1
|
Lu L, Gu X, Wang Z, Gao J, Fan F, Song G, Zhong C, Zhang H. Functional characterization of AcWRKY94 in response to Pseudomonas syringae pv. actinidiae in kiwifruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108933. [PMID: 39033650 DOI: 10.1016/j.plaphy.2024.108933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
WRKY transcription factors are essential for coping with various biotic stresses. Pseudomonas syringae pv. actinidiae (Psa)-induced kiwifruit canker is a major problem restricting kiwifruit yield. Nevertheless, it's unclear how the kiwifruit WRKY genes respond to Psa. Through genome-wide identification, 112 WRKY members were found in 'Hongyang' genome in this work. Promoter analysis revealed that there were many cis-acting elements associated with stress responses in the AcWRKY gene's promoter region. According to transcriptomic analysis, 90 of the AcWRKY genes were differently expressed following Psa, salicylic acid (SA), or methyl jasmonate (MeJA) treatments. Almost all group III WRKYs were responsive to at least one of these treatments, with tissue-specific expression patterns. Quantitative RT-PCR study provided more evidence that Psa and SA treatments significantly induced the expression of the group III WRKY gene AcWRKY94, whereas MeJA treatment repressed it. AcWRKY94 was a transcriptionally active protein localized in the nucleus. Transient overexpression of AcWRKY94 in the leaves of 'Hongyang' enhanced the resistance of kiwifruit to Psa. Overexpression of AcWRKY94 in kiwifruit callus remarkably promoted the expression of PR and JAZ genes associated with SA and JA signals, respectively. These data imply that AcWRKY94 controls the signaling pathway dependent on SA and JA, thereby enhancing resistance to Psa. Taken together, this study establishes the basis for functional research on WRKY genes and provides important information for elucidating the resistance mechanism of kiwifruit canker disease.
Collapse
Affiliation(s)
- Linghong Lu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Xianbin Gu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Zupeng Wang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Jing Gao
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Fei Fan
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Genhua Song
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Caihong Zhong
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Huiqin Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China.
| |
Collapse
|
2
|
Huang C, Cheng W, Feng Y, Zhang T, Yan T, Jiang Z, Cheng P. Identification of WRKY transcription factors in Rosa chinensis and analysis of their expression response to alkali stress response. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23077. [PMID: 39298655 DOI: 10.1071/fp23077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Breeding abiotic stress-tolerant varieties of Rosa chinensis is a paramount goal in horticulture. WRKY transcription factors, pivotal in plant responses to diverse stressors, offer potential targets for enhancing stress resilience in R. chinensis . Using bioinformatics and genomic data, we identified RcWRKY transcription factor genes, characterised their chromosomal distribution, phylogenetic relationships, structural attributes, collinearity, and expression patterns in response to saline stress. Leveraging bidirectional database searches, we pinpointed 66 RcWRKY genes, categorised into three groups. All except RcWRKY60 encoded DNA Binding Domain and Zinc Finger Motif regions of the WRKY domain. Expansion of the RcWRKY gene family was propelled by 19 segmental, and 2 tandem, duplications. We unveiled 41 and 15 RcWRKY genes corresponding to 50 AtWRKY and 17 OsWRKY orthologs respectively, indicating postdivergence expansion. Expression analyses under alkaline stress pinpointed significant alterations in 54 RcWRKY genes. Integration of functional roles from their Arabidopsis orthologs and cis -acting elements within their promoters, along with quantitative reverse transcription PCR validation, underscored the importance of RcWRKY27 and 29 in R. chinensis ' alkaline stress response. These findings offer insights into the biological roles of RcWRKY transcription factors, as well as the regulatory dynamics governing R. chinensis ' growth, development, and stress resilience.
Collapse
Affiliation(s)
- Changbing Huang
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Wenhui Cheng
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China; and School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Yu Feng
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Tongyu Zhang
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Taotao Yan
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| | - Zhengzhi Jiang
- Suzhou Huaguan Yuanchuang Horticulture Technology Co., Ltd, Suzhou 215505, China
| | - Peilei Cheng
- Jiangsu Engineering Research Center for Distinctive Floriculture, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China
| |
Collapse
|
3
|
Lei L, Dong K, Liu S, Li Y, Xu G, Sun H. Genome-wide identification of the WRKY gene family in blueberry ( Vaccinium spp.) and expression analysis under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1447749. [PMID: 39211844 PMCID: PMC11358086 DOI: 10.3389/fpls.2024.1447749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Introduction The WRKY transcription factor (TF) family is one of the largest TF families in plants and is widely involved in responses to both biotic and abiotic stresses. Methods To clarify the function of the WRKY family in blueberries, this study identified the WRKY genes within the blueberry genome and systematically analyzed gene characteristics, phylogenetic evolution, promoter cis-elements, expression patterns, and subcellular localization of the encoded products. Results In this study, 57 VcWRKY genes were identified, and all encoding products had a complete WRKY heptapeptide structure and zinc-finger motif. The VcWRKY genes were divided into three subgroups (I-III) by phylogenetic analysis. Group II was divided into five subgroups: IIa, IIb, IIc, IId, and IIe. 57 VcWRKY genes were distributed unevenly across 32 chromosomes. The amino acids ranged from 172 to 841, and molecular weights varied from 19.75 to 92.28 kD. Intra-group syntenic analysis identified 12 pairs of duplicate segments. Furthermore, 34 cis-element recognition sites were identified in the promoter regions of VcWRKY genes, primarily comprising phytohormone-responsive and light-responsive elements. Comparative syntenic maps were generated to investigate the evolutionary relationships of VcWRKY genes, revealing the closest homology to dicotyledonous WRKY gene families. VcWRKY genes were predominantly expressed in the fruit flesh and roots of blueberries. Gene expression analysis showed that the responses of VcWRKY genes to stress treatments were more strongly in leaves than in roots. Notably, VcWRKY13 and VcWRKY25 exhibited significant upregulation under salt stress, alkali stress, and saline-alkali stress, and VcWRKY1 and VcWRKY13 showed notable induction under drought stress. Subcellular localization analysis confirmed that VcWRKY13 and VcWRKY25 function within the nucleus. Conclusion These findings establish a foundation for further investigation into the functions and regulatory mechanisms of VcWRKY genes and provide guidance for selecting stress-tolerant genes in the development of blueberry cultivars.
Collapse
Affiliation(s)
- Lei Lei
- College of Horticulture, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Kun Dong
- Department of Horticulture, Heilongjiang Academy of Agricultural Science, Harbin, China
| | - Siwen Liu
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Yadong Li
- College of Horticulture, Jilin Agricultural University, Changchun, China
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian, China
| | - Haiyue Sun
- College of Horticulture, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Nazir MF, Lou J, Wang Y, Zou S, Huang H. Kiwifruit in the Omics Age: Advances in Genomics, Breeding, and Beyond. PLANTS (BASEL, SWITZERLAND) 2024; 13:2156. [PMID: 39124274 PMCID: PMC11313697 DOI: 10.3390/plants13152156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The kiwifruit, Actinidia genus, has emerged as a nutritionally rich and economically significant crop with a history rooted in China. This review paper examines the global journey of the kiwifruit, its genetic diversity, and the role of advanced breeding techniques in its cultivation and improvement. The expansion of kiwifruit cultivation from China to New Zealand, Italy, Chile and beyond, driven by the development of new cultivars and improved agricultural practices, is discussed, highlighting the fruit's high content of vitamins C, E, and K. The genetic resources within the Actinidia genus are reviewed, with emphasis on the potential of this diversity in breeding programs. The review provides extensive coverage to the application of modern omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, which have revolutionized the understanding of the biology of kiwifruit and facilitated targeted breeding efforts. It examines both conventional breeding methods and modern approaches, like marker-assisted selection, genomic selection, mutation breeding, and the potential of CRISPR-Cas9 technology for precise trait enhancement. Special attention is paid to interspecific hybridization and cisgenesis as strategies for incorporating beneficial traits and developing superior kiwifruit varieties. This comprehensive synthesis not only sheds light on the current state of kiwifruit research and breeding, but also outlines the future directions and challenges in the field, underscoring the importance of integrating traditional and omics-based approaches to meet the demands of a changing global climate and market preferences.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Jinpeng Lou
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Yu Wang
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Shuaiyu Zou
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Hongwen Huang
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wei X, Wang H, Guo D, Wang B, Zhang X, Wang J, Liu Y, Wang X, Liu C, Dong W. Integrated Transcriptomic and Proteomic Analysis Reveals Molecular Mechanisms of the Cold Stress Response during the Overwintering Period in Blueberries ( Vaccinium spp.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1911. [PMID: 39065438 PMCID: PMC11280072 DOI: 10.3390/plants13141911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
In China, the Liaodong Peninsula is an important growing area for blueberries because of the high organic matter content in the soil, the abundance of light, and the large temperature difference between day and night. However, the low temperature and relative humidity of the air during the winter and early spring in the Liaodong Peninsula are the main reasons for the damage to blueberry plants. Here, we documented the transcriptome and proteome dynamics in response to cold stress in three blueberry cultivars ('Northland', 'Bluecrop', and 'Berkeley'). Functional enrichment analysis indicated that many differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) were mainly involved in the pathways of protein processing in the endoplasmic reticulum, the glutathione metabolism pathway, and ribosomes. We identified 12,747 transcription factors (TFs) distributed in 20 families. Based on our findings, we speculated that cold tolerance development was caused by the expression of calcium-related genes (CDPKs and CMLs), glutathione proteins, and TFs (NAC, WRKY, and ERF). Our investigation found that three cultivars experienced cold damage when exposed to temperatures between -9 °C and -15 °C in the field. Therefore, the cold resistance of blueberries during overwintering should not only resist the influence of low temperatures but also complex environmental factors such as strong winds and low relative humidity in the air. The order of cold resistance strength in the three blueberry cultivars was 'Berkeley', 'Bluecrop', and 'Northland'. These results provide a comprehensive profile of the response to cold stress, which has the potential to be used as a selection marker for programs to improve cold tolerance in blueberries.
Collapse
Affiliation(s)
- Xin Wei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.W.); (X.Z.); (J.W.)
- Liaoning Institute of Pomology, Yingkou 115009, China; (H.W.); (D.G.); (B.W.); (Y.L.); (X.W.)
| | - Hongguang Wang
- Liaoning Institute of Pomology, Yingkou 115009, China; (H.W.); (D.G.); (B.W.); (Y.L.); (X.W.)
| | - Dan Guo
- Liaoning Institute of Pomology, Yingkou 115009, China; (H.W.); (D.G.); (B.W.); (Y.L.); (X.W.)
| | - Baisong Wang
- Liaoning Institute of Pomology, Yingkou 115009, China; (H.W.); (D.G.); (B.W.); (Y.L.); (X.W.)
| | - Xiao Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.W.); (X.Z.); (J.W.)
| | - Jian Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.W.); (X.Z.); (J.W.)
| | - Youchun Liu
- Liaoning Institute of Pomology, Yingkou 115009, China; (H.W.); (D.G.); (B.W.); (Y.L.); (X.W.)
| | - Xingdong Wang
- Liaoning Institute of Pomology, Yingkou 115009, China; (H.W.); (D.G.); (B.W.); (Y.L.); (X.W.)
| | - Cheng Liu
- Liaoning Institute of Pomology, Yingkou 115009, China; (H.W.); (D.G.); (B.W.); (Y.L.); (X.W.)
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.W.); (X.Z.); (J.W.)
| |
Collapse
|
6
|
Yan Y, Yan Z, Zhao G. Genome-wide identification of WRKY transcription factor family members in Miscanthus sinensis (Miscanthus sinensis Anderss). Sci Rep 2024; 14:5522. [PMID: 38448638 PMCID: PMC10918066 DOI: 10.1038/s41598-024-55849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Miscanthus is an emerging sustainable bioenergy crop whose growing environment is subject to many abiotic and biological stresses. WRKY transcription factors play an important role in stress response and growth of biotic and abiotic. To clarify the distribution and expression of the WRKY genes in Miscanthus, it is necessary to classify and phylogenetically analyze the WRKY genes in Miscanthus. The v7.1 genome assembly of Miscanthus was analyzed by constructing an evolutionary tree. In Miscanthus, there are 179 WRKY genes were identified. The 179 MsWRKYs were classified into three groups with conserved gene structure and motif composition. The tissue expression profile of the WRKY genes showed that MsWRKY genes played an essential role in all growth stages of plants. At the early stage of plant development, the MsWRKY gene is mainly expressed in the rhizome of plants. In the middle stage, it is mainly expressed in the leaf. At the end stage, mainly in the stem. According to the results, it showed significant differences in the expression of the MsWRKY in different stages of Miscanthus sinensis. The results of the study contribute to a better understanding of the role of the MsWRKY gene in the growth and development of Miscanthus.
Collapse
Affiliation(s)
- Yongkang Yan
- Faculty of Science, the University of Hong Kong, Hong Kong, China.
| | - Zhanyou Yan
- Shijiazhuang Tiedao University, Shijiazhuang, China
| | - Guofang Zhao
- Hebei Vocational University of Industry and Technology, Shijiazhuang, China
| |
Collapse
|
7
|
Rai GK, Mishra S, Chouhan R, Mushtaq M, Chowdhary AA, Rai PK, Kumar RR, Kumar P, Perez-Alfocea F, Colla G, Cardarelli M, Srivastava V, Gandhi SG. Plant salinity stress, sensing, and its mitigation through WRKY. FRONTIERS IN PLANT SCIENCE 2023; 14:1238507. [PMID: 37860245 PMCID: PMC10582725 DOI: 10.3389/fpls.2023.1238507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Salinity or salt stress has deleterious effects on plant growth and development. It imposes osmotic, ionic, and secondary stresses, including oxidative stress on the plants and is responsible for the reduction of overall crop productivity and therefore challenges global food security. Plants respond to salinity, by triggering homoeostatic mechanisms that counter salt-triggered disturbances in the physiology and biochemistry of plants. This involves the activation of many signaling components such as SOS pathway, ABA pathway, and ROS and osmotic stress signaling. These biochemical responses are accompanied by transcriptional modulation of stress-responsive genes, which is mostly mediated by salt-induced transcription factor (TF) activity. Among the TFs, the multifaceted significance of WRKY proteins has been realized in many diverse avenues of plants' life including regulation of plant stress response. Therefore, in this review, we aimed to highlight the significance of salinity in a global perspective, the mechanism of salt sensing in plants, and the contribution of WRKYs in the modulation of plants' response to salinity stress. This review will be a substantial tool to investigate this problem in different perspectives, targeting WRKY and offering directions to better manage salinity stress in the field to ensure food security.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Rekha Chouhan
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Pradeep K. Rai
- Advance Center for Horticulture Research, Udheywala, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu & Kashmir, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Council of Agricultural Research (ICAR), Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar
- Division of Integrated Farming System, Central Arid Zone Research Institute, Indian Council of Agricultural Research (ICAR), Jodhpur, India
| | - Francisco Perez-Alfocea
- Department of Nutrition, Centre for Applied Soil Science and Biology of the Segura (CEBAS), of the Spanish National Research Council (CSIC), Murcia, Spain
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Sumit G. Gandhi
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| |
Collapse
|
8
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Pan H, Chen Y, Zhao J, Huang J, Shu N, Deng H, Song C. In-depth analysis of large-scale screening of WRKY members based on genome-wide identification. Front Genet 2023; 13:1104968. [PMID: 36699467 PMCID: PMC9868916 DOI: 10.3389/fgene.2022.1104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
With the rapid advancement of high-throughput sequencing technology, it is now possible to identify individual gene families from genomes on a large scale in order to study their functions. WRKY transcription factors are a key class of regulators that regulate plant growth and abiotic stresses. Here, a total of 74 WRKY genes were identified from Dendrobium officinale Kimura et Migo genome. Based on the genome-wide analysis, an in-depth analysis of gene structure and conserved motif was performed. The phylogenetic analysis indicated that DoWRKYs could be classified into three main groups: I, II, and III, with group II divided into five subgroups: II-a, II-b, II-c, II-d, and II-e. The sequence alignment indicated that these WRKY transcriptional factors contained a highly conserved WRKYGQK heptapeptide. The localization analysis of chromosomes showed that WRKY genes were irregularly distributed across several chromosomes of D. officinale. These genes comprised diverse patterns in both number and species, and there were certain distinguishing motifs among subfamilies. Moreover, the phylogenetic tree and chromosomal location results indicated that DoWRKYs may have undergone a widespread genome duplication event. Based on an evaluation of expression profiles, we proposed that DoWRKY5, 54, 57, 21, etc. may be involved in the transcriptional regulation of the JA signaling pathway. These results provide a scientific reference for the study of DoWRKY family genes.
Collapse
Affiliation(s)
- Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Jingyi Zhao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Jie Huang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Nana Shu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Hui Deng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,*Correspondence: Hui Deng, ; Cheng Song,
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,*Correspondence: Hui Deng, ; Cheng Song,
| |
Collapse
|
10
|
Chen C, Chen H, Chen Y, Yang W, Li M, Sun B, Song H, Tang W, Zhang Y, Gong R. Joint metabolome and transcriptome analysis of the effects of exogenous GA 3 on endogenous hormones in sweet cherry and mining of potential regulatory genes. FRONTIERS IN PLANT SCIENCE 2022; 13:1041068. [PMID: 36330269 PMCID: PMC9623316 DOI: 10.3389/fpls.2022.1041068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Gibberellin (GA) is an important phytohormone that can participate in various developmental processes of plants. The study found that application of GA3 can induce parthenocarpy fruit and improve fruit set. However, the use of GA3 affects endogenous hormones in fruits, thereby affecting fruit quality. This study mainly investigates the effect of exogenous GA3 on endogenous hormones in sweet cherries. The anabolic pathways of each hormone were analyzed by metabolome and transcriptome to identify key metabolites and genes that affect endogenous hormones in response to exogenous GA3 application. Results showed that exogenous GA3 led to a significant increase in the content of abscisic acid (ABA) and GA and affected jasmonic acid (JA) and auxin (IAA). At the same time, the key structural genes affecting the synthesis of various hormones were preliminarily determined. Combined with transcription factor family analysis, WRKY genes were found to be more sensitive to the use of exogenous GA3, especially the genes belonging to Group III (PaWRKY16, PaWRKY21, PaWRKY38, PaWRKY52, and PaWRKY53). These transcription factors can combine with the promoters of NCED, YUCCA, and other genes to regulate the content of endogenous hormones. These findings lay the foundation for the preliminary determination of the mechanism of GA3's effect on endogenous hormones in sweet cherry and the biological function of WRKY transcription factors.
Collapse
|
11
|
Chen C, Xie F, Shah K, Hua Q, Chen J, Zhang Z, Zhao J, Hu G, Qin Y. Genome-Wide Identification of WRKY Gene Family in Pitaya Reveals the Involvement of HmoWRKY42 in Betalain Biosynthesis. Int J Mol Sci 2022; 23:ijms231810568. [PMID: 36142481 PMCID: PMC9502481 DOI: 10.3390/ijms231810568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/16/2022] Open
Abstract
The WRKY gene family is a plant-specific transcription factor (TF) that regulates many physiological processes and (a) biotic stress responses. Despite this, little is known about the molecular properties and roles of WRKY TFs in pitaya betalain biosynthesis. Here we report the identification of 70 WRKY in Hylocereus undatus, their gene structure, locations on each chromosome, systematic phylogenetic analysis, conserved motif analysis, and synteny of HuWRKY genes. HmoWRKY42 is a Group IIb WRKY protein and contains a coiled-coil motif, a WRKY domain and a C2H2 zinc-finger motif (CX5CX23HXH). Results from yeast one-hybrid and transient dual-luciferase assays showed that HmoWRKY42 was a transcriptional repressor and could repress HmocDOPA5GT1 expression by binding to its promoter. Yeast two-hybrid assays showed that HmoWRKY42 could interact with itself to form homodimers. Knocking out the coiled-coil motif of HmoWRKY42 prevented its self-interaction and prevented it from binding to the HmocDOPA5GT1 promoter. Knocking out the WRKY domain and C2H2 zinc-finger motif sequence of HmoWRKY42 also prevented it from binding to the HmocDOPA5GT1 promoter. The coiled-coil motif, the WRKY domain and the C2H2 zinc finger motif are key motifs for the binding of HmoWRKY42 to the HmocDOPA5GT1 promoter. HmoWRKY42 is localized in the nucleus and possesses trans-activation ability responsible for pitaya betalain biosynthesis by repressing the transcription of HmocDOPA5GT1. As far as we know, no reports are available on the role of HmoWRKY42 in pitaya betalain biosynthesis. The results provide an important foundation for future analyses of the regulation and functions of the HuWRKY gene family.
Collapse
|
12
|
Biological control efficacy of Bacillus licheniformis HG03 against soft rot disease of postharvest peach. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Wen F, Wu X, Li T, Jia M, Liao L. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum. BMC PLANT BIOLOGY 2022; 22:115. [PMID: 35287589 PMCID: PMC8919620 DOI: 10.1186/s12870-022-03511-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Akebia trifoliata, belonging to the Lardizabalaceae family, is a well-known Chinese traditional medicinal plant, susceptible to many diseases, such as anthracnose and powdery mildew. WRKY is one of the largest plant-specific transcription factor families and plays important roles in plant growth, development and stress response, especially in disease resistance. However, little was known about the numbers, characters, evolutionary relationship and expression of WRKY genes in A. trifoliata in response to plant disease due to lacking of A. trifoliata genome. RESULTS A total of 42 putative AktWRKY genes were identified based on the full-length transcriptome-sequencing data of A. trifoliata. Then 42 AktWRKY genes were divided into three major groups (Group I-III) based on the WRKY domains. Motif analysis showed members within same group shared a similar motif composition, implying a functional conservation. Tissue-specific expression analysis showed that AktWRKY genes could be detected in all tissues, while few AktWRKY genes were tissue specific. We further evaluated the expression of AktWRKY genes in three varieties in response to Colletotrichum acutatum by qRT-PCR. The expression patterns of AktWRKY genes were similar between C01 and susceptible variety I02, but distinctly different in resistant variety H05. In addition, it showed that more than 64 percentages of AktWRKY genes were differentially expressed during fungal infection in I02 and H05. Furthermore, Gene ontology (GO) analysis showed that AktWRKY genes were categorized into 26 functional groups under cellular components, molecular functions and biological processes, and a predicted protein interaction network was also constructed. CONCLUSIONS Results of bioinformation analysis and expression patterns implied that AktWRKYs might play multiple function in response to biotic stresses. Our study could facilitate to further investigate the function and regulatory mechanism of the WRKY in A. trifoliata during pathogen response.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
14
|
Zhu S, Fan R, Xiong X, Li J, Xiang L, Hong Y, Ye Y, Zhang X, Yu X, Chen Y. MeWRKY IIas, Subfamily Genes of WRKY Transcription Factors From Cassava, Play an Important Role in Disease Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:890555. [PMID: 35720572 PMCID: PMC9201764 DOI: 10.3389/fpls.2022.890555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important tropical crop for food, fodder, and energy. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) occurs in all cassava growing regions and threatens global cassava production. WRKY transcription factor family plays the essential roles during plant growth, development, and abiotic or biotic stress. Particularly, previous studies have revealed the important role of the group IIa WRKY genes in plant disease resistance. However, a comprehensive analysis of group IIa subfamily in cassava is still missing. Here, we identified 102 WRKY members, which were classified into three groups, I, II, and III. Transient expression showed that six MeWRKY IIas were localized in the nucleus. MeWRKY IIas transcripts accumulated significantly in response to SA, JA, and Xam. Overexpression of MeWRKY27 and MeWRKY33 in Arabidopsis enhanced its resistance to Pst DC3000. In contrast, silencing of MeWRKY27 and MeWRKY33 in cassava enhanced its susceptibility to Xam. Co-expression network analysis showed that different downstream genes are regulated by different MeWRKY IIa members. The functional analysis of downstream genes will provide clues for clarifying molecular mechanism of cassava disease resistance. Collectively, our results suggest that MeWRKY IIas are regulated by SA, JA signaling, and coordinate response to Xam infection.
Collapse
Affiliation(s)
- Shousong Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ruochen Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xi Xiong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jianjun Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Li Xiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Yuhui Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yiwei Ye
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- CGIAR Research Program on Roots Tubers and Bananas (RTB), International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Xiaohui Yu
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Yinhua Chen
| |
Collapse
|
15
|
Li S, Liu G, Pu L, Liu X, Wang Z, Zhao Q, Chen H, Ge F, Liu D. WRKY Transcription Factors Actively Respond to Fusarium oxysporum in Lilium regale. PHYTOPATHOLOGY 2021; 111:1625-1637. [PMID: 33576690 DOI: 10.1094/phyto-10-20-0480-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The WRKY transcription factors form a plant-specific superfamily important for regulating plant development, stress responses, and hormone signal transduction. In this study, many WRKY genes (LrWRKY1-35) were identified in Lilium regale, which is a wild lily species highly resistant to Fusarium wilt. These WRKY genes were divided into three classes (I to III) based on a phylogenetic analysis. The Class-II WRKY transcription factors were further divided into five subclasses (IIa, IIb, IIc, IId, and IIe). Moreover, the gene expression patterns based on a quantitative real-time PCR analysis revealed the WRKY genes were differentially expressed in the L. regale roots, stems, leaves, and flowers. Additionally, the expression of the WRKY genes was affected by an infection by Fusarium oxysporum as well as by salicylic acid, methyl jasmonate, ethephon, and hydrogen peroxide treatments. Moreover, the LrWRKY1 protein was localized to the nucleus of onion epidermal cells. The recombinant LrWRKY1 protein purified from Escherichia coli bound specifically to DNA fragments containing the W-box sequence, and a yeast one-hybrid assay indicated that LrWRKY1 can activate transcription. A co-expression assay in tobacco (Nicotiana tabacum) confirmed LrWRKY1 regulates the expression of LrPR10-5. Furthermore, the overexpression of LrWRKY1 in tobacco and the Oriental hybrid 'Siberia' (susceptible to F. oxysporum) increased the resistance of the transgenic plants to F. oxysporum. Overall, LrWRKY1 regulates the expression of the resistance gene LrPR10-5 and is involved in the defense response of L. regale to F. oxysporum. This study provides valuable information regarding the expression and functional characteristics of L. regale WRKY genes.
Collapse
Affiliation(s)
- Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Guanze Liu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuyan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Zie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qin Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongjun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
16
|
Gan Z, Yuan X, Shan N, Wan C, Chen C, Xu Y, Xu Q, Chen J. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit. PLANT SCIENCE 2021; 309:110948. [PMID: 34134847 DOI: 10.1016/j.plantsci.2021.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
WRKY transcription factors belong to a superfamily that is involved in many important biological processes, including plant development and senescence. However, little is known about the transcriptional regulation mechanisms of WRKY genes involved in kiwifruit postharvest ripening. Here, we isolated a WRKY gene from the kiwifruit genome and named it AcWRKY40. AcWRKY40 is a nucleus-localized protein that possesses transcriptional activation activity. The expression of AcWRKY40 was detected, and the gene responded to ethylene treatment during kiwifruit postharvest ripening, indicating its involvement in this process at the transcriptional level. We found multiple cis-acting elements related to maturation and senescence in the AcWRKY40 promoter. GUS activity analysis showed that its promoter activity was induced by exogenous ethylene. Yeast one-hybrid and dual-luciferase assays demonstrated that AcWRKY40 binds to the promoters of AcSAM2, AcACS1, and AcACS2 to activate them. In addition, transient transformations showed that AcWRKY40 enhances the expression of AcSAM2, AcACS1, and AcACS2. Taken together, these results suggest that AcWRKY40 is involved in kiwifruit postharvest ripening, possibly by regulating the expression of genes related to ethylene biosynthesis, thus deepening our understanding of the regulatory mechanisms of WRKY transcription factors in fruit ripening.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Yuan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Nan Shan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunhe Xu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qin Xu
- Agriculture and Rural Bureau of Gongcheng Yao Autonomous County, Guilin, 542500, China
| | - Jinyin Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 330075, China.
| |
Collapse
|
17
|
Su L, Xu M, Zhang J, Wang Y, Lei Y, Li Q. Genome-wide identification of auxin response factor ( ARF) family in kiwifruit ( Actinidia chinensis) and analysis of their inducible involvements in abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1261-1276. [PMID: 34177147 PMCID: PMC8212266 DOI: 10.1007/s12298-021-01011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 05/13/2023]
Abstract
UNLABELLED Auxin response factor (ARF) acts as a vital component of auxin signaling and participates in growth, development, and stress responses in plants. In the present study, we comprehensively analyzed kiwifruit's (Actinidia chinensis) ARF genes (AcARFs) and their involvement in abiotic stress response. We identified a total of 41 AcARFs encoding ARFs in the A. chinensis genome. AcARF genes were characterized by the classic ARF_resp and a B3 domain and primarily localized on the cytoplasm and nucleus. AcARFs were categorized into eight subgroups as per the phylogenetic analysis. Synteny analysis showed that 35 gene pairs in AcARF family underwent segmental and whole genome duplication events. Promoter cis-element prediction revealed that AcARFs might be involved in abiotic factors related to stress response, which was later assessed and validated by qRT-PCR based expression analysis. Additionally, AcARFs showed tissue-specific expression. These findings extend our understanding of the functional roles of AcARFs in stress responses. Taken together, the systematic annotation of the AcARF family genes provides a platform for the functional and evolutionary study, which might help in elucidating the precise roles of the AcARFs in stress responses. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01011-4.
Collapse
Affiliation(s)
- Liyan Su
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Ming Xu
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Jiudong Zhang
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
| | - Yihang Wang
- School of Biological and Environmental Engineering, Xi’an University, Xi’an, Shaanxi People’s Republic of China
| | - Yushan Lei
- Rural Science and Technology Development Center, Xi’an, 710054 Shaanxi People’s Republic of China
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Xiema street, Beibei, Chongqing, 400712 People’s Republic of China
| |
Collapse
|
18
|
Brian L, Warren B, McAtee P, Rodrigues J, Nieuwenhuizen N, Pasha A, David KM, Richardson A, Provart NJ, Allan AC, Varkonyi-Gasic E, Schaffer RJ. A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC PLANT BIOLOGY 2021; 21:121. [PMID: 33639842 PMCID: PMC7913447 DOI: 10.1186/s12870-021-02894-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis. RESULTS Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules. Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was associated with ethylene-induced fruit ripening. Three "hub" genes correlated with flower and fruit development consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF. CONCLUSIONS This study provides an insight into the complexity of the transcriptional control of flower and fruit development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided in an accessible format that allows researchers to download and work internally.
Collapse
Affiliation(s)
- Lara Brian
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Ben Warren
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Peter McAtee
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Jessica Rodrigues
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Niels Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Asher Pasha
- Department of Cell & Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Karine M David
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Annette Richardson
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), 121 Keri Downs Road, Kerikeri, 0294, New Zealand
| | - Nicholas J Provart
- Department of Cell & Systems Biology / Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Private Bag 92169, Auckland, 1146, New Zealand
| | - Robert J Schaffer
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, 1146, New Zealand.
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), 55 Old Mill Road, Motueka, 7198, New Zealand.
| |
Collapse
|
19
|
Song Y, Cui H, Shi Y, Xue J, Ji C, Zhang C, Yuan L, Li R. Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress. BMC Genomics 2020; 21:786. [PMID: 33176698 PMCID: PMC7659147 DOI: 10.1186/s12864-020-07189-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Background WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, there is limited knowledge about the WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance for various stresses. Here, a genome-wide characterization of WRKY proteins is performed to examine their gene structures, phylogenetics, expression, conserved motif organizations, and functional annotation to identify candidate WRKYs that mediate stress resistance regulation in camelinas. Results A total of 242 CsWRKY proteins encoded by 224 gene loci distributed unevenly over the chromosomes were identified, and they were classified into three groups by phylogenetic analysis according to their WRKY domains and zinc finger motifs. The 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in the C. sativa and Arabidopsis genomes as well as 282 pairs in the C. sativa and B. napus genomes, respectively. A total of 137 segmental duplication events were observed, but there was no tandem duplication in the camelina genome. Ten major conserved motifs were examined, with WRKYGQK being the most conserved, and several variants were present in many CsWRKYs. Expression analysis revealed that 50% more CsWRKY genes were expressed constitutively, and a set of them displayed tissue-specific expression. Notably, 11 CsWRKY genes exhibited significant expression changes in seedlings under cold, salt, and drought stresses, showing a preferentially inducible expression pattern in response to the stress. Conclusions The present article describes a detailed analysis of the CsWRKY gene family and its expression profiles in 12 tissues and under several stress conditions. Segmental duplication is the major force underlying the broad expansion of this gene family, and a strong purifying pressure occurred for CsWRKY proteins during their evolution. CsWRKY proteins play important roles in plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms, were found to be the possible key players in mediating plant responses to various stresses. Overall, our results provide a foundation for understanding the roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance as well as the development of stress tolerance cultivars among Cruciferae crops. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07189-3.
Collapse
Affiliation(s)
- Yanan Song
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ying Shi
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunhui Zhang
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Lixia Yuan
- College of Biological Science and Technology, Jinzhong University, Jinzhong, Shanxi, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, Shanxi, China.
| |
Collapse
|
20
|
Nan H, Li W, Lin YL, Gao LZ. Genome-Wide Analysis of WRKY Genes and Their Response to Salt Stress in the Wild Progenitor of Asian Cultivated Rice, Oryza rufipogon. Front Genet 2020. [DOI: 10.3389/fgene.2020.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao SJ. Transcription Factors in Plant Stress Responses: Challenges and Potential for Sugarcane Improvement. PLANTS (BASEL, SWITZERLAND) 2020; 9:E491. [PMID: 32290272 PMCID: PMC7238037 DOI: 10.3390/plants9040491] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Increasing vulnerability of crops to a wide range of abiotic and biotic stresses can have a marked influence on the growth and yield of major crops, especially sugarcane (Saccharum spp.). In response to various stresses, plants have evolved a variety of complex defense systems of signal perception and transduction networks. Transcription factors (TFs) that are activated by different pathways of signal transduction and can directly or indirectly combine with cis-acting elements to modulate the transcription efficiency of target genes, which play key regulators for crop genetic improvement. Over the past decade, significant progresses have been made in deciphering the role of plant TFs as key regulators of environmental responses in particular important cereal crops; however, a limited amount of studies have focused on sugarcane. This review summarizes the potential functions of major TF families, such as WRKY, NAC, MYB and AP2/ERF, in regulating gene expression in the response of plants to abiotic and biotic stresses, which provides important clues for the engineering of stress-tolerant cultivars in sugarcane.
Collapse
Affiliation(s)
- Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Rubab Shabbir
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - Irfan Afzal
- Seed Physiology Lab., Department of Agronomy, University of Agriculture, Faisalabad-38040, Pakistan;
| | - Uroosa Zaheer
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (T.J.); (R.S.); (A.A.); (U.Z.)
| |
Collapse
|
22
|
Sun S, Song H, Li J, Chen D, Tu M, Jiang G, Yu G, Zhou Z. Comparative transcriptome analysis reveals gene expression differences between two peach cultivars under saline-alkaline stress. Hereditas 2020; 157:9. [PMID: 32234076 PMCID: PMC7110815 DOI: 10.1186/s41065-020-00122-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saline-alkaline stress is a major abiotic stress that is harmful to plant growth worldwide. Two peach cultivars (GF677 and Maotao) display distinct phenotypes under saline-alkaline stress. The molecular mechanism explaining the differences between the two cultivars is still unclear. RESULTS In the present study, we systematically analysed the changes in GF677 and Maotao leaves upon saline-alkaline stress by using cytological and biochemical technologies as well as comparative transcriptome analysis. Transmission electron microscopy (TEM) observations showed that the structure of granum was dispersive in Maotao chloroplasts. The biochemical analysis revealed that POD activity and the contents of chlorophyll a and chlorophyll b, as well as iron, were notably decreased in Maotao. Comparative transcriptome analysis detected 881 genes with differential expression (including 294 upregulated and 587 downregulated) under the criteria of |log2 Ratio| ≥ 1 and FDR ≤0.01. Gene ontology (GO) analysis showed that all differentially expressed genes (DEGs) were grouped into 30 groups. MapMan annotation of DEGs showed that photosynthesis, antioxidation, ion metabolism, and WRKY TF were activated in GF677, while cell wall degradation, secondary metabolism, starch degradation, MYB TF, and bHLH TF were activated in Maotao. Several iron and stress-related TFs (ppa024966m, ppa010295m, ppa0271826m, ppa002645m, ppa010846m, ppa009439m, ppa008846m, and ppa007708m) were further discussed from a functional perspective based on the phylogenetic tree integration of other species homologues. CONCLUSIONS According to the cytological and molecular differences between the two cultivars, we suggest that the integrity of chloroplast structure and the activation of photosynthesis as well as stress-related genes are crucial for saline-alkaline resistance in GF677. The results presented in this report provide a theoretical basis for cloning saline-alkaline tolerance genes and molecular breeding to improve saline-alkaline tolerance in peach.
Collapse
Affiliation(s)
- Shuxia Sun
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.,Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China.,Fruit Technology Promotion Station of Longquanyi District, Chengdu, 610100, Sichuan Province, China
| | - Haiyan Song
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China
| | - Jing Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China
| | - Dong Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China
| | - Meiyan Tu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Guoliang Jiang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan Province, China
| | - Guoqing Yu
- Fruit Technology Promotion Station of Longquanyi District, Chengdu, 610100, Sichuan Province, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
23
|
Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in abiotic stress-responses. Genes Genomics 2019; 41:467-481. [PMID: 30637579 DOI: 10.1007/s13258-018-00780-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND WRKY proteins play a vital role in the regulation of several imperative plant metabolic processes and pathways, especially under biotic and abiotic stresses. Although WRKY genes have been characterized in various major crop plants, their identification and characterization in pulse legumes is still in its infancy. Chickpea (Cicer arietinum L.) is the most important pulse legume grown in arid and semi-arid tropics. OBJECTIVE In silico identification and characterization of WRKY transcription factor-encoding genes in chickpea genome. METHODS For this purpose, a systematic genome-wide analysis was carried out to identify the non-redundant WRKY transcription factors in the chickpea genome. RESULTS We have computationally identified 70 WRKY-encoding non-redundant genes which were randomly distributed on all the chickpea chromosomes except chromosome 8. The evolutionary phylogenetic analysis classified the WRKY proteins into three major groups (I, II and III) and seven sub-groups (IN, IC, IIa, IIb, IIc, IId and IIe). The gene structure analysis revealed the presence of 2-7 introns among the family members. Along with the presence of absolutely conserved signatory WRKY domain, 19 different domains were also found to be conserved in a group-specific manner. Insights of gene duplication analysis revealed the predominant role of segmental duplications for the expansion of WRKY genes in chickpea. Purifying selection seems to be operated during the evolution and expansion of paralogous WRKY genes. The transcriptome data-based in silico expression analysis revealed the differential expression of CarWRKY genes in root and shoot tissues under salt, drought, and cold stress conditions. Moreover, some of these genes showed identical expression pattern under these stresses, revealing the possibility of involvement of these genes in conserved abiotic stress-response pathways. CONCLUSION This genome-wide computational analysis will serve as a base to accelerate the functional characterization of WRKY TFs especially under biotic and abiotic stresses.
Collapse
|
24
|
Michelotti V, Lamontanara A, Buriani G, Orrù L, Cellini A, Donati I, Vanneste JL, Cattivelli L, Tacconi G, Spinelli F. Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl. BMC Genomics 2018; 19:585. [PMID: 30081820 PMCID: PMC6090863 DOI: 10.1186/s12864-018-4967-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser scanning microscopy. RESULTS De novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated, suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network analysis confirmed these results. CONCLUSIONS Our work provides an in-depth description of the plant molecular reactions to Psa, it highlights the metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of effective control strategies in open field.
Collapse
Affiliation(s)
- Vania Michelotti
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Antonella Lamontanara
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Giampaolo Buriani
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Luigi Orrù
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Antonio Cellini
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Irene Donati
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| | - Joel L. Vanneste
- The New Zealand Institute for Plant & Food Research Ltd, Ruakura Research Centre, Bisley Road, Ruakura, Private Bag 3123, Hamilton, 3240 New Zealand
| | - Luigi Cattivelli
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Gianni Tacconi
- Council for agriculture research and economics (CREA), Research Centre for Genomics and Bioinformatics, via S. Protaso, 302, CAP, 29017 Fiorenzuola d’Arda, Piacenza Italy
| | - Francesco Spinelli
- Department of Agricultural Sciences Alma Mater Studiorum, University of Bologna, viale Fanin 46, 40127 Bologna, Italy
| |
Collapse
|