1
|
Morita D, Rosewell Shaw A, Biegert G, Porter C, Woods M, Vasileiou S, Lim B, Suzuki M. Additional expression of T-cell engager in clinically tested oncolytic adeno-immunotherapy redirects tumor-infiltrated, irrelevant T cells against cancer cells to enhance antitumor immunity. J Immunother Cancer 2024; 12:e009741. [PMID: 39653552 PMCID: PMC11629014 DOI: 10.1136/jitc-2024-009741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Oncolytic adenoviruses (OAds) are the most clinically tested viral vectors for solid tumors. However, most clinically tested "Armed" OAds show limited antitumor effects in patients with various solid tumors even with increased dosages and multiple injections. We developed a binary oncolytic/helper-dependent adenovirus system (CAdVEC), in which tumors are coinfected with an OAd and a non-replicating helper-dependent Ad (HDAd). We recently demonstrated that a single low-dose CAdVEC expressing interleukin-12, programmed death-ligand 1 blocker, and HSV thymidine kinase safety switch (CAdTrio) induces significant antitumor effects in patients, including complete response. Similar to previous OAd studies, all patients primarily amplified Ad-specific T cells after treatment however, CAdVEC was still able to induce clinical responses even given at a 100-fold lower dose. METHODS To address the mechanisms of CAdTrio-mediated antitumor effect in patients, we analyzed patients' samples using Enzyme-linked immunosorbent spot (ELISpot) to measure T-cell specificity and quantitative polymerase chain reaction (qPCR) to measure CAdVEC viral genome copies at tumor sites. We then evaluated potential mechanisms of CAdVEC efficacy in vitro using live-cell imaging. Based on those results, we developed a new CAdVEC additionally expressing a T-cell engager molecule targeting CD44v6 to redirect tumor-infiltrating irrelevant T cells against cancer stem cell populations (CAdTetra) for further improvement of local CAdVEC treatment. We tested its efficacy against different cancer types both in vitro and in vivo including Ad pre-immunized humanized mice. RESULTS We found that HDAd-infected cells escape Ad-specific T-cell recognition with enhanced tumor-specific T-cell activity through immunomodulatory transgenes. Since CAdVEC treatment initially amplified Ad-specific T cells in patients, we re-direct these virus-specific T cells to target tumor cells by additionally expressing CD44v6.BiTE from CAdTetra. CAdTetra significantly controlled tumor growth, repolarizing local and systemic responses against cancer cells in both immunologically "hot" and "cold" tumor models and also induced immunologic memory against rechallenged tumors. CONCLUSIONS Our results indicate that CAdTetra effectively induces adaptive T-cell responses against cancer cells by using tumor-infiltrating irrelevant T cells.
Collapse
Affiliation(s)
- Daisuke Morita
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Biology, School of Science and Engineering, Benedict College, Columbia, SC, USA
| | - Greyson Biegert
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Caroline Porter
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Mae Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bora Lim
- Duncan Cancer Center-Breast, Baylor College of Medicine, Houston, TX, USA
- Breast Medical Oncology, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Pardo-Lorente N, Gkanogiannis A, Cozzuto L, Gañez Zapater A, Espinar L, Ghose R, Severino J, García-López L, Aydin RG, Martin L, Neguembor MV, Darai E, Cosma MP, Batlle-Morera L, Ponomarenko J, Sdelci S. Nuclear localization of MTHFD2 is required for correct mitosis progression. Nat Commun 2024; 15:9529. [PMID: 39532843 PMCID: PMC11557897 DOI: 10.1038/s41467-024-51847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
Subcellular compartmentalization of metabolic enzymes establishes a unique metabolic environment that elicits specific cellular functions. Indeed, the nuclear translocation of certain metabolic enzymes is required for epigenetic regulation and gene expression control. Here, we show that the nuclear localization of the mitochondrial enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) ensures mitosis progression. Nuclear MTHFD2 interacts with proteins involved in mitosis regulation and centromere stability, including the methyltransferases KMT5A and DNMT3B. Loss of MTHFD2 induces severe methylation defects and impedes correct mitosis completion. MTHFD2 deficient cells display chromosome congression and segregation defects and accumulate chromosomal aberrations. Blocking the catalytic nuclear function of MTHFD2 recapitulates the phenotype observed in MTHFD2 deficient cells, whereas restricting MTHFD2 to the nucleus is sufficient to ensure correct mitotic progression. Our discovery uncovers a nuclear role for MTHFD2, supporting the notion that translocation of metabolic enzymes to the nucleus is required to meet precise chromatin needs.
Collapse
Affiliation(s)
- Natalia Pardo-Lorente
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Anestis Gkanogiannis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Antoni Gañez Zapater
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Lorena Espinar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Jacqueline Severino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Laura García-López
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Rabia Gül Aydin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Evangelia Darai
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Batlle-Morera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
3
|
Aruge S, Asif M, Tariq A, Asif S, Zafar M, Elahi MA, Riaz L, Javed A, Bostan N, Sattar S. Impact of MTHFD2 Expression in Bladder/Breast Cancer and Screening of Its Potential Inhibitor. ACS OMEGA 2024; 9:44193-44202. [PMID: 39524662 PMCID: PMC11541529 DOI: 10.1021/acsomega.4c03599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Genes of folate-mediated 1 carbon metabolism are found to be highly upregulated in tumor cells and promote cancer cell proliferation. The current study aimed to determine the expression of the MTHFD2 gene in bladder and breast cancers. Furthermore, the determination of potential ligand-based inhibitors against MTHFD2 was performed in comparison with those of chemotherapeutic drugs and natural plant-based compounds. Semiquantitative expression analysis along with structure-based virtual ligand library screening was done to find plausible inhibitors. MTHFD2 expression was significantly increased with tumor stage progression both in low- and high-grade bladder cancer and especially in triple-negative breast cancer. Virtual ligand-based library screening against the three-dimensional MTHFD2 protein structure led to the identification of plausible inhibitors like MCULE-8109969891-0 and MCULE-9715677418-0-1 that displayed lower binding free energy as compared to that of already documented LY345899. Similar scaffold commercial drugs leucal (LEU), epirubicin (EPI), and lometrexol also displayed strong binding to the active site of MTHFD2. EPI and LEU in combinatorial therapy were also tested in vitro on MDA-MB-231 cells. The high doses of LEU in combination with EPI showed a significant reduction in cell viability at 2 and 3 μM concentrations. The interaction of breast cancer serum with high expression of MTHFD2 also showed an increase in binding of epirubicin in the presence of leucovorin. The decrease in the absorbance spectra of epirubicin at 37 and 53 °C displayed the stability induced by LEU on the interaction of EPI with the MTHFD2 binding pocket. Leucovorin tends to stabilize the interaction as the binding affinity is high even at 53 °C. Thus, MTHFD2 might be used as a cancer biomarker since its expression level changes drastically with tumor progression. Further experimental studies are required to establish the potential mode of inhibition of the novel small ligands. Future in vivo trials may validate the effectiveness of the combinatorial therapy.
Collapse
Affiliation(s)
- Samreen Aruge
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Maleeha Asif
- Department
of Biochemistry, Hazara University, Dhodial, Mansehra, Khyber Pakthunkhwa 21120, Pakistan
| | - Aamira Tariq
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Saaim Asif
- Department
of Biosciences, COMSATS University Islamabad, Islamabad Campus, 45550 Islamabad, Pakistan
| | - Muhammad Zafar
- Institute
of Kidney Disease, Hayatabad
Medical Complex, Hayatabad, Peshawar, Khyber Pakthunkhwa 25100, Pakistan
| | - Muhammad Affan Elahi
- Department
of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lubna Riaz
- Micro-molecular
lab, Public Health Laboratories Division, National Institute of Health, 45500 Islamabad, Pakistan
| | - Aneela Javed
- ASAB, NUST University, Islamabad 44000, Pakistan
| | - Nazish Bostan
- Molecular
Virology Laboratories, Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Sadia Sattar
- Molecular
Virology Laboratories, Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| |
Collapse
|
4
|
Majumder A, Bano S, Nayak KB. The Pivotal Role of One-Carbon Metabolism in Neoplastic Progression During the Aging Process. Biomolecules 2024; 14:1387. [PMID: 39595564 PMCID: PMC11591851 DOI: 10.3390/biom14111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
One-carbon (1C) metabolism is a complex network of metabolic reactions closely related to producing 1C units (as methyl groups) and utilizing them for different anabolic processes, including nucleotide synthesis, methylation, protein synthesis, and reductive metabolism. These pathways support the high proliferative rate of cancer cells. While drugs that target 1C metabolism (like methotrexate) have been used for cancer treatment, they often have significant side effects. Therefore, developing new drugs with minimal side effects is necessary for effective cancer treatment. Methionine, glycine, and serine are the main three precursors of 1C metabolism. One-carbon metabolism is vital not only for proliferative cells but also for non-proliferative cells in regulating energy homeostasis and the aging process. Understanding the potential role of 1C metabolism in aging is crucial for advancing our knowledge of neoplastic progression. This review provides a comprehensive understanding of the molecular complexities of 1C metabolism in the context of cancer and aging, paving the way for researchers to explore new avenues for developing advanced therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Shabana Bano
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Kasturi Bala Nayak
- Quantitative Biosciences Institute, Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Jha V, Eriksson LA. Selectivity analysis of diaminopyrimidine-based inhibitors of MTHFD1, MTHFD2 and MTHFD2L. Sci Rep 2024; 14:21073. [PMID: 39256448 PMCID: PMC11387627 DOI: 10.1038/s41598-024-71879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
The mitochondrial enzyme methylenetetrahydrofolate dehydrogenase (MTHFD2) is involved in purine and thymidine synthesis via 1C metabolism. MTHFD2 is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. However, the two close homologs of MTHFD2 known as MTHFD1 and MTHFD2L are expressed in healthy adult human tissues and share a great structural resemblance to MTHFD2 with 54% and 89% sequence similarity, respectively. It is therefore notably challenging to find selective inhibitors of MTHFD2 due to the structural similarity, in particular protein binding site similarity with MTHFD1 and MTHFD2L. Tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported till date. Nanomolar potent diaminopyrimidine-based inhibitors of MTHFD2 have been reported recently, however, they also demonstrate significant inhibitory activities against MTHFD1 and MTHFD2L. In this study, we have employed extensive computational modeling involving molecular docking and molecular dynamics simulations in order to investigate the binding modes and key interactions of diaminopyrimidine-based inhibitors at the substrate binding sites of MTHFD1, MTHFD2 and MTHFD2L, and compare with the tricyclic coumarin-based selective MTHFD2 inhibitor. The outcomes of our study provide significant insights into desirable and undesirable structural elements for rational structure-based design of new and selective inhibitors of MTHFD2 against cancer.
Collapse
Affiliation(s)
- Vibhu Jha
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, Institute of Cancer Therapeutics, University of Bradford, Bradford, BD71DP, UK
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden.
| |
Collapse
|
6
|
Lashen A, Alqahtani S, Shoqafi A, Algethami M, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Clinicopathological Significance of Cyclin-Dependent Kinase 2 (CDK2) in Ductal Carcinoma In Situ and Early-Stage Invasive Breast Cancers. Int J Mol Sci 2024; 25:5053. [PMID: 38732271 PMCID: PMC11084890 DOI: 10.3390/ijms25095053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) is a key cell cycle regulator, with essential roles during G1/S transition. The clinicopathological significance of CDK2 in ductal carcinomas in situ (DCIS) and early-stage invasive breast cancers (BCs) remains largely unknown. Here, we evaluated CDK2's protein expression in 479 BC samples and 216 DCIS specimens. Analysis of CDK2 transcripts was completed in the METABRIC cohort (n = 1980) and TCGA cohort (n = 1090), respectively. A high nuclear CDK2 protein expression was significantly associated with aggressive phenotypes, including a high tumour grade, lymph vascular invasion, a poor Nottingham prognostic index (all p-values < 0.0001), and shorter survival (p = 0.006), especially in luminal BC (p = 0.009). In p53-mutant BC, high nuclear CDK2 remained linked with worse survival (p = 0.01). In DCIS, high nuclear/low cytoplasmic co-expression showed significant association with a high tumour grade (p = 0.043), triple-negative and HER2-enriched molecular subtypes (p = 0.01), Comedo necrosis (p = 0.024), negative ER status (p = 0.004), negative PR status (p < 0.0001), and a high proliferation index (p < 0.0001). Tumours with high CDK2 transcripts were more likely to have higher expressions of genes involved in the cell cycle, homologous recombination, and p53 signaling. We provide compelling evidence that high CDK2 is a feature of aggressive breast cancers. The clinical evaluation of CDK2 inhibitors in early-stage BC patients will have a clinical impact.
Collapse
MESH Headings
- Humans
- Female
- Cyclin-Dependent Kinase 2/metabolism
- Cyclin-Dependent Kinase 2/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Prognosis
- Middle Aged
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Neoplasm Staging
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Aged
- Gene Expression Regulation, Neoplastic
- Neoplasm Invasiveness
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Ayat Lashen
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Pathology, Nottingham University Hospital, City Campus, Nottingham NG5 1PB, UK
| | - Shatha Alqahtani
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
| | - Jennie N. Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
| | - Nigel P. Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington LE12 5RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emad A. Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Pathology, Nottingham University Hospital, City Campus, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; (A.L.); (S.A.); (A.S.); (M.A.); (J.N.J.); (N.P.M.); (E.A.R.)
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| |
Collapse
|
7
|
Binmujlli MA. Radiological and Molecular Analysis of Radioiodinated Anastrozole and Epirubicin as Innovative Radiopharmaceuticals Targeting Methylenetetrahydrofolate Dehydrogenase 2 in Solid Tumors. Pharmaceutics 2024; 16:616. [PMID: 38794278 PMCID: PMC11126143 DOI: 10.3390/pharmaceutics16050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic field of radiopharmaceuticals, innovating targeted agents for cancer diagnosis and therapy is crucial. Our study enriches this evolving landscape by evaluating the potential of radioiodinated anastrozole ([125I]anastrozole) and radioiodinated epirubicin ([125I]epirubicin) as targeting agents against MTHFD2-driven tumors. MTHFD2, which is pivotal in one-carbon metabolism, is notably upregulated in various cancers, presenting a novel target for radiopharmaceutical application. Through molecular docking and 200 ns molecular dynamics (MD) simulations, we assess the binding efficiency and stability of [125I]anastrozole and [125I]epirubicin with MTHFD2. Molecular docking illustrates that [125I]epirubicin has a superior binding free energy (∆Gbind) of -41.25 kJ/mol compared to -39.07 kJ/mol for [125I]anastrozole and -38.53 kJ/mol for the control ligand, suggesting that it has a higher affinity for MTHFD2. MD simulations reinforce this, showing stable binding, as evidenced by root mean square deviation (RMSD) values within a narrow range, underscoring the structural integrity of the enzyme-ligand complexes. The root mean square fluctuation (RMSF) analysis indicates consistent dynamic behavior of the MTHFD2 complex upon binding with [125I]anastrozole and [125I]epirubicin akin to the control. The radius of gyration (RG) measurements of 16.90 Å for MTHFD2-[125I]anastrozole and 16.84 Å for MTHFD2-[125I]epirubicin confirm minimal structural disruption upon binding. The hydrogen bond analysis reveals averages of two and three stable hydrogen bonds for [125I]anastrozole and [125I]epirubicin complexes, respectively, highlighting crucial stabilizing interactions. The MM-PBSA calculations further endorse the thermodynamic favorability of these interactions, with binding free energies of -48.49 ± 0.11 kJ/mol for [125I]anastrozole and -43.8 kJ/mol for MTHFD2-. The significant contribution of Van der Waals and electrostatic interactions to the binding affinities of [125I]anastrozole and [125I]epirubicin, respectively, underscores their potential efficacy for targeted tumor imaging and therapy. These computational findings lay the groundwork for the future experimental validation of [125I]anastrozole and [125I]epirubicin as MTHFD2 inhibitors, heralding a notable advancement in precision oncology tools. The data necessitate subsequent in vitro and in vivo assays to corroborate these results.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
8
|
Silva RVN, Berzotti LA, Laia MG, Araújo LS, Silva CA, Ribeiro KB, Brandão M, Michelleti AMR, Machado JR, Lira RCP. Implications of MTHFD2 expression in renal cell carcinoma aggressiveness. PLoS One 2024; 19:e0299353. [PMID: 38422037 PMCID: PMC10903874 DOI: 10.1371/journal.pone.0299353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of cancer in kidney and is often diagnosed in advanced stages. Until now, there is no reliable biomarker to assess tumor prognosis during histopathological diagnosis. The Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) overexpression has been suggested as prognostic indicator for RCC, however, its protein profile needs to be clarified. This study investigated the MTHFD2 expression in different RCC cohorts, associating it with tumor characteristics and prognostic factors. Gene expression comparisons between non-neoplastic (NN) and tumor samples, as well as patients' survival analysis, were assessed using KM-Plotter tool. MTHFD2 protein pattern was evaluated in 117 RCC by immunohistochemistry and associations with prognosis, clinical and pathological data were investigated. The tumors exhibited higher MTHFD2 transcript levels than NN, being even higher in the metastatic group. Opposite gene expression patterns were found among clear cell renal cell carcinoma (ccRCC) and pappilary renal cell carcinoma (pRCC) subtypes, showing higher and lower expressions compared to NN samples respectively. Overexpression was associated with shorter overall survival for ccRCC and pRCC subtypes, and shorter recurrence-free survival for pRCC. The immunolabeling profile varied according to tumor subtypes, with lower intensity and expression scores in ccRCC compared to pRCC and to chromophobe renal cell carcinoma (chRCC). MTHFD2 protein expression was associated with larger tumors and higher Fuhrman grades. Although prognostic value of protein immunostaining was not confirmed, patients with higher MTHFD2 tended to have lower survival rates in the pRCC group. The results highlight MTHFD2 different patterns according to RCC histological subtypes, revealing marked variations at both the genetic and protein levels. The mRNA indicated tumor prognosis, and greater expression in the tumor samples. Although MTHFD2 immunolabeling suggests tumor aggressiveness, it needs to be validated in other cohorts as potential prognostic factor.
Collapse
Affiliation(s)
- Rafaela V. N. Silva
- Department of Pathology, Genetics and Evolution, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Lucas A. Berzotti
- Department of Pathology, Genetics and Evolution, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcella G. Laia
- Department of Pathology, Genetics and Evolution, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Liliane S. Araújo
- Department of Pathology, Genetics and Evolution, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Crislaine A. Silva
- Department of Pathology, Genetics and Evolution, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Karen B. Ribeiro
- Clinics Hospital, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Millena Brandão
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adilha M. R. Michelleti
- Department of Clinical Surgery, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana R. Machado
- Department of Pathology, Genetics and Evolution, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Régia C. P. Lira
- Department of Pathology, Genetics and Evolution, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
9
|
Ramos L, Henriksson M, Helleday T, Green AC. Targeting MTHFD2 to Exploit Cancer-Specific Metabolism and the DNA Damage Response. Cancer Res 2024; 84:9-16. [PMID: 37922465 DOI: 10.1158/0008-5472.can-23-1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/05/2023]
Abstract
The one-carbon folate enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is a promising therapeutic target in cancer. MTHFD2 is upregulated across numerous cancer types, promotes growth and metastasis of cancer, and correlates with poorer survival. Recent studies have developed small-molecule inhibitors to the isozymes MTHFD2 and MTHFD1 that show promise as anticancer agents through different mechanisms. This review discusses the current understanding of the function of MTHFD2 in cancer and the status of inhibitors for treating MTHFD2-overexpressing cancers.
Collapse
Affiliation(s)
- Louise Ramos
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Vancouver Prostate Centre and Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Thomas Helleday
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Alanna C Green
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Shi X, Peng X, Chen Y, Shi Z, Yue C, Zuo L, Zhang L, Gao S. Overexpression of MTHFD2 represents an inflamed tumor microenvironment and precisely predicts the molecular subtype and immunotherapy response of bladder cancer. Front Immunol 2023; 14:1326509. [PMID: 38130721 PMCID: PMC10733511 DOI: 10.3389/fimmu.2023.1326509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), whose aberrant expression is common in cancers, has recently been identified as a potential regulator of immune response. However, its immune-related role in bladder cancer (BLCA) and its association with immunotherapy efficacy remain unclear. Methods RNA sequencing data from The Cancer Genome Atlas (TCGA) was applied to analyze the immunological roles and prognostic value of MTHFD2 in pan-cancers. The association of MTHFD2 with several immunological features of tumor microenvironment (TME), including cancer-immunity cycle, immune cells infiltration, immune checkpoints expression, and T cell inflamed score was analyzed in TCGA-BLCA cohort. The predictors of cancer treatments effectiveness, including the expression and mutation of certain genes, molecular subtypes, and several signatures were evaluated as well. These results were validated by another independent cohort (GSE48075). Finally, the predictive value of MTHFD2 for TME and immunotherapy efficacy were validated using immunohistochemistry assay and RNA sequencing data from IMvigor210 cohort, respectively. Results MTHFD2 was found to be positively associated with several immunological features of an inflamed tumor microenvironment (TME) in various cancers and could predict BLCA patients' prognosis. In BLCA, high expression of MTHFD2 was observed to be positively related with the cancer-immunity cycle, the infiltration of several immune cells, and the expression of immunoregulators and T-cell inflamed scores, indicating a positive correlation with the inflamed TME. Moreover, patients with high MTHFD2 expression were more likely to be basal-like subtypes and respond to BLCA treatments, including immunotherapy, chemotherapy, and target therapy. The clinical data of the IMvigor210 cohort confirmed the higher response rates and better survival benefits of immunotherapy in high-MTHFD2-expression patients. Conclusion Collectively, high MTHFD2 predicts an inflamed TME, a basal-like subtype, and a better response to various therapeutic strategies, especially the ICB therapy, in bladder cancer.
Collapse
Affiliation(s)
- Xiaokai Shi
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Xiangrong Peng
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Yin Chen
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Zebin Shi
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Chuang Yue
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Li Zuo
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Lifeng Zhang
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| | - Shenglin Gao
- Department of Urology, ChangZhou No.2 People’s Hospital, Nanjing Medical University, ChangZhou, Jiangsu, China
- Laboratory of Urology, ChangZhou Medical Center, Nanjing Medical University, ChangZhou, Jiangsu, China
| |
Collapse
|
11
|
Rather GM. Folate trapping is lethal to cancer cells. Chem Biol Drug Des 2023; 102:1588-1591. [PMID: 37620162 DOI: 10.1111/cbdd.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Regulation of formate flux by a key folate enzyme, MTHFD2 (methylene tetrahydrofolate dehydrogenase 2) in cancer cells remains poorly understood. Green et al. (Nature Metabolism, 2023; 5: 642-659) showed an interesting phenomenon of "folate trapping" toxicity leads to cancer cell kill using a potent inhibitor (TH9619) against the dehydrogenase and cyclohydrolase (DC) activities of cytosolic methylenetetrahydrofolate dehydrogenase 1 (cMTHFD1) and nuclear methylenetetrahydrofolate dehydrogenase 2 (nMTHFD2), but not the mitochondrial MTHFD2 (mTHFD2). But, mMTHFD2 is required for formate flow to cytosol which leads to the trapping of 10-formyl tetrahydrofolate and causes toxicity by TH9619 treatment, to kill cancer cells expressing mMTHFD2. This article opens new avenues to be evaluated for therapeutic benefits of cancer patients where MTHFD2 shows overexpression viz-a-viz breast, prostate, colorectal, acute myeloid leukemia, and other cancer types.
Collapse
|
12
|
Meliton AY, Cetin-Atalay R, Tian Y, Szafran JCH, Shin KWD, Cho T, Sun KA, Woods PS, Shamaa OR, Chen B, Muir A, Mutlu GM, Hamanaka RB. Mitochondrial One-Carbon Metabolism is Required for TGF-β-Induced Glycine Synthesis and Collagen Protein Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566074. [PMID: 37986788 PMCID: PMC10659399 DOI: 10.1101/2023.11.07.566074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A hallmark of Idiopathic Pulmonary Fibrosis is the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive scarring. We have previously shown that synthesis of collagen by lung fibroblasts requires de novo synthesis of glycine, the most abundant amino acid in collagen protein. TGF-β upregulates the expression of the enzymes of the de novo serine/glycine synthesis pathway in lung fibroblasts through mTORC1 and ATF4-dependent transcriptional programs. SHMT2, the final enzyme of the de novo serine/glycine synthesis pathway, transfers a one-carbon unit from serine to tetrahydrofolate (THF), producing glycine and 5,10-methylene-THF (meTHF). meTHF is converted back to THF in the mitochondrial one-carbon (1C) pathway through the sequential actions of MTHFD2 (which converts meTHF to 10-formyl-THF), and either MTHFD1L, which produces formate, or ALDH1L2, which produces CO2. It is unknown how the mitochondrial 1C pathway contributes to glycine biosynthesis or collagen protein production in fibroblasts, or fibrosis in vivo. Here, we demonstrate that TGF-β induces the expression of MTHFD2, MTHFD1L, and ALDH1L2 in human lung fibroblasts. MTHFD2 expression was required for TGF-β-induced cellular glycine accumulation and collagen protein production. Combined knockdown of both MTHFD1L and ALDH1L2 also inhibited glycine accumulation and collagen protein production downstream of TGF-β; however knockdown of either protein alone had no inhibitory effect, suggesting that lung fibroblasts can utilize either enzyme to regenerate THF. Pharmacologic inhibition of MTHFD2 recapitulated the effects of MTHFD2 knockdown in lung fibroblasts and ameliorated fibrotic responses after intratracheal bleomycin instillation in vivo. Our results provide insight into the metabolic requirements of lung fibroblasts and provide support for continued development of MTHFD2 inhibitors for the treatment of IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Takugo Cho
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Alexander Muir
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
13
|
Liu Y, Liu N, Zhou X, Zhao L, Wei W, Hu J, Luo Z. Constructing a prognostic model for head and neck squamous cell carcinoma based on glucose metabolism related genes. Front Endocrinol (Lausanne) 2023; 14:1245629. [PMID: 37876534 PMCID: PMC10591078 DOI: 10.3389/fendo.2023.1245629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Background Glucose metabolism (GM) plays a crucial role in cancer cell proliferation, tumor growth, and survival. However, the identification of glucose metabolism-related genes (GMRGs) for effective prediction of prognosis in head and neck squamous cell carcinoma (HNSC) is still lacking. Methods We conducted differential analysis between HNSC and Normal groups to identify differentially expressed genes (DEGs). Key module genes were obtained using weighted gene co-expression network analysis (WGCNA). Intersection analysis of DEGs, GMRGs, and key module genes identified GMRG-DEGs. Univariate and multivariate Cox regression analyses were performed to screen prognostic-associated genes. Independent prognostic analysis of clinical traits and risk scores was implemented using Cox regression. Gene set enrichment analysis (GSEA) was used to explore functional pathways and genes between high- and low-risk groups. Immune infiltration analysis compared immune cells between the two groups in HNSC samples. Drug prediction was performed using the Genomics of Drug Sensitivity in Cancer (GDSC) database. Quantitative real-time fluorescence PCR (qRT-PCR) validated the expression levels of prognosis-related genes in HNSC patients. Results We identified 4973 DEGs between HNSC and Normal samples. Key gene modules, represented by black and brown module genes, were identified. Intersection analysis revealed 76 GMRG-DEGs. Five prognosis-related genes (MTHFD2, CDKN2A, TPM2, MPZ, and DNMT1) were identified. A nomogram incorporating age, lymph node status (N), and risk score was constructed for survival prediction in HNSC patients. Immune infiltration analysis showed significant differences in five immune cell types (Macrophages M0, memory B cells, Monocytes, Macrophages M2, and Dendritic resting cells) between the high- and low-risk groups. GDSC database analysis identified 53 drugs with remarkable differences between the groups, including A.443654 and AG.014699. DNMT1 and MTHFD2 were up-regulated, while MPZ was down-regulated in HNSC. Conclusion Our study highlights the significant association of five prognosis-related genes (MTHFD2, CDKN2A, TPM2, MPZ, and DNMT1) with HNSC. These findings provide further evidence of the crucial role of GMRGs in HNSC.
Collapse
Affiliation(s)
- Yu Liu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Nana Liu
- Department of Onclogy, People’s Hospital of Chongqing Hechuan, Chongqing, China
| | - Xue Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lingqiong Zhao
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Wei Wei
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Jie Hu
- Department of Otolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing, China
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
14
|
Pawlik P, Kurzawińska G, Ożarowski M, Wolski H, Piątek K, Słopień R, Sajdak S, Olbromski P, Seremak-Mrozikiewicz A. Common Variants in One-Carbon Metabolism Genes ( MTHFR, MTR, MTHFD1) and Depression in Gynecologic Cancers. Int J Mol Sci 2023; 24:12574. [PMID: 37628752 PMCID: PMC10454161 DOI: 10.3390/ijms241612574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
We investigated the association between methylenetetrahydrofolate reductase (gene MTHFR 677C>T, rs1801133), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR 2756A>G, rs1805087), and methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (gene MTHFD1 1958G>A, rs2236225)-well-studied functional variants involved in one-carbon metabolism-and gynecologic cancer risk, and the interaction between these polymorphisms and depression. A total of 200 gynecologic cancer cases and 240 healthy controls were recruited to participate in this study. Three single-nucleotide variants (SNVs) (rs1801133, rs1805087, rs2236225) were genotyped using the PCR-restriction fragment length polymorphism method. Depression was assessed in all patients using the Hamilton Depression Scale. Depression was statistically significantly more frequent in women with gynecologic cancers (69.5% vs. 34.2% in controls, p < 0.001). MTHFD1 rs2236225 was associated with an increased risk of gynecologic cancers (in dominant OR = 1.53, p = 0.033, and in log-additive models OR = 1.37, p = 0.024). Moreover, an association was found between depression risk and MTHFR rs1801133 genotypes in the controls but not in women with gynecologic cancers (in codominant model CC vs. TT: OR = 3.39, 95%: 1.49-7.74, p = 0.011). Cancers of the female reproductive system are associated with the occurrence of depression, and ovarian cancer may be associated with the rs2236225 variant of the MTHFD1 gene. In addition, in healthy aging women in the Polish population, the rs1801133 variant of the MTHFR gene is associated with depression.
Collapse
Affiliation(s)
- Piotr Pawlik
- Division of Gynecological Surgery, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (P.P.); (S.S.); (P.O.)
| | - Grażyna Kurzawińska
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (G.K.); (A.S.-M.)
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71B, 60-630 Poznan, Poland
| | - Hubert Wolski
- Institute of Medical Sciences, Academy of Applied Sciences, Kokoszków 71, 34-400 Nowy Targ, Poland;
| | - Krzysztof Piątek
- Department of Gynecology and Obstetrics, University of Zielona Gora, Licealna 9, 65-417 Zielona Gora, Poland;
| | - Radosław Słopień
- MedicaNow Gynecological Endocrinology and Menopause Clinic, Piątkowska 118, 60-648 Poznan, Poland;
| | - Stefan Sajdak
- Division of Gynecological Surgery, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (P.P.); (S.S.); (P.O.)
| | - Piotr Olbromski
- Division of Gynecological Surgery, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (P.P.); (S.S.); (P.O.)
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland; (G.K.); (A.S.-M.)
- Laboratory of Molecular Biology, Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
| |
Collapse
|
15
|
Zhou N, Kong D, Lin Q, Yang X, Zhou D, Lou L, Huang F. Unfolded protein response signature unveils novel insights into breast cancer prognosis and tumor microenvironment. Cancer Genet 2023; 276-277:17-29. [PMID: 37343507 DOI: 10.1016/j.cancergen.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND The critical role of the unfolded protein response (UPR) in tumorigenesis is widely acknowledged, yet the precise molecular mechanisms underlying its contribution to breast cancer (BC) have not been fully elucidated. The present study aimed to comprehensively explore the expression characteristics and prognostic significance of UPR-related genes in breast cancer METHODS: The transcriptome and clinical data of breast cancer were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively. Differential expression analysis was conducted on UPR-related genes, and the resulting genes were employed for consensus clustering analysis. A breast cancer prognosis risk model was constructed using univariate, least absolute shrinkage and selection operator (LASSO), and multivariable Cox regression analyses. Difference in survival outcomes between groups were analyzed Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) curve was used to assess predictive performance. The relationship between the risk model and clinical-pathological characteristics, immune infiltration, immunotherapy response, and drug sensitivity was assessed. RESULTS Differential expression analysis identified 10 UPR-related genes that were differentially expressed in breast cancer. Using the expression matrix of these genes, two molecular subtypes of breast cancer were characterized, which displayed significant differences in prognostic and immune infiltration characteristics. Drawing from the gene expression profiles that distinguish between the molecular subtypes, a prognostic risk scoring model comprising eight genes was developed. This model stratified BC patients from both the training and validation cohorts into high-risk and low-risk groups. Patients in the low-risk group had better prognoses, while those with advanced clinical stage and T stage exhibited higher risk scores. The high- and low-risk groups exhibited notable disparities in immune cell infiltration and the expression of multiple immune checkpoint-related genes. Additionally, the low-risk group demonstrated elevated immunophenoscore, Merck18, CD274, and CAF scores compared to the high-risk group, along with a lesser sensitivity to chemotherapy drugs. These results suggest that patients within the low-risk group may potentially benefit more from immunotherapy and chemotherapy interventions. CONCLUSIONS This study developed a novel UPR-derived risk signature, which could robustly predict the survival outcome, immune microenvironment, and chemotherapy response of patients with breast cancer.
Collapse
Affiliation(s)
- Nanyang Zhou
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Dejia Kong
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Qiao Lin
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Xiaojing Yang
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Dan Zhou
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Lihua Lou
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China
| | - Feixiang Huang
- Department of Traditional Chinese Medicine, Hangzhou Women's Hospital, Hangzhou 310008, Zhejiang, China.
| |
Collapse
|
16
|
Pan S, Guan J, Xianyu B, Tan Y, Li T, Xu H. A Nanotherapeutic Strategy to Reverse NK Cell Exhaustion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211370. [PMID: 36917826 DOI: 10.1002/adma.202211370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/10/2023] [Indexed: 06/09/2023]
Abstract
As a specialized immune effector cell, natural killer (NK) cells play a very important role in immunotherapy, but tumor immunosuppression caused by abnormal expression of cancer cells seriously weakens its therapeutic effect and leads to exhaustion. Here, self-assembled selenium-containing nanoparticles (NPs) composed of cetuximab, C5SeSeC5, and inhibitor LY345899 are developed to reverse NK cell exhaustion. The obtained NPs can target epidermal growth factor receptor on the surface of cancer cells and locate it in mitochondria. The released LY345899 can inhibit the activity of methylene tetrahydrofolate dehydrogenase 2 and produce excessive reactive oxygen species, leading to the formation of seleninic acid, further reducing the expression of human leukocyte antigen E , which is responsible for the NKG2A-related NK cell inhibition. As a result, the enhanced NK-cell-mediated immunotherapy in conjunction with the cetuximab-mediated antibody-dependent cell-mediated cytotoxicity effect can not only effectively inhibit the growth of xenograft tumors, but also significantly suppress the growth of untreated distant tumors via the abscopal effect. This work, the combination of seleninic acid, LY345899, and cetuximab, provides a new strategy for reversing NK cell exhaustion and has great potential for use in the treatment of metastatic tumors.
Collapse
Affiliation(s)
- Shuojiong Pan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Guan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Banruo Xianyu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yizheng Tan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Jha V, Eriksson LA. Binding Modes of Xanthine-Derived Selective Allosteric Site Inhibitors of MTHFD2. ChemistryOpen 2023; 12:e202300052. [PMID: 37129313 PMCID: PMC10152887 DOI: 10.1002/open.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Methylenetetrahydrofolate dehydrogenase (MTHFD2) is a mitochondrial enzyme involved in 1 C metabolism that is upregulated in various cancer cells, but absent in normal proliferating cells. Xanthine derivatives are the first selective inhibitors of MTHFD2 which bind to its allosteric site. Xanthine derivatives (including the co-crystallized inhibitors) were herein interrogated by molecular/induced-fit docking, MM-GBSA binding free energy calculations and molecular dynamics simulations in both MTHFD2 and MTHFD1 (a close homolog expressed in healthy cells). The gained insights from our in silico protocol allowed us to study binding mode, key protein-ligand interactions and dynamic movement of the allosteric inhibitors, correlating with their experimental binding affinities, biological activities and selectivity for MTHFD2. The reported conformational changes with MTHFD2 upon binding of xanthine derivatives were furthermore evaluated and confirmed by RMSF analyses of the MD simulation trajectories. The results reported herein are expected to benefit in the rational design of selective MTHFD2 allosteric inhibitors.
Collapse
Affiliation(s)
- Vibhu Jha
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9c, 405 30, Göteborg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9c, 405 30, Göteborg, Sweden
| |
Collapse
|
18
|
Jiao Z, Pan Y, Chen F. The Metabolic Landscape of Breast Cancer and Its Therapeutic Implications. Mol Diagn Ther 2023; 27:349-369. [PMID: 36991275 DOI: 10.1007/s40291-023-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/31/2023]
Abstract
Breast cancer is the most common malignant tumor globally as of 2020 and remains the second leading cause of cancer-related death among female individuals worldwide. Metabolic reprogramming is well recognized as a hallmark of malignancy owing to the rewiring of multiple biological processes, notably, glycolysis, oxidative phosphorylation, pentose phosphate pathway, as well as lipid metabolism, which support the demands for the relentless growth of tumor cells and allows distant metastasis of cancer cells. Breast cancer cells are well documented to reprogram their metabolism via mutations or inactivation of intrinsic factors such as c-Myc, TP53, hypoxia-inducible factor, and the PI3K/AKT/mTOR pathway or crosstalk with the surrounding tumor microenvironments, including hypoxia, extracellular acidification and interaction with immune cells, cancer-associated fibroblasts, and adipocytes. Furthermore, altered metabolism contributes to acquired or inherent therapeutic resistance. Therefore, there is an urgent need to understand the metabolic plasticity underlying breast cancer progression as well as to dictate metabolic reprogramming that accounts for the resistance to standard of care. This review aims to illustrate the altered metabolism in breast cancer and its underlying mechanisms, as well as metabolic interventions in breast cancer treatment, with the intention to provide strategies for developing novel therapeutic treatments for breast cancer.
Collapse
Affiliation(s)
- Zhuoya Jiao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China
| | - Yunxia Pan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China
| | - Fengyuan Chen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.
| |
Collapse
|
19
|
Jha V, Holmelin FL, Eriksson LA. Binding Analysis and Structure-Based Design of Tricyclic Coumarin-Derived MTHFD2 Inhibitors as Anticancer Agents: Insights from Computational Modeling. ACS OMEGA 2023; 8:14440-14458. [PMID: 37125100 PMCID: PMC10134251 DOI: 10.1021/acsomega.2c08025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Unfolded protein response (UPR)-dependent metabolic reprogramming diverts metabolites from glycolysis to mitochondrial 1C metabolism, highlighting pharmacological resistance to folate drugs and overexpression of certain enzymes. Methylenetetrahydrofolate dehydrogenase (MTHFD2) is a mitochondrial enzyme that plays a key role in 1C metabolism in purine and thymidine synthesis and is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. To the best of our knowledge, tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported until the present date. The current study aims at the investigation of the available structural data of MTHFD2 in complex with potent and selective inhibitors that occupy the substrate binding site, further providing insights into binding mode, key protein-ligand interactions, and conformational dynamics, that correspond to the experimental binding affinities and biological activities. In addition, we carried out structure-based drug design on the substrate binding site of MTHFD2, by exploiting the cocrystal structure of MTHFD2 with the tricyclic coumarin-based inhibitor. The structure-based drug design campaign involves R-group enumeration, bioisostere replacement, molecular docking, ADME prediction, MM-GBSA binding free energy calculations, and molecular dynamics simulations, that led to a small library of new and potential compounds, capable of selectively inhibiting MTHFD2. The results reported herein are expected to benefit medicinal chemists working on the development of selective MTHFD2 inhibitors for cancer treatment, although experimental validation by biochemical and/or pharmacokinetic assays is required to substantiate the outcomes of the study.
Collapse
|
20
|
Zhou F, Yuan Z, Gong Y, Li L, Wang Y, Wang X, Ma C, Yang L, Liu Z, Wang L, Zhao H, Zhao C, Huang X. Pharmacological targeting of MTHFD2 suppresses NSCLC via the regulation of ILK signaling pathway. Biomed Pharmacother 2023; 161:114412. [PMID: 36827714 DOI: 10.1016/j.biopha.2023.114412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Lung cancer is the most common cause of cancer related deaths worldwide with the highest mortality rate. Non-small cell lung cancer (NSCLC) accounts for about 85 % of lung cancers. Mitochondrial methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a bifunctional enzyme and is the most differentially expressed metabolic enzyme in various tumors including lung cancer. However, little is known about how MTHFD2 functions in NSCLC. Integrin-linked kinase (ILK) signaling plays key a role in tumor progression including metastasis, proliferation and migration. Here, we show that MTHFD2 inhibition results in suppression of cell growth, migration, invasion and epithelial-mesenchymal transition (EMT) in NSCLC. Microarray analysis suggests that MTHFD2 is positively associated with ILK signaling based on western blotting results. In addition, the phosphorylation of AMPKα plays an essential role in MTHFD2 regulation of ILK signaling. Further, the small-molecule compound C18 inhibits MTHFD2 with great efficiency. C18 blocks MTHFD2/ILK signaling pathway and restrains cell growth, migration, invasion, and EMT of NSCLC and induces apoptosis. In brief, our study found that the positive impact of MTHFD2 is mediated via ILK signaling pathway in NSCLC. Thus, blocking MTHFD2 represents a promising therapeutic strategy against NSCLC clinically.
Collapse
Affiliation(s)
- Feng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziyi Yuan
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuyan Gong
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Luyao Li
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yanmao Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xian Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chunbo Ma
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhiguo Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haiyang Zhao
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, Zhejiang, China.
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
21
|
Huang M, Xue J, Chen Z, Zhou X, Chen M, Sun J, Xu Z, Wang S, Xu H, Du Z, Liu M. MTHFD2 suppresses glioblastoma progression via the inhibition of ERK1/2 phosphorylation. Biochem Cell Biol 2023; 101:112-124. [PMID: 36493392 DOI: 10.1139/bcb-2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a WHO grade 4 tumor and is the most malignant form of glioma. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), a mitochondrial enzyme involved in folate metabolism, has been reported to be highly expressed in several human tumors. However, little is known about the role of MTHFD2 in GBM. In this study, we aimed to explore the biological functions of MTHFD2 in GBM and identify the associated mechanisms. We performed experiments such as immunohistochemistry, Western blot, and transwell assays and found that MTHFD2 expression was lower in high-grade glioma than in low-grade glioma. Furthermore, a high expression of MTHFD2 was associated with a favorable prognosis, and MTHFD2 levels showed good prognostic accuracy for glioma patients. The overexpression of MTHFD2 could inhibit the migration, invasion, and proliferation of GBM cells, whereas its knockdown induced the opposite effect. Mechanistically, our findings revealed that MTHFD2 suppressed GBM progression independent of its enzymatic activity, likely by inducing cytoskeletal remodeling through the regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, thereby influencing GBM malignance. Collectively, these findings uncover a potential tumor-suppressor role of MTHFD2 in GBM cells. MTHFD2 may act as a promising diagnostic and therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Meihui Huang
- Department of Central Laboratory, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Jiajian Xue
- Department of Neurosurgery, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Zhiming Chen
- Department of Pathology, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Xiao Zhou
- Department of Central Laboratory, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Mantong Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jianhong Sun
- Department of Pathology, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Zepeng Du
- Department of Central Laboratory, Shantou Central Hospital, Shantou 515031, Guangdong, China
- Department of Pathology, Shantou Central Hospital, Shantou 515031, Guangdong, China
| | - Mingfa Liu
- Department of Neurosurgery, Shantou Central Hospital, Shantou 515031, Guangdong, China
| |
Collapse
|
22
|
Deng X, Liu X, Hu B, Liu J, Fu B, Zhang W. Upregulation of MTHFD2 is associated with PD‑L1 activation in bladder cancer via the PI3K/AKT pathway. Int J Mol Med 2022; 51:14. [PMID: 36601741 PMCID: PMC9869724 DOI: 10.3892/ijmm.2022.5217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/05/2022] [Indexed: 01/01/2023] Open
Abstract
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) has been implicated in the etiology of various human malignant tumors; however, its exact role in bladder cancer (BC) remains to be explored. Through reverse transcription‑quantitative PCR, western blotting and immunohistochemistry detection of BC tissue, combined with The Cancer Genome Atlas (TCGA) database analysis, the present study demonstrated that MTHFD2 was upregulated in BC tissues. MTHFD2 expression in patients with BC was frequently associated with worse prognosis, tumor immune cell infiltration and programmed death‑ligand 1 (PD‑L1) expression. Subsequently, using short hairpin RNA, the expression levels of MTHFD2 were knocked down in BC cell lines, and the results revealed that the tumor cell proliferation and colony formation abilities of cells were greatly reduced, as determined by Cell Counting Kit 8 and colony formation assays, as was the expression of PD‑L1, as determined by western blotting. These findings were also confirmed in a xenograft nude mouse model. Simultaneously, it was revealed that abnormal expression of MTHFD2 was closely associated with the PI3K/AKT signaling pathway in both RNA‑sequencing and TCGA datasets. This observation was verified in vitro by detecting the protein expression levels of PI3K and AKT by western blotting. The activation of PI3K and AKT was enhanced in BC cells (T24) following stimulation with 740Y‑P, a PI3K activator, and cellular activities and PD‑L1 expression levels were restored. Finally, it was demonstrated that the MTHFD2 levels were correlated with chemosensitivity to traditional BC chemotherapeutic agents and various PI3K/AKT‑targeted drugs, as determined by analyzing the Genomics of Drug Sensitivity in Cancer database. Overall, the present findings revealed that upregulation of MTHFD2 was associated with PD‑L1 activation in BC via the PI3K/AKT signaling pathway, suggesting that it could be a promising marker of chemotherapy and immunotherapy for BC.
Collapse
Affiliation(s)
- Xinxi Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Urology, Nanchang, Jiangxi 330006, P.R. China,Department of Urology, Jiujiang No. 1 People's Hospital (Affiliated Jiujiang Hospital of Nanchang University), Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Urology, Nanchang, Jiangxi 330006, P.R. China
| | - Bing Hu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Urology, Nanchang, Jiangxi 330006, P.R. China
| | - Jianyun Liu
- Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Urology, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Bin Fu, Department of Urology, The First Affiliated Hospital of Nanchang University, Jiangxi Institute of Urology, 17 Yong Wai Zheng Street, Donghu, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Wensheng Zhang
- Department of Urology, Jiujiang No. 1 People's Hospital (Affiliated Jiujiang Hospital of Nanchang University), Jiujiang, Jiangxi 332000, P.R. China,Dr Wensheng Zhang, Department of Urology, Jiujiang No. 1 People's Hospital (Affiliated Jiujiang Hospital of Nanchang University), 48 Taling South Road, Xunyang, Jiujiang, Jiangxi 332000, P.R. China, E-mail:
| |
Collapse
|
23
|
Lin JMG, Kourtis S, Ghose R, Pardo Lorente N, Kubicek S, Sdelci S. Metabolic modulation of transcription: The role of one-carbon metabolism. Cell Chem Biol 2022; 29:S2451-9456(22)00415-9. [PMID: 36513079 DOI: 10.1016/j.chembiol.2022.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
While it is well known that expression levels of metabolic enzymes regulate the metabolic state of the cell, there is mounting evidence that the converse is also true, that metabolite levels themselves can modulate gene expression via epigenetic modifications and transcriptional regulation. Here we focus on the one-carbon metabolic pathway, which provides the essential building blocks of many classes of biomolecules, including purine nucleotides, thymidylate, serine, and methionine. We review the epigenetic roles of one-carbon metabolic enzymes and their associated metabolites and introduce an interactive computational resource that places enzyme essentiality in the context of metabolic pathway topology. Therefore, we briefly discuss examples of metabolic condensates and higher-order complexes of metabolic enzymes downstream of one-carbon metabolism. We speculate that they may be required to the formation of transcriptional condensates and gene expression control. Finally, we discuss new ways to exploit metabolic pathway compartmentalization to selectively target these enzymes in cancer.
Collapse
Affiliation(s)
- Jung-Ming G Lin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Vienna 1090, Austria
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Natalia Pardo Lorente
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Vienna 1090, Austria
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain.
| |
Collapse
|
24
|
Scaletti ER, Gustafsson Westergren R, Andersson Y, Wiita E, Henriksson M, Homan EJ, Jemth A, Helleday T, Stenmark P. The First Structure of Human MTHFD2L and Its Implications for the Development of Isoform-Selective Inhibitors. ChemMedChem 2022; 17:e202200274. [PMID: 35712863 PMCID: PMC9796130 DOI: 10.1002/cmdc.202200274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Indexed: 01/01/2023]
Abstract
Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a mitochondrial 1-carbon metabolism enzyme, which is an attractive anticancer drug target as it is highly upregulated in cancer but is not expressed in healthy adult cells. Selective MTHFD2 inhibitors could therefore offer reduced side-effects during treatment, which are common with antifolate drugs that target other 1C-metabolism enzymes. This task is challenging however, as MTHFD2 shares high sequence identity with the constitutively expressed isozymes cytosolic MTHFD1 and mitochondrial MTHFD2L. In fact, one of the most potent MTHFD2 inhibitors reported to date, TH7299, is actually more active against MTHFD1 and MTHFD2L. While structures of MTHFD2 and MTHFD1 exist, no MTHFD2L structures are available. We determined the first structure of MTHFD2L and its complex with TH7299, which reveals the structural basis for its highly potent MTHFD2L inhibition. Detailed analysis of the MTHFD2L structure presented here clearly highlights the challenges associated with developing truly isoform-selective MTHFD2 inhibitors.
Collapse
Affiliation(s)
- Emma R. Scaletti
- Department of Biochemistry and BiophysicsStockholm UniversitySvante Arrhenius väg 16 CStockholm106 91Sweden
| | | | - Yasmin Andersson
- Drug Discovery and Development Platform, Science for Life Laboratory School of BiotechnologyRoyal Institute of TechnologyTomtebodavägen 23aStockholm17165Sweden
| | - Elisee Wiita
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Martin Henriksson
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Evert J. Homan
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Ann‐Sofie Jemth
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
| | - Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology-PathologyKarolinska InstituteTomtebodavägen 23aStockholm171 65Sweden
- Department of Oncology and MetabolismThe University of SheffieldBeech Hill RoadSheffieldS10 2RXUK
| | - Pål Stenmark
- Department of Biochemistry and BiophysicsStockholm UniversitySvante Arrhenius väg 16 CStockholm106 91Sweden
| |
Collapse
|
25
|
ATF4/MYC Regulates MTHFD2 to Promote NSCLC Progression by Mediating Redox Homeostasis. DISEASE MARKERS 2022; 2022:7527996. [PMID: 36051358 PMCID: PMC9425107 DOI: 10.1155/2022/7527996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Purpose. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) has been reported to be overexpressed in non-small-cell lung cancer (NSCLC) and to correlate with malignant proliferation. However, the mechanism of high MTHFD2 expression in NSCLC has not been clarified. Methods. qPCR, western blot, and immunofluorescence experiments were used to measure the expression of related mRNAs and proteins. Cell apoptosis was measured by flow cytometry and TUNEL assays. The CCK-8 assay was used to determine cell viability. Flow cytometry was used to analyze the cell cycle. ROS, H2O2, MDA, SOD, and NADPH/NADP+ were evaluated by relevant assay kits. Transfection of siRNA or vectors was used to downregulate or upregulate gene expression. Dual-luciferase reporter gene assays were used to evaluate the regulated relationship between MTHFD2 and ATF4 or MYC. Results. MTHFD2 was highly expressed in NSCLC cells. Knockdown of MTHFD2 inhibited proliferation and increased apoptosis. Furthermore, oxidative factors significantly increased, while antioxidant factors significantly decreased in NSCLC cells with MTHFD2 knockdown, indicating that MTHFD2 was involved in NSCLC progression through the redox pathway. Although MTHFD2 was downregulated with ATF4 silencing, the dual-luciferase reporter assay suggested that ATF4 did not directly mediate MTHFD2 transcription. Further studies revealed that MYC had a transcriptional effect on MTHFD2 and was also regulated by ATF4. PCR, and western blotting experiments with ATF4 knockdown and MYC overexpression as well as ATF4 overexpression and MYC knockdown proved that ATF4 stimulated MTHFD2 through MYC mediation. Conclusions. ATF4 promoted high expression of MTHFD2 in NSCLC dependent on MYC.
Collapse
|
26
|
Regulation and Therapeutic Targeting of MTHFD2 and EZH2 in KRAS-Mutated Human Pulmonary Adenocarcinoma. Metabolites 2022; 12:metabo12070652. [PMID: 35888776 PMCID: PMC9324032 DOI: 10.3390/metabo12070652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Activating KRAS mutations occur in about 30% of pulmonary adenocarcinoma (AC) cases and the discovery of specific inhibitors of G12C-mutated KRAS has considerably improved the prognosis for a subgroup of about 14% of non-small cell lung cancer (NSCLC) patients. However, even in patients with a KRAS G12C mutation, the overall response rate only reaches about 40% and mutations other than G12C still cannot be targeted. Despite the fact that one-carbon metabolism (1CM) and epigenetic regulation are known to be dysregulated by aberrant KRAS activity, we still lack evidence that co-treatment with drugs that regulate these factors might ameliorate response rates and patient prognosis. In this study, we show a direct dependency of Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and Enhancer of Zeste Homolog 2 (EZH2) expression on mutationally activated KRAS and their prognostic relevance in KRAS-mutated AC. We show that aberrant KRAS activity generates a vulnerability of AC cancer cell lines to both MTHFD2 and EZH2 inhibitors. Importantly, co-inhibition of both factors was synergistically effective and comparable to KRASG12C inhibition alone, paving the way for their use in a therapeutic approach for NSCLC cancer patients.
Collapse
|
27
|
Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 2022; 29:1304-1317. [PMID: 35831624 PMCID: PMC9287557 DOI: 10.1038/s41418-022-01022-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes. This results in metabolic reprogramming that sustains rapid cell proliferation and can lead to an increase in reactive oxygen species used by cancer cells to maintain pro-tumorigenic signaling pathways while avoiding cellular death. The knowledge acquired on the importance of mitochondrial cancer metabolism is now being translated into clinical practice. Detailed genomic, transcriptomic, and metabolomic analysis of tumors are necessary to develop more precise treatments. The successful use of drugs targeting metabolic mitochondrial enzymes has highlighted the potential for their use in precision medicine and many therapeutic candidates are in clinical trials. However, development of efficient personalized drugs has proved challenging and the combination with other strategies such as chemocytotoxic drugs, immunotherapy, and ketogenic or calorie restriction diets is likely necessary to boost their potential. In this review, we summarize the main mitochondrial features, metabolic pathways, and their alterations in different cancer types. We also present an overview of current inhibitors, highlight enzymes that are attractive targets, and discuss challenges with translation of these approaches into clinical practice. The role of mitochondria in cancer is indisputable and presents several attractive targets for both tailored and personalized cancer therapy. ![]()
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
28
|
The Emerging Role of MTHFD Family Genes in Regulating the Tumor Immunity of Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:4867730. [PMID: 35693982 PMCID: PMC9187492 DOI: 10.1155/2022/4867730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022]
Abstract
Objective To investigate the function and regulatory mechanisms of methylenetetrahydrofolate dehydrogenase (MTHFD) family genes in oral squamous cell carcinoma (OSCC), especially focus on their regulating role in tumor immunity. Methods The publicly available data from the TCGA database were used to investigate the expression pattern and regulatory role of MTHFD family genes in OSCC. More importantly, the involvement of MTHFD family genes in tumor immunity was investigated in terms of immune and stromal cell infiltration in tumor microenvironment, tumor-infiltrating immune cells, and immunomodulatory genes (e.g., immunoinhibitory genes and immunostimulatory genes). Statistical analysis was performed using R software packages and public web servers. Results MTHFD family genes were considerably upregulated in OSCC as compared with normal oral tissue. Patients with high MTHFD2 expression presented worse survival outcomes than those with low MTHFD2 expression. Functional enrichment analysis showed that the top 100 positively and negatively correlated genes of the MTHFD family genes were significantly enriched in several KEGG pathways, including cell cycle, spliceosome, DNA replication, and Th17 cell differentiation. As a result of tumor immunity analysis, MTHFD2L expression was found to be negatively related to the Estimate-Stromal-Immune score in OSCC; however, there was no statistical significance between the Estimate-Stromal-Immune score and MTHFD1, MTHFD1L, or MTHFD2 in OSCC. Additionally, MTHFD family genes were found to be significantly positively correlated with tumor-infiltrating immune cells, including Treg and Th17 cells. Moreover, MTHFD family genes were significantly correlated with several immune inhibitory genes such as CD274 and CTLA4 and several immune-stimulatory genes such as CXCL12, CXCR4, and TMIGD2. Conclusion Given the expression pattern, prognostic value, biological functions, and involvement in tumor immunity, MTHFD family genes could serve as potential therapeutic biomarkers in targeting tumor immunity in oral cancer.
Collapse
|
29
|
Qiang W, Dai Y, Xing X, Sun X. Identification of a metabolic reprogramming-related signature associated with prognosis and immune microenvironment of head and neck squamous cell carcinoma by in silico analysis. Cancer Med 2022; 11:3168-3181. [PMID: 35301800 PMCID: PMC9385599 DOI: 10.1002/cam4.4670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Metabolic reprogramming is one of the essential features of tumorigenesis. Herein, this study aimed to develop a novel metabolism‐related gene signature for head and neck squamous cell carcinoma (HNSCC) patients. Methods The transcriptomic and clinical data of HNSCC samples were collected from The Cancer Genome Atlas (TCGA) and GSE65858 datasets. The metabolism‐related gene‐based prognostic signature (MRGPS) was constructed by the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The time‐dependent receiver operating characteristic (ROC) and Kaplan‐Meier (K‐M) survival curves were plotted for evaluating its predicting performance. At the same time, univariate along with multivariate analysis was carried out to explore its correlation with clinicopathologic factors. Furthermore, GSEA analysis was performed to explore the signaling pathways affected by MRGPS. We also analyzed the associations of MRGPS with the tumor immune microenvironment (TIME), as well as identified potential compounds via Connectivity Map (CMap) and molecular docking. Results A total of 12 differentially expressed metabolism‐related genes were identified and selected to construct the MRGPS. Notably, this signature performed well in predicting HNSCC patients’ survival and could serve as an independent prognostic factor in multiple datasets. In addition to the metabolism‐related pathway, this signature could also affect some immune‐related pathways. The results indicated that MRGPS is correlated with immune cells infiltration and anti‐cancer immune response. Furthermore, we identified cephaeline as a potential therapeutic compound for HNSCC. Conclusion Taken together, we established an MRGs‐based signature that has the potential to predict the clinical outcome and immune microenvironment, which help to search for potential combination immunotherapy compounds and provide a promising therapeutic strategy for treating HNSCC patients.
Collapse
Affiliation(s)
- Weijie Qiang
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Yifei Dai
- School of MedicineTsinghua UniversityBeijingChina
| | - Xiaoyan Xing
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Xiaobo Sun
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
30
|
Trott JF, Schennink A, Horigan KC, Lemay DG, Cohen JR, Famula TR, Dragon JA, Hovey RC. Unique Transcriptomic Changes Underlie Hormonal Interactions During Mammary Histomorphogenesis in Female Pigs. Endocrinology 2022; 163:bqab256. [PMID: 34918063 PMCID: PMC10409904 DOI: 10.1210/endocr/bqab256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/19/2022]
Abstract
Successful lactation and the risk for developing breast cancer depend on growth and differentiation of the mammary gland (MG) epithelium that is regulated by ovarian steroids (17β-estradiol [E] and progesterone [P]) and pituitary-derived prolactin (PRL). Given that the MG of pigs share histomorphogenic features present in the normal human breast, we sought to define the transcriptional responses within the MG of pigs following exposure to all combinations of these hormones. Hormone-ablated female pigs were administered combinations of E, medroxyprogesterone 17-acetate (source of P), and either haloperidol (to induce PRL) or 2-bromo-α-ergocryptine. We subsequently monitored phenotypic changes in the MG including mitosis, receptors for E and P (ESR1 and PGR), level of phosphorylated STAT5 (pSTAT5), and the frequency of terminal ductal lobular unit (TDLU) subtypes; these changes were then associated with all transcriptomic changes. Estrogen altered the expression of approximately 20% of all genes that were mostly associated with mitosis, whereas PRL stimulated elements of fatty acid metabolism and an inflammatory response. Several outcomes, including increased pSTAT5, highlighted the ability of E to enhance PRL action. Regression of transcriptomic changes against several MG phenotypes revealed 1669 genes correlated with proliferation, among which 29 were E inducible. Additional gene expression signatures were associated with TDLU formation and the frequency of ESR1 or PGR. These data provide a link between the hormone-regulated genome and phenome of the MG in a species having a complex histoarchitecture like that in the human breast, and highlight an underexplored synergy between the actions of E and PRL during MG development.
Collapse
Affiliation(s)
- Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Anke Schennink
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Katherine C Horigan
- Department of Animal Science, University of Vermont, Burlington, Vermont 05405, USA
| | - Danielle G Lemay
- US Department of Agriculture ARS Western Human Nutrition Research Center, Davis, California 95616, USA
| | - Julia R Cohen
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Thomas R Famula
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Julie A Dragon
- Vermont Integrative Genomics Resource, University of Vermont, Burlington, Vermont 05405, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
31
|
Cui X, Su H, Yang J, Wu X, Huo K, Jing X, Zhang S. Up-regulation of MTHFD2 is associated with clinicopathological characteristics and poor survival in ovarian cancer, possibly by regulating MOB1A signaling. J Ovarian Res 2022; 15:23. [PMID: 35135596 PMCID: PMC8827288 DOI: 10.1186/s13048-022-00954-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background MTHFD2 is a folate-coupled metabolic enzyme, which has been proved to participant in the metabolic reprogramming and tumor cell-sustaining proliferative capacity. However, the function of MTHFD2 in the development of ovarian cancer and its potential molecular mechanisms is still unclear. Materials and methods The expression, various mutations, prognosis, and related network signaling pathways of MTHFD2 were analyzed using bioinformatics-related websites, including Oncomine, GEPIA, UCSC, cBioPortal, KM Plotter, TISIDB and TIMER. The prognostic value of MTHFD2 expression was validated by our own ovarian cancer samples using RT-qPCR. The migration ad invasion of ovarian cancer cells were further analyzed by CCK-8 and transwell assay. The Western-blot assay was performed to explore the protein levels of MTHFD2 and MOB1A. Results We obtained the following important results. (1) MTHFD2 expression was markedly up-regulated in ovarian cancer than normal samples. (2) Among patients with ovarian cancer, those with higher MTHFD2 expression was associated with lower survival rate. (3) The major mutation type of MTHFD2 in ovarian cancer samples was missense mutation. (4) MTHFD2 knockdown inhibited proliferation, migration, invasion, as well as the expression of MOB1A in vitro. Conclusion MTHFD2, as a NAD + -dependent enzyme, accelerated tumor progression by up-regulating MBO1A, suggesting that this protein may be an independent prognostic factor and a potential therapeutic target for future ovarian cancer treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00954-w.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, 030001, China.,Gynaecology and Obstetrics Department, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Huancheng Su
- Gynaecology and Obstetrics Department, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jiaolin Yang
- Gynaecology and Obstetrics Department, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xueqing Wu
- Reproductive Medicine Center, The affiliated Children's Hospital of Shanxi Medical University, Children's Hospital of Shanxi, Women Health Center of Shanxi, Taiyuan, 030001, China
| | - Kai Huo
- Breast Surgery Department, Tumor Hospital of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, 030000, China
| | - Xuan Jing
- Gynaecology and Obstetrics Department, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Sanyuan Zhang
- Clinical Laboratory, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
32
|
Sun B, He Z, Liu G, Fu X, Chen Z, Li G. Methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) is overexpressed in head and neck squamous cell carcinoma (HNSCC) and correlated with patient’s poor prognosis. Pteridines 2021. [DOI: 10.1515/pteridines-2020-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective
To investigate methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) expression, biological function, and correlation with head and neck squamous cell carcinoma (HNSCC) patient’s prognosis.
Methods
The relative expression levels of MTHFD2 gene mRNA in tumor tissues of HNSCC and adjacent normal tissues were analyzed in the Cancer Genome Atlas and oncomine database. MTHFD2 protein relative expression in tumor tissue of HNSCC patients was analyzed in human proteome database. Protein–protein interaction (PPI) network of MTHFD2 and correlated genes were constructed in STRING database. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway of MTHFD2 and relevant proteins involved in the PPI network was enriched. The Tumor Immune Estimation Resource database was used to analyze the relationship between MTHFD2 expression and immune infiltration. Overall survival (OS) and progression-free survival (PFS) for MTHFD2 high and low expression groups were investigated in the Kaplan–Meier Plotter database.
Results
In HNSCC, MTHFD2 mRNA relative expression level in tumor tissue was significantly higher than the corresponding normal tissue with statistical difference (p < 0.05). In the PPI network, 21 protein coding genes were involved in the network with 124 edges, which indicated that the enrichment was significant (p < 0.05). MTHFD2 and PPI network involved genes were mainly enriched in tetrahydrofolate metabolic process, one-carbon metabolic process biological process. In KEGG pathway, MTHFD2 and PPI network involved genes were mainly enriched in one-carbon pool by folate, metabolic pathways, glyoxylate, and dicarboxylate metabolism, and carbon metabolism. The relative expression level of MTHFD2 gene was correlated with immune infiltration of macrophage (r = 0.712, p < 0.05), neutrophil (r = 0.158, p < 0.05), dendritic cell (r = 0.1825, p < 0.05), and CD4+ T lymph cell (r = 0.1825, p < 0.05). HNSCC patients with high expression MTHFD2 had low OS compared to low expression cases (hazard ratio = 1.53, 95% CI: 1.16–2.02, p < 0.05).
Conclusion
MTHFD2 is overexpressed in HNSCC and correlated with patient’s prognosis. MTHFD2 maybe a potential target for HNSCC target treatment and provides a possible direction for the research and development of related targeted drugs.
Collapse
Affiliation(s)
- Biqiang Sun
- School of Pharmacy, Hunan Traditional Chinese Medical College , Zhuzhou , Hunan Province 412012 , China
| | - Zhijun He
- School of Medicine, Hunan Traditional Chinese Medical College , Zhuzhou , Hunan Province 412012 , China
| | - Gan Liu
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Hunan University of Chinese Medicine , Changsha , Hunan Province 410007 , China
| | - Xiao Fu
- Department of Otolaryngology and Head Neck Surgery, The First Affiliated Hospital of Hunan Traditional Chinese Medical College , Zhuzhou , Hunan Province 412000 , China
| | - Zhiyong Chen
- Department of Otolaryngology and Head Neck Surgery, The First Affiliated Hospital of Hunan Traditional Chinese Medical College , Zhuzhou , Hunan Province 412000 , China
| | - Guoli Li
- Department of Otolaryngology and Head Neck Surgery, The First Affiliated Hospital of Hunan Traditional Chinese Medical College , Zhuzhou , Hunan Province 412000 , China
| |
Collapse
|
33
|
Shi LF, Zhang Q, Shou XY, Niu HJ. Expression and Prognostic Value Identification of Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2) in Brain Low-Grade Glioma. Int J Gen Med 2021; 14:4517-4527. [PMID: 34421310 PMCID: PMC8373260 DOI: 10.2147/ijgm.s323858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022] Open
Abstract
Objective This study aimed to reveal the potential function of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and emphasized its importance in brain low-grade glioma (LGG). Methods We firstly explored the differential expression of MTHFD2 mRNA in LGG and normal tissues, followed by correlation analysis of MTHFD2 mRNA expression with patient’s clinical characteristics. MTHFD2 protein expression in LGG and subcellular location were also evaluated. Then, survival analysis was performed to reveal the influence of MTHFD2 expression on the overall survival of patients, and Cox regression analysis was applied to predict the prognostic factor for overall survival of LGG. Finally, we performed functional analysis to reveal potential MTHFD2-associated pathways involved in LGG. Results We found that MTHFD2 was highly expressed in LGG patients (P<0.05), and MTHFD2 expression was related to patient’s age and IDH mutation status (all P<0.05). MTHFD2 protein was mainly localized to the mitochondria. Survival analysis showed that high expression of MTHFD2 desirably improved the prognosis of LGG patients (P<0.001), especially for those patients with age ≥45 years (P<0.05). But independent prognostic role of MTHFD2 in LGG was not observed. Pathway enrichment analysis indicated that MTHFD2 high expression significantly and positively participated in the pathway of one carbon pool by folate (all P<0.05). Conclusion High expression of MTHFD2 was observed in LGG, which was favorable for the overall survival of LGG patients. Our results assumed that MTHFD2 high expression might play a pivotal role in LGG through positively regulating pathway of one carbon pool by folate.
Collapse
Affiliation(s)
- Lu-Feng Shi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Qian Zhang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Xiao-Ying Shou
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| | - Huan-Jiang Niu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, People's Republic of China
| |
Collapse
|
34
|
Huang J, Qin Y, Lin C, Huang X, Zhang F. MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway. Exp Ther Med 2021; 22:703. [PMID: 34007312 PMCID: PMC8120508 DOI: 10.3892/etm.2021.10135] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
MTHFD2 is a folate-coupled mitochondrial metabolic enzyme which has been extensively studied in breast cancer; however, its molecular functions in this cancer remain unclear. The current study aimed to reveal the underlying mechanism of breast cancer. MTHFD2 expression status and prognostic value were determined using the Gene Expression Profiling Interactive Analysis database. To determine the function of MTHFD2 in breast cancer, MCF-7 cells with stable overexpression of Flag-MTHFD2 or depletion of MTHFD2 were generated. Cell Counting Kit-8 and colony formation assays were used to examine the effect of MTHFD2 overexpression or knockout on MCF-7 cell proliferation and clonogenicity, respectively. Luciferase reporter and an AKT inhibitor (GSK6906) analysis were carried out to investigate the effect of MTHFD2 on the AKT signaling pathway. The results demonstrated that MTHFD2 expression level was higher in breast cancer tissues compared with adjacent normal tissues. Furthermore, patients with high MTHFD2 expression had significantly poorer overall survival compared with patients with low MTHFD2 expression. In addition, ectopic expression of MTHFD2 promoted the tumorigenic properties of MCF-7 cells, including proliferation and clonogenicity. Conversely, depletion of MTHFD2 had the opposite effect on the malignant properties of MCF-7 cells. Luciferase reporter demonstrated that MTHFD2 can significantly increase the ATK luciferase density. Furthermore, the Akt inhibitor GSK690693 significantly decreased the increased clonogenicity caused by MTHFD2 overexpression in MCF-7 cells. Taken together, the findings from the present study suggested that MTHFD2 may serve a protumor role in the malignancy of breast cancer by activating the AKT signaling pathway. These results provide an alternative theoretical foundation that could help the development of MTHFD2-targeted breast cancer treatment.
Collapse
Affiliation(s)
- Jun Huang
- Department of General Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Jinping, Shantou, Guangzhou 515000, P.R. China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Jinping, Shantou, Guangzhou 515000, P.R. China
- Pulmonary and Critical Care Medicine (PCCM), Shunde Affiliated Hospital of Guangzhou Medical University, Jinping, Shantou, Guangzhou 515000, P.R. China
| | - Canfeng Lin
- Department of Oncology, Shantou Central Hospital, Jinping, Shantou, Guangzhou 515000, P.R. China
| | - Xiaoguang Huang
- Department of Oncology, Shantou Central Hospital, Jinping, Shantou, Guangzhou 515000, P.R. China
| | - Feiran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Jinping, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Feiran Zhang, Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Jinping, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
35
|
One-Carbon Metabolism Associated Vulnerabilities in Glioblastoma: A Review. Cancers (Basel) 2021; 13:cancers13123067. [PMID: 34205450 PMCID: PMC8235277 DOI: 10.3390/cancers13123067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Glioblastoma tumours are the most malignant and common type of central nervous system tumours. Despite aggressive treatment measures, disease recurrence in patients with glioblastoma is inevitable and survival rates remain low. Glioblastoma cells, like other cancer cells, can leverage metabolic pathways to increase their rate of proliferation, maintain self-renewal, and develop treatment resistance. Furthermore, many of the metabolic strategies employed by cancer cells are similar to those employed by stem cells in order to maintain self-renewal and proliferation. One-carbon metabolism and de novo purine synthesis are metabolic pathways that are essential for biosynthesis of macromolecules and have been found to be essential for tumourigenesis. In this review, we summarize the evidence showing the significance of 1-C-mediated de novo purine synthesis in glioblastoma cell proliferation and tumourigenesis, as well as evidence suggesting the effectiveness of targeting this metabolic pathway as a therapeutic modality. Abstract Altered cell metabolism is a hallmark of cancer cell biology, and the adaptive metabolic strategies of cancer cells have been of recent interest to many groups. Metabolic reprogramming has been identified as a critical step in glial cell transformation, and the use of antimetabolites against glioblastoma has been investigated. One-carbon (1-C) metabolism and its associated biosynthetic pathways, particularly purine nucleotide synthesis, are critical for rapid proliferation and are altered in many cancers. Purine metabolism has also been identified as essential for glioma tumourigenesis. Additionally, alterations of 1-C-mediated purine synthesis have been identified as commonly present in brain tumour initiating cells (BTICs) and could serve as a phenotypic marker of cells responsible for tumour recurrence. Further research is required to elucidate mechanisms through which metabolic vulnerabilities may arise in BTICs and potential ways to therapeutically target these metabolic processes. This review aims to summarize the role of 1-C metabolism-associated vulnerabilities in glioblastoma tumourigenesis and progression and investigate the therapeutic potential of targeting this pathway in conjunction with other treatment strategies.
Collapse
|
36
|
Yao S, Peng L, Elakad O, Küffer S, Hinterthaner M, Danner BC, von Hammerstein-Equord A, Ströbel P, Bohnenberger H. One carbon metabolism in human lung cancer. Transl Lung Cancer Res 2021; 10:2523-2538. [PMID: 34295659 PMCID: PMC8264328 DOI: 10.21037/tlcr-20-1039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
Background Lung cancer remains the major cause of cancer related death worldwide. The discovery of targeted therapies against activating mutations in genes like EGFR considerably improved the prognosis for a subgroup of patients but still leaves a large part without a targeted therapy. One carbon metabolism (1CM) has been investigated in several cancer entities and its increased activity has been linked to higher tumor aggressiveness and reduced prognosis. In spite of 1CM enzymes role and correlation to cancer cells progression, comprehensive analysis for the diagnostic and functional role of the complete 1CM enzymes in lung cancer has not been conducted so far. Methods We investigated the prognostic and functional relevance of five major 1CM factors (MTHFD2, PGDH3, SHMT2, MTHFD1 and TYMS) in the three major subclasses of lung cancer [pulmonary adenocarcinoma (AC), squamous cell lung cancer (SQCLC) and small cell lung cancer (SCLC)]. We analyzed 1CM enzymes expression and clinicopathological correlation in patient derived tissue samples of 103 AC, 183 SQCLC and 37 SCLC patients by immunohistochemistry. Furthermore, the effect of 1CM enzymes expression on lung cancer cell proliferation and the response to chemotherapy was investigated in 15 representative AC, SQCLC and SCLC cell lines. Results Expression of MTHFD2 and PGDH3 was significantly correlated to a worse overall survival only in AC patients. Cell proliferation assays resolved that all 1CM enzymes have a significant impact on cell growth in AC cell lines and are partially involved in cell proliferation in SQCLC and SCLC cell lines. In addition, expression of MTHFD2 correlated significantly with an increased pemetrexed chemoresistance. Conclusions Expression of MTHFD2 significantly reduces the prognosis of AC patients. Furthermore, MTHFD2 expression is crucial for survival of AC cell lines and its expression correlates with resistance against Pemetrexed. As MTHFD2 is almost not expressed in healthy adult tissue, we therefore suggest that the inhibition of MTHFD2 might be a potential therapeutic strategy to surround pemetrexed resistance in AC.
Collapse
Affiliation(s)
- Sha Yao
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Luogen Peng
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Bernhard C Danner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | | | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
37
|
Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, Pandey V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer 2021; 1876:188534. [PMID: 33794332 DOI: 10.1016/j.bbcan.2021.188534] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria, well recognized as the "powerhouse" of cells, are maternally inherited organelles with bacterial ancestry that play essential roles in a myriad of cellular functions. It has become profoundly evident that mitochondria regulate a wide array of cellular and metabolic functions, including biosynthetic metabolism, cell signaling, redox homeostasis, and cell survival. Correspondingly, defects in normal mitochondrial functioning have been implicated in various human malignancies. Cancer development involves the activation of oncogenes, inactivation of tumor suppressor genes, and impairment of apoptotic programs in cells. Mitochondria have been recognized as the site of key metabolic switches for normal cells to acquire a malignant phenotype. This review outlines the role of mitochondria in human malignancies and highlights potential aspects of mitochondrial metabolism that could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
38
|
Yang C, Zhang J, Liao M, Yang Y, Wang Y, Yuan Y, Ouyang L. Folate-mediated one-carbon metabolism: a targeting strategy in cancer therapy. Drug Discov Today 2020; 26:817-825. [PMID: 33316375 DOI: 10.1016/j.drudis.2020.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Folate-mediated one-carbon metabolism (FOCM) supports vital events for the growth and survival of proliferating cells. Nucleotide synthesis and DNA methylation are the biochemical bases of cancers that are highly dependent on FOCM. Recent studies revealed that FOCM is connected with redox homeostasis and epigenetics in cancer. Furthermore, folate-metabolizing enzymes, such as serine hydroxymethyltransferase 2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), are associated with the development of cancers, including breast cancer, highlighting their potential application in tumor-targeted therapy. Therefore, targeting metabolizing enzymes, especially SHMT2 and MTHFD2, provides a novel strategy for cancer treatment. In this review, we outline current understanding of the functions of SHMT2 and MTHFD2, discussing their expression, potential functions, and regulatory mechanism in cancers. Furthermore, we discuss examples of inhibitors of SHMT2 and MTHFD2.
Collapse
Affiliation(s)
- Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, China.
| | - Yong Yuan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; The Research Units of West China, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
39
|
Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 2020; 26:688-700. [PMID: 31880241 DOI: 10.2174/1381612826666191227154009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) with little or no coding capacity are associated with a plethora of cellular functions, participating in various biological processes. Cumulative study of lncRNA provides explanations to the physiological and pathological processes and new perspectives to the diagnosis, prevention, and treatment of some clinical diseases. Long non-coding RNA taurine-upregulated gene 1(TUG1) is one of the first identified lncRNAs associated with human disease, which actively involved in various physiological processes, including regulating genes at epigenetics, transcription, post-transcription, translation, and posttranslation. The aim of this review was to explore the molecular mechanism of TUG1 in various types of human diseases. METHODS In this review, we summarized and analyzed the latest findings related to the physiologic and pathophysiological processes of TUG1 in human diseases. The related studies were retrieved and selected the last six years of research articles in PubMed with lncRNA and TUG1 as keywords. RESULTS TUG1 is a valuable lncRNA that its dysregulated expression and regulating the biological processes were found in a variety of human diseases. TUG1 is found to exhibit aberrant expression in a variety of malignancies. Dysregulation of TUG1 has been shown to contribute to proliferation, migration, cell cycle changes, inhibited apoptosis, and drug resistance of cancer cells, which revealed an oncogenic role for this lncRNA, but some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In addition, the molecular and biological functions of TUG1 in physiology and disease (relevant to endocrinology, metabolism, immunology, neurobiology) have also been highlighted. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of TUG1 in cancer and other diseases. CONCLUSION Long non-coding RNA-TUG1 likely served as useful disease biomarkers or therapy targets and effectively applied in different kinds of diseases, such as human cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Chong Guo
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yuying Qi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Jiayuan Qu
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Liyue Gai
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yue Shi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, Yichang City, China
| |
Collapse
|
40
|
NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 2020; 5:231. [PMID: 33028807 PMCID: PMC7542157 DOI: 10.1038/s41392-020-00326-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH metabolism and the associated mechanism for cancer therapy.
Collapse
|
41
|
Xiu Y, Field MS. The Roles of Mitochondrial Folate Metabolism in Supporting Mitochondrial DNA Synthesis, Oxidative Phosphorylation, and Cellular Function. Curr Dev Nutr 2020; 4:nzaa153. [PMID: 33134792 PMCID: PMC7584446 DOI: 10.1093/cdn/nzaa153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is compartmentalized within human cells to the cytosol, nucleus, and mitochondria. The recent identifications of mitochondria-specific, folate-dependent thymidylate [deoxythymidine monophosphate (dTMP)] synthesis together with discoveries indicating the critical role of mitochondrial FOCM in cancer progression have renewed interest in understanding this metabolic pathway. The goal of this narrative review is to summarize recent advances in the field of one-carbon metabolism, with an emphasis on the biological importance of mitochondrial FOCM in maintaining mitochondrial DNA integrity and mitochondrial function, as well as the reprogramming of mitochondrial FOCM in cancer. Elucidation of the roles and regulation of mitochondrial FOCM will contribute to a better understanding of the mechanisms underlying folate-associated pathologies.
Collapse
Affiliation(s)
- Yuwen Xiu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
42
|
Wang J, Luo J, Sun Z, Sun F, Kong Z, Yu J. Identification of MTHFD2 as a novel prognosis biomarker in esophageal carcinoma patients based on transcriptomic data and methylation profiling. Medicine (Baltimore) 2020; 99:e22194. [PMID: 32925794 PMCID: PMC7489726 DOI: 10.1097/md.0000000000022194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic regulatory mechanism in esophageal carcinoma (EC) and is associated with genomic instability and carcinogenesis. In the present study, we aimed to identify tumor biomarkers for predicting prognosis of EC patients.We downloaded mRNA expression profiles and DNA methylation profiles associated with EC from the Gene Expression Omnibus database. Differentially expressed and differentially methylated genes between tumor tissues and adjacent normal tissue samples were identified. Functional enrichment analyses were performed, followed by the construction of protein-protein interaction networks. Data were validated based on methylation profiles from The Cancer Genome Atlas. Candidate genes were further verified according to survival analysis and Cox regression analysis.We uncovered multiple genes with differential expression or methylation in tumor samples compared with normal samples. After taking the intersection of 3 differential gene sets, we obtained a total of 232 overlapping genes. Functional enrichment analysis revealed that these genes are related to pathways such as "glutathione metabolism," "p53 signaling pathway," and "focal adhesion." Furthermore, 8 hub genes with inversed expression and methylation correlation were identified as candidate genes. The abnormal expression levels of MSN, PELI1, and MTHFD2 were correlated with overall survival times in EC patients (P < .05). Only MTHFD2 was significantly associated with a pathologic stage according to univariate analysis (P = .037) and multivariate analysis (P = .043).Our study identified several novel EC biomarkers with prognostic value by integrated analysis of transcriptomic data and methylation profiles. MTHFD2 could serve as an independent biomarker for predicting prognosis and pathological stages of EC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Fei Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Ze Kong
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
| | - Jingping Yu
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University
- Center for Medical Physics, Nanjing Medical University, Changzhou, Jiangsu Province, China
| |
Collapse
|
43
|
Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Mol Cancer Ther 2020; 19:2245-2255. [PMID: 32879053 DOI: 10.1158/1535-7163.mct-20-0423] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
44
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol 2020; 219:jcb.201907022. [PMID: 31690618 PMCID: PMC7039202 DOI: 10.1083/jcb.201907022] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Perturbations in cellular metabolism are ubiquitous in cancer. Here Reina-Campos et al. review the role of one-carbon metabolism in tumorigenesis. The serine glycine and one-carbon pathway (SGOCP) is a crucially important metabolic network for tumorigenesis, of unanticipated complexity, and with implications in the clinic. Solving how this network is regulated is key to understanding the underlying mechanisms of tumor heterogeneity and therapy resistance. Here, we review its role in cancer by focusing on key enzymes with tumor-promoting functions and important products of the SGOCP that are of physiological relevance for tumorigenesis. We discuss the regulatory mechanisms that coordinate the metabolic flux through the SGOCP and their deregulation, as well as how the actions of this metabolic network affect other cells in the tumor microenvironment, including endothelial and immune cells.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
45
|
Yue L, Pei Y, Zhong L, Yang H, Wang Y, Zhang W, Chen N, Zhu Q, Gao J, Zhi M, Wen B, Zhang S, Xiang J, Wei Q, Liang H, Cao S, Lou H, Chen Z, Han J. Mthfd2 Modulates Mitochondrial Function and DNA Repair to Maintain the Pluripotency of Mouse Stem Cells. Stem Cell Reports 2020; 15:529-545. [PMID: 32679066 PMCID: PMC7419720 DOI: 10.1016/j.stemcr.2020.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pluripotency of stem cells determines their developmental potential. While the pluripotency states of pluripotent stem cells are variable and interconvertible, the mechanisms underlying the acquisition and maintenance of pluripotency remain largely elusive. Here, we identified that methylenetetrahydrofolate dehydrogenase (NAD+-dependent), methenyltetrahydrofolate cyclohydrolase (Mthfd2) plays an essential role in maintaining embryonic stem cell pluripotency and promoting complete reprogramming of induced pluripotent stem cells. Mechanistically, in mitochondria, Mthfd2 maintains the integrity of the mitochondrial respiratory chain and prevents mitochondrial dysfunction. In the nucleus, Mthfd2 stabilizes the phosphorylation of EXO1 to support DNA end resection and promote homologous recombination repair. Our results revealed that Mthfd2 is a dual-function factor in determining the pluripotency of pluripotent stem cells through both mitochondrial and nuclear pathways, ultimately ensuring safe application of pluripotent stem cells.
Collapse
Affiliation(s)
- Liang Yue
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Yangli Pei
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, China
| | - Liang Zhong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, Hebei 050051, China
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yanliang Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Naixin Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianqian Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minglei Zhi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingqiang Wen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaopeng Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinzhu Xiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingqing Wei
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hui Liang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Huiqiang Lou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
46
|
A multi-omics analysis reveals the unfolded protein response regulon and stress-induced resistance to folate-based antimetabolites. Nat Commun 2020; 11:2936. [PMID: 32522993 PMCID: PMC7287054 DOI: 10.1038/s41467-020-16747-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR‐mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one‐carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR‐driven changes to gene expression and resistance to pharmacological treatment. The unfolded protein response (UPR) is a stress response pathway implicated in numerous diseases and chemotherapy resistance. Here, the authors define the UPR regulon with a multi-omics strategy, uncovering changes to mitochondrial one-carbon metabolism and concomitant resistance to folate-based therapeutics.
Collapse
|
47
|
Zhu Z, Leung GKK. More Than a Metabolic Enzyme: MTHFD2 as a Novel Target for Anticancer Therapy? Front Oncol 2020; 10:658. [PMID: 32411609 PMCID: PMC7199629 DOI: 10.3389/fonc.2020.00658] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 01/22/2023] Open
Abstract
The bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) is a mitochondrial one-carbon folate metabolic enzyme whose role in cancer was not known until recently. MTHFD2 is highly expressed in embryos and a wide range of tumors but has low or absent expression in most adult differentiated tissues. Elevated MTHFD2 expression is associated with poor prognosis in both hematological and solid malignancy. Its depletion leads to suppression of multiple malignant phenotypes including proliferation, invasion, migration, and induction of cancer cell death. The non-metabolic functions of this enzyme, especially in cancers, have thus generated considerable research interests. This review summarizes current knowledge on both the metabolic functions and non-enzymatic roles of MTHFD2. Its expression, potential functions, and regulatory mechanism in cancers are highlighted. The development of MTHFD2 inhibitors and their implications in pre-clinical models are also discussed.
Collapse
Affiliation(s)
- Zhiyuan Zhu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Gilberto Ka Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
48
|
He Z, Wang X, Zhang H, Liang B, Zhang J, Zhang Z, Yang Y. High expression of folate cycle enzyme MTHFD1L correlates with poor prognosis and increased proliferation and migration in colorectal cancer. J Cancer 2020; 11:4213-4221. [PMID: 32368304 PMCID: PMC7196253 DOI: 10.7150/jca.35014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022] Open
Abstract
Aims: To investigate the expression and clinical significance of methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) in colorectal cancer (CRC) and its effect on CRC cells proliferation and migration. Methods: 59 fresh CRC tissue samples and matched normal tissues, 176 archive CRC tissue samples and 8 CRC cell lines were tested MTHFD1L by western blot and immunohistochemistry, respectively. The relationship between MTHFD1L expression, clinical significance and prognosis was analyzed by chi-square test and survival analysis. MTT assay, plate clonal formation assay and scratch assay were used to verify the effect of MTHFD1L on the proliferation and migration in CRC cell lines. Results: The results showed that the protein level of MTHFD1L in CRC was significantly higher than that in adjacent normal tissues (p<0.01). The expression of MTHFD1L in CRC was positively correlated with the degree of tumor differentiation, TNM classification, tumor invasion, lymph node metastasis, and distant metastasis. Survival analysis showed that CRC patients with high MTHFD1L expression had a lower 5-year survival rate and the expression of MTHFD1L was an independent adverse factor for the CRC prognosis (p<0.05). Down-regulation of MTHFD1L inhibited the proliferation and migration of DLD-1 and HCT116 CRC cell lines. Conclusion: These findings reveal that MTHFD1L is highly expressive in CRC and associated with poor prognosis, and MTHDF1L can increase colorectal cancer cell proliferation and migration. Therefore, MTHFD1L may serve as a predictor and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhongyun He
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Xia Wang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Huizhong Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, PR, China
| | - Baoxia Liang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Jinling Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Yi Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China.,Boba Evergrande International Hospital, Qionghai, PR, China
| |
Collapse
|
49
|
He H, Li PC, Jia W, Hu B, Ji CS. High Expression of Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2) in Esophageal Squamous Cell Carcinoma and its Clinical Prognostic Significance. Med Sci Monit 2020; 26:e920259. [PMID: 32088725 PMCID: PMC7055195 DOI: 10.12659/msm.920259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Recently, targeted therapy for malignant tumors has developed rapidly, but there is still no effective targeted therapy for advanced esophageal squamous cell carcinoma (ESCC). Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a key enzyme involved in folate metabolism and is closely related to the proliferation in many cancers. However, few studies have explored the expression of MTHFD2 in ESCC and its prognostic significance. Material/Methods The expressions of MTHFD2, ki67, and p53 in ESCC tissues were detected by immunohistochemistry. Further, MTHFD2 expression level in ESCC and its correlations with patients’ clinicopathological characteristics and survival prognosis were investigated. Results The enhanced expression of MTHFD2 was observed in ESCC specimens compared with adjacent normal tissue. The increased expression of MTHFD2 was closely related to pathological grading (P=0.020) and tumor TNM stage (P=0.019). In addition, patients with high expression of MTHFD2 had worse survival than those with low MTHFD2 expression (P<0.05). High expression of MTHFD2 in ESCC tissues was often associated with high expression of ki67 and p53 (P<0.05). Conclusions MTHFD2 had significantly enhanced expression in ESCC tissues and was associated with pathological grading and TNM stage. Taken together, high expression of MTHFD2 was an independent unfavorable prognostic parameter for overall survival (OS) of ESCC patients, suggesting that MTHFD2 might be a potential therapeutic target for ESCC in the future.
Collapse
Affiliation(s)
- Huan He
- Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Peng-Cheng Li
- Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Wei Jia
- Department of Medical Oncology, The First Affiliated Hospital of The University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Bing Hu
- Department of Medical Oncology, The First Affiliated Hospital of The University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Chu-Shu Ji
- Department of Medical Oncology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, China (mainland).,Department of Medical Oncology, The First Affiliated Hospital of The University of Science and Technology of China, Hefei, Anhui, China (mainland)
| |
Collapse
|
50
|
Ju HQ, Lu YX, Chen DL, Zuo ZX, Liu ZX, Wu QN, Mo HY, Wang ZX, Wang DS, Pu HY, Zeng ZL, Li B, Xie D, Huang P, Hung MC, Chiao PJ, Xu RH. Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. J Natl Cancer Inst 2020; 111:584-596. [PMID: 30534944 PMCID: PMC6579745 DOI: 10.1093/jnci/djy160] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/09/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022] Open
Abstract
Background Overcoming oxidative stress is a critical step for tumor progression; however, the underlying mechanisms in colorectal cancer (CRC) remain unclear. Methods We investigated nicotinamide adenine dinucleotide (phosphate) (NAD(P))-dependent enzyme methylene tetrahydrofolate dehydrogenase 2 (MTHFD2) expression, clinical relevance, redox modification, and molecular mechanisms using the CRC cells and tissues (n = 462 paired samples). The antitumor effects of MTHFD2 inhibitor LY345899 on CRC tumorigenesis and metastasis were evaluated in vitro and in vivo. Data analysis used Kaplan-Meier, Pearson’s correlation, and Student t test where appropriate. All statistical tests were two-sided. Results Here, we report that the patients with high expression of MTHFD2 have a shorter overall survival (HR = 1.62, 95% CI = 1.12 to 2.36, P = .01) and disease-free survival (HR = 1.55, 95% CI = 1.07 to 2.27, P = .02) than patients with low MTHFD2 expression. Suppression of MTHFD2 disturbs NADPH and redox homeostasis and accelerates cell death under oxidative stress, such as hypoxia or anchorage independence (P ≤ .01 for all). Also, genetic or pharmacological inhibition of MTHFD2 suppresses CRC cell growth and lung and peritoneal metastasis in cell-based xenografts (n = 5–8 mice per group). Importantly, LY345899 treatment statistically significantly suppresses tumor growth and decreases the tumor weight in CRC patient-derived xenograft models (n = 10 mice per group, mean [SD] tumor weight of the vehicle-treated group was 1.83 [0.19] mg vs 0.74 [0.30] mg for the LY345899-treated group, P < .001) Conclusions Our study presents evidence that MTHFD2 confers redox homeostasis and promotes CRC cell growth and metastasis. The folate analog LY345899 as MTHFD2 inhibitor displays therapeutic activity against CRC and warrants further clinical investigation for CRC treatment.
Collapse
Affiliation(s)
- Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yun-Xin Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dong-Liang Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhi-Xiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ze-Xian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi-Nian Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hai-Yu Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zi-Xian Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - De-Shen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Heng-Ying Pu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhao-Lei Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mien-Chie Hung
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Paul J Chiao
- Departments of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|