.bioactmat.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tingting Ding
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Jiao Zhao
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Yuxiao Chen
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
34
|
Shi Y, Kang Q, Zhou H, Yue X, Bi Y, Luo Q. Aberrant LETM1 elevation dysregulates mitochondrial functions and energy metabolism and promotes lung metastasis in osteosarcoma. Genes Dis 2024; 11:100988. [PMID: 38292199 PMCID: PMC10825238 DOI: 10.1016/j.gendis.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/10/2023] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
Osteosarcoma is a differentiation-deficient disease, and despite the unique advantages and great potential of differentiation therapy, there are only a few known differentiation inducers, and little research has been done on their targets. Cell differentiation is associated with an increase in mitochondrial content and activity. The metabolism of some tumor cells is characterized by impaired oxidative phosphorylation, as well as up-regulation of aerobic glycolysis and pentose phosphate pathways. Leucine-containing zipper and EF-hand transmembrane protein 1 (LETM1) is involved in the maintenance of mitochondrial morphology and is closely associated with tumorigenesis and progression, as well as cancer cell stemness. We found that MG63 and 143B osteosarcoma cells overexpress LETM1 and exhibit abnormalities in mitochondrial structure and function. Knockdown of LETM1 partially restored the mitochondrial structure and function, inhibited the pentose phosphate pathway, promoted oxidative phosphorylation, and led to osteogenic differentiation. It also inhibited spheroid cell formation, proliferation, migration, and invasion in an in vitro model. When LETM1 was knocked down in vivo, there was reduced tumor formation and lung metastasis. These data suggest that mitochondria are aberrant in LETM1-overexpressing osteosarcoma cells, and knockdown of LETM1 partially restores the mitochondrial structure and function, inhibits the pentose phosphate pathway, promotes oxidative phosphorylation, and increases osteogenic differentiation, thereby reducing malignant biological behavior of the cells.
Collapse
Affiliation(s)
- Yulu Shi
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Quan Kang
- Department of Pediatric Surgery, The Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hong Zhou
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaohan Yue
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Qing Luo
- Stem Cell Biology and Therapy Laboratory, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
35
|
Qiu W, Sun Q, Li N, Chen Z, Wu H, Chen Z, Guo X, Fang F. Superoxide dismutase 2 scavenges ROS to promote osteogenic differentiation of human periodontal ligament stem cells by regulating Smad3 in alveolar bone-defective rats. J Periodontol 2024; 95:469-482. [PMID: 37921754 DOI: 10.1002/jper.23-0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) is an essential event in alveolar bone regeneration. Oxidative stress may be the main inhibiting factor of hPDLSC osteogenesis. Superoxide dismutase 2 (SOD2) is a key antioxidant enzyme, but its effect on hPDLSC osteogenic differentiation is unclear. METHODS Several surface markers were detected by flow cytometry, and the differentiation potential of hPDLSCs was validated by alkaline phosphatase (ALP), Alizarin Red S, and Oil Red O staining. Osteogenic indicators of hPDLSCs were detected by real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and ALP staining. Furthermore, alveolar bone defect rat models were analyzed through micro-CT, hematoxylin and eosin, and Masson staining. The intracellular reactive oxygen species (ROS) level was evaluated by a ROS assay kit. Finally, the expression of SOD2, Smad3, and p-Smad3 in hPDLSCs was detected by RT-qPCR and Western blotting (WB). RESULTS SOD2 positively regulated the gene and protein expressions of ALP, BMP6, and RUNX2 in hPDLSCs (p < 0.05). Ideal bone formation and continuous cortical bone were obtained by transplanting LV-SOD2 hPDLSCs (lentivirus vector for overexpressing SOD2 in hPDLSCs) in vivo. Exogenous H2O2 downregulated osteogenic indicators (ALP, BMP6, RUNX2) in hPDLSCs (p < 0.05); this was reversed by overexpression of SOD2. WB results showed that the Smad3 and p-Smad3 signaling pathways participated in the osteogenic process of SOD2 in hPDLSCs. CONCLUSION SOD2 positively regulated hPDLSC osteogenic differentiation in vitro and in vivo. Mechanistically, SOD2 promotes hPDLSC osteogenic differentiation by regulating the phosphorylation of Smad3 to scavenge ROS. This work provides a theoretical basis for the treatment of alveolar bone regeneration.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Sun
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolan Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Kumar S, Acharya TK, Kumar S, Rokade TP, Das NK, Chawla S, Goswami L, Goswami C. TRPV4 Activator-Containing CMT-Hy Hydrogel Enhances Bone Tissue Regeneration In Vivo by Enhancing Mitochondrial Health. ACS Biomater Sci Eng 2024; 10:2367-2384. [PMID: 38470969 DOI: 10.1021/acsbiomaterials.3c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Treating different types of bone defects is difficult, complicated, time-consuming, and expensive. Here, we demonstrate that transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechanosensitive, thermogated, and nonselective cation channel, is endogenously present in the mesenchymal stem cells (MSCs). TRPV4 regulates both cytosolic Ca2+ levels and mitochondrial health. Accordingly, the hydrogel made from a natural modified biopolymer carboxymethyl tamarind CMT-Hy and encapsulated with TRPV4-modulatory agents affects different parameters of MSCs, such as cell morphology, focal adhesion points, intracellular Ca2+, and reactive oxygen species- and NO-levels. TRPV4 also regulates cell differentiation and biomineralization in vitro. We demonstrate that 4α-10-CMT-Hy and 4α-50-CMT-Hy (the hydrogel encapsulated with 4αPDD, 10 and 50 nM, TRPV4 activator) surfaces upregulate mitochondrial health, i.e., an increase in ATP- and cardiolipin-levels, and improve the mitochondrial membrane potential. The same scaffold turned out to be nontoxic in vivo. 4α-50-CMT-Hy enhances the repair of the bone-drill hole in rat femur, both qualitatively and quantitatively in vivo. We conclude that 4α-50-CMT-Hy as a scaffold is suitable for treating large-scale bone defects at low cost and can be tested for clinical trials.
Collapse
Affiliation(s)
- Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Tusar K Acharya
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Tejas P Rokade
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Nilesh K Das
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
- School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| |
Collapse
|
37
|
Li Y, Wang T, Li X, Li W, Lei Y, Shang Q, Zheng Z, Fang J, Cao L, Yu D, Meng Z, Zhang S, Liu R, Liu C, Xu C, Ding Y, Chen Y, Candi E, Melino G, Wang Y, Shi Y, Shao C. SOD2 promotes the immunosuppressive function of mesenchymal stem cells at the expense of adipocyte differentiation. Mol Ther 2024; 32:1144-1157. [PMID: 38310354 PMCID: PMC11163202 DOI: 10.1016/j.ymthe.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
The potent immunomodulatory function of mesenchymal stem/stromal cells (MSCs) elicited by proinflammatory cytokines IFN-γ and TNF-α (IT) is critical to resolve inflammation and promote tissue repair. However, little is known about how the immunomodulatory capability of MSCs is related to their differentiation competency in the inflammatory microenvironment. In this study, we demonstrate that the adipocyte differentiation and immunomodulatory function of human adipose tissue-derived MSCs (MSC(AD)s) are mutually exclusive. Mitochondrial reactive oxygen species (mtROS), which promote adipocyte differentiation, were decreased in MSC(AD)s due to IT-induced upregulation of superoxide dismutase 2 (SOD2). Furthermore, knockdown of SOD2 led to enhanced adipogenic differentiation but reduced immunosuppression capability of MSC(AD)s. Interestingly, the adipogenic differentiation was associated with increased mitochondrial biogenesis and upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A/PGC-1α) expression. IT inhibited PGC-1α expression and decreased mitochondrial mass but promoted glycolysis in an SOD2-dependent manner. MSC(AD)s lacking SOD2 were compromised in their therapeutic efficacy in DSS-induced colitis in mice. Taken together, these findings indicate that the adipogenic differentiation and immunomodulation of MSC(AD)s may compete for resources in fulfilling the respective biosynthetic needs. Blocking of adipogenic differentiation by mitochondrial antioxidant may represent a novel strategy to enhance the immunosuppressive activity of MSCs in the inflammatory microenvironment.
Collapse
Affiliation(s)
- Yanan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tingting Wang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Xiaolei Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Wen Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Yan Lei
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Qianwen Shang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Daojiang Yu
- The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhenzhen Meng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Shengchao Zhang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Chunxiao Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Chenchang Xu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Yayun Ding
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China; Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Soochow University Suzhou Medical College, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
38
|
Han Y, Tong X, Zhou R, Wang Y, Chen Y, Chen L, Hong X, Wu L, Lin Z, Zhang Y, Zhang X, Hu C, Li B, Ping Y, Cao Z, Ye Z, Song Z, Li Y, Wen C, Zhou Y, Lin J, Huang S. Biodegradable Zn-5Dy Alloy with Enhanced Osteo/Angio-Genic Activity and Osteointegration Effect via Regulation of SIRT4-Dependent Mitochondrial Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307812. [PMID: 38243646 PMCID: PMC10987155 DOI: 10.1002/advs.202307812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Zinc (Zn)-dysprosium (Dy) binary alloys are promising biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for bone fracture healing, due to the lack of Zn-Dy alloys with tailored proper bio-mechanical and osteointegration properties for bone regeneration. A Zn-5Dy alloy with high strength and ductility and a degradation rate aligned with the bone remodeling cycle is developed. Here, mechanical stability is further confirmed, proving that Zn-5Dy alloy can resist aging in the degradation process, thus meeting the mechanical requirements of fracture fixation. In vitro cellular experiments reveal that the Zn-5Dy alloy enhances osteogenesis and angiogenesis by elevating SIRT4-mediated mitochondrial function. In vivo Micro-CT, SEM-EDS, and immunohistochemistry analyses further indicate good biosafety, suitable biodegradation rate, and great osteointegration of Zn-5Dy alloy during bone healing, which also depends on the upregulation of SIRT4-mediated mitochondrial events. Overall, the study is the first to report a Zn-5Dy alloy that exerts remarkable osteointegration properties and has a strong potential to promote bone healing. Furthermore, the results highlight the importance of mitochondrial modulation and shall guide the future development of mitochondria-targeting materials in enhancing bone fracture healing.
Collapse
Affiliation(s)
- Yue Han
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xian Tong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Runqi Zhou
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yilin Wang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yuge Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
- Department of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonT6G2R3Canada
| | - Liang Chen
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xinhua Hong
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Linmei Wu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhiqiang Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yichi Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Xuejia Zhang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Chaoming Hu
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Bin Li
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Yifan Ping
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zelin Cao
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental CareFaculty of DentistryUniversity of Hong KongHong Kong999077China
| | - Zhongchen Song
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
| | - Yuncang Li
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Cuie Wen
- School of EngineeringRMIT UniversityMelbourneVIC3001Australia
| | - Yongsheng Zhou
- Department of ProsthodonticsNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical DevicesNational Clinical Research Center for Oral DiseaseBeijing Key Laboratory of Digital StomatologyResearch Center of Engineering and Technology for Computerized Dentistry Ministry of HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Jixing Lin
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| | - Shengbin Huang
- Institute of StomatologySchool and Hospital of StomatologyWenzhou Medical UniversityWenzhou325027China
| |
Collapse
|
39
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Mateen MA, Alaagib N, Haider KH. High glucose microenvironment and human mesenchymal stem cell behavior. World J Stem Cells 2024; 16:237-244. [PMID: 38577235 PMCID: PMC10989287 DOI: 10.4252/wjsc.v16.i3.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 03/25/2024] Open
Abstract
High glucose (HG) culture conditions in vitro and persistent exposure to hyperglycemia in diabetes patients are detrimental to stem cells, analogous to any other cell type in our body. It interferes with diverse signaling pathways, i.e. mammalian target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-Akt signaling, to impact physiological cellular functions, leading to low cell survival and higher cell apoptosis rates. While elucidating the underlying mechanism responsible for the apoptosis of adipose tissue-derived mesenchymal stem cells (MSCs), a recent study has shown that HG culture conditions dysregulate mTOR-PI3K-Akt signaling in addition to mitochondrial malfunctioning due to defective mitochondrial membrane potential (MtMP) that lowers ATP production. This organelle-level dysfunction energy-starves the cells and increases oxidative stress and ultrastructural abnormalities. Disruption of the mitochondrial electron transport chain produces an altered mitochondrial NAD+/NADH redox state as evidenced by a low NAD+/NADH ratio that primarily contributes to the reduced cell survival in HG. Some previous studies have also reported altered mitochondrial membrane polarity (causing hyperpolarization) and reduced mitochondrial cell mass, leading to perturbed mitochondrial homeostasis. The hostile microenvironment created by HG exposure creates structural and functional changes in the mitochondria, altering their bioenergetics and reducing their capacity to produce ATP. These are significant data, as MSCs are extensively studied for tissue regeneration and restoring their normal functioning in cell-based therapy. Therefore, MSCs from hyperglycemic donors should be cautiously used in clinical settings for cell-based therapy due to concerns of their poor survival rates and increased rates of post engraftment proliferation. As hyperglycemia alters the bioenergetics of donor MSCs, rectifying the loss of MtMP may be an excellent target for future research to restore the normal functioning of MSCs in hyperglycemic patients.
Collapse
Affiliation(s)
| | | | - Khawaja Husnain Haider
- Cellular and Molecular Pharmacology, Sulaiman AlRajhi Medical School, Al Bukairiyah 51941, Saudi Arabia.
| |
Collapse
|
41
|
Hu Z, Li D, Wu S, Pei K, Fu Z, Yang Y, Huang Y, Yang J, Liu C, Hu J, Cai C, Liao Y. Unveiling the functional heterogeneity of cytokine-primed human umbilical cord mesenchymal stem cells through single-cell RNA sequencing. Cell Biosci 2024; 14:40. [PMID: 38532459 DOI: 10.1186/s13578-024-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold immense promise for use in immunomodulation and regenerative medicine. However, their inherent heterogeneity makes it difficult to achieve optimal therapeutic outcomes for a specific clinical disease. Primed MSCs containing a certain cytokine can enhance their particular functions, thereby increasing their therapeutic potential for related diseases. Therefore, understanding the characteristic changes and underlying mechanisms of MSCs primed by various cytokines is highly important. RESULTS In this study, we aimed to reveal the cellular heterogeneity, functional subpopulations, and molecular mechanisms of MSCs primed with IFN-γ, TNF-α, IL-4, IL-6, IL-15, and IL-17 using single-cell RNA sequencing (scRNA-seq). Our results demonstrated that cytokine priming minimized the heterogeneity of the MSC transcriptome, while the expression of MSC surface markers exhibited only slight changes. Notably, compared to IL-6, IL-15, and IL-17; IFN-γ, TNF-α, and IL-4 priming, which stimulated a significantly greater number of differentially expressed genes (DEGs). Functional analysis, which included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, indicated that IFN-γ, TNF-α, and IL-4-primed hUC-MSCs are involved in interferon-mediated immune-related processes, leukocyte migration, chemotaxis potential, and extracellular matrix and cell adhesion, respectively. Moreover, an investigation of various biological function scores demonstrated that IFN-γ-primed hUC-MSCs exhibit strong immunomodulatory ability, TNF-α-primed hUC-MSCs exhibit high chemotaxis potential, and IL-4-primed hUC-MSCs express elevated amounts of collagen. Finally, we observed that cytokine priming alters the distribution of functional subpopulations of MSCs, and these subpopulations exhibit various potential biological functions. Taken together, our study revealed the distinct regulatory effects of cytokine priming on MSC heterogeneity, biological function, and functional subpopulations at the single-cell level. CONCLUSIONS These findings contribute to a comprehensive understanding of the inflammatory priming of MSCs, paving the way for their precise treatment in clinical applications.
Collapse
Affiliation(s)
- Zhiwei Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Duanduan Li
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Shiduo Wu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Ke Pei
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Zeqin Fu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Yulin Yang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Yinfu Huang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Jian Yang
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Chuntao Liu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518054, China
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Yan Liao
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, 518054, China.
- Shenzhen Beike Biotechnology Research Institute, Shenzhen, 518054, China.
| |
Collapse
|
42
|
Kwon Y. YAP/TAZ as Molecular Targets in Skeletal Muscle Atrophy and Osteoporosis. Aging Dis 2024:AD.2024.0306. [PMID: 38502585 DOI: 10.14336/ad.2024.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Skeletal muscles and bones are closely connected anatomically and functionally. Age-related degeneration in these tissues is associated with physical disability in the elderly and significantly impacts their quality of life. Understanding the mechanisms of age-related musculoskeletal tissue degeneration is crucial for identifying molecular targets for therapeutic interventions for skeletal muscle atrophy and osteoporosis. The Hippo pathway is a recently identified signaling pathway that plays critical roles in development, tissue homeostasis, and regeneration. The Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the mammalian Hippo signaling pathway. This review highlights the fundamental roles of YAP and TAZ in the homeostatic maintenance and regeneration of skeletal muscles and bones. YAP/TAZ play a significant role in stem cell function by relaying various environmental signals to stem cells. Skeletal muscle atrophy and osteoporosis are related to stem cell dysfunction or senescence triggered by YAP/TAZ dysregulation resulting from reduced mechanosensing and mitochondrial function in stem cells. In contrast, the maintenance of YAP/TAZ activation can suppress stem cell senescence and tissue dysfunction and may be used as a basis for the development of potential therapeutic strategies. Thus, targeting YAP/TAZ holds significant therapeutic potential for alleviating age-related muscle and bone dysfunction and improving the quality of life in the elderly.
Collapse
|
43
|
Liu J, Bao X, Huang J, Chen R, Tan Y, Zhang Z, Xiao B, Kong F, Gu C, Du J, Wang H, Qi J, Tan J, Ma D, Shi C, Xu G. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metabolism 2024; 152:155767. [PMID: 38154611 DOI: 10.1016/j.metabol.2023.155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Disturbance in the differentiation process of bone marrow mesenchymal stem cells (BMSCs) leads to osteoporosis. Mitochondrial dynamics plays a pivotal role in the metabolism and differentiation of BMSCs. However, the mechanisms underlying mitochondrial dynamics and their impact on the differentiation equilibrium of BMSCs remain unclear. METHODS We investigated the mitochondrial morphology and markers related to mitochondrial dynamics during BMSCs osteogenic and adipogenic differentiation. Bioinformatics was used to screen potential genes regulating BMSCs differentiation through mitochondrial dynamics. Subsequently, we evaluated the impact of Transmembrane protein 135 (TMEM135) deficiency on bone homeostasis by comparing Tmem135 knockout mice with their littermates. The mechanism of TMEM135 in mitochondrial dynamics and BMSCs differentiation was also investigated in vivo and in vitro. RESULTS Distinct changes in mitochondrial morphology were observed between osteogenic and adipogenic differentiation of BMSCs, manifesting as fission in the late stage of osteogenesis and fusion in adipogenesis. Additionally, we revealed that TMEM135, a modulator of mitochondrial dynamics, played a functional role in regulating the equilibrium between adipogenesis and osteogenesis. The TMEM135 deficiency impaired mitochondrial fission and disrupted crucial mitochondrial energy metabolism during osteogenesis. Tmem135 knockout mice showed osteoporotic phenotype, characterized by reduced osteogenesis and increased adipogenesis. Mechanistically, TMEM135 maintained intracellular calcium ion homeostasis and facilitated the dephosphorylation of dynamic-related protein 1 at Serine 637 in BMSCs. CONCLUSIONS Our findings underscore the significant role of TMEM135 as a modulator in orchestrating the differentiation trajectory of BMSCs and promoting a shift in mitochondrial dynamics toward fission. This ultimately contributes to the osteogenesis process. This work has provided promising biological targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Xiaogang Bao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jian Huang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Rukun Chen
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yixuan Tan
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Zheng Zhang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Bing Xiao
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Changjiang Gu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Jianhang Du
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Haotian Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junqiang Qi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China
| | - Junming Tan
- Department of Orthopedics, The 72nd Army Hospital of the People's Liberation Army, Huzhou 313099, PR China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| | - Guohua Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, PR China.
| |
Collapse
|
44
|
Sendera A, Adamczyk-Grochala J, Pikuła B, Cholewa M, Banaś-Ząbczyk A. Electromagnetic field (50 Hz) enhance metabolic potential and induce adaptive/reprogramming response mediated by the increase of N6-methyladenosine RNA methylation in adipose-derived mesenchymal stem cells in vitro. Toxicol In Vitro 2024; 95:105743. [PMID: 38040129 DOI: 10.1016/j.tiv.2023.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Electromagnetic fields (EMF) have an impact on numerous cellular processes. It can positively and negatively affect adipose-derived stem cells (ASCs) thus their fate through the influence of specific factors and protein secretion. EMF can be a great factor for preconditioning ASCs for regenerative medicine purposes, however, understanding the cell's biological response to its effects in vitro is essential. METHODS ASCs were exposed to the EMF (50 Hz; 1.5 mT) for 24 and 48 h, and then cell biological response was analyzed. RESULTS 24 h exposure of ASCs to EMF, significantly increased N6-methyladenosine (m6A) RNA methylation, indicating epitranscriptomic changes as an important factor in ASCs preconditioning. Furthermore, the expression of stem cell markers such as Nanog, Oct-4, Sox-2, CD44, and CD105 increased after 24 h of EMF exposure. Besides, western blot analysis showed upregulation of p21 and DNMT2/TRDMT1 protein levels compared to control cells with no differences in the p53 profile. Moreover, after 24 h of exposure to EMF, cell membrane flexibility, the metabolic potential of cells as well as the distribution, morphology, and metabolism of mitochondria were altered. CONCLUSION ASCs undergo a process of mobilization and adaptation under the EMF influence through the increased m6A RNA modifications. These conditions may "force" ASCs to redefine their stem cell fate mediated by RNA-modifying enzymes and alter their reprogramming decision of as differentiation begins.
Collapse
Affiliation(s)
- Anna Sendera
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Barbara Pikuła
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marian Cholewa
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Agnieszka Banaś-Ząbczyk
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.
| |
Collapse
|
45
|
Zhao Z, Xia X, Liu J, Hou M, Liu Y, Zhou Z, Xu Y, He F, Yang H, Zhang Y, Ruan C, Zhu X. Cartilage-inspired self-assembly glycopeptide hydrogels for cartilage regeneration via ROS scavenging. Bioact Mater 2024; 32:319-332. [PMID: 37869724 PMCID: PMC10589380 DOI: 10.1016/j.bioactmat.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Cartilage injury represents a frequent dilemma in clinical practice owing to its inherently limited self-renewal capacity. Biomimetic strategy-based engineered biomaterial, capable of coordinated regulation for cellular and microenvironmental crosstalk, provides an adequate avenue to boost cartilage regeneration. The level of oxidative stress in microenvironments is verified to be vital for tissue regeneration, yet it is often overlooked in engineered biomaterials for cartilage regeneration. Herein, inspired by natural cartilage architecture, a fibril-network glycopeptide hydrogel (Nap-FFGRGD@FU), composed of marine-derived polysaccharide fucoidan (FU) and naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic peptide (Nap-FFGRGD), was presented through a simple supramolecular self-assembly approach. The Nap-FFGRGD@FU hydrogels exhibit a native cartilage-like architecture, characterized by interwoven collagen fibers and attached proteoglycans. Beyond structural simulation, fucoidan-exerted robust biological effects and Arg-Gly-Asp (RGD) sequence-provided cell attachment sites realized functional reinforcement, synergistically promoted extracellular matrix (ECM) production and reactive oxygen species (ROS) elimination, thus contributing to chondrocytes-ECM harmony. In vitro co-culture with glycopeptide hydrogels not only facilitated cartilage ECM anabolic metabolism but also scavenged ROS accumulation in chondrocytes. Mechanistically, the chondro-protective effects induced by glycopeptide hydrogels rely on the activation of endogenous antioxidant pathways associated with nuclear factor erythroid 2-related factor 2 (NRF2). In vivo implantation of glycopeptide hydrogels successfully improved the de novo cartilage generation by 1.65-fold, concomitant with coordinately restructured subchondral bone structure. Collectively, our ingeniously crafted bionic glycopeptide hydrogels simultaneously rewired chondrocytes' function by augmenting anabolic metabolism and rebuilt ECM microenvironment via preserving redox equilibrium, holding great potential for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Junlin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| |
Collapse
|
46
|
Luo S, Shang Y, Qin Z, Zhou B, Lu C, Qu Y, Zhao J, Liang R, Zheng L, Luo S. A novel cartilage-targeting MOF-HMME-RGD sonosensitizer combined with sonodynamic therapy to enhance chondrogenesis and cartilage regeneration. Front Bioeng Biotechnol 2024; 12:1339530. [PMID: 38361795 PMCID: PMC10868594 DOI: 10.3389/fbioe.2024.1339530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Articular cartilage regeneration is still a difficult task due to the cartilage's weak capacity for self-healing and the effectiveness of the available therapies. The engineering of cartilage tissue has seen widespread use of stem cell-based therapies. However, efficient orientation of line-specific bone marrow mesenchymal stem cells (BMSCs) to chondrogenesis and maintenance of chondrogenic differentiation challenged stem cell-based therapy. Herein, we developed a Fe-based metal-organic framework (MOF) loaded with hematoporphyrin monomethyl ether (HMME) and cartilage-targeting arginine-aspartate-glycine (RGD) peptide to form MOF-HMME-RGD sonosensitizer to regulate BMSCs chondrogenic differentiation for cartilage regeneration via the modulation of reactive oxygen species (ROS). By using sonodynamic therapy (SDT), the MOF-HMME-RGD demonstrated favorable biocompatibility, could generate a modest amount of ROS, and enhanced BMSCs chondrogenic differentiation through increased accumulation of glycosaminoglycan, an ECM component specific to cartilage, and upregulated expression of key chondrogenic genes (ACAN, SOX9, and Col2a1). Further, transplanted BMSCs loading MOF-HMME-RGD combined with SDT enhanced cartilage regeneration for cartilage defect repair after 8 weeks into treatment. This synergistic strategy based on MOF nanoparticles provides an instructive approach to developing alternative sonosensitizers for cartilage regeneration combined with SDT.
Collapse
Affiliation(s)
- Shanchao Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yifeng Shang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Zhou
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yangyang Qu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixing Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
47
|
Meng M, Wang J, Wang C, Zhao J, Wang H, Zhang Y, Sun H, Liu M. Coenzyme Q10 Protects Against Hyperlipidemia-Induced Osteoporosis by Improving Mitochondrial Function via Modulating miR-130b-3p/PGC-1α Pathway. Calcif Tissue Int 2024; 114:182-199. [PMID: 38055044 DOI: 10.1007/s00223-023-01161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023]
Abstract
In hyperlipidemia-induced osteoporosis, bone marrow mesenchymal stem cells (BMSCs) differentiate into more adipocytes than osteoblasts, leading to decreased bone formation. It is vital to elucidate the effects of hyperlipidemia on bone metabolism and seek new agents that regulate adipocyte-osteoblast lineage allocation. CoQ10, a rate-limiting coenzyme of the mitochondrial respiratory chain, has been reported to decrease oxidative stress and lipid peroxidation by functioning as a mitochondrial antioxidant. However, its effect on hyperlipidemia-induced osteoporosis remains unknown. Here, we analyzed the therapeutic mechanisms of CoQ10 on hyperlipidemia-induced osteoporosis by using high-fat diet (HFD)-treated ApoE-/- mice or oxidized low-density lipoprotein (ox-LDL)-treated BMSCs. The serum lipid levels were elevated and bone formation-related markers were decreased in HFD-treated ApoE-/- mice and ox-LDL-treated BMSCs, which could be reversed by CoQ10. Additionally, PGC-1α protein expression was decreased in HFD-treated ApoE-/- mice and ox-LDL-treated BMSCs, accompanied by mitochondrial dysfunction, decreased ATP content and overgeneration of reactive oxygen species (ROS), which could also be antagonized by CoQ10. Furthermore, PGC-1α knockdown in vitro promoted ROS generation, BMSC apoptosis, and adipogenic differentiation while attenuating osteogenic differentiation in BMSCs. Mechanistically, it suggested that the expression of PGC1-α protein was increased with miR-130b-3p inhibitor treatment in osteoporosis under hyperlipidemia conditions to improve mitochondrial function. Collectively, CoQ10 alleviates hyperlipidemia-induced osteoporosis in ApoE-/- mice and regulates adipocyte-osteoblast lineage allocation. The possible underlying mechanism may involve the improvement of mitochondrial function by modulating the miR-130b-3p/PGC-1α pathway.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Jiaying Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Jianyu Zhao
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Huihan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China
| | - Yukun Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian, 116044, China.
| | - Mozhen Liu
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
48
|
Singh RD, Wager JL, Scheidl TB, Connors LT, Easson S, Callaghan MA, Alatorre-Hinojosa S, Swift LH, Colarusso P, Jadli A, Shutt TE, Patel V, Thompson JA. Potentiation of Adipogenesis by Reactive Oxygen Species Is a Unifying Mechanism in the Proadipogenic Properties of Bisphenol A and Its New Structural Analogues. Antioxid Redox Signal 2024; 40:1-15. [PMID: 37154733 DOI: 10.1089/ars.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aims: Structural analogues of bisphenol A (BPA), including bisphenol S (BPS) and bisphenol F (BPF), are emerging environmental toxicants as their presence in the environment is rising since new regulatory restrictions were placed on BPA-containing infant products. The adipogenesis-enhancing effect of bisphenols may explain the link between human exposure and metabolic disease; however, underlying molecular pathways remain unresolved. Results: Exposure to BPS, BPF, BPA, or reactive oxygen species (ROS) generators enhanced lipid droplet formation and expression of adipogenic markers after induction of differentiation in adipose-derived progenitors isolated from mice. RNAseq analysis in BPS-exposed progenitors revealed modulation in pathways regulating adipogenesis and responses to oxidative stress. ROS were higher in bisphenol-exposed cells, while cotreatment with antioxidants attenuated adipogenesis and abolished the effect of BPS. There was a loss of mitochondrial membrane potential in BPS-exposed cells and mitochondria-derived ROS contributed to the potentiation of adipogenesis by BPS and its analogues. Male mice exposed to BPS during gestation had higher whole-body adiposity, as measured by time domain nuclear magnetic resonance, while postnatal exposure had no impact on adiposity in either sex. Innovation: These findings support existing evidence showing a role for ROS in regulating adipocyte differentiation and are the first to highlight ROS as a unifying mechanism that explains the proadipogenic properties of BPA and its structural analogues. Conclusion: ROS act as signaling molecules in the regulation of adipocyte differentiation and mediate bisphenol-induced potentiation of adipogenesis. Antioxid. Redox Signal. 40, 1-15.
Collapse
Affiliation(s)
- Radha D Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jessica L Wager
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Taylor B Scheidl
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Liam T Connors
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Sarah Easson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Mikyla A Callaghan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | | | - Lucy H Swift
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Pina Colarusso
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Anshul Jadli
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Timothy E Shutt
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Medical Genetics and University of Calgary, Calgary, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Vaibhav Patel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
49
|
Liu H, Xu K, He Y, Huang F. Mitochondria in Multi-Directional Differentiation of Dental-Derived Mesenchymal Stem Cells. Biomolecules 2023; 14:12. [PMID: 38275753 PMCID: PMC10813276 DOI: 10.3390/biom14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The pursuit of tissue regeneration has fueled decades of research in regenerative medicine. Among the numerous types of mesenchymal stem cells (MSCs), dental-derived mesenchymal stem cells (DMSCs) have recently emerged as a particularly promising candidate for tissue repair and regeneration. In recent years, evidence has highlighted the pivotal role of mitochondria in directing and orchestrating the differentiation processes of DMSCs. Beyond mitochondrial energy metabolism, the multifaceted functions of mitochondria are governed by the mitochondrial quality control (MQC) system, encompassing biogenesis, autophagy, and dynamics. Notably, mitochondrial energy metabolism not only governs the decision to differentiate but also exerts a substantial influence on the determination of differentiation directions. Furthermore, the MQC system exerts a nuanced impact on the differentiation of DMSCs by finely regulating the quality and mass of mitochondria. The review aims to provide a comprehensive overview of the regulatory mechanisms governing the multi-directional differentiation of DMSCs, mediated by both mitochondrial energy metabolism and the MQC system. We also focus on a new idea based on the analysis of data from many research groups never considered before, namely, DMSC-based regenerative medicine applications.
Collapse
Affiliation(s)
| | | | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510000, China; (H.L.); (K.X.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510000, China; (H.L.); (K.X.)
| |
Collapse
|
50
|
Ma H, Sheng X, Chen W, He H, Liu J, He Y, Huang F. PER2 regulates odontoblastic differentiation of dental papilla cells in vitro via intracellular ATP content and reactive oxygen species levels. PeerJ 2023; 11:e16489. [PMID: 38084142 PMCID: PMC10710777 DOI: 10.7717/peerj.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
Background Dental papilla cells (DPCs) are one of the key stem cells for tooth development, eventually forming dentin and pulp. Previous studies have reported that PER2 is expressed in a 24-hour oscillatory pattern in DPCs in vitro. In vivo, PER2 is highly expressed in odontoblasts (which are differentiated from DPCs). However, whether PER2 modulates the odontogenic differentiation of DPCs is uncertain. This research was to identify the function of PER2 in the odontogenic differentiation of DPCs and preliminarily explore its mechanisms. Methods We monitored the expression of PER2 in DPCs differentiated in vivo. We used PER2 overexpression and knockdown studies to assess the role of PER2 in DPC differentiation and performed intracellular ATP content and reactive oxygen species (ROS) assays to further investigate the mechanism. Results PER2 expression was considerably elevated throughout the odontoblastic differentiation of DPCs in vivo. Overexpressing Per2 boosted levels of odontogenic differentiation markers, such as dentin sialophosphoprotein (Dspp), dentin matrix protein 1 (Dmp1), and alkaline phosphatase (Alp), and enhanced mineralized nodule formation in DPCs. Conversely, the downregulation of Per2 inhibited the differentiation of DPCs. Additionally, downregulating Per2 further affected intracellular ATP content and ROS levels during DPC differentiation. Conclusion Overall, we demonstrated that PER2 positively regulates the odontogenic differentiation of DPCs, and the mechanism may be related to mitochondrial function as shown by intracellular ATP content and ROS levels.
Collapse
Affiliation(s)
- Haozhen Ma
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Sheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wanting Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|