1
|
Prada F, Haramaty L, Livnah O, Shaul R, Abramovich S, Mass T, Rosenthal Y, Falkowski PG. Proteomic characterization of a foraminiferal test's organic matrix. Proc Natl Acad Sci U S A 2024; 121:e2417845121. [PMID: 39642195 DOI: 10.1073/pnas.2417845121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024] Open
Abstract
Foraminifera are unicellular protists capable of precipitating calcite tests, which fossilize and preserve geochemical signatures of past environmental conditions dating back to the Cambrian period. The biomineralization mechanisms responsible for the mineral structures, which are key to interpreting palaeoceanographic signals, are poorly understood. Here, we present an extensive analysis of the test-bound proteins. Using liquid chromatography-tandem mass spectrometry, we identify 373 test-bound proteins in the large benthic foraminifer Amphistegina lobifera, the majority of which are highly acidic and rich in negatively charged residues. We detect proteins involved in vesicle formation and active Ca2+ trafficking, but in contrast, do not find similar proteins involved in Mg2+ transport. Considering findings from this study and previous ones, we propose a dual ion transport model involving seawater vacuolization, followed by the active release of Ca2+ from the initial vacuoles and subsequent uptake into newly formed Ca-rich vesicles that consequently enrich the calcification fluid. We further speculate that Mg2+ passively leaks through the membrane from the remaining Mg-rich vesicles, into the calcifying fluid, at much lower concentrations than in seawater. This hypothesis could not only explain the low Mg/Ca ratio in foraminiferal tests compared to inorganic calcite, but could possibly also account for its elevated sensitivity to temperature compared with inorganically precipitated CaCO3.
Collapse
Affiliation(s)
- Fiorella Prada
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Racheli Shaul
- Department of Earth and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sigal Abramovich
- Department of Earth and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Yair Rosenthal
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
2
|
Benariba MA, Hannachi K, Zhu S, Zhang Y, Wang X, Zhou N. A liposome-based assay for cancer biomarker detection: exploring the correlation between platelet-derived microvesicles and NSCLC-associated miRNAs. NANOSCALE 2024; 16:22037-22046. [PMID: 39527124 DOI: 10.1039/d4nr03704a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advances in molecular biology have enabled the identification of numerous cancer biomarkers, offering the potential to improve the diagnosis and prognosis of cancer. In non-small cell lung cancer (NSCLC), the role of platelet-derived microvesicles (PMVs) in cancer progression has received limited attention. While previous studies have focused on the increase of extracellular vesicles in plasma and their interaction with cancer, the expression of microRNAs (miRNAs) delivered through PMVs following platelet activation has remained largely unexplored. This study fills this knowledge gap by investigating miRNA expression in PMVs isolated from healthy donors and NSCLC patients following calcium treatment, a known platelet activator. A significant correlation was found between PMV levels and the expression of specific miRNAs; specifically, miRNA-21 expression increased 7.89 ± 0.44-fold in NSCLC patients and 7.12 ± 0.49-fold in healthy donors after calcium treatment. These findings highlight the potential of PMVs and their miRNA cargo to serve as specific biomarkers for NSCLC, offering valuable insights into cancer diagnosis and prognosis. To facilitate the sensitive detection of these miRNAs, a novel carboxyfluorescein (CF)-loaded liposome-based assay was developed. This assay demonstrated enhanced sensitivity, achieving a detection limit of 1.03 pg mL-1, when combined with a calcium platelet-activation approach. This research has the potential to lead to the development of innovative diagnostic tools and therapeutic strategies, ultimately improving outcomes for patients with NSCLC and other cancers.
Collapse
Affiliation(s)
- Mohamed Aimene Benariba
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
- Bioengineering Laboratory, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria
| | - Kanza Hannachi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Sha Zhu
- Department of Urology, the Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi 214002, China.
| | - Yuting Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Xiaoli Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
4
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Calvo B, Torres-Vidal P, Delrio-Lorenzo A, Rodriguez C, Aulestia FJ, Rojo-Ruiz J, McVeigh BM, Moiseenkova-Bell V, Yule DI, Garcia-Sancho J, Patel S, Alonso MT. Direct measurements of luminal Ca 2+ with endo-lysosomal GFP-aequorin reveal functional IP 3 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.547422. [PMID: 39211134 PMCID: PMC11360962 DOI: 10.1101/2023.07.11.547422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Endo-lysosomes are considered acidic Ca 2+ stores but direct measurements of luminal Ca 2+ within them are limited. Here we report that the Ca 2+ -sensitive luminescent protein aequorin does not reconstitute with its cofactor at highly acidic pH but that a significant fraction of the probe is functional within a mildly acidic compartment when targeted to the endo-lysosomal system. We leveraged this probe (ELGA) to report Ca 2+ dynamics in this compartment. We show that Ca 2+ uptake is ATP-dependent and sensitive to blockers of endoplasmic reticulum Ca 2+ pumps. We find that the Ca 2+ mobilizing messenger IP 3 which typically targets the endoplasmic reticulum evokes robust luminal responses in wild type cells, but not in IP 3 receptor knock-out cells. Responses were comparable to those evoked by activation of the endo-lysosomal ion channel TRPML1. Stimulation with IP 3 -forming agonists also mobilized the store in intact cells. Super-resolution microscopy analysis confirmed the presence of IP 3 receptors within the endo-lysosomal system, both in live and fixed cells. Our data reveal a physiologically-relevant, IP 3 -sensitive store of Ca 2+ within the endo-lysosomal system.
Collapse
|
6
|
Kang H, Choi SW, Kim JY, Oh SJ, Kim SJ, Lee MS. ER-to-lysosome Ca 2+ refilling followed by K + efflux-coupled store-operated Ca 2+ entry in inflammasome activation and metabolic inflammation. eLife 2024; 12:RP87561. [PMID: 38953285 PMCID: PMC11219040 DOI: 10.7554/elife.87561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.
Collapse
Affiliation(s)
- Hyereen Kang
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Seong Woo Choi
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of MedicineGyeongjuRepublic of Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| |
Collapse
|
7
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
8
|
Bretou M, Sannerud R, Escamilla-Ayala A, Leroy T, Vrancx C, Van Acker ZP, Perdok A, Vermeire W, Vorsters I, Van Keymolen S, Maxson M, Pavie B, Wierda K, Eskelinen EL, Annaert W. Accumulation of APP C-terminal fragments causes endolysosomal dysfunction through the dysregulation of late endosome to lysosome-ER contact sites. Dev Cell 2024; 59:1571-1592.e9. [PMID: 38626765 DOI: 10.1016/j.devcel.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/18/2024]
Abstract
Neuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation. This endolysosomal demise is γ-secretase dependent, requires membrane-tethered APP cytoplasmic domains, and is rescued by APP depletion. APP C-terminal fragments (CTFs) localized to late endosome/lysosome-endoplasmic reticulum contacts; an excess of APP-CTFs herein reduced lysosomal Ca2+ refilling from the endoplasmic reticulum, promoting cholesterol accretion. Tonic regulation by APP-CTFs provides a mechanistic explanation for their cellular toxicity: failure to timely degrade APP-CTFs sustains downstream signaling, instigating lysosomal dyshomeostasis, as observed in prodromal AD. This is the opposite of substrates such as Notch, which require intramembrane proteolysis to initiate signaling.
Collapse
Affiliation(s)
- Marine Bretou
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Tom Leroy
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sophie Van Keymolen
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Michelle Maxson
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Benjamin Pavie
- VIB-BioImaging Core, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
10
|
Goretzko J, Pauels I, Heitzig N, Thomas K, Kardell M, Naß J, Krogsaeter EK, Schloer S, Spix B, Linard Matos AL, Leser C, Wegner T, Glorius F, Bracher F, Gerke V, Rossaint J, Grimm C, Rescher U. P-selectin-dependent leukocyte adhesion is governed by endolysosomal two-pore channel 2. Cell Rep 2023; 42:113501. [PMID: 38039128 DOI: 10.1016/j.celrep.2023.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Upon proinflammatory challenges, endothelial cell surface presentation of the leukocyte receptor P-selectin, together with the stabilizing co-factor CD63, is needed for leukocyte capture and is mediated via demand-driven exocytosis from the Weibel-Palade bodies that fuse with the plasma membrane. We report that neutrophil recruitment to activated endothelium is significantly reduced in mice deficient for the endolysosomal cation channel TPC2 and in human primary endothelial cells with pharmacological TPC2 block. We observe less CD63 signal in whole-mount stainings of proinflammatory-activated cremaster muscles from TPC2 knockout mice. We find that TPC2 is activated and needed to ensure the transfer of CD63 from endolysosomes via Weibel-Palade bodies to the plasma membrane to retain P-selectin on the cell surface of human primary endothelial cells. Our findings establish TPC2 as a key element to leukocyte interaction with the endothelium and a potential pharmacological target in the control of inflammatory leukocyte recruitment.
Collapse
Affiliation(s)
- Jonas Goretzko
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Inga Pauels
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Nicole Heitzig
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Katharina Thomas
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert Schweitzer Campus 1, A1, 48149 Muenster, Germany
| | - Marina Kardell
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert Schweitzer Campus 1, A1, 48149 Muenster, Germany
| | - Johannes Naß
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Einar Kleinhans Krogsaeter
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Nussbaumstrasse 26, 80336 Munich, Germany
| | - Sebastian Schloer
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Barbara Spix
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Nussbaumstrasse 26, 80336 Munich, Germany
| | - Anna Lívia Linard Matos
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Charlotte Leser
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Tristan Wegner
- Institute of Organic Chemistry, University of Muenster, Corrensstrasse 40, 48149 Muenster, Germany
| | - Frank Glorius
- Institute of Organic Chemistry, University of Muenster, Corrensstrasse 40, 48149 Muenster, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, von-Esmarch-Strasse 56, 48149 Muenster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Albert Schweitzer Campus 1, A1, 48149 Muenster, Germany
| | - Christian Grimm
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Nussbaumstrasse 26, 80336 Munich, Germany; Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany
| | - Ursula Rescher
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center for Molecular Biology of Inflammation, University of Muenster (formerly Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster), von-Esmarch-Strasse 56, 48149 Muenster, Germany.
| |
Collapse
|
11
|
Platt FM. The expanding boundaries of sphingolipid lysosomal storage diseases; insights from Niemann-Pick disease type C. Biochem Soc Trans 2023; 51:1777-1787. [PMID: 37844193 PMCID: PMC10657176 DOI: 10.1042/bst20220711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Lysosomal storage diseases are inborn errors of metabolism that arise due to loss of function mutations in genes encoding lysosomal enzymes, protein co-factors or lysosomal membrane proteins. As a consequence of the genetic defect, lysosomal function is impaired and substrates build up in the lysosome leading to 'storage'. A sub group of these disorders are the sphingolipidoses in which sphingolipids accumulate in the lysosome. In this review, I will discuss how the study of these rare lysosomal disorders reveals unanticipated links to other rare and common human diseases using Niemann-Pick disease type C as an example.
Collapse
Affiliation(s)
- Frances M. Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| |
Collapse
|
12
|
Wu L, Lin Y, Song J, Li L, Rao X, Wan W, Wei G, Hua F, Ying J. TMEM175: A lysosomal ion channel associated with neurological diseases. Neurobiol Dis 2023; 185:106244. [PMID: 37524211 DOI: 10.1016/j.nbd.2023.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Lysosomes are acidic intracellular organelles with autophagic functions that are critical for protein degradation and mitochondrial homeostasis, while abnormalities in lysosomal physiological functions are closely associated with neurological disorders. Transmembrane protein 175 (TMEM175), an ion channel in the lysosomal membrane that is essential for maintaining lysosomal acidity, has been proven to coordinate with V-ATPase to modulate the luminal pH of the lysosome to assist the digestion of abnormal proteins and organelles. However, there is considerable controversy about the characteristics of TMEM175. In this review, we introduce the research progress on the structural, modulatory, and functional properties of TMEM175, followed by evidence of its relevance for neurological disorders. Finally, we discuss the potential value of TMEM175 as a therapeutic target in the hope of providing new directions for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Longshan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China.
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China; Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, 330006 Nanchang City, Jiangxi Privince, China.
| |
Collapse
|
13
|
Moccia F, Fiorio Pla A, Lim D, Lodola F, Gerbino A. Intracellular Ca 2+ signalling: unexpected new roles for the usual suspect. Front Physiol 2023; 14:1210085. [PMID: 37576340 PMCID: PMC10413985 DOI: 10.3389/fphys.2023.1210085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca2+ into the cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+ handling machinery varies among different cell types to generate intracellular Ca2+ signals that are selectively tailored to subserve specific functions. The advent of novel high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and genetic Ca2+ indicators, as well as the development of novel genetic engineering tools to manipulate single cells and whole animals, has shed novel light on the regulation of cellular activity by the Ca2+ handling machinery. A symposium organized within the framework of the 72nd Annual Meeting of the Italian Society of Physiology, held in Bari on 14-16th September 2022, has recently addressed many of the unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular fate in healthy and disease states. Herein, we present a report of this symposium, in which the following emerging topics were discussed: 1) Regulation of water reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+ transfer in Alzheimer's disease-related astroglial dysfunction; 3) The non-canonical role of TRP Melastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular system.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Novara, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
14
|
Ujiié Y, Ishitani Y, Nagai Y, Takaki Y, Toyofuku T, Ishii S. Unique evolution of foraminiferal calcification to survive global changes. SCIENCE ADVANCES 2023; 9:eadd3584. [PMID: 37343099 DOI: 10.1126/sciadv.add3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Foraminifera, the most ancient known calcium carbonate-producing eukaryotes, are crucial players in global biogeochemical cycles and well-used environmental indicators in biogeosciences. However, little is known about their calcification mechanisms. This impedes understanding the organismal responses to ocean acidification, which alters marine calcium carbonate production, potentially leading to biogeochemical cycle changes. We conducted comparative single-cell transcriptomics and fluorescent microscopy and identified calcium ion (Ca2+) transport/secretion genes and α-carbonic anhydrases that control calcification in a foraminifer. They actively take up Ca2+ to boost mitochondrial adenosine triphosphate synthesis during calcification but need to pump excess intracellular Ca2+ to the calcification site to prevent cell death. Unique α-carbonic anhydrase genes induce the generation of bicarbonate and proton from multiple CO2 sources. These control mechanisms have evolved independently since the Precambrian to enable the development of large cells and calcification despite decreasing Ca2+ concentrations and pH in seawater. The present findings provide previously unknown insights into the calcification mechanisms and their subsequent function in enduring ocean acidification.
Collapse
Affiliation(s)
- Yurika Ujiié
- Marine Core Research Institute, Kochi University, Kōchi, Japan
| | - Yoshiyuki Ishitani
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yukiko Nagai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- National Museum of Nature and Science, Tokyo, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takashi Toyofuku
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Tokyo University of Marine Science and Technology (TUMSAT), Tokyo, Japan
| | - Shun'ichi Ishii
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
15
|
Fathi-Karkan S, Heidarzadeh M, Narmi MT, Mardi N, Amini H, Saghati S, Abrbekoh FN, Saghebasl S, Rahbarghazi R, Khoshfetrat AB. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol 2023:125232. [PMID: 37302628 DOI: 10.1016/j.ijbiomac.2023.125232] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 μm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Morteza Heidarzadeh
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450 Sariyer, Istanbul, Turkey
| | | | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Saghebasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
16
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
17
|
Dhaouadi N, Vitto VAM, Pinton P, Galluzzi L, Marchi S. Ca 2+ signaling and cell death. Cell Calcium 2023; 113:102759. [PMID: 37210868 DOI: 10.1016/j.ceca.2023.102759] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Multiple forms of regulated cell death (RCD) have been characterized, each of which originates from the activation of a dedicated molecular machinery. RCD can occur in purely physiological settings or upon failing cellular adaptation to stress. Ca2+ions have been shown to physically interact with - and hence regulate - various components of the RCD machinery. Moreover, intracellular Ca2+ accumulation can promote organellar dysfunction to degree that can be overtly cytotoxic or sensitize cells to RCD elicited by other stressors. Here, we provide an overview of the main links between Ca2+and different forms of RCD, including apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- Nada Dhaouadi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | | | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy; GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| |
Collapse
|
18
|
Wahl-Schott C, Freichel M, Hennis K, Philippaert K, Ottenheijm R, Tsvilovskyy V, Varbanov H. Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging. Handb Exp Pharmacol 2023; 278:277-304. [PMID: 36894791 DOI: 10.1007/164_2023_637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Endo-lysosomes are membrane-bound acidic organelles that are involved in endocytosis, recycling, and degradation of extracellular and intracellular material. The membranes of endo-lysosomes express several Ca2+-permeable cation ion channels, including two-pore channels (TPC1-3) and transient receptor potential mucolipin channels (TRPML1-3). In this chapter, we will describe four different state-of-the-art Ca2+ imaging approaches, which are well-suited to investigate the function of endo-lysosomal cation channels. These techniques include (1) global cytosolic Ca2+ measurements, (2) peri-endo-lysosomal Ca2+ imaging using genetically encoded Ca2+ sensors that are directed to the cytosolic endo-lysosomal membrane surface, (3) Ca2+ imaging of endo-lysosomal cation channels, which are engineered in order to redirect them to the plasma membrane in combination with approaches 1 and 2, and (4) Ca2+ imaging by directing Ca2+ indicators to the endo-lysosomal lumen. Moreover, we will review useful small molecules, which can be used as valuable tools for endo-lysosomal Ca2+ imaging. Rather than providing complete protocols, we will discuss specific methodological issues related to endo-lysosomal Ca2+ imaging.
Collapse
Affiliation(s)
- Christian Wahl-Schott
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany.
| | - Konstantin Hennis
- Institut für Kardiovaskuläre Physiologie und Pathophysiologie, Lehrstuhl für Vegetative Physiologie, Biomedizinisches Zentrum, Ludwig-Maximilians-Universität München, München, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Hristo Varbanov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover(MHH), Hannover, Germany
| |
Collapse
|
19
|
Cai W, Li P, Gu M, Xu H. Lysosomal Ion Channels and Lysosome-Organelle Interactions. Handb Exp Pharmacol 2023; 278:93-108. [PMID: 36882602 DOI: 10.1007/164_2023_640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Intracellular organelles exchange their luminal contents with each other via both vesicular and non-vesicular mechanisms. By forming membrane contact sites (MCSs) with ER and mitochondria, lysosomes mediate bidirectional transport of metabolites and ions between lysosomes and organelles that regulate lysosomal physiology, movement, membrane remodeling, and membrane repair. In this chapter, we will first summarize the current knowledge of lysosomal ion channels and then discuss the molecular and physiological mechanisms that regulate lysosome-organelle MCS formation and dynamics. We will also discuss the roles of lysosome-ER and lysosome-mitochondria MCSs in signal transduction, lipid transport, Ca 2+ transfer, membrane trafficking, and membrane repair, as well as their roles in lysosome-related pathologies.
Collapse
Affiliation(s)
- Weijie Cai
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Ping Li
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Mingxue Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dun Neurological Research Institute, Houston, TX, USA
| | - Haoxing Xu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dun Neurological Research Institute, Houston, TX, USA. .,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Yang Z, Koslover EF. Diffusive exit rates through pores in membrane-enclosed structures. Phys Biol 2023; 20. [PMID: 36626849 DOI: 10.1088/1478-3975/acb1ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
The function of many membrane-enclosed intracellular structures relies on release of diffusing particles that exit through narrow pores or channels in the membrane. The rate of release varies with pore size, density, and length of the channel. We propose a simple approximate model, validated with stochastic simulations, for estimating the effective release rate from cylinders, and other simple-shaped domains, as a function of channel parameters. The results demonstrate that, for very small pores, a low density of channels scattered over the boundary is sufficient to achieve substantial rates of particle release. Furthermore, we show that increasing the length of passive channels will both reduce release rates and lead to a less steep dependence on channel density. Our results are compared to previously-measured local calcium release rates from tubules of the endoplasmic reticulum, providing an estimate of the relevant channel density responsible for the observed calcium efflux.
Collapse
Affiliation(s)
- Zitao Yang
- La Jolla Country Day School, La Jolla, CA 92037, United States of America
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, United States of America
| |
Collapse
|
21
|
Kwok ACM, Chan WS, Wong JTY. Dinoflagellate Amphiesmal Dynamics: Cell Wall Deposition with Ecdysis and Cellular Growth. Mar Drugs 2023; 21:md21020070. [PMID: 36827111 PMCID: PMC9959387 DOI: 10.3390/md21020070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Dinoflagellates are a major aquatic protist group with amphiesma, multiple cortical membranous "cell wall" layers that contain large circum-cortical alveolar sacs (AVs). AVs undergo extensive remodeling during cell- and life-cycle transitions, including ecdysal cysts (ECs) and resting cysts that are important in some harmful algal bloom initiation-termination. AVs are large cortical vesicular compartments, within which are elaborate cellulosic thecal plates (CTPs), in thecate species, and the pellicular layer (PL). AV-CTPs provide cellular mechanical protection and are targets of vesicular transport that are replaced during EC-swarmer cell transition, or with increased deposition during the cellular growth cycle. AV-PL exhibits dynamical-replacement with vesicular trafficking that are orchestrated with amphiesmal chlortetracycline-labeled Ca2+ stores signaling, integrating cellular growth with different modes of cell division cycle/progression. We reviewed the dynamics of amphiesma during different cell division cycle modes and life cycle stages, and its multifaceted regulations, focusing on the regulatory and functional readouts, including the coral-zooxanthellae interactions.
Collapse
|
22
|
Zajac M, Modi S, Krishnan Y. The evolution of organellar calcium mapping technologies. Cell Calcium 2022; 108:102658. [PMID: 36274564 PMCID: PMC10224794 DOI: 10.1016/j.ceca.2022.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Intracellular Ca2+ fluxes are dynamically controlled by the co-involvement of multiple organellar pools of stored Ca2+. Endolysosomes are emerging as physiologically critical, yet underexplored, sources and sinks of intracellular Ca2+. Delineating the role of organelles in Ca2+ signaling has relied on chemical fluorescent probes and electrophysiological strategies. However, the acidic endolysosomal environment presents unique issues, which preclude the use of traditional chemical reporter strategies to map lumenal Ca2+. Here, we broadly address the current state of knowledge about organellar Ca2+ pools. We then outline the application of traditional probes, and their sensing paradigms. We then discuss how a new generation of probes overcomes the limitations of traditional Ca2+probes, emphasizing their ability to offer critical insights into endolysosomal Ca2+, and its feedback with other organellar pools.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Souvik Modi
- Esya Labs, Translation and Innovation Hub, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
23
|
Hu M, Zhou N, Cai W, Xu H. Lysosomal solute and water transport. J Cell Biol 2022; 221:213536. [PMID: 36219209 PMCID: PMC9559593 DOI: 10.1083/jcb.202109133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Lysosomes mediate hydrolase-catalyzed macromolecule degradation to produce building block catabolites for reuse. Lysosome function requires an osmo-sensing machinery that regulates osmolytes (ions and organic solutes) and water flux. During hypoosmotic stress or when undigested materials accumulate, lysosomes become swollen and hypo-functional. As a membranous organelle filled with cargo macromolecules, catabolites, ions, and hydrolases, the lysosome must have mechanisms that regulate its shape and size while coordinating content exchange. In this review, we discussed the mechanisms that regulate lysosomal fusion and fission as well as swelling and condensation, with a focus on solute and water transport mechanisms across lysosomal membranes. Lysosomal H+, Na+, K+, Ca2+, and Cl- channels and transporters sense trafficking and osmotic cues to regulate both solute flux and membrane trafficking. We also provide perspectives on how lysosomes may adjust the volume of themselves, the cytosol, and the cytoplasm through the control of lysosomal solute and water transport.
Collapse
Affiliation(s)
- Meiqin Hu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Liangzhu Laboratory & Zhejiang University Medical Center, Hangzhou, China
| | - Nan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Liangzhu Laboratory & Zhejiang University Medical Center, Hangzhou, China
| | - Weijie Cai
- Liangzhu Laboratory & Zhejiang University Medical Center, Hangzhou, China
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Liangzhu Laboratory & Zhejiang University Medical Center, Hangzhou, China.,Department of Neurology, Second Affiliated Hospital of Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
24
|
Bonany M, Pérez-Berná AJ, Dučić T, Pereiro E, Martin-Gómez H, Mas-Moruno C, van Rijt S, Zhao Z, Espanol M, Ginebra MP. Hydroxyapatite nanoparticles-cell interaction: New approaches to disclose the fate of membrane-bound and internalised nanoparticles. BIOMATERIALS ADVANCES 2022; 142:213148. [PMID: 36274359 DOI: 10.1016/j.bioadv.2022.213148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/03/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Hydroxyapatite nanoparticles are popular tools in bone regeneration, but they have also been used for gene delivery and as anticancer drugs. Understanding their mechanism of action, particularly for the latter application, is crucial to predict their toxicity. To this end, we aimed to elucidate the importance of nanoparticle membrane interactions in the cytotoxicity of MG-63 cells using two different types of nanoparticles. In addition, conventional techniques for studying nanoparticle internalisation were evaluated and compared with newer and less exploited approaches. Hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles were used as suspensions or compacted as specular discs. Comparison between cells seeded on the discs and those supplemented with the nanoparticles allowed direct interaction of the cell membrane with the material to be ruled out as the main mechanism of toxicity. In addition, standard techniques such as flow cytometry were inconclusive when used to assess nanoparticles toxicity. Interestingly, the use of intracellular calcium fluorescent probes revealed the presence of a high number of calcium-rich vesicles after nanoparticle supplementation in cell culture. These structures could not be detected by transmission electron microscopy due to their liquid content. However, by using cryo-soft X-ray imaging, which was used to visualise the cellular ultrastructure without further treatment other than vitrification and to quantify the linear absorption coefficient of each organelle, it was possible to identify them as multivesicular bodies, potentially acting as calcium stores. In the study, an advanced state of degradation of the hydroxyapatite and magnesium-doped hydroxyapatite nanoparticles within MG-63 cells was observed. Overall, we demonstrate that the combination of fluorescent calcium probes together with cryo-SXT is an excellent approach to investigate intracellular calcium, especially when found in its soluble form.
Collapse
Affiliation(s)
- Mar Bonany
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), UPC, 08028 Barcelona, Spain
| | | | - Tanja Dučić
- MISTRAL Beamline Experiments Division, ALBA Synchrotron Light Source, 08290 Barcelona, Spain
| | - Eva Pereiro
- MISTRAL Beamline Experiments Division, ALBA Synchrotron Light Source, 08290 Barcelona, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), UPC, 08028 Barcelona, Spain
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6200, MD, Maastricht, the Netherlands
| | - Zhitong Zhao
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), UPC, 08028 Barcelona, Spain.
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain; Barcelona Research Centre in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain; Biomedical Engineering Research Center (CREB), UPC, 08028 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Dave N, LaFavers K, Arrizabalaga G. The Dually Localized EF-Hand Domain-Containing Protein TgEFP1 Regulates the Lytic Cycle of Toxoplasma gondii. Cells 2022; 11:1709. [PMID: 35626745 PMCID: PMC9139715 DOI: 10.3390/cells11101709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The propagation of the obligate intracellular parasite Toxoplasma gondii is tightly regulated by calcium signaling. However, the mechanisms by which calcium homeostasis and fluxes are regulated in this human pathogen are not fully understood. To identify Toxoplasma's calcium homeostasis network, we have characterized a novel EF-hand domain-containing protein, which we have named TgEFP1. We have determined that TgEFP1 localizes to a previously described compartment known as the plant-like vacuole or the endosomal-like compartment (PLV/ELC), which harbors several proteins related to ionic regulation. Interestingly, partial permeabilization techniques showed that TgEFP1 is also secreted into the parasitophorous vacuole (PV), within which the parasite divides. Ultrastructure expansion microscopy confirmed the unusual dual localization of TgEFP1 at the PLV/ELC and the PV. Furthermore, we determined that the localization of TgEFP1 to the PV, but not to the PLV/ELC, is affected by disruption of Golgi-dependent transport with Brefeldin A. Knockout of TgEFP1 results in faster propagation in tissue culture, hypersensitivity to calcium ionophore-induced egress, and premature natural egress. Thus, our work has revealed an interplay between the PV and the PLV/ELC and a role for TgEFP1 in the regulation of calcium-dependent events.
Collapse
Affiliation(s)
| | | | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (N.D.); (K.L.)
| |
Collapse
|
26
|
Mondal A, Appu AP, Sadhukhan T, Bagh MB, Previde RM, Sadhukhan S, Stojilkovic S, Liu A, Mukherjee AB. Ppt1-deficiency dysregulates lysosomal Ca ++ homeostasis contributing to pathogenesis in a mouse model of CLN1 disease. J Inherit Metab Dis 2022; 45:635-656. [PMID: 35150145 PMCID: PMC9090967 DOI: 10.1002/jimd.12485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Inactivating mutations in the PPT1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) underlie the CLN1 disease, a devastating neurodegenerative lysosomal storage disorder. The mechanism of pathogenesis underlying CLN1 disease has remained elusive. PPT1 is a lysosomal enzyme, which catalyzes the removal of palmitate from S-palmitoylated proteins (constituents of ceroid lipofuscin) facilitating their degradation and clearance by lysosomal hydrolases. Thus, it has been proposed that Ppt1-deficiency leads to lysosomal accumulation of ceroid lipofuscin leading to CLN1 disease. While S-palmitoylation is catalyzed by palmitoyl acyltransferases (called ZDHHCs), palmitoyl-protein thioesterases (PPTs) depalmitoylate these proteins. We sought to determine the mechanism by which Ppt1-deficiency may impair lysosomal degradative function leading to infantile neuronal ceroid lipofuscinosis pathogenesis. Here, we report that in Ppt1-/- mice, which mimic CLN1 disease, low level of inositol 3-phosphate receptor-1 (IP3R1) that mediates Ca++ transport from the endoplasmic reticulum to the lysosome dysregulated lysosomal Ca++ homeostasis. Intriguingly, the transcription factor nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4), which regulates IP3R1-expression, required S-palmitoylation for trafficking from the cytoplasm to the nucleus. We identified two palmitoyl acyltransferases, ZDHHC4 and ZDHHC8, which catalyzed S-palmitoylation of NFATC4. Notably, in Ppt1-/- mice, reduced ZDHHC4 and ZDHHC8 levels markedly lowered S-palmitoylated NFATC4 (active) in the nucleus, which inhibited IP3R1-expression, thereby dysregulating lysosomal Ca++ homeostasis. Consequently, Ca++ -dependent lysosomal enzyme activities were markedly suppressed. Impaired lysosomal degradative function impaired autophagy, which caused lysosomal storage of undigested cargo. Importantly, IP3R1-overexpression in Ppt1-/- mouse fibroblasts ameliorated this defect. Our results reveal a previously unrecognized role of Ppt1 in regulating lysosomal Ca++ homeostasis and suggest that this defect contributes to pathogenesis of CLN1 disease.
Collapse
Affiliation(s)
- Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine
| | - Abhilash P. Appu
- Section on Developmental Genetics, Division of Translational Medicine
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine
| | - Maria B. Bagh
- Section on Developmental Genetics, Division of Translational Medicine
| | - Rafael M. Previde
- Section on Cellular Signaling, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | | | - Stanko Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine
- Correspondence to AM () or ABM ()
| |
Collapse
|
27
|
Barral DC, Staiano L, Guimas Almeida C, Cutler DF, Eden ER, Futter CE, Galione A, Marques ARA, Medina DL, Napolitano G, Settembre C, Vieira OV, Aerts JMFG, Atakpa‐Adaji P, Bruno G, Capuozzo A, De Leonibus E, Di Malta C, Escrevente C, Esposito A, Grumati P, Hall MJ, Teodoro RO, Lopes SS, Luzio JP, Monfregola J, Montefusco S, Platt FM, Polishchuck R, De Risi M, Sambri I, Soldati C, Seabra MC. Current methods to analyze lysosome morphology, positioning, motility and function. Traffic 2022; 23:238-269. [PMID: 35343629 PMCID: PMC9323414 DOI: 10.1111/tra.12839] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
Collapse
Affiliation(s)
- Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute for Genetic and Biomedical ResearchNational Research Council (CNR)MilanItaly
| | | | - Dan F. Cutler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Emily R. Eden
- University College London (UCL) Institute of OphthalmologyLondonUK
| | - Clare E. Futter
- University College London (UCL) Institute of OphthalmologyLondonUK
| | | | | | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Clinical Medicine and Surgery DepartmentFederico II UniversityNaplesItaly
| | - Otília V. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | | | | | - Gemma Bruno
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute of Biochemistry and Cell Biology, CNRRomeItaly
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Michael J. Hall
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Rita O. Teodoro
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - J. Paul Luzio
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | | | | | | | - Maria De Risi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Miguel C. Seabra
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
28
|
Xu J, Minobe E, Kameyama M. Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson’s Disease. Front Cell Neurosci 2022; 16:867385. [PMID: 35496903 PMCID: PMC9050104 DOI: 10.3389/fncel.2022.867385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/23/2022] [Indexed: 12/06/2022] Open
Abstract
Parkinson’s disease (PD), a common neurodegenerative disease characterized by motor dysfunction, results from the death of dopaminergic neurons in the substantia nigra pars compacta (SNc). Although the precise causes of PD are still unknown, several risk factors for PD have been determined, including aging, genetic mutations, environmental factors, and gender. Currently, the molecular mechanisms underlying risk factor-related neurodegeneration in PD remain elusive. Endoplasmic reticulum stress, excessive reactive oxygen species production, and impaired autophagy have been implicated in neuronal death in the SNc in PD. Considering that these pathological processes are tightly associated with intracellular Ca2+, it is reasonable to hypothesize that dysregulation of Ca2+ handling may mediate risk factors-related PD pathogenesis. We review the recent findings on how risk factors cause Ca2+ dyshomeostasis and how aberrant Ca2+ handling triggers dopaminergic neurodegeneration in the SNc in PD, thus putting forward the possibility that manipulation of specific Ca2+ handling proteins and subcellular Ca2+ homeostasis may lead to new promising strategies for PD treatment.
Collapse
|
29
|
Hulsurkar MM, Lahiri SK, Karch J, Wang MC, Wehrens XHT. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opin Ther Targets 2022; 26:303-317. [PMID: 35426759 PMCID: PMC9081256 DOI: 10.1080/14728222.2022.2067479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Abnormal calcium signaling between organelles such as the sarcoplasmic reticulum (SR), mitochondria and lysosomes is a key feature of heart diseases. Calcium serves as a secondary messenger mediating inter-organellar crosstalk, essential for maintaining the cardiomyocyte function. AREAS COVERED This article examines the available literature related to calcium channels and transporters involved in inter-organellar calcium signaling. The SR calcium-release channels ryanodine receptor type-2 (RyR2) and inositol 1,4,5-trisphosphate receptor (IP3R), and calcium-transporter SR/ER-ATPase 2a (SERCA2a) are illuminated. The roles of mitochondrial voltage-dependent anion channels (VDAC), the mitochondria Ca2+ uniporter complex (MCUC), and the lysosomal H+/Ca2+ exchanger, two pore channels (TPC), and transient receptor potential mucolipin (TRPML) are discussed. Furthermore, recent studies showing calcium-mediated crosstalk between the SR, mitochondria, and lysosomes as well as how this crosstalk is dysregulated in cardiac diseases are placed under the spotlight. EXPERT OPINION Enhanced SR calcium release via RyR2 and reduced SR reuptake via SERCA2a, increased VDAC and MCUC-mediated calcium uptake into mitochondria, and enhanced lysosomal calcium-release via lysosomal TPC and TRPML may all contribute to aberrant calcium homeostasis causing heart disease. While mechanisms of this crosstalk need to be studied further, interventions targeting these calcium channels or combinations thereof might represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mohit M Hulsurkar
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Satadru K Lahiri
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Baylor College of Medicine, Houston TX USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xander H T Wehrens
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Jain V, Bose S, Arya AK, Arif T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:1618. [PMID: 35406389 PMCID: PMC8996909 DOI: 10.3390/cancers14071618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that regulate essential biological processes such as cellular homeostasis, development, and aging. They are primarily connected to the degradation/recycling of cellular macromolecules and participate in cellular trafficking, nutritional signaling, energy metabolism, and immune regulation. Therefore, lysosomes connect cellular metabolism and signaling pathways. Lysosome's involvement in the critical biological processes has rekindled clinical interest towards this organelle for treating various diseases, including cancer. Recent research advancements have demonstrated that lysosomes also regulate the maintenance and hemostasis of hematopoietic stem cells (HSCs), which play a critical role in the progression of acute myeloid leukemia (AML) and other types of cancer. Lysosomes regulate both HSCs' metabolic networks and identity transition. AML is a lethal type of blood cancer with a poor prognosis that is particularly associated with aging. Although the genetic landscape of AML has been extensively described, only a few targeted therapies have been produced, warranting the need for further research. This review summarizes the functions and importance of targeting lysosomes in AML, while highlighting the significance of lysosomes in HSCs maintenance.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center, Department of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA;
| | - Swaroop Bose
- Department of Dermatology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA;
| | - Awadhesh K. Arya
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
31
|
Park K, Lim H, Kim J, Hwang Y, Lee YS, Bae SH, Kim H, Kim H, Kang SW, Kim JY, Lee MS. Lysosomal Ca2+-mediated TFEB activation modulates mitophagy and functional adaptation of pancreatic β-cells to metabolic stress. Nat Commun 2022; 13:1300. [PMID: 35288580 PMCID: PMC8921223 DOI: 10.1038/s41467-022-28874-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
AbstractAlthough autophagy is critical for pancreatic β-cell function, the role and mechanism of mitophagy in β-cells are unclear. We studied the role of lysosomal Ca2+ in TFEB activation by mitochondrial or metabolic stress and that of TFEB-mediated mitophagy in β-cell function. Mitochondrial or metabolic stress induced mitophagy through lysosomal Ca2+ release, increased cytosolic Ca2+ and TFEB activation. Lysosomal Ca2+ replenishment by ER- > lysosome Ca2+ refilling was essential for mitophagy. β-cell-specific Tfeb knockout (TfebΔβ-cell) abrogated high-fat diet (HFD)-induced mitophagy, accompanied by increased ROS and reduced mitochondrial cytochrome c oxidase activity or O2 consumption. TfebΔβ-cell mice showed aggravation of HFD-induced glucose intolerance and impaired insulin release. Metabolic or mitochondrial stress induced TFEB-dependent expression of mitophagy receptors including Ndp52 and Optn, contributing to the increased mitophagy. These results suggest crucial roles of lysosomal Ca2+ release coupled with ER- > lysosome Ca2+ refilling and TFEB activation in mitophagy and maintenance of pancreatic β-cell function during metabolic stress.
Collapse
|
32
|
Hornsby E, King HW, Peiris M, Buccafusca R, Lee WYJ, Wing ES, Blackshaw LA, Lindsay JO, Stagg AJ. The cation channel TRPM8 influences the differentiation and function of human monocytes. J Leukoc Biol 2022; 112:365-381. [PMID: 35233801 PMCID: PMC9543907 DOI: 10.1002/jlb.1hi0421-181r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Monocytes are mononuclear phagocytes that can differentiate to a variety of cell fates under the influence of their microenvironment and hardwired commitment. We found that inhibition of TRPM8 in human blood CD14+ monocytes during a critical 3‐h window at the beginning of their differentiation into macrophages led to enhanced survival and LPS‐driven TNFα production after 24 h. TRPM8 antagonism also promoted LPS‐driven TNFα production in CD14+ monocytes derived from the intestinal mucosa. Macrophages that had been derived for 6 days under blockade of TRPM8 had impaired phagocytic capacity and were transcriptionally distinct. Most of the affected genes were altered in a way that opposed normal monocyte to macrophage differentiation indicating that TRPM8 activity promotes aspects of this differentiation programme. Thus, we reveal a novel role for TRPM8 in regulating human CD14+ monocyte fate and function.
Collapse
Affiliation(s)
- Eve Hornsby
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Hamish W King
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Roberto Buccafusca
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Wing-Yiu Jason Lee
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Elinor S Wing
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - L Ashley Blackshaw
- Centre for Neuroscience & Trauma, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James O Lindsay
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.,Department of Gastroenterology, Barts Health NHS Trust, The Royal London Hospital, Whitechapel, London, UK
| | - Andrew J Stagg
- Centre for Immunobiology & Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Terrar DA. Endolysosomal Calcium Release and Cardiac Physiology. Cell Calcium 2022; 104:102565. [DOI: 10.1016/j.ceca.2022.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
|
34
|
Recent advance in dual-functional luminescent probes for reactive species and common biological ions. Anal Bioanal Chem 2022; 414:5087-5103. [DOI: 10.1007/s00216-021-03792-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Indexed: 01/17/2023]
|
35
|
Gan N, Jiang Y. Structural biology of cation channels important for lysosomal calcium release. Cell Calcium 2022; 101:102519. [PMID: 34952412 PMCID: PMC8752501 DOI: 10.1016/j.ceca.2021.102519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/03/2023]
Abstract
Calcium is one of the most important second messengers in cells. The uptake and release of calcium ions are conducted by channels and transporters. Inside a eukaryotic cell, calcium is stored in intracellular organelles including the endoplasmic reticulum (ER), mitochondrion, and lysosome. Lysosomes are acid membrane-bounded organelles serving as the crucial degradation and recycling center of the cell. Lysosomes involve in multiple important signaling events, including nutrient sensing, lipid metabolism, and trafficking. Hitherto, two lysosomal cation channel families have been suggested to function as calcium release channels, namely the Two-pore Channel (TPC) family, and the Transient Receptor Potential Channel Mucolipin (TRPML) family. Additionally, a few plasma membrane calcium channels have also been found in the lysosomal membrane under certain circumstances. In this review, we will discuss the structural mechanism of the cation channels that may be important for lysosomal calcium release, primarily focusing on the TPCs and TRPMLs.
Collapse
Affiliation(s)
- Ninghai Gan
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA
| |
Collapse
|
36
|
Role of Na +/K +-ATPase in ischemic stroke: in-depth perspectives from physiology to pharmacology. J Mol Med (Berl) 2021; 100:395-410. [PMID: 34839371 DOI: 10.1007/s00109-021-02143-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
Na+/K+-ATPase (NKA) is a large transmembrane protein expressed in all cells. It is well studied for its ion exchanging function, which is indispensable for the maintenance of electrochemical gradients across the plasma membrane and herein neuronal excitability. The widely recognized pump function of NKA closely depends on its unique structure features and conformational changes upon binding of specific ions. Various Na+-dependent secondary transport systems are rigorously controlled by the ionic gradients generated by NKA and are essential for multiple physiological processes. In addition, roles of NKA as a signal transducer have also been unveiled nowadays. Plethora of signaling cascades are defined including Src-Ras-MAPK signaling, IP3R-mediated calcium oscillation, inflammation, and autophagy though most underlying mechanisms remain elusive. Ischemic stroke occurs when the blood flow carrying nutrients and oxygen into the brain is disrupted by blood clots, which is manifested by excitotoxicity, oxidative stress, inflammation, etc. The protective effect of NKA against ischemic stress is emerging gradually with the application of specific NKA inhibitor. However, NKA-related research is limited due to the opposite effects caused by NKA inhibitor at lower doses. The present review focuses on the recent progression involving different aspects about NKA in cellular homeostasis to present an in-depth understanding of this unique protein. Moreover, essential roles of NKA in ischemic pathology are discussed to provide a platform and bright future for the improvement in clinical research on ischemic stroke.
Collapse
|
37
|
Nutz B, Rupp U, Walther P, Ziegler A. The epidermis cells of mandible teeth in the terrestrial isopod Porcellio scaber: Differentiations for mineralisation with calcium phosphate and carbonate. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101101. [PMID: 34500136 DOI: 10.1016/j.asd.2021.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Generally, the mineralisation of the crustacean cuticle occurs when the cuticle has expanded after moulting. However, in the partes incisivae of Porcellio scaber, cuticle mineralisation with calcium phosphate already occurs before the moult. We investigated the ultrastructure and distribution of organelles within the epidermis cells and searched for calcium-containing organelles using EDX and EFTEM analysis. We found two different cell types. Calcium carbonate-secreting C-cells, which resemble the epithelial cells of the general integument, and the P-cells, which, as an unusual feature, have cell extensions up to 400 μm long. During secretion of the partes incisivae, these extensions end at the unmineralised tip and the phosphate-containing middle region. Their cell bodies contain most of the mitochondria located in basal folds and a high amount of endoplasmic reticulum. The cell extensions contain many microtubules, endoplasmic reticulum, large and small vesicles and densely stained rod-shaped cisternae. The rod-shaped cisternae and the endoplasmic reticulum contain calcium. During cuticle mineralisation, vesicles, which probably belong to the endo-lysosomal system, contain calcium and phosphorus. They occur at some distance and close to the cuticle. The mineral in these vesicles has a similar composition to that within the cuticle, suggesting that they play a role in cuticle mineralisation.
Collapse
Affiliation(s)
- Benedikt Nutz
- Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Ulrich Rupp
- Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | - Andreas Ziegler
- Central Facility for Electron Microscopy, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| |
Collapse
|
38
|
Gorkhali R, Tian L, Dong B, Bagchi P, Deng X, Pawar S, Duong D, Fang N, Seyfried N, Yang J. Extracellular calcium alters calcium-sensing receptor network integrating intracellular calcium-signaling and related key pathway. Sci Rep 2021; 11:20576. [PMID: 34663830 PMCID: PMC8523568 DOI: 10.1038/s41598-021-00067-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are a target for over 34% of current drugs. The calcium-sensing receptor (CaSR), a family C GPCR, regulates systemic calcium (Ca2+) homeostasis that is critical for many physiological, calciotropical, and noncalciotropical outcomes in multiple organs. However, the mechanisms by which extracellular Ca2+ (Ca2+ex) and the CaSR mediate networks of intracellular Ca2+-signaling and players involved throughout the life cycle of CaSR are largely unknown. Here we report the first CaSR protein–protein interactome with 94 novel putative and 8 previously published interactors using proteomics. Ca2+ex promotes enrichment of 66% of the identified CaSR interactors, pertaining to Ca2+ dynamics, endocytosis, degradation, trafficking, and primarily to protein processing in the endoplasmic reticulum (ER). These enhanced ER-related processes are governed by Ca2+ex-activated CaSR which directly modulates ER-Ca2+ (Ca2+ER), as monitored by a novel ER targeted Ca2+-sensor. Moreover, we validated the Ca2+ex dependent colocalizations and interactions of CaSR with ER-protein processing chaperone, 78-kDa glucose regulated protein (GRP78), and with trafficking-related protein. Live cell imaging results indicated that CaSR and vesicle-associated membrane protein-associated A (VAPA) are inter-dependent during Ca2+ex induced enhancement of near-cell membrane expression. This study significantly extends the repertoire of the CaSR interactome and reveals likely novel players and pathways of CaSR participating in Ca2+ER dynamics, agonist mediated ER-protein processing and surface expression.
Collapse
Affiliation(s)
- Rakshya Gorkhali
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Li Tian
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Bin Dong
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xiaonan Deng
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Shrikant Pawar
- Department of Biology, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Duc Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ning Fang
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jenny Yang
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
39
|
Tubular lysosomes harbor active ion gradients and poise macrophages for phagocytosis. Proc Natl Acad Sci U S A 2021; 118:2113174118. [PMID: 34607961 PMCID: PMC8522270 DOI: 10.1073/pnas.2113174118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are organelles that also act as cell-signaling hubs. They regulate functions ranging from antigen presentation to autophagy. Spherical lysosomes can spontaneously elongate into tubules in starving or inflamed immune cells. We describe a DNA-based reagent, denoted Tudor, that tubulates lysosomes in macrophages without triggering either an immune response or autophagy. Chemical imaging revealed that tubular lysosomes differ from vesicular ones in terms of their pH, calcium, and proteolytic activity. Tudor revealed a role for tubular lysosomes in that they enhance MMP9 secretion and phagocytosis in resting macrophages. The ability to tubulate lysosomes in resting immune cells without starving or inflaming them may help reveal new insights into how tubular lysosomes function. Lysosomes adopt dynamic, tubular states that regulate antigen presentation, phagosome resolution, and autophagy. Tubular lysosomes are studied either by inducing autophagy or by activating immune cells, both of which lead to cell states where lysosomal gene expression differs from the resting state. Therefore, it has been challenging to pinpoint the biochemical properties lysosomes acquire upon tubulation that could drive their functionality. Here we describe a DNA-based assembly that tubulates lysosomes in macrophages without activating them. Proteolytic activity maps at single-lysosome resolution revealed that tubular lysosomes were less degradative and showed proximal to distal luminal pH and Ca2+ gradients. Such gradients had been predicted but never previously observed. We identify a role for tubular lysosomes in promoting phagocytosis and activating MMP9. The ability to tubulate lysosomes without starving or activating immune cells may help reveal new roles for tubular lysosomes.
Collapse
|
40
|
Ye L, Zeng Q, Ling M, Ma R, Chen H, Lin F, Li Z, Pan L. Inhibition of IP3R/Ca2+ Dysregulation Protects Mice From Ventilator-Induced Lung Injury via Endoplasmic Reticulum and Mitochondrial Pathways. Front Immunol 2021; 12:729094. [PMID: 34603302 PMCID: PMC8479188 DOI: 10.3389/fimmu.2021.729094] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Rationale Disruption of intracellular calcium (Ca2+) homeostasis is implicated in inflammatory responses. Here we investigated endoplasmic reticulum (ER) Ca2+ efflux through the Inositol 1,4,5-trisphosphate receptor (IP3R) as a potential mechanism of inflammatory pathophysiology in a ventilator-induced lung injury (VILI) mouse model. Methods C57BL/6 mice were exposed to mechanical ventilation using high tidal volume (HTV). Mice were pretreated with the IP3R agonist carbachol, IP3R inhibitor 2-aminoethoxydiphenyl borate (2-APB) or the Ca2+ chelator BAPTA-AM. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected to measure Ca2+ concentrations, inflammatory responses and mRNA/protein expression associated with ER stress, NLRP3 inflammasome activation and inflammation. Analyses were conducted in concert with cultured murine lung cell lines. Results Lungs from mice subjected to HTV displayed upregulated IP3R expression in ER and mitochondrial-associated-membranes (MAMs), with enhanced formation of MAMs. Moreover, HTV disrupted Ca2+ homeostasis, with increased flux from the ER to the cytoplasm and mitochondria. Administration of carbachol aggravated HTV-induced lung injury and inflammation while pretreatment with 2-APB or BAPTA-AM largely prevented these effects. HTV activated the IRE1α and PERK arms of the ER stress signaling response and induced mitochondrial dysfunction-NLRP3 inflammasome activation in an IP3R-dependent manner. Similarly, disruption of IP3R/Ca2+ in MLE12 and RAW264.7 cells using carbachol lead to inflammatory responses, and stimulated ER stress and mitochondrial dysfunction. Conclusion Increase in IP3R-mediated Ca2+ release is involved in the inflammatory pathophysiology of VILI via ER stress and mitochondrial dysfunction. Antagonizing IP3R/Ca2+ and/or maintaining Ca2+ homeostasis in lung tissue represents a prospective treatment approach for VILI.
Collapse
Affiliation(s)
- Liu Ye
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qi Zeng
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Riliang Ma
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Haishao Chen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
41
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
42
|
Tegeder I, Kögel D. When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biol 2021; 100-101:99-117. [DOI: 10.1016/j.matbio.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
43
|
Danese A, Leo S, Rimessi A, Wieckowski MR, Fiorica F, Giorgi C, Pinton P. Cell death as a result of calcium signaling modulation: A cancer-centric prospective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119061. [PMID: 33991539 DOI: 10.1016/j.bbamcr.2021.119061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) and the complex regulatory system governed by Ca2+ signaling have been described to be of crucial importance in numerous aspects related to cell life and death decisions, especially in recent years. The growing attention given to this second messenger is justified by the pleiotropic nature of Ca2+-binding proteins and transporters and their consequent involvement in cell fate decisions. A growing number of works highlight that deregulation of Ca2+ signaling and homoeostasis is often deleterious and drives pathological conditions; in particular, a disruption of the main Ca2+-mediated death mechanisms may lead to uncontrolled cell growth that results in cancer. In this work, we review the latest useful evidence to better understand the complex network of pathways by which Ca2+ regulates cell life and death decisions.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Pasteur 3 Str., 02-093 Warsaw, Poland
| | | | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy.
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
44
|
Negri S, Faris P, Moccia F. Endolysosomal Ca 2+ signaling in cardiovascular health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:203-269. [PMID: 34392930 DOI: 10.1016/bs.ircmb.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in β-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
45
|
Abstract
Lysosomal calcium is emerging as a modulator of autophagy and lysosomal compartment, an obligatory partner to complete the autophagic pathway. A variety of specific signals such as nutrient deprivation or oxidative stress can trigger lysosomal calcium-mediated nuclear translocation of the transcription factor EB (TFEB), a master regulator of global lysosomal function. Also, lysosomal calcium can promote the formation of autophagosome vesicles (AVs) by a mechanism that requires the production of the phosphoinositide PI3P by the VPS34 autophagic complex and the activation of the energy-sensing kinase AMPK. Additionally, lysosomal calcium plays a role in membrane fusion and fission events involved in cellular processes such as endocytic maturation, autophagosome-lysosome fusion, lysosomal exocytosis, and lysosomal reformation upon autophagy completion. Lysosomal calcium-dependent functions are defective in cellular and animal models of the non-selective cation channel TRPML1, whose mutations in humans cause the neurodegenerative lysosomal storage disease mucolipidosis type IV (MLIV). Lysosomal calcium is not only acting as a positive regulator of autophagy, but it is also responsible for turning-off this process through the reactivation of the mTOR kinase during prolonged starvation. More recently, it has been described the role of lysosomal calcium on an elegant sequence of intracellular signaling events such as membrane repair, lysophagy, and lysosomal biogenesis upon the induction of different grades of lysosomal membrane damage. Here, we will discuss these novel findings that re-define the importance of the lysosome and lysosomal calcium signaling at regulating cellular metabolism.
Collapse
|
46
|
Morgan AJ, Davis LC, Galione A. Choreographing endo-lysosomal Ca 2+ throughout the life of a phagosome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119040. [PMID: 33872669 DOI: 10.1016/j.bbamcr.2021.119040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
The emergence of endo-lysosomes as ubiquitous Ca2+ stores with their unique cohort of channels has resulted in their being implicated in a growing number of processes in an ever-increasing number of cell types. The architectural and regulatory constraints of these acidic Ca2+ stores distinguishes them from other larger Ca2+ sources such as the ER and influx across the plasma membrane. In view of recent advances in the understanding of the modes of operation, we discuss phagocytosis as a template for how endo-lysosomal Ca2+ signals (generated via TPC and TRPML channels) can be integrated in multiple sophisticated ways into biological processes. Phagocytosis illustrates how different endo-lysosomal Ca2+ signals drive different phases of a process, and how these can be altered by disease or infection.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Park, Oxford OX1 3QT, UK.
| |
Collapse
|
47
|
Lysosomal Calcium Channels in Autophagy and Cancer. Cancers (Basel) 2021; 13:cancers13061299. [PMID: 33803964 PMCID: PMC8001254 DOI: 10.3390/cancers13061299] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a cellular self-eating process that uses lysosome, the waste disposal system of the cell, to degrade and recycle intracellular materials to maintain cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Calcium is an important cellular messenger that regulates the survival of all animal cells. Alterations to calcium homoeostasis are associated with cancer. While it has long been considered as cellular recycling center, the lysosome is now widely known as an intracellular calcium store that regulates autophagy and cancer progression by releasing calcium via some ion channels residing in the lysosomal membrane. In this review, we summarize existing mechanisms of autophagy regulation by lysosomal calcium channels and their implications in cancer development. We hope to guide readers toward a more in-depth understanding of the importance of lysosomal calcium channels in cancer, and potentially facilitate the development of new therapeutics for some cancers. Abstract Ca2+ is pivotal intracellular messenger that coordinates multiple cell functions such as fertilization, growth, differentiation, and viability. Intracellular Ca2+ signaling is regulated by both extracellular Ca2+ entry and Ca2+ release from intracellular stores. Apart from working as the cellular recycling center, the lysosome has been increasingly recognized as a significant intracellular Ca2+ store that provides Ca2+ to regulate many cellular processes. The lysosome also talks to other organelles by releasing and taking up Ca2+. In lysosomal Ca2+-dependent processes, autophagy is particularly important, because it has been implicated in many human diseases including cancer. This review will discuss the major components of lysosomal Ca2+ stores and their roles in autophagy and human cancer progression.
Collapse
|
48
|
Ahumada-Castro U, Bustos G, Silva-Pavez E, Puebla-Huerta A, Lovy A, Cárdenas C. In the Right Place at the Right Time: Regulation of Cell Metabolism by IP3R-Mediated Inter-Organelle Ca 2+ Fluxes. Front Cell Dev Biol 2021; 9:629522. [PMID: 33738285 PMCID: PMC7960657 DOI: 10.3389/fcell.2021.629522] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
In the last few years, metabolism has been shown to be controlled by cross-organelle communication. The relationship between the endoplasmic reticulum and mitochondria/lysosomes is the most studied; here, inositol 1,4,5-triphosphate (IP3) receptor (IP3R)-mediated calcium (Ca2+) release plays a central role. Recent evidence suggests that IP3R isoforms participate in synthesis and degradation pathways. This minireview will summarize the current findings in this area, emphasizing the critical role of Ca2+ communication on organelle function as well as catabolism and anabolism, particularly in cancer.
Collapse
Affiliation(s)
- Ulises Ahumada-Castro
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Galdo Bustos
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eduardo Silva-Pavez
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Andrea Puebla-Huerta
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Alenka Lovy
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Geroscience Center for Brain Health and Metabolism, Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
49
|
Zhao Z, Qin P, Huang YW. Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium 2021; 94:102360. [PMID: 33516131 PMCID: PMC7825922 DOI: 10.1016/j.ceca.2021.102360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Ion channels are necessary for correct lysosomal function including degradation of cargoes originating from endocytosis. Almost all enveloped viruses, including coronaviruses (CoVs), enter host cells via endocytosis, and do not escape endosomal compartments into the cytoplasm (via fusion with the endolysosomal membrane) unless the virus-encoded envelope proteins are cleaved by lysosomal proteases. With the ongoing outbreak of severe acute respiratory syndrome (SARS)-CoV-2, endolysosomal two-pore channels represent an exciting and emerging target for antiviral therapies. This review focuses on the latest knowledge of the effects of lysosomal ion channels on the cellular entry and uncoating of enveloped viruses, which may aid in development of novel therapies against emerging infectious diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Zhuangzhuang Zhao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Pan Qin
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yao-Wei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Institute of Preventive Veterinary Medicine, Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
50
|
Role of protons in calcium signaling. Biochem J 2021; 478:895-910. [PMID: 33635336 DOI: 10.1042/bcj20200971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/03/2023]
Abstract
Thirty-six years after the publication of the important article by Busa and Nuccitelli on the variability of intracellular pH (pHi) and the interdependence of pHi and intracellular Ca2+ concentration ([Ca2+]i), little research has been carried out on pHi and calcium signaling. Moreover, the results appear to be contradictory. Some authors claim that the increase in [Ca2+]i is due to a reduction in pHi, others that it is caused by an increase in pHi. The reasons for these conflicting results have not yet been discussed and clarified in an exhaustive manner. The idea that variations in pHi are insignificant, because cellular buffers quickly stabilize the pHi, may be a limiting and fundamentally wrong concept. In fact, it has been shown that protons can move and react in the cell before they are neutralized. Variations in pHi have a remarkable impact on [Ca2+]i and hence on some of the basic biochemical mechanisms of calcium signaling. This paper focuses on the possible triggering role of protons during their short cellular cycle and it suggests a new hypothesis for an IP3 proton dependent mechanism of action.
Collapse
|