1
|
Lynch DM, Forrester B, Webb T, Ciulli A. Unravelling the druggability and immunological roles of the SOCS-family proteins. Front Immunol 2024; 15:1449397. [PMID: 39676878 PMCID: PMC11638205 DOI: 10.3389/fimmu.2024.1449397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
The Suppressor of Cytokine Signalling (SOCS) protein family play a critical role in cytokine signalling and regulation of the JAK/STAT pathway with functional consequences to the immune response. Members of this family are implicated in multiple different signalling cascades that drive autoimmune diseases and cancer, through their binding to phosphotyrosine modified proteins as well as ubiquitination activity as part of Cullin5 RING E3 ligases. Here we review the SOCS family members CISH and SOCS1-SOCS7, with a focus on their complex role in immunity. The interactome and signalling network of this protein family is discussed, and the intricate mechanisms through which SOCS proteins alter and manage the immune system are assessed. We offer structural insights into how SOCS proteins engage their interacting partners and native substrates at the protein-protein interaction level. We describe how this knowledge has enabled drug discovery efforts on SOCS proteins to date and propose strategies for therapeutic intervention using small molecules, either via direct inhibition or leveraging their E3 ligase activity for targeted protein degradation.
Collapse
Affiliation(s)
| | | | | | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
2
|
Li F, Wang T, Lin P, Wang Y, Chen Y, Feng J. SOCS6, an inhibitory factor in Japanese eel inhibits the type I IFN pathway and the MyD88-mediated NF-kB pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109901. [PMID: 39276815 DOI: 10.1016/j.fsi.2024.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
SOCS family genes are a class of repressors in various signaling pathways of mammals involved in regulating immunity, growth, and development, but the information remains limited in teleost. The full-length cDNA sequence of the Japanese eel SOCS6 gene, named AjSOCS6, was first cloned and showed to encode 529 amino acids with a conserved SH2 structural domain and a typical structure of a C-terminal SOCS box. AjSOCS6 is evolutionarily close to that of rainbow trout and zebrafish. AjSOCS6 gene expression was observed across all tissues in Japanese eel, with the highest levels found in the intestine. In vivo studies showed that AjSOCS6 was significantly upregulated in the liver following exposure to LPS, poly I:C, and Aeromonas hydrophila infection. In vitro, stimulation with poly I:C, CpG, and A. hydrophila infection increased AjSOCS6 expression in Japanese eel liver cells. Subcellular localization revealed that AjSOCS6 was dispersed in the cytoplasm. Overexpressing AjSOCS6 significantly suppressed the expression of immune-related genes, such as c-Rel and p65 in the NF-κB pathway, IFN1, IFN2, and IFN4 in the type I IFN signaling pathway, and the downstream inflammatory factor IL-6 in Japanese eel liver cells. Conversely, knocking down AjSOCS6 in vitro in liver cells and in vivo in the liver, spleen, and kidney significantly upregulated these gene expressions. Co-transfection of AjSOCS6 with AjMyD88 into HEK293 cells significantly reduced NF-κB luciferase activities compared to AjMyD88 single-transfection groups, in a natural state and under LPS stimulation. These findings suggest that AjSOCS6 negatively regulates MyD88-dependent NF-κB and type I IFN signaling pathways, underscoring its role in the immune defense of fish against viral and bacterial infections.
Collapse
Affiliation(s)
- Fuyan Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Tianyu Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Peng Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Yun Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Jianjun Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
3
|
Herrera-Uribe J, Convery O, ALmohammadi D, Weinberg FI, Stevenson NJ. The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7. Inflammation 2024:10.1007/s10753-024-02163-7. [PMID: 39460806 DOI: 10.1007/s10753-024-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
SOCS proteins are essential for the regulation of oncogenic, anti-pathogenic, and proinflammatory signalling cascades, including the JAK/STAT and NF-kB pathways, where they act as negative feedback regulators. Given their powerful role in a broad spectrum of biological processes, it is surprising that the functions of many SOCS proteins have not been widely explored. While the mechanisms of action of CIS, SOCS1-3 are well-documented, information regarding SOCS4-7 remains limited. However, recent studies have begun to elucidate the regulatory functions of these proteins during infection and disease, such as influenza infection, cancer and diabetes. Therefore, this review aims to describe and discuss studies detailing our current understanding of SOCS4-7, painting a clearer picture of the biological processes these regulatory proteins maintain. Indeed, our review highlights important evidence proving that all SOCS play a role in biological processes that are essential for normal immunological homeostasis, clearance of infection and avoidance of disease. Understanding how SOCS proteins interact with other proteins or how they are dysregulated in disease is likely to provide valuable insights for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Convery
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniah ALmohammadi
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabienne Ingrid Weinberg
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Wang Y, Wu S, Song Z, Yang Y, Li Y, Li J. Unveiling the pathological functions of SOCS in colorectal cancer: Current concepts and future perspectives. Pathol Res Pract 2024; 262:155564. [PMID: 39216322 DOI: 10.1016/j.prp.2024.155564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, marked by increasing incidence and mortality rates in recent years. The pathogenesis of CRC is complex, involving chronic inflammation of the intestinal mucosa, heightened immunoinflammatory responses, and resistance to apoptosis. The suppressor of cytokine signaling (SOCS) family, comprised of key negative regulators within cytokine signaling pathways, plays a crucial role in cell proliferation, growth, and metabolic regulation. Deficiencies in various SOCS proteins can trigger the activation of the Janus kinase (JAK) and signal transducers and activators of transcription (STAT) pathways, following the binding of cytokines and growth factors to their receptors. Mounting evidence indicates that SOCS proteins are integral to the development and progression of CRC, positioning them as promising targets for novel anticancer therapies. This review delves into the structure, function, and molecular mechanisms of SOCS family members, examining their roles in cell proliferation, apoptosis, migration, epithelial-mesenchymal transition (EMT), and immune modulation. Additionally, it explores their potential impact on the regulation of CRC immunotherapy, offering new insights and perspectives that may inform the development of innovative therapeutic strategies for CRC.
Collapse
Affiliation(s)
- YuHan Wang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Sha Wu
- Department of Anorectal, Nanchuan Hospital of Traditional Chinese Medicine, Nanchuan, Chongqing, 408400, China
| | - ZhiHui Song
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Yang
- College of Integrative of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - YaLing Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Jun Li
- Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Anorectal, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Jafarzadeh A, Jafarzadeh Z, Nemati M, Yoshimura A. The Interplay Between Helicobacter pylori and Suppressors of Cytokine Signaling (SOCS) Molecules in the Development of Gastric Cancer and Induction of Immune Response. Helicobacter 2024; 29:e13105. [PMID: 38924222 DOI: 10.1111/hel.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach and leads to the secretion of a vast range of cytokines by infiltrated leukocytes directing immune/inflammatory response against the bacterium. To regulate immune/inflammatory responses, suppressors of cytokine signaling (SOCS) proteins bind to multiple signaling components located downstream of cytokine receptors, such as Janus kinase (JAK), signal transducers and activators of transcription (STAT). Dysfunctional SOCS proteins in immune cells may facilitate the immune evasion of H. pylori, allowing the bacteria to induce chronic inflammation. Dysregulation of SOCS expression and function can contribute to the sustained H. pylori-mediated gastric inflammation which can lead to gastric cancer (GC) development. Among SOCS molecules, dysregulated expression of SOCS1, SOCS2, SOCS3, and SOCS6 were indicated in H. pylori-infected individuals as well as in GC tissues and cells. H. pylori-induced SOCS1, SOCS2, SOCS3, and SOCS6 dysregulation can contribute to the GC development. The expression of SOCS molecules can be influenced by various factors, such as epigenetic DNA methylation, noncoding RNAs, and gene polymorphisms. Modulation of the expression of SOCS molecules in gastric epithelial cells and immune cells can be considered to control gastric carcinogenesis as well as regulate antitumor immune responses, respectively. This review aimed to explain the interplay between H. pylori and SOCS molecules in GC development and immune response induction as well as to provide insights regarding potential therapeutic strategies modulating SOCS molecules.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
King CP, Chitre AS, Leal-Gutiérrez JD, Tripi JA, Hughson AR, Horvath AP, Lamparelli AC, George A, Martin C, Pierre CLS, Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen KM, Holl KL, Polesskaya O, Ishiwari K, Chen H, Woods LCS, Palmer AA, Robinson TE, Flagel SB, Meyer PJ. Genomic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584852. [PMID: 38559127 PMCID: PMC10980002 DOI: 10.1101/2024.03.13.584852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of Psychology, University at Buffalo, Buffalo, USA
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, USA
| | - Alesa R. Hughson
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Aidan P. Horvath
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Anthony George
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Connor Martin
- Clinical and Research Institute on Addictions, Buffalo, USA
| | | | - Thiago Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Katie L. Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, Buffalo, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, USA
| | | | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, USA
| |
Collapse
|
7
|
Wang L, Li Y, Hong F, Ning H. Circ_0062491 alleviates LPS-induced apoptosis and inflammation in periodontitis by regulating miR-498/SOCS6 axis. Innate Immun 2022; 28:174-184. [PMID: 35678490 PMCID: PMC9189554 DOI: 10.1177/17534259211072302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Periodontitis is a prevalent chronic inflammatory disease. Circular RNAs (circRNAs) have been revealed to play roles in the inflammatory response. Hence, this work aimed to explore the role and mechanism of circ_0062491 in periodontitis progression. Human periodontal ligament cells (PDLCs) were isolated from the periodontal ligament (PDL) of the healthy teeth with orthodontic requirement after tooth extraction. In vitro experiments were conducted by cell counting Kit-8 (CCK-8) assay, flow cytometry, Western blot, and ELISA to determine cell viability, apoptosis, and inflammatory response. The binding between miR-498 and circ_0062491 or SOCS6 was confirmed using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Circ_0062491 expression was decreased in periodontitis and LPS-induced PDLCs. Restoration of circ_0062491 attenuated LPS-induced apoptosis and inflammation in PDLCs in vitro. Mechanistically, circ_0062491 functioned as a sponge for miR-498, and miR-498 directly targeted SOCS6. Rescue experiments showed that miR-498 up-regulation reversed the protective action of circ_0062491 on PDLCs under LPS treatment. Moreover, silencing of miR-498 protected PDLCs from LPS-induced apoptosis and inflammation, which were abolished by SOCS6 knockdown. Circ_0062491 protected PDLCs from LPS-induced apoptosis and inflammation, suggesting a new target for the amelioration of periodontitis patients.
Collapse
Affiliation(s)
- Lie Wang
- Department of Stomatology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Benxi Street, Qingshan District, Wuhan City, 430081, China
| | - Yanli Li
- Department of stomatology, Sanya Central Hospital, Hainan, China
| | - Feifei Hong
- Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Haiyan Ning
- Department of Stomatology, the Fourth People's Hospital of Haikou City, Haikou, China
| |
Collapse
|
8
|
Ouyang J, An T, Wang Y, Lu X, Zhang Y, Wang X, Zhang X, Zhang C. Down-regulation of SOCS6: an unfavorable prognostic factor for gastrointestinal stromal tumor proven by survival analysis. Diagn Pathol 2021; 16:113. [PMID: 34895274 PMCID: PMC8667422 DOI: 10.1186/s13000-021-01172-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/20/2021] [Indexed: 12/21/2022] Open
Abstract
Background Many studies reporting that down-regulation of SOCS6 plays vital roles in promoting progression of malignant tumors have been published. The present study was performed to evaluate whether SOCS6 was significantly associated with prognosis of GIST patients. Methods Immunohistochemical staining was accomplished to evaluate the expression levels of SOCS6 among GIST patients. The impacts of SOCS6 expression on overall survival (OS) and recurrence-free survival (RFS) of GIST patients were assessed by Cox proportional hazard regression model analysis and Kaplan-Meier curve analysis. Results It was demonstrated that the expression level of SOCS6 was significantly associated with tumor size (P=0.001). Then according to Kaplan-Meier curve analysis, low expression of SOCS6 was significantly correlated with worse OS and RFS of GIST patients. Ultimately, it was revealed by Cox proportional regression model analysis that low expression of SOCS6 was an independent predictive factor for OS and RFS. Conclusions Low expression of SOCS6 was an independent prognostic factor for GIST, suggesting its potential as a novel biomarker predicting survival of GIST patients.
Collapse
Affiliation(s)
- Jun Ouyang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Tailai An
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Guangdong, Shenzhen, China
| | - Yan Wang
- Department of Radiology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yawei Zhang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Xiaokun Wang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan Road 58, Yuexiu District, Guangzhou, Guangdong, China.
| | - Changhua Zhang
- Center of Digestive Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Road 628, Guangming District, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Ma J, Xu LY, Sun QH, Wan XY, BingLi. Inhibition of miR-1298-5p attenuates sepsis lung injury by targeting SOCS6. Mol Cell Biochem 2021; 476:3745-3756. [PMID: 34100174 DOI: 10.1007/s11010-021-04170-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Sepsis is one of the leading causes of morbidity and mortality and a major cause of acute lung injury (ALI). carried by exosomes play a role in a variety of diseases. However,there are not many studies of exosomal miRNAs in sepsis and sepsis lung injury.miR-1298-5p and suppressor of cytokine signaling 6 (SOCS6) were silenced or overexpressed in human bronchial epithelial cells (BEAS-2B). PKH-67 Dye was used to trace exosome endocytosis. Cell permeability was evaluated by measuring trans-epithelial electrical resistance (TEER) and FITC dextran flux. ELISA kits were used for cytokine detection. Quantitative RT-PCR and western blots were used to evaluate gene expression. miR-1298-5p was elevated in exosomes from patients with sepsis lung injury (Sepsis_exo). Treatment of BEAS-2B cells using Sepsis_exo significantly inhibited cell proliferation, and induced cell permeability and inflammatory response. miR-1298-5p directly targeted SOCS6. Overexpressing SOCS6 reversed miR-1298-5p-induced cell permeability and inflammatory response. Inhibition of STAT3 blocked SOCS6-silencing caused significant increase of cell permeability and inflammation. Exosomes isolated from patients of sepsis lung injury increased cell permeability and inflammatory response in BEAS-2B cells through exosomal miR-1298-5p which targeted SOCS6 via STAT3 pathway. The findings highlight the importance of miR-1298-5p/SOCS6/STAT3 axis in sepsis lung injury and provide new insights into therapeutic strategies for sepsis lung injury.
Collapse
Affiliation(s)
- Jian Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Doctor's Office, 10th floor, building 2, NO.507 Zhengmin Road, Yangpu District, Shanghai, 200433, P.R. China.
| | - Li-Yun Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Doctor's Office, 10th floor, building 2, NO.507 Zhengmin Road, Yangpu District, Shanghai, 200433, P.R. China
| | - Qiu-Hong Sun
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Doctor's Office, 10th floor, building 2, NO.507 Zhengmin Road, Yangpu District, Shanghai, 200433, P.R. China
| | - Xiao-Yu Wan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Doctor's Office, 10th floor, building 2, NO.507 Zhengmin Road, Yangpu District, Shanghai, 200433, P.R. China
| | - BingLi
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Doctor's Office, 10th floor, building 2, NO.507 Zhengmin Road, Yangpu District, Shanghai, 200433, P.R. China
| |
Collapse
|
10
|
Du W, Wang L, Liao Z, Wang J. Circ_0085289 Alleviates the Progression of Periodontitis by Regulating let-7f-5p/SOCS6 Pathway. Inflammation 2021; 44:1607-1619. [PMID: 33710445 DOI: 10.1007/s10753-021-01445-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Periodontitis is a common chronic inflammation that often occurs in adults. Circular RNAs (circRNAs) play a vital role in inflammation-related diseases. However, the role and potential basis of hsa_circ_0085289 in periodontitis remain unknown. Periodontal ligament cells (PDLCs) were exposed to lipopolysaccharide (LPS) to mimic periodontitis. The levels of circ_0085289, let-7f-5p, and suppressor of cytokine signaling 6 (SOCS6) were determined using qRT-PCR and western blot. The release of inflammatory cytokines was measured via enzyme-linked immunosorbent assay (ELISA). Cell viability and apoptosis were determined using Cell Counting Kit-8, flow cytometry, Caspase-3 Assay Kit, and western blot assays. The association between let-7f-5p and circ_0085289/SOCS6 was validated via dual-luciferase reporter, RNA pull-down, and RIP assays. Circ_0085289 and SOCS6 levels were reduced, and let-7f-5p level was increased in periodontitis patients and LPS-treated PDLCs. LPS stimulation caused PDLC injury and circ_0085289 downregulation. Moreover, circ_0085289 upregulation or let-7f-5p downregulation diminished LPS-triggered PDLC injury. Besides, circ_0085289 promoted SOCS6 expression by absorbing let-7f-5p. Circ_0085289 alleviated LPS-stimulated PDLC injury via targeting let-7f-5p. Moreover, let-7f-5p targeted SOCS6 to affect LPS-resulted PDLC injury. Circ_0085289 alleviated PDLC injury induced by LPS stimulation via modulating let-7f-5p/SOCS6 axis, suggesting a promising biomarker for periodontitis treatment.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China.
| | - Li Wang
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Zhen Liao
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Juan Wang
- Department of Stomatology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| |
Collapse
|
11
|
Banerjee J, Allaway RJ, Taroni JN, Baker A, Zhang X, Moon CI, Pratilas CA, Blakeley JO, Guinney J, Hirbe A, Greene CS, Gosline SJC. Integrative Analysis Identifies Candidate Tumor Microenvironment and Intracellular Signaling Pathways that Define Tumor Heterogeneity in NF1. Genes (Basel) 2020; 11:E226. [PMID: 32098059 PMCID: PMC7073563 DOI: 10.3390/genes11020226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a monogenic syndrome that gives rise to numerous symptoms including cognitive impairment, skeletal abnormalities, and growth of benign nerve sheath tumors. Nearly all NF1 patients develop cutaneous neurofibromas (cNFs), which occur on the skin surface, whereas 40-60% of patients develop plexiform neurofibromas (pNFs), which are deeply embedded in the peripheral nerves. Patients with pNFs have a ~10% lifetime chance of these tumors becoming malignant peripheral nerve sheath tumors (MPNSTs). These tumors have a severe prognosis and few treatment options other than surgery. Given the lack of therapeutic options available to patients with these tumors, identification of druggable pathways or other key molecular features could aid ongoing therapeutic discovery studies. In this work, we used statistical and machine learning methods to analyze 77 NF1 tumors with genomic data to characterize key signaling pathways that distinguish these tumors and identify candidates for drug development. We identified subsets of latent gene expression variables that may be important in the identification and etiology of cNFs, pNFs, other neurofibromas, and MPNSTs. Furthermore, we characterized the association between these latent variables and genetic variants, immune deconvolution predictions, and protein activity predictions.
Collapse
Affiliation(s)
- Jineta Banerjee
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Robert J Allaway
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Jaclyn N Taroni
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, PA 19102, USA
| | - Aaron Baker
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Xiaochun Zhang
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Chang In Moon
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jaishri O Blakeley
- Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neurology, Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Justin Guinney
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| | - Angela Hirbe
- Division of Oncology, Washington University Medical School, St. Louis, MO 63110, USA
| | - Casey S Greene
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, PA 19102, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara JC Gosline
- Computational Oncology, Sage Bionetworks, Seattle, WA 98121, USA
| |
Collapse
|
12
|
Guo W, Li W, Yuan L, Mei X, Hu W. MicroRNA-106a-3p Induces Apatinib Resistance and Activates Janus-Activated Kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) by Targeting the SOCS System in Gastric Cancer. Med Sci Monit 2019; 25:10122-10128. [PMID: 31884511 PMCID: PMC6948289 DOI: 10.12659/msm.919610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA (miR)-106a was involved in the tumorigenesis and highly expressed in gastric cancer. Required apatinib resistance greatly limits its efficacy in patients. Thus, the aim of the present study was to investigate the potential role of miR-106a-3p in gastric cancer cells with apatinib-resistance. Material/Methods The expression of miR-106a-3p was quantified by real-time quantitative polymerase chain reaction (RT-qPCR). Cell Counting Kit-8 (CCK-8) assay was performed to analyze the sensitivity of gastric cancer cells to apatinib. The expression of relevant drug-resistant proteins was detected by western blot. We searched Targetscan6.2 to find out the target gene of miR-106a-3p. Luciferase reporter assay was used to analyze whether miR-106a-3p bound to relevant gene of SOCS family. The SOCS2, SOCS4, and SOCS5 were qualified by western blot, and their mRNA levels were detected by RT-qPCR. Further, JAK2, STAT3, and their phosphorylation levels were detected by western blot. Results The results showed that the expression of miR-106a-3p was increased in apatinib-resistant gastric cancer, while miR-106a-3p inhibitor reduced the drug-resistance of SGC-7901-AP cells to apatinib. Dual luciferase reporter gene assay suggested that SOCS2, SOCS4, and SOCS5 were target genes of miR-106a-3p. The relevant SOCS genes silencing reversed the effects of miR-106a-3p inhibitor on decreasing the apatinib resistance of SGC-7901-AP cells, while the phosphorylation level of JAK and STAT reduced by miR-106a-3p inhibitor were increased. Conclusions miR-106a-3p induces apatinib resistance and activates JAK2/STAT3 by targeting SOCS system in gastric cancer. miR-106a-3p/SOCS plays a potent role in gastric cancer cell resistance to apatinib.
Collapse
Affiliation(s)
- Wei Guo
- Department of Gastrointestinal Surgery, Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Wenyuan Li
- Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Li Yuan
- Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Xianghuang Mei
- Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi, China (mainland)
| |
Collapse
|
13
|
Shangaris P, Loukogeorgakis SP, Subramaniam S, Flouri C, Jackson LH, Wang W, Blundell MP, Liu S, Eaton S, Bakhamis N, Ramachandra DL, Maghsoudlou P, Urbani L, Waddington SN, Eddaoudi A, Archer J, Antoniou MN, Stuckey DJ, Schmidt M, Thrasher AJ, Ryan TM, De Coppi P, David AL. In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Sci Rep 2019; 9:11592. [PMID: 31406195 PMCID: PMC6690943 DOI: 10.1038/s41598-019-48078-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
In utero gene therapy (IUGT) to the fetal hematopoietic compartment could be used to treat congenital blood disorders such as β-thalassemia. A humanised mouse model of β-thalassemia was used, in which heterozygous animals are anaemic with splenomegaly and extramedullary hematopoiesis. Intrahepatic in utero injections of a β globin-expressing lentiviral vector (GLOBE), were performed in fetuses at E13.5 of gestation. We analysed animals at 12 and 32 weeks of age, for vector copy number in bone marrow, peripheral blood liver and spleen and we performed integration site analysis. Compared to noninjected heterozygous animals IUGT normalised blood haemoglobin levels and spleen weight. Integration site analysis showed polyclonality. The left ventricular ejection fraction measured using magnetic resonance imaging (MRI) in treated heterozygous animals was similar to that of normal non-β-thalassemic mice but significantly higher than untreated heterozygous thalassemia mice suggesting that IUGT ameliorated poor cardiac function. GLOBE LV-mediated IUGT normalised the haematological and anatomical phenotype in a heterozygous humanised model of β-thalassemia.
Collapse
Affiliation(s)
- Panicos Shangaris
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
- UCL Institute of Child Health, UCL, London, United Kingdom.
| | | | | | - Christina Flouri
- Department of Medical and Molecular Genetics, KCL, London, United Kingdom
| | | | - Wei Wang
- Department of Translational Oncology, National Centre for Tumour Diseases, Heidelberg, Germany
| | | | - Shanrun Liu
- Biochemistry and Molecular Genetics, UAB, Birmingham, Alabama, United States
| | - Simon Eaton
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Nahla Bakhamis
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | | | | | - Luca Urbani
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Simon N Waddington
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ayad Eddaoudi
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Joy Archer
- Central Diagnostic Services, Queen's Vet School Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Michael N Antoniou
- Department of Medical and Molecular Genetics, KCL, London, United Kingdom
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, UCL, London, United Kingdom
| | - Manfred Schmidt
- Department of Translational Oncology, National Centre for Tumour Diseases, Heidelberg, Germany
| | | | - Thomas M Ryan
- Biochemistry and Molecular Genetics, UAB, Birmingham, Alabama, United States
| | - Paolo De Coppi
- UCL Institute of Child Health, UCL, London, United Kingdom
| | - Anna L David
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| |
Collapse
|
14
|
Chen H, Lan Z, Li Q, Li Y. Abnormal expression of long noncoding RNA FGD5-AS1 affects the development of periodontitis through regulating miR-142-3p/SOCS6/NF-κB pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2098-2106. [PMID: 31144533 DOI: 10.1080/21691401.2019.1620256] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hong Chen
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Zedong Lan
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Qiaomei Li
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| | - Yuehong Li
- Department of Endodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
15
|
Zhang J, Pu XM, Xiong Y. kshv-mir-k12-1-5p promotes cell growth and metastasis by targeting SOCS6 in Kaposi's sarcoma cells. Cancer Manag Res 2019; 11:4985-4995. [PMID: 31213914 PMCID: PMC6549767 DOI: 10.2147/cmar.s198411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Kaposi’s sarcoma (KS) is a highly disseminated angiogenic tumour of endothelial cells. Many deregulated miRNAs, including kshv-mir-k12-1-5p, have been identified in KS. kshv-mir-k12-1-5p plays important roles in KS. However, the underlying mechanism is not fully understood. The aim of this study was to investigate the exact functions of kshv-mir-k12-1-5p in KS cells. Materials and methods: The biological functions of kshv-mir-k12-1-5p were studied using CCK-8, apoptosis, migration and invasion assays. Bioinformatics software was used to identify the target gene (SOCS6) of kshv-mir-k12-1-5p. A dual luciferase assay, Western blot (WB) and quantitative real-time polymerase chain reaction (q-PCR) were performed to further verify the target gene. The underlying molecular mechanisms of kshv-mir-k12-1-5p in KS cells were also explored. Results: kshv-mir-k12-1-5p can promote the proliferation, migration and invasion of KS cells and inhibit cell apoptosis. Suppressor of cytokine signalling 6 (SOCS6) was identified as a direct target of kshv-mir-k12-1-5p, and kshv-mir-k12-1-5p can downregulate SOCS6 expression. In addition, knockdown of SOCS6 rescued the effects of kshv-mir-k12-1-5p inhibitor. Hence, a direct relationship between kshv-mir-k12-1-5p and SOCS6 was confirmed. Conclusions: kshv-mir-k12-1-5p promotes the malignant phenotype of KS cells by targeting SOCS6, suggesting that kshv-mir-k12-1-5p could be a potential therapeutic target for KS.
Collapse
Affiliation(s)
- Jing Zhang
- Postgraduate College of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.,Department of Pathology, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xiong-Ming Pu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People's Republic of China
| | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
16
|
Long noncoding RNA neuroblastoma-associated transcript 1 gene inhibits malignant cellular phenotypes of bladder cancer through miR-21/SOCS6 axis. Cell Death Dis 2018; 9:1042. [PMID: 30310053 PMCID: PMC6182002 DOI: 10.1038/s41419-018-1090-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023]
Abstract
Bladder cancer (BC) is one of the most common tumors in the urinary system. Noncoding RNAs are considered to take part in cellular phenotypes and are emerging as diagnostic and prognostic biomarkers of BC. The aim of this study is to investigate the clinical significance of neuroblastoma- associated transcript 1 (NBAT1) gene and its effects on malignant cellular phenotypes in BC. NBAT1 gene was low-expressed in BC tissues and cell lines and its low-expression was related with high pathological grade and metastasis of BC. Upregulation of NBAT1 gene depressed cell viability and invasiveness of KK47 and T24 cells and arrested KK47 and T24 cells at G1 stage. In addition, NBAT1 could target silence the expression of miR-21-5p in RNA-induced silencing complex-dependent manner. KK47 and T24 cells with miR-21-5p knockdown showed reduced cell viability, G1-stage arrest, and depressed invasiveness. MiR-21-5p mediates the regulatory effects of NBAT1 on malignant cellular phenotypes of BC cells. Moreover, SOCS6 gene was a target gene of miR-21-5p, and miR-21-5p modulated malignant cellular phenotypes of KK47 and T24 cells through targeted silencing of SOCS6. In conclusion, low-expression of NBAT1 is associated with the progress and metastasis of BC, and NBAT1 inhibits malignant cellular phenotypes through miR-21-5p/SOCS6 axis in BC. Our findings help to elucidate the tumorigenesis of BC, and future study will provide a novel therapeutic target for BC.
Collapse
|
17
|
Hua K, Chen YT, Chen CF, Tang YS, Huang TT, Lin YC, Yeh TS, Huang KH, Lee HC, Hsu MT, Chi CW, Wu CW, Lin CH, Ping YH. MicroRNA-23a/27a/24-2 cluster promotes gastric cancer cell proliferation synergistically. Oncol Lett 2018; 16:2319-2325. [PMID: 30008935 PMCID: PMC6036456 DOI: 10.3892/ol.2018.8924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
Previous studies have indicated that certain microRNAs (miRNAs/miRs) function as either tumor suppressors or oncogenes in human cancer. The present study identified the miR-23a/27a/24-2 cluster, containing miR-23, miR-27a and miR-24, as an oncogene in gastric cancer. The expression of the miR-23a/27a/24-2 cluster was upregulated in clinical gastric cancer tissues. Transfection with inhibitors of miR-23a, miR-27a, or miR-24, either independently or together, repressed in vitro colony formation and in vivo tumor formation. The miR23a/27a/24-2 cluster inhibitors repressed the growth of gastric cancer cells in a synergistic manner. In addition, treatment with lower doses of the miRNA inhibitor mixture induced the formation of apoptotic bodies. According to computational predictions using TargetScan, suppressor of cytokine-induced signaling 6 (SOCS6) was identified as one of the downstream target genes of the miR-23a/27a/24-2 cluster. The expression of SOCS6 was significantly lower in tumor tissues than in matched normal tissues (P<0.01) and was associated with poor survival (P<0.00001). Taken together, these results strongly suggested that the miR-23a/27a/24-2 cluster may mediate the progression of gastric cancer through the suppression of SOCS6 expression. The present study also provides a novel molecular target for the development of an anti-gastric cancer agent.
Collapse
Affiliation(s)
- Kate Hua
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yu-Ting Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Chian-Feng Chen
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Ya-Syuan Tang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Tzu-Ting Huang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yu-Cheng Lin
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Tien-Shun Yeh
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Kuo-Hung Huang
- Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Ming-Ta Hsu
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Chin-Wen Chi
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Medical Research, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C
| | - Chew-Wun Wu
- Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan, R.O.C
| | - Chi-Hung Lin
- VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Yueh-Hsin Ping
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,VYM Genome Research Center, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| |
Collapse
|
18
|
MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2018; 7:84508-84519. [PMID: 27811366 PMCID: PMC5356677 DOI: 10.18632/oncotarget.13022] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-associated death worldwide. MiR-21 and miR-155 are the most amplified miRNAs in non-small cell lung carcinoma (NSCLC), and are critical promoters of NSCLC progression. However, it remains unclear how miR-21 and miR-155 induce cancer progression, and whether these miRNAs share common targets, such as tumor suppressor genes required to prevent NSCLC. Here we report that miR-21 and miR-155 levels are elevated in NSCLC and are proportional to the progression of the disease. In addition, miR-21 and miR-155 share nearly 30% of their predicted target genes, including SOCS1, SOCS6, and PTEN, three tumor suppressor genes often silenced in NSCLC. Consequently, antagonizing miR-21, miR-155 or both potently inhibited tumor progression in xenografted animal models of NSCLC. Treatment with miR-21 and miR-155 inhibitors in combination was always more effective against NSCLC than treatment with a single inhibitor. Furthermore, levels of miR-21 and miR-155 expression correlated inversely with overall and disease-free survival of NSCLC patients. Our findings reveal that miR-21 and miR-155 promote the development of NSCLC, in part by downregulating SOCS1, SOCS6, and PTEN. Combined inhibition of miR-21 and miR-155 could improve the treatment of NSCLC.
Collapse
|
19
|
Moharram SA, Chougule RA, Su X, Li T, Sun J, Zhao H, Rönnstrand L, Kazi JU. Src-like adaptor protein 2 (SLAP2) binds to and inhibits FLT3 signaling. Oncotarget 2018; 7:57770-57782. [PMID: 27458164 PMCID: PMC5295388 DOI: 10.18632/oncotarget.10760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022] Open
Abstract
Fms-like tyrosine kinase (FLT3) is a frequently mutated oncogene in acute myeloid leukemia (AML). FLT3 inhibitors display promising results in a clinical setting, but patients relapse after short-term treatment due to the development of resistant disease. Therefore, a better understanding of FLT3 downstream signal transduction pathways will help to identify an alternative target for the treatment of AML patients carrying oncogenic FLT3. Activation of FLT3 results in phosphorylation of FLT3 on several tyrosine residues that recruit SH2 domain-containing signaling proteins. We screened a panel of SH2 domain-containing proteins and identified SLAP2 as a potent interacting partner of FLT3. We demonstrated that interaction occurs when FLT3 is activated, and also, an intact SH2 domain of SLAP2 is required for binding. SLAP2 binding sites in FLT3 mainly overlap with those of SRC. SLAP2 over expression in murine proB cells or myeloid cells inhibited oncogenic FLT3-ITD-mediated cell proliferation and colony formation in vitro, and tumor formation in vivo. Microarray analysis suggests that higher SLAP2 expression correlates with a gene signature similar to that of loss of oncogene function. Furthermore, FLT3-ITD positive AML patients with higher SLAP2 expression displayed better prognosis compared to those with lower expression of SLAP2. Expression of SLAP2 blocked FLT3 downstream signaling cascades including AKT, ERK, p38 and STAT5. Finally, SLAP2 accelerated FLT3 degradation through enhanced ubiquitination. Collectively, our data suggest that SLAP2 acts as a negative regulator of FLT3 signaling and therefore, modulation of SLAP2 expression levels may provide an alternative therapeutic approach for FLT3-ITD positive AML.
Collapse
Affiliation(s)
- Sausan A Moharram
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Rohit A Chougule
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Xianwei Su
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Tianfeng Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, P. R. China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Translational Cancer Research, Lund University, Skåne University Hospital, Department of Oncology, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Qu C, Xu Q, Lu M, Wang F, Liu Z, Liu D, Yang W, Yi Q, Wang L, Song L. The involvement of suppressor of cytokine signaling 6 (SOCS6) in immune response of Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:502-509. [PMID: 29155031 DOI: 10.1016/j.fsi.2017.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Suppressor of cytokine signaling (SOCS) is a family of cytokine-inducible negative regulators of cytokine signaling and it plays a crucial role in various physiological processes. In the present study, the full-length cDNA of a SOCS (designated as EsSOCS6) was cloned from Chinese mitten crab Eriocheir sinensis. The open reading frame of EsSOCS6 cDNA was of 1266 bp, which encoded a polypeptide of 421 amino acid residues. There were two typically conserved SOCS family domains in EsSOCS6, including a central Src homology 2 (SH2) domain and a C-terminal SOCS box. The deduced amino acid sequence of EsSOCS6 shared 72-76% similarity with those of other SOCS6 family members. EsSOCS6 mRNA was constitutively expressed in all the examined tissues with higher expression levels in the immune-related tissues, such as hepatopancreas, hemocytes and gill. The mRNA expression levels of the EsSOCS6 in hemocytes were significantly up-regulated after the stimulations with lipopolysaccharide (LPS), Aeromonas hydrophila and polyinosinic-polycytidylic acid (poly (I:C)). The mRNA expressions of threonine/serine protein kinase (EsAkt) and EsRelish were dramatically declined after EsSOCS6 was interfered by dsRNA. Collectively, these results demonstrated that EsSOCS6 might regulate the activation of the NF-κB signaling pathway and play an important role in the innate immune responses of E. sinensis.
Collapse
Affiliation(s)
- Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Feifei Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Dongyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Wen Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
21
|
Chougule RA, Cordero E, Moharram SA, Pietras K, Rönnstrand L, Kazi JU. Expression of GADS enhances FLT3-induced mitogenic signaling. Oncotarget 2017; 7:14112-24. [PMID: 26895103 PMCID: PMC4924701 DOI: 10.18632/oncotarget.7415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
GADS is a member of a family of SH2 and SH3 domain-containing adaptors that functions in tyrosine kinase-mediated signaling cascades. Its expression is largely restricted to hematopoietic tissues and cell lines. Therefore, GADS is mainly involved in leukocyte-specific protein tyrosine kinase signaling. GADS is known to interact with tyrosine-phosphorylated SHC, BCR-ABL and KIT. The SH2 domain of GADS has a similar binding specificity to that of GRB2 but its SH3 domain displays a different binding specificity, and thus it is involved in other downstream signaling pathways than GRB2. In the present study, we examined the role of GADS in FLT3 signaling. FLT3 is a type III receptor tyrosine kinase, which is mutated in more than 30% of acute myeloid leukemia (AML) and the most common mutations is the internal tandem duplication (ITD) mutations. We observed that expression of GADS enhanced oncogenic FLT3-ITD-induced cell proliferation and colony formation in vitro. In a mouse xenograft model, GADS accelerated FLT3-ITD-dependent tumor formation. Furthermore, expression of GADS induced a transcriptional program leading to upregulation of MYC and mTORC1 target genes. GADS localizes to the cell membrane and strongly binds to ligand-stimulated wild-type FLT3 or is constitutively associated with the oncogenic mutant FLT3-ITD. We mapped the binding sites in FLT3 to pY955 and pY969 which overlaps with the GRB2 binding sites. Expression of GADS enhanced FLT3-mediated phosphorylation of AKT, ERK1/2, p38 and STAT5. Taken together, our data suggests that GADS is an important downstream component of FLT3 signaling and expression of GADS potentiates FLT3-mediated mitogenic signaling.
Collapse
Affiliation(s)
- Rohit A Chougule
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Eugenia Cordero
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Sausan A Moharram
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| |
Collapse
|
22
|
The Src family kinase LCK cooperates with oncogenic FLT3/ITD in cellular transformation. Sci Rep 2017; 7:13734. [PMID: 29062038 PMCID: PMC5653865 DOI: 10.1038/s41598-017-14033-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
The non-receptor tyrosine kinase LCK belongs to the SRC family of kinases. SRC family kinases are proto-oncogenes that have long been known to play key roles in cell proliferation, motility, morphology and survival. Here we show that LCK regulates the function of the type III receptor tyrosine kinase FLT3 in murine pro-B cells. We observed that expression of LCK significantly enhances the colony forming capacity of the constitutively active FLT3 mutant FLT3-ITD (internal tandem duplication). Furthermore, cells expressing LCK developed tumor earlier compared to cells transfected with empty control vector. Staining of the tissues from mouse xenografts showed higher Ki67 staining in cells expressing LCK suggesting that expression of LCK enhances the FLT3-ITD-mediated proliferative capacity. LCK expression did not affect either FLT3-WT or FLT3-ITD -induced AKT, ERK1/2 or p38 phosphorylation. However, LCK expression significantly enhanced FLT3-ITD-mediated STAT5 phosphorylation. Taken together, our data suggest that LCK cooperates with oncogenic FLT3-ITD in cellular transformation.
Collapse
|
23
|
Sun Z, Liu Q, Hong H, Zhang H, Zhang T. miR-19 promotes osteosarcoma progression by targeting SOCS6. Biochem Biophys Res Commun 2017; 495:1363-1369. [PMID: 28986253 DOI: 10.1016/j.bbrc.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) play critical roles in cancer development and progression. This study investigated the effects of miR-19 in human osteosarcoma (OS) development. Here, we showed that miR-19 was frequently upregulated in OS tissues and cell lines. Moreover the expression of miR-19 was associated with TNM stage, metastasis, size and poor overall survival. Mechanistically, miR-19 dramatically suppressed OS growth in vitro and in vivo. Bioinformatics analyses predicted that SOCS6 is a potential target gene of miR-19 in OS, which was confirmed by luciferase-reporter assay. We also found that SOCS6 expression was downregulated and negatively correlated with miR-19 expression in OS tissues clinically. Moreover, ectopic SOCS6 could reverse miR-19 induced OS growth. Finally, JAK2/STAT3 signaling pathway involves miR-19/SOCS6-mediated OS progression. Together, our data provide important evidence for miR-19 mediated SOCS6 in OS growth and revealed miR-19/SOCS6/JAK2/STAT3 pathway as a potential therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Zhengwen Sun
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Qingxia Liu
- Maternity and Child Care Centers, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Huanyu Hong
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Haiguang Zhang
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China
| | - Tongqing Zhang
- Department of Surgery, Yantai Mountain Hospital, Yantai City, Shandong, 264000, China.
| |
Collapse
|
24
|
Gong T, Zheng S, Huang S, Fu S, Zhang X, Pan S, Yang T, Sun Y, Wang Y, Hui B, Guo J, Zhang X. PTENP1 inhibits the growth of esophageal squamous cell carcinoma by regulating SOCS6 expression and correlates with disease prognosis. Mol Carcinog 2017; 56:2610-2619. [PMID: 28731203 PMCID: PMC6084318 DOI: 10.1002/mc.22705] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/03/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022]
Abstract
PTEN pseudogene (PTENP1) has a tumor suppressive role in multiple cancers. However, its involvement in esophageal squamous cell carcinoma (ESCC) remains largely unknown. In this study, we set out to identify the role of PTENP1 in the development of ESCC. Gene Expression Omnibus database was employed to investigate the expression of PTENP1 in ESCC. sRNA target Database (StarBase v2.0) was used to query the downstream of PTENP1. Next, both in vitro and in vivo experiments were employed to explore the function. Cell proliferation was evaluated by CCK‐8, soft agar, and colony formation assays. Expression of relative genes was assessed by quantitative real‐time PCR (qRT‐PCR) and Western blotting. 3′UTR luciferase assay was used to confirm the miRNA binding. The clinical significance of PTENP1 was further validated by immunohistochemistry (IHC) and correlation with clinicopathological indicators in additional samples (n = 93). We found expression of PTENP1 in ESCC was lower than that in the corresponding adjacent normal tissues (n = 17). Overexpression of PTENP1 in Eca109 and TE‐1 cells resulted in inhibited proliferation and altered expression of SOCS6‐p‐STAT3‐HIF‐1α pathway both in vitro and in vivo. Subsequent IHC reported a similar trend in human ESCC samples. 3′UTR luciferase assay demonstrated that PTENP1 3′UTR decoyed miR‐17‐5p from binding to SOCS6. Moreover, PTENP1 expression was correlated with clinicopathological indicators to varying degrees, including histological grade, TNM stage, infiltration depth, lymph node metastasis, and overall survival. Taken together, these results suggested an anti‐oncogenic role of PTENP1. Meanwhile, PTENP1 may also serve as a candidate of prognostic indicator for ESCC patients.
Collapse
Affiliation(s)
- Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Shuyu Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Shan Huang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Shenbo Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Xuanwei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Shupei Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Tian Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Ya Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Beina Hui
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Jia Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi Province, China
| |
Collapse
|
25
|
Liu J, Zheng Y, Gao J, Zhu G, Gao K, Zhang W, Shi F, Zhang Q. Expression of SHP-1 and SOCS6 in patients with acute leukemia and their clinical implication. Onco Targets Ther 2017; 10:1915-1920. [PMID: 28408843 PMCID: PMC5384700 DOI: 10.2147/ott.s131537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To investigate the expression and clinical relevance of Src homology region 2 domain-containing phosphatase-1 (SHP-1) and suppressor of cytokine signaling 6 (SOCS6) in acute leukemia (AL). PATIENTS AND METHODS The enrolled AL patients were divided into three groups (newly diagnosed, relapsed, and complete remission [CR]). Healthy donors were also included as a control group in this study. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to measure messenger RNA (mRNA) expression of SHP-1 and SOCS6. Statistical analysis was conducted to analyze the correlation between mRNA levels of SHP-1 and SOCS6 with patient outcomes. RESULTS mRNA expression of SHP-1 was significantly lower in AL patients than that in healthy donors. The newly diagnosed or relapsed AL patients had lower mRNA levels of SHP-1 than the patients in CR. In contrast, SOCS6 mRNA expression was significantly higher in newly diagnosed or relapsed patients than that in patients in CR as well as healthy donors. However, mRNA levels of both SHP-1 and SOCS6 were positively correlated with the patient remission. The chemotherapy-induced remission rate was higher in patients with detectable SHP-1 or SOCS6 expression than in patients with undetectable SHP-1 or SOCS6 expression. Furthermore, the AL patients with detectable SHP-1 mRNA expression had lower incidence rate of invasive fungal infection. CONCLUSION The results suggest that expression patterns of SHP-1 and SOCS6 differ in AL patients. Despite the difference, expression of SHP-1 and SOCS6 is associated with favorable outcomes, suggesting an anticancer property of these two genes in AL.
Collapse
Affiliation(s)
- Jinmei Liu
- Department of Hematology, Kailuan General Hospital
| | - Yurong Zheng
- Department of Hematology, Kailuan General Hospital
| | - Ju Gao
- Department of Hematology, Kailuan General Hospital
| | - Guimei Zhu
- Department of Hematology, Kailuan General Hospital
| | - Kun Gao
- Department of Emergency, Tangshan Union Medical College Hospital
| | - Wenzhen Zhang
- Department of Clinical Laboratory, Tangshan People's Hospital
| | - Fangyan Shi
- Department of Blood Dialysis, Linxi Hospital
| | - Qing Zhang
- Department of Ultrasonography, Tangshan, People's Republic of China
| |
Collapse
|
26
|
FYN expression potentiates FLT3-ITD induced STAT5 signaling in acute myeloid leukemia. Oncotarget 2017; 7:9964-74. [PMID: 26848862 PMCID: PMC4891096 DOI: 10.18632/oncotarget.7128] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/19/2016] [Indexed: 01/31/2023] Open
Abstract
FYN is a non-receptor tyrosine kinase belonging to the SRC family of kinases, which are frequently over-expressed in human cancers, and play key roles in cancer biology. SRC has long been recognized as an important oncogene, but little attention has been given to its other family members. In this report, we have studied the role of FYN in FLT3 signaling in respect to acute myeloid leukemia (AML). We observed that FYN displays a strong association with wild-type FLT3 as well as oncogenic FLT3-ITD and is dependent on the kinase activity of FLT3 and the SH2 domain of FYN. We identified multiple FYN binding sites in FLT3, which partially overlapped with SRC binding sites. To understand the role of FYN in FLT3 signaling, we generated FYN overexpressing cells. We observed that expression of FYN resulted in slightly enhanced phosphorylation of AKT, ERK1/2 and p38 in response to ligand stimulation. Furthermore, FYN expression led to a slight increase in FLT3-ITD-dependent cell proliferation, but potent enhancement of STAT5 phosphorylation as well as colony formation. We also observed that FYN expression is deregulated in AML patient samples and that higher expression of FYN, in combination with FLT3-ITD mutation, resulted in enrichment of the STAT5 signaling pathway and correlated with poor prognosis in AML. Taken together our data suggest that FYN cooperates with oncogenic FLT3-ITD in cellular transformation by selective activation of the STAT5 pathway. Therefore, inhibition of FYN, in combination with FLT3 inhibition, will most likely be beneficial for this group of AML patients.
Collapse
|
27
|
Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood 2016; 128:1944-1958. [PMID: 27540013 DOI: 10.1182/blood-2016-04-708750] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022] Open
Abstract
Signaling pathways regulated by mutant Fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD), which mediate resistance to acute myeloid leukemia (AML) cell death, are poorly understood. Here, we reveal that pro-cell death lipid ceramide generation is suppressed by FLT3-ITD signaling. Molecular or pharmacologic inhibition of FLT3-ITD reactivated ceramide synthesis, selectively inducing mitophagy and AML cell death. Mechanistically, FLT3-ITD targeting induced ceramide accumulation on the outer mitochondrial membrane, which then directly bound autophagy-inducing light chain 3 (LC3), involving its I35 and F52 residues, to recruit autophagosomes for execution of lethal mitophagy. Short hairpin RNA (shRNA)-mediated knockdown of LC3 prevented AML cell death in response to FLT3-ITD inhibition by crenolanib, which was restored by wild-type (WT)-LC3, but not mutants of LC3 with altered ceramide binding (I35A-LC3 or F52A-LC3). Mitochondrial ceramide accumulation and lethal mitophagy induction in response to FLT3-ITD targeting was mediated by dynamin-related protein 1 (Drp1) activation via inhibition of protein kinase A-regulated S637 phosphorylation, resulting in mitochondrial fission. Inhibition of Drp1 prevented ceramide-dependent lethal mitophagy, and reconstitution of WT-Drp1 or phospho-null S637A-Drp1 but not its inactive phospho-mimic mutant (S637D-Drp1), restored mitochondrial fission and mitophagy in response to crenolanib in FLT3-ITD+ AML cells expressing stable shRNA against endogenous Drp1. Moreover, activating FLT3-ITD signaling in crenolanib-resistant AML cells suppressed ceramide-dependent mitophagy and prevented cell death. FLT3-ITD+ AML drug resistance is attenuated by LCL-461, a mitochondria-targeted ceramide analog drug, in vivo, which also induced lethal mitophagy in human AML blasts with clinically relevant FLT3 mutations. Thus, these data reveal a novel mechanism which regulates AML cell death by ceramide-dependent mitophagy in response to FLT3-ITD targeting.
Collapse
|
28
|
Galani V, Kastamoulas M, Varouktsi A, Lampri E, Mitselou A, Arvanitis DL. IFNs-signaling effects on lung cancer: an up-to-date pathways-specific review. Clin Exp Med 2016; 17:281-289. [PMID: 27416926 DOI: 10.1007/s10238-016-0432-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
IFNs have found important applications in clinical medicine, including the treatment of lung malignancies. The biological effect of the IFN-receptor signaling is regulated essentially by three factors: the expression profile of the IFN itself, the profile of the receptor, and the expression of target genes. IFNs initiate their signaling by binding to specific receptors. The activated IFNs can directly induce gene transcription and/or multiple downstream signaling that both induce diverse cellular responses including the cell cycle arrest and the apoptosis in tumor cells. We provided evidence that IFN-γ enhances the pro cell death effects of Fas/CD95 in human neoplastic alveolar epithelial cell line, A549. We also found that p27 protein plays a pivotal role in the inducing cell death of IFNγ-CH-11-treated A549 cells, since it is involved in the Ras/Raf signaling pathway. This article discusses recent insights into these possible additional functions of IFNs in lung cancer treatment.
Collapse
Affiliation(s)
- Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | - Michalis Kastamoulas
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece
| | | | - Evangeli Lampri
- Department of Cancer Biobank Center, University of Ioannina, Ioannina, Greece
| | - Antigoni Mitselou
- Department of Forensic Pathology, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Dimitrios L Arvanitis
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| |
Collapse
|
29
|
Lindblad O, Chougule RA, Moharram SA, Kabir NN, Sun J, Kazi JU, Rönnstrand L. The role of HOXB2 and HOXB3 in acute myeloid leukemia. Biochem Biophys Res Commun 2015; 467:742-7. [PMID: 26482852 DOI: 10.1016/j.bbrc.2015.10.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous aggressive disease and the most common form of adult leukemia. Mutations in the type III receptor tyrosine kinase FLT3 are found in more than 30% of AML patients. Drugs against FLT3 have been developed for the treatment of AML, but they lack specificity, show poor response and lead to the development of a resistant phenotype upon treatment. Therefore, a deeper understanding of FLT3 signaling will facilitate identification of additional pharmacological targets in FLT3-driven AML. In this report, we identify HOXB2 and HOXB3 as novel regulators of oncogenic FLT3-ITD-driven AML. We show that HOXB2 and HOXB3 expression is upregulated in a group of AML patients carrying FLT3-ITD. Overexpression of HOXB2 or HOXB3 in mouse pro-B cells resulted in decreased FLT3-ITD-dependent cell proliferation as well as colony formation and increased apoptosis. Expression of HOXB2 or HOXB3 resulted in a significant decrease in FLT3-ITD-induced AKT, ERK, p38 and STAT5 phosphorylation. Our data suggest that HOXB2 and HOXB3 act as tumor suppressors in FLT3-ITD driven AML.
Collapse
Affiliation(s)
- Oscar Lindblad
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden; Department of Hematology and Vascular Disorders, Skåne University Hospital, Lund, Sweden
| | - Rohit A Chougule
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sausan A Moharram
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden; Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
30
|
Kazi JU, Kabir NN, Rönnstrand L. Brain-Expressed X-linked (BEX) proteins in human cancers. Biochim Biophys Acta Rev Cancer 2015; 1856:226-33. [PMID: 26408910 DOI: 10.1016/j.bbcan.2015.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
The Brain-Expressed X-linked (BEX) family proteins are comprised of five human proteins including BEX1, BEX2, BEX3, BEX4 and BEX5. BEX family proteins are expressed in a wide range of tissues and are known to play a role in neuronal development. Recent studies suggest a role of BEX family proteins in cancers. BEX1 expression is lost in a subgroup of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Expression of BEX1 controls cell surface receptor signaling and restores imatinib response in resistant cells. BEX2 is overexpressed in a group of breast cancer patients and also in gliomas. Increased BEX2 expression led to enhanced NF-κB signaling as well as cell proliferation. Although BEX2 acts as tumor promoter in a subset of breast cancer, BEX3 expression displayed an opposite role. Overexpression of BEX3 resulted in inhibition of tumor formation in breast cancer mouse xenograft models. The role of BEX4 and BEX5 in cancer has not yet been defined. Collectively this suggests that BEX family members have distinct roles in cancers. While BEX1 and BEX3 act as tumor suppressors, BEX2 seems to act as an oncogene.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404 ,Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden; Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh.
| | - Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village 404 ,Lund, Sweden; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
31
|
Kazi JU, Kabir NN, Rönnstrand L. Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling. Cell Mol Life Sci 2015; 72:2535-44. [PMID: 25772501 PMCID: PMC11113356 DOI: 10.1007/s00018-015-1882-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 01/05/2023]
Abstract
SRC-like adaptor protein (SLAP) is an adaptor protein structurally similar to the SRC family protein kinases. Like SRC, SLAP contains an SH3 domain followed by an SH2 domain but the kinase domain has been replaced by a unique C-terminal region. SLAP is expressed in a variety of cell types. Current studies suggest that it regulates signaling of various cell surface receptors including the B cell receptor, the T cell receptor, cytokine receptors and receptor tyrosine kinases which are important regulator of immune and cancer cell signaling. SLAP targets receptors, or its associated components, by recruiting the ubiquitin machinery and thereby destabilizing signaling. SLAP directs receptors to ubiquitination-mediated degradation and controls receptors turnover as well as signaling. Thus, SLAP appears to be an important component in regulating signal transduction required for immune and malignant cells.
Collapse
Affiliation(s)
- Julhash U. Kazi
- Division of Translational Cancer Research, Lund University, Medicon Village 404:C3, 223 63 Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Nuzhat N. Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Barisal, Bangladesh
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Lund University, Medicon Village 404:C3, 223 63 Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|