1
|
Chin JS, Milbreta U, Becker DL, Chew SY. Targeting connexin 43 expression via scaffold mediated delivery of antisense oligodeoxynucleotide preserves neurons, enhances axonal extension, reduces astrocyte and microglial activation after spinal cord injury. J Tissue Eng 2023; 14:20417314221145789. [PMID: 36798907 PMCID: PMC9926388 DOI: 10.1177/20417314221145789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 12/01/2022] [Indexed: 02/12/2023] Open
Abstract
Injury to the central nervous system (CNS) provokes an inflammatory reaction and secondary damage that result in further tissue damage and destruction of neurons away from the injury site. Upon injury, expression of connexin 43 (Cx43), a gap junction protein, upregulates and is responsible for the spread and amplification of cell death signals through these gap junctions. In this study, we hypothesise that the downregulation of Cx43 by scaffold-mediated controlled delivery of antisense oligodeoxynucleotide (asODN), would minimise secondary injuries and cell death, and thereby support tissue regeneration after nerve injuries. Specifically, using spinal cord injury (SCI) as a proof-of-principle, we utilised a fibre-hydrogel scaffold for sustained delivery of Cx43asODN, while providing synergistic topographical cues to guide axonal ingrowth. Correspondingly, scaffolds loaded with Cx43asODN, in the presence of NT-3, suppressed Cx43 up-regulation after complete transection SCI in rats. These scaffolds facilitated the sustained release of Cx43asODN for up to 25 days. Importantly, asODN treatment preserved neurons around the injury site, promoted axonal extension, decreased glial scarring, and reduced microglial activation after SCI. Our results suggest that implantation of such scaffold-mediated asODN delivery platform could serve as an effective alternative SCI therapeutic approach.
Collapse
Affiliation(s)
- Jiah Shin Chin
- Nanyang Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Ulla Milbreta
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,Skin Research Institute Singapore, Clinical Sciences Building, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,School of Materials Science and Engineering, Nanyang Technological University, Singapore,Sing Yian Chew, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 639798, Singapore.
| |
Collapse
|
2
|
da Cruz Tobelem D, Silva T, Araujo T, Andreo L, Malavazzi TCDS, Horliana ACRT, Fernandes KPS, Bussadori SK, Mesquita-Ferrari RA. Effects of photobiomodulation in experimental spinal cord injury models: A systematic review. JOURNAL OF BIOPHOTONICS 2022; 15:e202200059. [PMID: 35484784 DOI: 10.1002/jbio.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This systematic review investigated the repercussions of photobiomodulation using low-level laser therapy (LLLT) for the treatment of spinal cord injury (SCI) in experimental models. Studies were identified from relevant databases published between January 2009 and December 2021. Nineteen original articles were selected and 68.4% used light at an infrared wavelength. There was a considerable variation of the power used (from 25 to 200 mW), total application time (8-3000 s) and total energy (0.3-450 J). In 79% of the studies, irradiation was initiated immediately after or within 2 h of the SCI, and treatment time ranged continuously from 5 to 21 days. In conclusion, LLLT can be an auxiliary therapy in the treatment of SCI, playing a neuroprotective role, enabling functional recovery, increasing the concentration of nerve connections around the injury site and reducing pro-inflammatory cytokines. However, there is a need for standardization in the dosimetric parameters.
Collapse
Affiliation(s)
- Daysi da Cruz Tobelem
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Tamiris Silva
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - Tamires Araujo
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Lucas Andreo
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
- Postgraduate Program in Rehabilitation Sciences, UNINOVE, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Wang Y, Niu Y, Lin F, Su P, Chen L, Liu D, Sun Y. X-ray Irradiation Improves Neurological Function Recovery of Injured Spinal Cord by Inhibiting Inflammation and Glial Scar Formation. J Mol Neurosci 2022; 72:1008-1017. [DOI: 10.1007/s12031-022-01975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
4
|
Schrank S, Satkunendrarajah K. Viral tools for mapping and modulating neural networks after spinal cord injury. Exp Neurol 2022; 351:113995. [DOI: 10.1016/j.expneurol.2022.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
|
5
|
Neurotrophic factors combined with stem cells in the treatment of sciatic nerve injury in rats:a meta-analysis. Biosci Rep 2021; 42:230438. [PMID: 34897384 PMCID: PMC8762346 DOI: 10.1042/bsr20211399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/02/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
Treatment of peripheral nerve regeneration with stem cells (SCs) alone has some limitations. For this reason, we evaluate the efficacy of neurotrophic factors combined with stem cell transplantation in the treatment of sciatic nerve injury (SNI) in rats. PubMed, Cochrane Library, Embase, WanFang, VIP and China National Knowledge Infrastructure databases were retrieved from inception to October 2021, and control experiments on neurotrophic factors combined with stem cells in the treatment of SNI in rats were searched. Nine articles and 551 rats were included in the meta-analysis. The results of meta-analysis confirmed that neurotrophic factor combined with stem cells for the treatment of SNI yielded more effective repair than normal rats with regard to sciatic nerve index, electrophysiological detection index, electron microscope observation index, and recovery rate of muscle wet weight. The conclusion is that neurotrophic factor combined with stem cells is more conducive to peripheral nerve regeneration and functional recovery than stem cells alone. However, due to the limitation of the quality of the included literature, the above conclusions need to be verified by randomized controlled experiments with higher quality and larger samples.
Collapse
|
6
|
Chen B, An J, Guo YS, Tang J, Zhao JJ, Zhang R, Yang H. Tetramethylpyrazine induces the release of BDNF from BM-MSCs through activation of the PI3K/AKT/CREB pathway. Cell Biol Int 2021; 45:2429-2442. [PMID: 34374467 DOI: 10.1002/cbin.11687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/27/2022]
Abstract
Compelling evidences suggest that transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can be therapeutically effective for central nervous system (CNS) injuries and neurodegenerative diseases. The therapeutic effect of BM-MSCs mainly attributes to their differentiation into neuron-like cells which replace injured and degenerative neurons. Importantly, the neurotrophic factors released from BM-MSCs can also rescue injured and degenerative neurons, which plays a biologically pivotal role in enhancing neuroregeneration and neurological functional recovery. Tetramethylpyrazine (TMP), the main bioactive ingredient extracted from the traditional Chinese medicinal herb Chuanxiong, has been reported to promote the neuronal differentiation of BM-MSCs. This study aimed to investigate whether TMP regulates the release of neurotrophic factors from BM-MSCs. We examined the effect of TMP on brain-derived neurotrophic factor (BDNF) released from BM-MSCs and elucidated the underlying molecular mechanism. Our results demonstrated that TMP at concentrations of lower than 200 μM increased the release of BDNF in a dose-dependent manner. Furthermore, the effect of TMP on increasing the release of BDNF from BM-MSCs was blocked by inhibiting the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/cAMP-response element binding protein (CREB) pathway. Therefore, we concluded that TMP could induce the release of BDNF from BM-MSCs through activation of the PI3K/AKT/CREB pathway, leading to the formation of neuroprotective and proneurogenic microenvironment. These findings suggest that TMP possesses novel therapeutic potential to promote neuroprotection and neurogenesis through improving the neurotrophic ability of BM-MSCs, which provides a promising nutritional prevention and treatment strategy for CNS injuries and neurodegenerative diseases via the transplantation of TMP-treated BM-MSCs.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yun-Shan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Juan Tang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Zhao
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Jones I, Novikova LN, Wiberg M, Carlsson L, Novikov LN. Human Embryonic Stem Cell-derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant 2021; 30:963689720988245. [PMID: 33522309 PMCID: PMC7863557 DOI: 10.1177/0963689720988245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury results in irreversible tissue damage and permanent sensorimotor impairment. The development of novel therapeutic strategies that improve the life quality of affected individuals is therefore of paramount importance. Cell transplantation is a promising approach for spinal cord injury treatment and the present study assesses the efficacy of human embryonic stem cell–derived neural crest cells as preclinical cell-based therapy candidates. The differentiated neural crest cells exhibited characteristic molecular signatures and produced a range of biologically active trophic factors that stimulated in vitro neurite outgrowth of rat primary dorsal root ganglia neurons. Transplantation of the neural crest cells into both acute and chronic rat cervical spinal cord injury models promoted remodeling of descending raphespinal projections and contributed to the partial recovery of forelimb motor function. The results achieved in this proof-of-concept study demonstrates that human embryonic stem cell–derived neural crest cells warrant further investigation as cell-based therapy candidates for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Iwan Jones
- 59588Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Mikael Wiberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Leif Carlsson
- 59588Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lev N Novikov
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Sahib S, Sharma A, Menon PK, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Bryukhovetskiy I, Tian ZR, Patnaik R, Buzoianu AD, Wiklund L, Sharma HS. Cerebrolysin enhances spinal cord conduction and reduces blood-spinal cord barrier breakdown, edema formation, immediate early gene expression and cord pathology after injury. PROGRESS IN BRAIN RESEARCH 2020; 258:397-438. [PMID: 33223040 DOI: 10.1016/bs.pbr.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spinal cord evoked potentials (SCEP) are good indicators of spinal cord function in health and disease. Disturbances in SCEP amplitudes and latencies during spinal cord monitoring predict spinal cord pathology following trauma. Treatment with neuroprotective agents preserves SCEP and reduces cord pathology after injury. The possibility that cerebrolysin, a balanced composition of neurotrophic factors improves spinal cord conduction, attenuates blood-spinal cord barrier (BSCB) disruption, edema formation, and cord pathology was examined in spinal cord injury (SCI). SCEP is recorded from epidural space over rat spinal cord T9 and T12 segments after peripheral nerves stimulation. SCEP consists of a small positive peak (MPP), followed by a prominent negative peak (MNP) that is stable before SCI. A longitudinal incision (2mm deep and 5mm long) into the right dorsal horn (T10 and T11 segments) resulted in an immediate long-lasting depression of the rostral MNP with an increase in the latencies. Pretreatment with either cerebrolysin (CBL 5mL/kg, i.v. 30min before) alone or TiO2 nanowired delivery of cerebrolysin (NWCBL 2.5mL/kg, i.v.) prevented the loss of MNP amplitude and even enhanced further from the pre-injury level after SCI without affecting latencies. At 5h, SCI induced edema, BSCB breakdown, and cell injuries were significantly reduced by CBL and NWCBL pretreatment. Interestingly this effect on SCEP and cord pathology was still prominent when the NWCBL was delivered 2min after SCI. Moreover, expressions of c-fos and c-jun genes that are prominent at 5h in untreated SCI are also considerably reduced by CBL and NWCBL treatment. These results are the first to show that CBL and NWCBL enhanced SCEP activity and thwarted the development of cord pathology after SCI. Furthermore, NWCBL in low doses has superior neuroprotective effects on SCEP and cord pathology, not reported earlier. The functional significance and future clinical potential of CBL and NWCBL in SCI are discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Preeti K Menon
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Shuaib A, Bourisly AK. Effects of Irradiation Parameters and Position on Photobiomodulation Therapy for Spinal Cord Injury Rat Phantom Model: A Dosimetry Simulation Study. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:661-666. [DOI: 10.1089/photob.2020.4864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ali Shuaib
- Biomedical Engineering Unit, Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ali K. Bourisly
- Biomedical Engineering Unit, Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
10
|
Dravid A, Parittotokkaporn S, Aqrawe Z, O’Carroll SJ, Svirskis D. Determining Neurotrophin Gradients in Vitro To Direct Axonal Outgrowth Following Spinal Cord Injury. ACS Chem Neurosci 2020; 11:121-132. [PMID: 31825204 DOI: 10.1021/acschemneuro.9b00565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A spinal cord injury can damage neuronal connections required for both motor and sensory function. Barriers to regeneration within the central nervous system, including an absence of neurotrophic stimulation, impair the ability of injured neurons to reestablish their original circuitry. Exogenous neurotrophin administration has been shown to promote axonal regeneration and outgrowth following injury. The neurotrophins possess chemotrophic properties that guide axons toward the region of highest concentration. These growth factors have demonstrated potential to be used as a therapeutic intervention for orienting axonal growth beyond the injury lesion, toward denervated targets. However, the success of this approach is dependent on the appropriate spatiotemporal distribution of these molecules to ensure detection and navigation by the axonal growth cone. A number of in vitro gradient-based assays have been employed to investigate axonal response to neurotrophic gradients. Such platforms have helped elucidate the potential of applying a concentration gradient of neurotrophins to promote directed axonal regeneration toward a functionally significant target. Here, we review these techniques and the principles of gradient detection in axonal guidance, with particular focus on the use of neurotrophins to orient the trajectory of regenerating axons.
Collapse
Affiliation(s)
- Anusha Dravid
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Sam Parittotokkaporn
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zaid Aqrawe
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
11
|
Xu BP, Yao M, Li ZJ, Tian ZR, Ye J, Wang YJ, Cui XJ. Neurological recovery and antioxidant effects of resveratrol in rats with spinal cord injury: a meta-analysis. Neural Regen Res 2020; 15:482-490. [PMID: 31571660 PMCID: PMC6921347 DOI: 10.4103/1673-5374.266064] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To critically assess the neurological recovery and antioxidant effects of resveratrol in rat models of spinal cord injury. Data sources Using "spinal cord injury", "resveratrol" and "animal experiment" as the main search terms, all studies on the treatment of spinal cord injury in rats by resveratrol were searched for in PubMed, EMBASE, MEDLINE, Web of Science, Science Direct, China National Knowledge Infrastructure, Wanfang, VIP, and SinoMed databases by computer. The search was conducted from their inception date to April 2017. No language restriction was used in the literature search. Data selection The methodological quality of each study was assessed by the initial Stroke Therapy Academic Industry Roundtable recommendations. Two reviewers independently selected studies according to the title, abstract and full text. The risk of bias in the included studies was also evaluated. Meta-analyses were performed with Review Manager 5.3 software. Outcome measures Neurological function was assessed by the Basso, Beattie, and Bresnahan scale score, inclined plane score and Gale's motor function score. Molecular-biological analysis of antioxidative effects was conducted to determine superoxide dismutase levels, malondialdehyde levels, nitric oxide synthase activity, nitric oxide levels, xanthine oxidase and glutathione levels in spinal cord tissues. Results The methodological quality of the 12 included studies was poor. The results of meta-analysis showed that compared with the control group, resveratrol significantly increased the Basso, Beattie, and Bresnahan scale scores after spinal cord injury (n = 300, mean difference (MD) = 3.85, 95% confidence interval (CI) [2.10, 5.59], P < 0.0001). Compared with the control group, superoxide dismutase levels were significantly elevated (n = 138, standardized mean difference (SMD) = 5.22, 95% CI [2.98, 7.45], P < 0.00001), but malondialdehyde levels were significantly diminished (n = 84, SMD = -3.64, 95% CI [-5.84, -1.43], P = 0.001) in the spinal cord of the resveratrol treatment group. Conclusions Resveratrol promoted neurological recovery and exerted antioxidative effects in rat models of spinal cord injury. The limited quality of the included studies reduces the application of this meta-analysis. Therefore, more high-quality studies are needed to provide more rigorous and objective evidence for the pre-clinical treatment of spinal cord injury.
Collapse
Affiliation(s)
- Bao-Ping Xu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai; Lu'an Hospital of Traditional Chinese Medicine, Lu'an, Anhui Province, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Zhen-Jun Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai; Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Zi-Rui Tian
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai, China
| |
Collapse
|
12
|
Liu XY, Liang J, Wang Y, Zhong L, Zhao CY, Wei MG, Wang JJ, Sun XZ, Wang KQ, Duan JH, Chen C, Tu Y, Zhang S, Ming D, Li XH. Diffusion tensor imaging predicting neurological repair of spinal cord injury with transplanting collagen/chitosan scaffold binding bFGF. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:123. [PMID: 31686219 DOI: 10.1007/s10856-019-6322-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Prognosis and treatment evaluation of spinal cord injury (SCI) are still in the long-term research stage. Prognostic factors for SCI treatment need effective biomarker to assess therapeutic effect. Quantitative diffusion tensor imaging (DTI) may become a potential indicators for assessing SCI repair. However, its correlation with the results of locomotor function recovery and tissue repair has not been carefully studied. The aim of this study was to use quantitative DTI to predict neurological repair of SCI with transplanting collagen/chitosan scaffold binding basic fibroblast growth factor (bFGF). To achieve our research goals, T10 complete transection SCI model was established. Then collagen/chitosan mixture adsorbed with bFGF (CCS/bFGF) were implanted into rats with SCI. At 8 weeks after modeling, implanting CCS/bFGF demonstrated more significant improvements in locomotor function according to Basso-Beattie-Bresnahan (BBB) score, inclined-grid climbing test, and electrophysiological examinations. DTI was carried out to evaluate the repair of axons by diffusion tensor tractgraphy (DTT), fractional anisotropy (FA) and apparent diffusion coefficient (ADC), a numerical measure of relative white matter from the rostral to the caudal. Parallel to locomotor function recovery, the CCS/bFGF group could significantly promote the regeneration of nerve fibers tracts according to DTT, magnetic resonance imaging (MRI), Bielschowsky's silver staining and immunofluorescence staining. Positive correlations between imaging and locomotor function or histology were found at all locations from the rostral to the caudal (P < 0.0001). These results demonstrated that DTI might be used as an effective predictor for evaluating neurological repair after SCI in experimental trails and clinical cases.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
- Tianjin Medical University, Qixiangtai Road No. 22, Tianjin, 300070, China
| | - Jun Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yi Wang
- Department of Neurology, Tianjin Hospital of Tianjin, Tianjin, 300211, China
| | - Lin Zhong
- Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Chang-Yu Zhao
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Meng-Guang Wei
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Xiao-Zhe Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Ke-Qiang Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing-Hao Duan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin, 300162, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
13
|
Pre-Clinical Evaluation of CBD-NT3 Modified Collagen Scaffolds in Completely Spinal Cord Transected Non-Human Primates. J Neurotrauma 2019; 36:2316-2324. [DOI: 10.1089/neu.2018.6078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
14
|
Zhang N, Milbreta U, Chin JS, Pinese C, Lin J, Shirahama H, Jiang W, Liu H, Mi R, Hoke A, Wu W, Chew SY. Biomimicking Fiber Scaffold as an Effective In Vitro and In Vivo MicroRNA Screening Platform for Directing Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800808. [PMID: 31065509 PMCID: PMC6498117 DOI: 10.1002/advs.201800808] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/25/2018] [Indexed: 05/05/2023]
Abstract
MicroRNAs effectively modulate protein expression and cellular response. Unfortunately, the lack of robust nonviral delivery platforms has limited the therapeutic application of microRNAs. Additionally, there is a shortage of drug-screening platforms that are directly translatable from in vitro to in vivo. Here, a fiber substrate that provides nonviral delivery of microRNAs for in vitro and in vivo microRNA screening is introduced. As a proof of concept, difficult-to-transfect primary neurons are targeted and the efficacy of this system is evaluated in a rat spinal cord injury model. With this platform, enhanced gene-silencing is achieved in neurons as compared to conventional bolus delivery (p < 0.05). Thereafter, four well-recognized microRNAs (miR-21, miR-222, miR-132, and miR-431) and their cocktails are screened systematically. Regardless of age and origin of the neurons, similar trends are observed. Next, this fiber substrate is translated into a 3D system for direct in vivo microRNA screening. Robust nerve ingrowth is observed as early as two weeks after scaffold implantation. Nerve regeneration in response to the microRNA cocktails is similar to in vitro experiments. Altogether, the potential of the fiber platform is demonstrated in providing effective microRNA screening and direct translation into in vivo applications.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Ulla Milbreta
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
- NTU Institute of Health TechnologyInterdisciplinary Graduate SchoolNanyang Technological UniversitySingapore639798Singapore
| | - Coline Pinese
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
- Artificial Biopolymers DepartmentMax Mousseron Institute of Biomolecules (IBMM)UMR CNRS 5247University of MontpellierFaculty of PharmacyMontpellier34093France
| | - Junquan Lin
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Hitomi Shirahama
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Wei Jiang
- School of Life Sciences and Medical CenterUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Hang Liu
- School of Life Sciences and Medical CenterUniversity of Science and Technology of ChinaHefeiAnhui230027P. R. China
| | - Ruifa Mi
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMD1521205USA
| | - Ahmet Hoke
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMD1521205USA
| | - Wutian Wu
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632P. R. China
- Re‐Stem Biotechnology Co., Ltd.Suzhou330520P. R. China
| | - Sing Yian Chew
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore308232Singapore
| |
Collapse
|
15
|
Milbreta U, Lin J, Pinese C, Ong W, Chin JS, Shirahama H, Mi R, Williams A, Bechler ME, Wang J, Ffrench-Constant C, Hoke A, Chew SY. Scaffold-Mediated Sustained, Non-viral Delivery of miR-219/miR-338 Promotes CNS Remyelination. Mol Ther 2019; 27:411-423. [PMID: 30611662 PMCID: PMC6369635 DOI: 10.1016/j.ymthe.2018.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
The loss of oligodendrocytes (OLs) and subsequently myelin sheaths following injuries or pathologies in the CNS leads to debilitating functional deficits. Unfortunately, effective methods of remyelination remain limited. Here, we present a scaffolding system that enables sustained non-viral delivery of microRNAs (miRs) to direct OL differentiation, maturation, and myelination. We show that miR-219/miR-338 promoted primary rat OL differentiation and myelination in vitro. Using spinal cord injury as a proof-of-concept, we further demonstrate that miR-219/miR-338 could also be delivered non-virally in vivo using an aligned fiber-hydrogel scaffold to enhance remyelination after a hemi-incision injury at C5 level of Sprague-Dawley rats. Specifically, miR-219/miR-338 mimics were incorporated as complexes with the carrier, TransIT-TKO (TKO), together with neurotrophin-3 (NT-3) within hybrid scaffolds that comprised poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP)-aligned fibers and collagen hydrogel. After 1, 2, and 4 weeks post-treatment, animals that received NT-3 and miR-219/miR-338 treatment preserved a higher number of Olig2+ oligodendroglial lineage cells as compared with those treated with NT-3 and negative scrambled miRs (Neg miRs; p < 0.001). Additionally, miR-219/miR-338 increased the rate and extent of differentiation of OLs. At the host-implant interface, more compact myelin sheaths were observed when animals received miR-219/miR-338. Similarly within the scaffolds, miR-219/miR-338 samples contained significantly more myelin basic protein (MBP) signals (p < 0.01) and higher myelination index (p < 0.05) than Neg miR samples. These findings highlight the potential of this platform to promote remyelination within the CNS.
Collapse
Affiliation(s)
- Ulla Milbreta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Coline Pinese
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Artificial Biopolymers Department, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, Faculty of Pharmacy, Montpellier 34093, France
| | - William Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637533, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637533, Singapore
| | - Hitomi Shirahama
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anna Williams
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Marie E Bechler
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Jun Wang
- China School of Biomedical Science and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Charles Ffrench-Constant
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH164UU, Edinburgh, UK
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
16
|
Wang J, Zou W, Ma J, Liu J. Biomaterials and Gene Manipulation in Stem Cell-Based Therapies for Spinal Cord Injury. Stem Cells Dev 2019; 28:239-257. [PMID: 30489226 DOI: 10.1089/scd.2018.0169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI), a prominent health issue, represents a substantial portion of the global health care burden. Stem cell-based therapies provide novel solutions for SCI treatment, yet obstacles remain in the form of low survival rate, uncontrolled differentiation, and functional recovery. The application of engineered biomaterials in stem cell therapy provides a physicochemical microenvironment that mimics the stem cell niche, facilitating self-renewal, stem cell differentiation, and tissue reorganization. Nonetheless, external microenvironment support is inadequate, and some obstacles persist, for example, limited sources, gradual aging, and immunogenicity of stem cells. Targeted stem cell gene manipulation could eliminate many of these drawbacks, allowing safer, more effective use under regulation of intrinsic mechanisms. Additionally, through genetic labeling of stem cells, their role in tissue engineering may be elucidated. Therefore, combining stem cell therapy, materials science, and genetic modification technologies may shed light on SCI treatment. Herein, recent advances and advantages of biomaterials and gene manipulation, especially with respect to stem cell-based therapies, are highlighted, and their joint performance in SCI is evaluated. Current technological limitations and perspectives on future directions are then discussed. Although this combination is still in the early stages of development, it is highly likely to substantially contribute to stem cell-based therapies in the foreseeable future.
Collapse
Affiliation(s)
- Jiayi Wang
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Zou
- 3 College of Life Sciences, Liaoning Normal University, Dalian, China.,4 Liaoning Key Laboratories of Biotechnology and Molecular Drug Research & Development, Dalian, China
| | - Jingyun Ma
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- 1 Regenerative Medicine Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,2 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
17
|
Lin J, Anopas D, Milbreta U, Lin PH, Chin JS, Zhang N, Wee SK, Tow A, Ang WT, Chew SY. Regenerative rehabilitation: exploring the synergistic effects of rehabilitation and implantation of a bio-functional scaffold in enhancing nerve regeneration. Biomater Sci 2019; 7:5150-5160. [DOI: 10.1039/c9bm01095e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Combinatorial approach of rehabilitation and regeneration is essential for functional recovery.
Collapse
Affiliation(s)
- Junquan Lin
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Dollaporn Anopas
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore
| | - Ulla Milbreta
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Po Hen Lin
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- NTU Institute for Health Technologies (Health Tech NTU)
- Interdisciplinary Graduate School
| | - Na Zhang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Seng Kwee Wee
- Department of Rehabilitation Medicine
- Tan Tock Seng Hospital
- Singapore
| | - Adela Tow
- Department of Rehabilitation Medicine
- Tan Tock Seng Hospital
- Singapore
| | - Wei Tech Ang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- Lee Kong Chian School of Medicine
- Nanyang Technological University
| |
Collapse
|
18
|
Wang Y, Wu W, Wu X, Sun Y, Zhang YP, Deng LX, Walker MJ, Qu W, Chen C, Liu NK, Han Q, Dai H, Shields LB, Shields CB, Sengelaub DR, Jones KJ, Smith GM, Xu XM. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery. eLife 2018; 7:39016. [PMID: 30207538 PMCID: PMC6170189 DOI: 10.7554/elife.39016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/09/2018] [Indexed: 12/18/2022] Open
Abstract
Retrogradely-transported neurotrophin signaling plays an important role in regulating neural circuit specificity. Here we investigated whether targeted delivery of neurotrophin-3 (NT-3) to lumbar motoneurons (MNs) caudal to a thoracic (T10) contusive spinal cord injury (SCI) could modulate dendritic patterning and synapse formation of the lumbar MNs. In vitro, Adeno-associated virus serotype two overexpressing NT-3 (AAV-NT-3) induced NT-3 expression and neurite outgrowth in cultured spinal cord neurons. In vivo, targeted delivery of AAV-NT-3 into transiently demyelinated adult mouse sciatic nerves led to the retrograde transportation of NT-3 to the lumbar MNs, significantly attenuating SCI-induced lumbar MN dendritic atrophy. NT-3 enhanced sprouting and synaptic formation of descending serotonergic, dopaminergic, and propriospinal axons on lumbar MNs, parallel to improved behavioral recovery. Thus, retrogradely transported NT-3 stimulated remodeling of lumbar neural circuitry and synaptic connectivity remote to a thoracic SCI, supporting a role for retrograde transport of NT-3 as a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Neural Tissue Engineering Research Institute, Mudanjiang College of Medicine, Mudanjiang, China
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Yan Sun
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi P Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, United States
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Melissa Jane Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indiana, United States
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Lisa Be Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, United States
| | | | - Dale R Sengelaub
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States
| | - Kathryn J Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, United States
| |
Collapse
|
19
|
Shuaib A, Bourisly AK. Photobiomodulation Optimization for Spinal Cord Injury Rat Phantom Model. Transl Neurosci 2018; 9:67-71. [PMID: 29967691 PMCID: PMC6024694 DOI: 10.1515/tnsci-2018-0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal Cord Injury (SCI) causes interruption along the severed axonal tract(s) resulting in complete or partial loss of sensation and motor function. SCI can cause tetraplegia or paraplegia. Both these conditions can have lifelong excessive medical costs, as well as can reduce life expectancy. Preclinical research showed that Photobiomodulation therapy (PBMT), also known as Low-level laser (light) therapy (LLLT), possesses reparative and regenerative capabilities that have the potential to be used as a complimentary or supplementary SCI therapy. Despite the promising effects of PBMT, there are still no standardized irradiation parameters (i.e. different wavelengths, power, fluence, irradiance, beam type, beam diameters, and irradiation time) and there is also a lack of standardized experimental protocol(s), which makes it difficult to compare different studies. It is, nonetheless, essential to standardize such irradiation parameters in order to provide better PBMTs. The aim of this study, therefore, is to evaluate the delivery of light in a 3D voxelated SCI rat model for PBMT using different irradiation parameters (wavelengths: 660, 810, and 980 nm; beam types: Gaussian and Flat beam; and beam diameters: 0.04-1.2 cm) using Monte Carlo simulation. This study also aids in providing standardization for preclinical research for PBMT, which will eventually translate into clinical standardization upon clinical research studies and results.
Collapse
Affiliation(s)
- Ali Shuaib
- Biomedical Engineering Unit, Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait city, Kuwait
| | - Ali K Bourisly
- Biomedical Engineering Unit, Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait city, Kuwait
| |
Collapse
|
20
|
Quintanar JL, Díaz-Galindo C, Calderón-Vallejo D, Hernández-Jasso I, Rojas F, Medina-Aguiñaga D, Olvera-Sandoval C. Neurological improvement in patients with chronic spinal cord injury treated with leuprolide acetate, an agonist of GnRH. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Han S, Xiao Z, Li X, Zhao H, Wang B, Qiu Z, Li Z, Mei X, Xu B, Fan C, Chen B, Han J, Gu Y, Yang H, Shi Q, Dai J. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. SCIENCE CHINA-LIFE SCIENCES 2017; 61:2-13. [PMID: 28527111 DOI: 10.1007/s11427-016-9002-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Traumatic spinal cord injury (SCI) is a major challenge in the clinic. In this study, we sought to examine the synergistic effects of linear ordered collagen scaffold (LOCS) and human placenta-derived mesenchymal stem cells (hPMSCs) when transplanted into completely transected beagle dogs. After 36 weeks observation, we found that LOCS+hPMSCs implants promoted better hindlimb locomotor recovery than was observed in the non-treatment (control) group and LOCS group. Histological analysis showed that the regenerated tissue after treatment was well integrated with the host tissue, and dramatically reduced the volume of cystic and chondroitin sulfate proteoglycans (CSPGs) expression. Furthermore, the LOCS+hPMSCs group also showed more neuron-specific βIII-tubulin (Tuj-1)- and NeuN-positive neurons in the lesion area, as well as axonal regeneration, remyelination and synapse formation in the lesion site. Additionally, dogs in the LOCS+hPMSCs group experienced enhanced sprouting of both ascending (CGRP-positive) sensory fibers and descending (5-HT- and TH-positive) motor fibers at the lesion area. All these data together suggested that the combined treatment had beneficial effects on neuronal regeneration and functional improvement in a canine complete transection model. Therefore, LOCS+hPMSCs implantation holds a great promise for bridging the nerve defect and may be clinically useful in the near future.
Collapse
Affiliation(s)
- Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Huan Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, 215006, China
| | - Bin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Zhixue Qiu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, 215006, China
| | - Zhi Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, 215006, China
| | - Xin Mei
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, 215006, China
| | - Bai Xu
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yanzheng Gu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, 215006, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute, Soochow University, Suzhou, 215006, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
22
|
Leviton A, Allred EN, Yamamoto H, Fichorova RN, Kuban K, O'Shea TM, Dammann O. Antecedents and correlates of blood concentrations of neurotrophic growth factors in very preterm newborns. Cytokine 2017; 94:21-28. [PMID: 28396037 PMCID: PMC5464409 DOI: 10.1016/j.cyto.2017.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
AIM To identify the antecedents and very early correlates of low concentrations of neurotrophic growth factors in the blood of extremely preterm newborns during the first postnatal month. METHODS Using an immunobead assay, we measured the concentrations of neurotrophin 4 (NT4), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) in blood spots collected on postnatal days 1 (N=1062), 7 (N=1087), 14 (N=989), 21 (N=940) and 28 (N=880) from infants born before the 28th week of gestation. We then sought the correlates of measurements in the top and bottom quartiles for gestational age and day the specimen was collected. RESULTS The concentrations of 2 neurotrophic proteins, NT4 and BDNF, were low among children delivered for medical (maternal or fetal) indications, and among those who were growth restricted. Children who had top quartile concentrations of NT4, BDNF, and bFGF tended to have elevated concentrations of inflammation-related proteins that day. This pattern persisted for much of the first postnatal month. CONCLUSIONS Delivery for medical indications and fetal growth restriction are associated with a relative paucity of NT4 and BDNF concentrations during the first 24 h after very preterm birth. Elevated blood concentrations of NT4, BDNF, and bFGF tended to co-occur with indicators of systemic inflammation on the same day.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, United States.
| | - Elizabeth N Allred
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, United States
| | | | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Karl Kuban
- Boston Medical Center and Boston University, Boston, MA, United States
| | | | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, United States; Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Post-natal Deletion of Neuronal cAMP Responsive-Element Binding (CREB)-1 Promotes Pro-inflammatory Changes in the Mouse Hippocampus. Neurochem Res 2017; 42:2230-2245. [DOI: 10.1007/s11064-017-2233-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 12/19/2022]
|
24
|
Huang YJ, Lee KH, Grau JW. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization. Exp Neurol 2017; 288:38-50. [PMID: 27818188 DOI: 10.1016/j.expneurol.2016.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022]
Abstract
Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABAA agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing.
Collapse
Affiliation(s)
- Yung-Jen Huang
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Kuan H Lee
- Center for Pain Research, Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
25
|
Hodgetts SI, Harvey AR. Neurotrophic Factors Used to Treat Spinal Cord Injury. VITAMINS AND HORMONES 2016; 104:405-457. [PMID: 28215303 DOI: 10.1016/bs.vh.2016.11.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The application of neurotrophic factors as a therapy to improve morphological and behavioral outcomes after experimental spinal cord injury (SCI) has been the focus of many studies. These studies vary markedly in the type of neurotrophic factor that is delivered, the mode of administration, and the location, timing, and duration of the treatment. Generally, the majority of studies have had significant success if neurotrophic factors are applied in or close to the lesion site during the acute or the subacute phase after SCI. Comparatively fewer studies have administered neurotrophic factors in order to directly target the somata of injured neurons. The mode of delivery varies between acute injection of recombinant proteins, subacute or chronic delivery using a variety of strategies including osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells, or precursor/stem cells. In this brief review, we summarize the state of play of many of the therapies using these factors, most of which have been undertaken in rodent models of SCI.
Collapse
Affiliation(s)
- S I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia.
| | - A R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia; Western Australian Neuroscience Research Institute, Perth, WA, Australia
| |
Collapse
|
26
|
Differential regenerative ability of sensory and motor neurons. Neurosci Lett 2016; 652:35-40. [PMID: 27818349 DOI: 10.1016/j.neulet.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/22/2022]
Abstract
After injury, the adult mammalian central nervous system (CNS) lacks long-distance axon regeneration. This review discusses the similarities and differences of sensory and motor neurons, seeking to understand how to achieve functional sensory and motor regeneration. As these two types of neurons respond differently to axotomy, growth environment and treatment, the future challenge will be on how to achieve full recovery in a way that allows regeneration of both types of fibres simultaneously.
Collapse
|
27
|
Koss K, Tsui C, Unsworth LD. Induced Neural Differentiation of MMP-2 Cleaved (RADA) 4 Drug Delivery Systems. J Control Release 2016; 243:204-213. [PMID: 27720765 DOI: 10.1016/j.jconrel.2016.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/17/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
(RADA)4 self-assembling peptides (SAPs) are promising for neural nanoscaffolds with on-demand drug delivery capabilities due to their automated synthesis, in-situ assembly, and potential for interaction with and release of biomolecules. Neuroinflammation cued on-demand drug release, due to up-regulated proteases, may well be vital in the treatment of several neurological diseases. In these conditions, releasing neurotrophic growth factors (NTFs) could potentially lead to neuroprotection and neurogenesis. As such, (RADA)4 was made with the high and low activity matrix metalloproteinase 2 (MMP-2) cleaved sequences, GPQG+IASQ (CP1) and GPQG+PAGQ (CP2), the brain-derived NTF secretion stimulating peptide MVG (DP1) and the ciliary NTF analogue DGGL (DP2). PC-12 cell culture was performed to assess bioactive substrate cell adhesion and NTF specific neuronal differentiation. The laminin-derived IKVAV peptide, known for neural cell attachment and interaction, was tethered to (RADA)4-IKVAV and mixed in increasing increments with (RADA)4 for this purpose. With 1 nanomolar MMP-2 treatment, product formation was observed to increase over a three day period, with (RADA)4/(RADA)4-CP1/CP2 mixture, however there was little difference between groups. Smaller CP1/CP2 concentrations displayed comparable (RADA)4 nanoscale morphology to higher concentrations. Acetylcholine esterase and neural differentiation was observed over 3 days with 1 nM MMP-2 treatment according to the following makeup: 8/1/1 (RADA)4/(RADA)4-IKVAV/(RADA)4-CP1/CP2-DP1/DP2. Signalling gradually increased in all groups, and neurite outgrowth was visible after three days.
Collapse
Affiliation(s)
- K Koss
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 ave, Edmonton, AB, T6G 2M7; National Institute for Nanotechnology, NRC, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9
| | - C Tsui
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 ave, Edmonton, AB, T6G 2M7; National Institute for Nanotechnology, NRC, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9
| | - L D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 ave, Edmonton, AB, T6G 2M7; National Institute for Nanotechnology, NRC, 11421 Saskatchewan Dr NW, Edmonton, AB, T6G 2M9.
| |
Collapse
|
28
|
Abstract
…once the development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. Santiago Ramón y Cajal Cajal's neurotropic theory postulates that the complexity of the nervous system arises from the collaboration of neurotropic signals from neuronal and non-neuronal cells and that once development has ended, a paucity of neurotropic signals means that the pathways of the central nervous system are "fixed, ended, immutable". While the capacity for regeneration and plasticity of the central nervous system may not be quite as paltry as Cajal proposed, regeneration is severely limited in scope as there is no spontaneous regeneration of long-distance projections in mammals and therefore limited opportunity for functional recovery following spinal cord injury. It is not a far stretch from Cajal to hypothesize that reappropriation of the neurotropic programs of development may be an appropriate strategy for reconstitution of injured circuits. It has become clear, however, that a significant number of the molecular cues governing circuit development become re-active after injury and many assume roles that paradoxically obstruct the functional re-wiring of severed neural connections. Therefore, the problem to address is how individual neural circuits respond to specific molecular cues following injury, and what strategies will be necessary for instigating functional repair or remodeling of the injured spinal cord.
Collapse
Affiliation(s)
- Edmund R Hollis
- Burke Medical Research Institute, White Plains, NY, USA.
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
29
|
Han S, Wang B, Li X, Xiao Z, Han J, Zhao Y, Fang Y, Yin Y, Chen B, Dai J. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation. J Biomed Mater Res A 2016; 104:1759-69. [DOI: 10.1002/jbm.a.35708] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Sufang Han
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Bin Wang
- Regeneration Medical Center; Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School; Nanjing 210008 China
| | - Xing Li
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
- Graduate School; Chinese Academy of Sciences; Beijing 100080 China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences; Lanzhou 730046 China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing 100080 China
| |
Collapse
|
30
|
Klein S, Prantl L, Vykoukal J, Loibl M, Felthaus O. Differential Effects of Coating Materials on Viability and Migration of Schwann Cells. MATERIALS 2016; 9:ma9030150. [PMID: 28773276 PMCID: PMC5456653 DOI: 10.3390/ma9030150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 12/05/2022]
Abstract
Synthetic nerve conduits have emerged as an alternative to guide axonal regeneration in peripheral nerve gap injuries. Migration of Schwann cells (SC) from nerve stumps has been demonstrated as one essential factor for nerve regeneration in nerve defects. In this experiment, SC viability and migration were investigated for various materials to determine the optimal conditions for nerve regeneration. Cell viability and SC migration assays were conducted for collagen I, laminin, fibronectin, lysine and ornithine. The highest values for cell viability were detected for collagen I, whereas fibronectin was most stimulatory for SC migration. At this time, clinically approved conduits are based on single-material structures. In contrast, the results of this experiment suggest that material compounds such as collagen I in conjunction with fibronectin should be considered for optimal nerve healing.
Collapse
Affiliation(s)
- Silvan Klein
- Center for Plastic-, Hand- and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Lukas Prantl
- Center for Plastic-, Hand- and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Jody Vykoukal
- Translational Molecular Pathology, University of Texas MD, Unit 951, 7435 Fannin Street, Houston, TX 77054, USA.
| | - Markus Loibl
- Department of Traumatology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Oliver Felthaus
- Center for Plastic-, Hand- and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| |
Collapse
|
31
|
Li G, Che MT, Zhang K, Qin LN, Zhang YT, Chen RQ, Rong LM, Liu S, Ding Y, Shen HY, Long SM, Wu JL, Ling EA, Zeng YS. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials 2016; 83:233-48. [DOI: 10.1016/j.biomaterials.2015.11.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/10/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
|
32
|
Jin Y, Bouyer J, Shumsky JS, Haas C, Fischer I. Transplantation of neural progenitor cells in chronic spinal cord injury. Neuroscience 2016; 320:69-82. [PMID: 26852702 DOI: 10.1016/j.neuroscience.2016.01.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 01/24/2023]
Abstract
Previous studies demonstrated that neural progenitor cells (NPCs) transplanted into a subacute contusion injury improve motor, sensory, and bladder function. In this study we tested whether transplanted NPCs can also improve functional recovery after chronic spinal cord injury (SCI) alone or in combination with the reduction of glial scar and neurotrophic support. Adult rats received a T10 moderate contusion. Thirteen weeks after the injury they were divided into four groups and received either: 1. Medium (control), 2. NPC transplants, 3. NPC+lentivirus vector expressing chondroitinase, or 4. NPC+lentivirus vectors expressing chondroitinase and neurotrophic factors. During the 8 weeks post-transplantation the animals were tested for functional recovery and eventually analyzed by anatomical and immunohistochemical assays. The behavioral tests for motor and sensory function were performed before and after injury, and weekly after transplantation, with some animals also tested for bladder function at the end of the experiment. Transplant survival in the chronic injury model was variable and showed NPCs at the injury site in 60% of the animals in all transplantation groups. The NPC transplants comprised less than 40% of the injury site, without significant anatomical or histological differences among the groups. All groups also showed similar patterns of functional deficits and recovery in the 12 weeks after injury and in the 8 weeks after transplantation using the Basso, Beattie, and Bresnahan rating score, the grid test, and the Von Frey test for mechanical allodynia. A notable exception was group 4 (NPC together with chondroitinase and neurotrophins), which showed a significant improvement in bladder function. This study underscores the therapeutic challenges facing transplantation strategies in a chronic SCI in which even the inclusion of treatments designed to reduce scarring and increase neurotrophic support produce only modest functional improvements. Further studies will have to identify the combination of acute and chronic interventions that will augment the survival and efficacy of neural cell transplants.
Collapse
Affiliation(s)
- Y Jin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States.
| | - J Bouyer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - J S Shumsky
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - C Haas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States
| | - I Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia PA 19129, United States.
| |
Collapse
|
33
|
van Niekerk EA, Tuszynski MH, Lu P, Dulin JN. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol Cell Proteomics 2015; 15:394-408. [PMID: 26695766 DOI: 10.1074/mcp.r115.053751] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system.
Collapse
Affiliation(s)
- Erna A van Niekerk
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093;
| | - Mark H Tuszynski
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Paul Lu
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093; §Veterans Administration Medical Center, San Diego, CA 92161
| | - Jennifer N Dulin
- From the ‡Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
34
|
Huang ZH, Wang ZG, Lu XY, Li WY, Zhou YX, Shen XY, Zhao XT. The Principle of the Micro-Electronic Neural Bridge and a Prototype System Design. IEEE Trans Neural Syst Rehabil Eng 2015; 24:180-91. [PMID: 26276996 DOI: 10.1109/tnsre.2015.2466659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The micro-electronic neural bridge (MENB) aims to rebuild lost motor function of paralyzed humans by routing movement-related signals from the brain, around the damage part in the spinal cord, to the external effectors. This study focused on the prototype system design of the MENB, including the principle of the MENB, the neural signal detecting circuit and the functional electrical stimulation (FES) circuit design, and the spike detecting and sorting algorithm. In this study, we developed a novel improved amplitude threshold spike detecting method based on variable forward difference threshold for both training and bridging phase. The discrete wavelet transform (DWT), a new level feature coefficient selection method based on Lilliefors test, and the k-means clustering method based on Mahalanobis distance were used for spike sorting. A real-time online spike detecting and sorting algorithm based on DWT and Euclidean distance was also implemented for the bridging phase. Tested by the data sets available at Caltech, in the training phase, the average sensitivity, specificity, and clustering accuracies are 99.43%, 97.83%, and 95.45%, respectively. Validated by the three-fold cross-validation method, the average sensitivity, specificity, and classification accuracy are 99.43%, 97.70%, and 96.46%, respectively.
Collapse
|
35
|
Calderón-Vallejo D, Quintanar-Stephano A, Hernández-Jasso I, Jiménez-Hernández V, Ruiz-Ornelas J, Jiménez I, Quintanar JL. Functional and structural recovery of the injured spinal cord in rats treated with gonadotropin-releasing hormone. Neurochem Res 2015; 40:455-62. [PMID: 25618391 DOI: 10.1007/s11064-014-1486-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
Abstract
Several studies have shown that gonadotropin-releasing hormone (GnRH) have extra-pituitary roles, including neurotrophic effects. This study was to evaluate the effects of GnRH treatment on the spinal cord injury (SCI) of rats. Ovariectomized rats were divided into: sham SCI surgery (Sham), SCI treated with saline solution (SCI + SS), and SCI treated with GnRH (SCI + GnRH). The SCI was induced by compression. One day after the lesion, SCI + GnRH group was injected with GnRH (60 µg/kg/twice/day; i.m.) for 15 days and the other groups with saline solution. To kinematic gait analysis, length and velocity of the stride were measured. In spinal cord, axonal morphometry and spared white and gray matter were analyzed by histochemistry. Protein expression of spinophilin was evaluated by western blot. The results showed that, 5 weeks after the injury, the group of animals treated with GnRH, significantly increased the length and velocity of the stride compared to SCI + SS group and they were similar to Sham group. In spinal cord, GnRH treatment increased the number and caliber of nerve axons and in the case of white matter, spared tissue was significantly higher than those animals treated with saline solution. The expression of spinophilin in spinal cord of SCI + GnRH group was slightly increased with respect to those not treated. In conclusion, GnRH treatment improves recovery of gait and decreases histopathological damage in the injured spinal cord of rat. These findings suggest that GnRH acts as a neurotrophic factor and can be used as a potential therapeutic agent for treatment of SCI.
Collapse
Affiliation(s)
- Denisse Calderón-Vallejo
- Laboratory of Neurophysiology, Depto. de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Ciudad Universitaria, C.P. 20131, Aguascalientes, AGS, Mexico
| | | | | | | | | | | | | |
Collapse
|
36
|
Silver J, Schwab ME, Popovich PG. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 2014; 7:a020602. [PMID: 25475091 DOI: 10.1101/cshperspect.a020602] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal studies are now showing the exciting potential to achieve significant functional recovery following central nervous system (CNS) injury by manipulating both the inefficient intracellular growth machinery in neurons, as well as the extracellular barriers, which further limit their regenerative potential. In this review, we have focused on the three major glial cell types: oligodendrocytes, astrocytes, and microglia/macrophages, in addition to some of their precursors, which form major extrinsic barriers to regrowth in the injured CNS. Although axotomized neurons in the CNS have, at best, a limited capacity to regenerate or sprout, there is accumulating evidence that even in the adult and, especially after boosting their growth motor, neurons possess the capacity for considerable circuit reorganization and even lengthy regeneration when these glial obstacles to neuronal regrowth are modified, eliminated, or overcome.
Collapse
Affiliation(s)
- Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44140
| | - Martin E Schwab
- Brain Research Institute, University of Zurich and Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
37
|
Harvey AR, Lovett SJ, Majda BT, Yoon JH, Wheeler LPG, Hodgetts SI. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res 2014; 1619:36-71. [PMID: 25451132 DOI: 10.1016/j.brainres.2014.10.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022]
Abstract
A variety of neurotrophic factors have been used in attempts to improve morphological and behavioural outcomes after experimental spinal cord injury (SCI). Here we review many of these factors, their cellular targets, and their therapeutic impact on spinal cord repair in different, primarily rodent, models of SCI. A majority of studies report favourable outcomes but results are by no means consistent, thus a major aim of this review is to consider how best to apply neurotrophic factors after SCI to optimize their therapeutic potential. In addition to which factors are chosen, many variables need be considered when delivering trophic support, including where and when to apply a given factor or factors, how such factors are administered, at what dose, and for how long. Overall, the majority of studies have applied neurotrophic support in or close to the spinal cord lesion site, in the acute or sub-acute phase (0-14 days post-injury). Far fewer chronic SCI studies have been undertaken. In addition, comparatively fewer studies have administered neurotrophic factors directly to the cell bodies of injured neurons; yet in other instructive rodent models of CNS injury, for example optic nerve crush or transection, therapies are targeted directly at the injured neurons themselves, the retinal ganglion cells. The mode of delivery of neurotrophic factors is also an important variable, whether delivered by acute injection of recombinant proteins, sub-acute or chronic delivery using osmotic minipumps, cell-mediated delivery, delivery using polymer release vehicles or supporting bridges of some sort, or the use of gene therapy to modify neurons, glial cells or precursor/stem cells. Neurotrophic factors are often used in combination with cell or tissue grafts and/or other pharmacotherapeutic agents. Finally, the dose and time-course of delivery of trophic support should ideally be tailored to suit specific biological requirements, whether they relate to neuronal survival, axonal sparing/sprouting, or the long-distance regeneration of axons ending in a different mode of growth associated with terminal arborization and renewed synaptogenesis. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Sarah J Lovett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bernadette T Majda
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jun H Yoon
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Lachlan P G Wheeler
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
38
|
Bond LM, McKerracher L. Cervical spinal cord injury: tailoring clinical trial endpoints to reflect meaningful functional improvements. Neural Regen Res 2014; 9:1493-7. [PMID: 25317162 PMCID: PMC4192962 DOI: 10.4103/1673-5374.139470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 11/16/2022] Open
Abstract
Cervical spinal cord injury (SCI) results in partial to full paralysis of the upper and lower extremities. Traditional primary endpoints for acute SCI clinical trials are too broad to assess functional recovery in cervical subjects, raising the possibility of false positive outcomes in trials for cervical SCI. Endpoints focused on the recovery of hand and arm control (e.g., upper extremity motor score, motor level change) show the most potential for use as primary outcomes in upcoming trials of cervical SCI. As the field moves forward, the most reliable way to ensure meaningful clinical testing in cervical subjects may be the development of a composite primary endpoint that measures both neurological recovery and functional improvement.
Collapse
Affiliation(s)
- Lisa M Bond
- BioAxone BioSciences, Inc., Cambridge, MA, USA
| | - Lisa McKerracher
- McGill University, Department of Neurology and Neurosurgery, Montreal, Quebec, Canada ; BioAxone BioSciences, Inc., Cambridge, MA, USA
| |
Collapse
|
39
|
Estrada V, Müller HW. Spinal cord injury - there is not just one way of treating it. F1000PRIME REPORTS 2014; 6:84. [PMID: 25343041 PMCID: PMC4166939 DOI: 10.12703/p6-84] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last century, research in the field of spinal cord trauma has brought insightful knowledge which has led to a detailed understanding of mechanisms that are involved in injury- and recovery-related processes. The quest for a cure for the yet generally incurable condition as well as the exponential rise in gained information has brought about the development of numerous treatment approaches while at the same time the abundance of data has become quite unmanageable. Owing to an enormous amount of preclinical therapeutic approaches, this report highlights important trends rather than specific treatment strategies. We focus on current advances in the treatment of spinal cord injury and want to further draw attention to arising problems in spinal cord injury (SCI) research and discuss possible solutions.
Collapse
Affiliation(s)
- Veronica Estrada
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf Moorenstr. 5, 40225 Düsseldorf Germany
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf Moorenstr. 5, 40225 Düsseldorf Germany
| |
Collapse
|
40
|
Kolar MK, Kingham PJ, Novikova LN, Wiberg M, Novikov LN. The Therapeutic Effects of Human Adipose-Derived Stem Cells in a Rat Cervical Spinal Cord Injury Model. Stem Cells Dev 2014; 23:1659-74. [DOI: 10.1089/scd.2013.0416] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mallappa K. Kolar
- Section of Anatomy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Section of Hand and Plastic Surgery, Department of Surgical and Perioperative Science, Umeå University, Umeå, Sweden
| | - Paul J. Kingham
- Section of Anatomy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Liudmila N. Novikova
- Section of Anatomy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Section of Anatomy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Section of Hand and Plastic Surgery, Department of Surgical and Perioperative Science, Umeå University, Umeå, Sweden
| | - Lev N. Novikov
- Section of Anatomy, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
41
|
Oral administration of inosine promotes recovery after experimental spinal cord injury in rat. Neurol Sci 2014; 35:1785-91. [DOI: 10.1007/s10072-014-1840-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/15/2014] [Indexed: 12/21/2022]
|
42
|
Shi Q, Gao W, Han X, Zhu X, Sun J, Xie F, Hou X, Yang H, Dai J, Chen L. Collagen scaffolds modified with collagen-binding bFGF promotes the neural regeneration in a rat hemisected spinal cord injury model. SCIENCE CHINA-LIFE SCIENCES 2014; 57:232-40. [PMID: 24445989 DOI: 10.1007/s11427-014-4612-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 10/21/2013] [Indexed: 12/24/2022]
Abstract
Nerve conduit is one of strategies for spine cord injury (SCI) treatment. Recently, studies showed that biomaterials could guide the neurite growth and promote axon regeneration at the injury site. However, the scaffold by itself was difficult to meet the need of SCI functional recovery. The basic fibroblast growth factor (bFGF) administration significantly promotes functional recovery after organ injuries. Here, using a rat model of T9 hemisected SCI, we aimed at assessing the repair capacity of implantation of collagen scaffold (CS) modified by collagen binding bFGF (CBD-bFGF). The results showed that CS combined with CBD-bFGF treatment improved survival rates after the lateral hemisection SCI. The CS/CBD-bFGF group showed more significant improvements in motor than the simply CS-implanted and untreated control group, when evaluated by the 21-point Basso-Beattie-Bresnahan (BBB) score and footprint analysis. Both hematoxylin and eosin (H&E) and immunohistochemical staining of neurofilament (NF) and glial fibrillary acidic protein (GFAP) demonstrated that fibers were guided to grow through the implants. These findings indicated that administration of CS modified with CBD-bFGF could promote spinal cord regeneration and functional recovery.
Collapse
Affiliation(s)
- Qin Shi
- Orthopedic Department, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kraskiewicz H, Breen B, Sargeant T, McMahon S, Pandit A. Assembly of protein-based hollow spheres encapsulating a therapeutic factor. ACS Chem Neurosci 2013; 4:1297-304. [PMID: 23763540 DOI: 10.1021/cn400080h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neurotrophins, as important regulators of neural development, function, and survival, have a therapeutic potential to repair damaged neurons. However, a controlled delivery of therapeutic molecules to injured tissue remains one of the greatest challenges facing the translation of novel drug therapeutics field. This study presents the development of an innovative protein-protein delivery technology of nerve growth factor (NGF) by an electrostatically assembled protein-based (collagen) reservoir system that can be directly injected into the injury site and provide long-term release of the therapeutic. A protein-based biomimetic hollow reservoir system was fabricated using a template method. The capability of neurotrophins to localize in these reservoir systems was confirmed by confocal images of fluorescently labeled collagen and NGF. In addition, high loading efficiency of the reservoir system was proven using ELISA. By comparing release profile from microspheres with varying cross-linking, highly cross-linked collagen spheres were chosen as they have the slowest release rate. Finally, biological activity of released NGF was assessed using rat pheochromocytoma (PC12) cell line and primary rat dorsal root ganglion (DRG) cell bioassay where cell treatment with NGF-loaded reservoirs induced significant neuronal outgrowth, similar to that seen in NGF treated controls. Data presented here highlights the potential of a high capacity reservoir-growth factor technology as a promising therapeutic treatment for neuroregenerative applications and other neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Timothy Sargeant
- Covidien, 60 Middletown Avenue, North Haven, Connecticut 06473, United States
| | | | | |
Collapse
|
44
|
Ando T, Sato S, Kobayashi H, Nawashiro H, Ashida H, Hamblin MR, Obara M. Low-level laser therapy for spinal cord injury in rats: effects of polarization. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:098002. [PMID: 24030687 PMCID: PMC3771552 DOI: 10.1117/1.jbo.18.9.098002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 08/07/2013] [Indexed: 05/30/2023]
Abstract
The effects of laser polarization on the efficacy of near-infrared low-level laser therapy for spinal cord injury (SCI) are presented. Rat spinal cords were injured with a weight-drop device, and the lesion sites were directly irradiated with a linearly polarized 808-nm diode laser positioned either perpendicular or parallel to the spine immediately after the injury and daily for five consecutive days. Functional recovery was assessed daily by an open-field test. Regardless of the polarization direction, functional scores of SCI rats that were treated with the 808-nm laser irradiation were significantly higher than those of SCI alone group (Group 1) from day 5 after injury. The locomotive function of SCI rats irradiated parallel to the spinal column (Group 3) was significantly improved from day 10 after injury, compared to SCI rats treated with the linear polarization perpendicular to the spinal column (Group 2). There were no significant differences in ATP contents in the injured tissue among the three groups. We speculate that the higher efficacy with parallel irradiation is attributable to the deeper light penetration into tissue with anisotropic scattering.
Collapse
Affiliation(s)
- Takahiro Ando
- Keio University, Department of Electronics and Electrical Engineering, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shunichi Sato
- National Defense Medical College Research Institute, Division of Biomedical Information Sciences, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroaki Kobayashi
- National Defense Medical College, Department of Neurosurgery, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroshi Nawashiro
- National Defense Medical College, Department of Neurosurgery, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroshi Ashida
- National Defense Medical College Research Institute, Division of Biomedical Information Sciences, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, 40 Blossom Street, Boston, Massachusetts 02114
- Harvard Medical School, Department of Dermatology, 55 Fruit Street, Boston, Massachusetts 02115
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, 65 Landsdowne Street, Cambridge, Massachusetts 02139
| | - Minoru Obara
- Keio University, Department of Electronics and Electrical Engineering, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
45
|
Kelamangalath L, Smith GM. Neurotrophin treatment to promote regeneration after traumatic CNS injury. ACTA ACUST UNITED AC 2013; 8:486-495. [PMID: 25419214 DOI: 10.1007/s11515-013-1269-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurotrophins are a family of growth factors that have been found to be central for the development and functional maintenance of the nervous system, participating in neurogenesis, neuronal survival, axonal growth, synaptogenesis and activity-dependent forms of synaptic plasticity. Trauma in the adult nervous system can disrupt the functional circuitry of neurons and result in severe functional deficits. The limitation of intrinsic growth capacity of adult nervous system and the presence of an inhospitable environment are the major hurdles for axonal regeneration of lesioned adult neurons. Neurotrophic factors have been shown to be excellent candidates in mediating neuronal repair and establishing functional circuitry via activating several growth signaling mechanisms including neuron-intrinsic regenerative programs. Here, we will review the effects of various neurotrophins in mediating recovery after injury to the adult spinal cord.
Collapse
Affiliation(s)
- Lakshmi Kelamangalath
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106, USA
| | - George M Smith
- Center for Neural Repair and Rehabilitation, Department of Neuroscience, & Shriners Hospitals for Pediatric Research, Temple University, School of Medicine, Philadelphia, PA 19140-4106, USA
| |
Collapse
|
46
|
Toft A, Tome M, Barnett SC, Riddell JS. A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord. Glia 2013; 61:513-28. [DOI: 10.1002/glia.22452] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 11/14/2012] [Indexed: 01/05/2023]
|
47
|
Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 2013; 21:282-90. [PMID: 23295949 DOI: 10.1038/mt.2012.261] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have recently demonstrated the remarkable efficiency of self-complementary (sc) AAV9 vectors for central nervous system (CNS) gene transfer following intravenous delivery in mice and larger animals. Here, we investigated whether gene delivery to motor neurons (MNs) could also be achieved via intramuscular (i.m.) scAAV9 injection and subsequent retrograde transport along the MNs axons. Unexpectedly, we found that a single injection of scAAV9 into the adult mouse gastrocnemius (GA) mediated widespread MN transduction along the whole spinal cord, without limitation to the MNs connected to the injected muscle. Spinal cord astrocytes and peripheral organs were also transduced, indicating vector spread from the injected muscle to both the CNS and the periphery through release into the blood circulation. Moreover, we showed that i.m. injection of scAAV9 vectors expressing "survival of motor neuron" (Smn) in spinal muscular atrophy (SMA) mice mediated high survival motor neuron (SMN) expression levels at both the CNS and the periphery, and increased the median lifespan from 12 days to 163 days. These findings represent to date the longest extent in survival obtained in SMA mice following i.m. viral vector gene delivery, and might generate a renewed interest in the use of i.m. adeno-associated viruses (AAV) delivery for the development of gene therapy strategies for MN diseases.
Collapse
|
48
|
Jain KK. Regenerative Therapy for Central Nervous System Trauma. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Cao HQ, Dong ED. An update on spinal cord injury research. Neurosci Bull 2012; 29:94-102. [PMID: 23124646 DOI: 10.1007/s12264-012-1277-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/26/2012] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) can have a range of debilitating effects and permanently alter the capabilities and quality of life of survivors. The first specialized centers of care for SCI were established in 1944 and since then an increasing amount of research has been carried out in this area. Despite this, the present treatment and care levels for SCI are not comparable to those in other areas of medicine. In the clinic, the aim of SCI treatment is primarily to limit secondary damage by reducing compression in trauma spots and stabilizing the spinal column. Currently, no effective strategy for functional recovery is offered. In this review, we focus on research progress on the molecular mechanisms underlying SCI, and assess the treatment outcomes of SCI in animal models, i.e., neurotrophins and stem cells are discussed as pre-clinical therapies in animal models. We also assess the resources available and national research projects carried out on SCI in China in recent years, as well as making recommendations for the future allocation of funds in this area.
Collapse
Affiliation(s)
- He-Qi Cao
- Division of Neurological Disorders and Mental Health, Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China.
| | | |
Collapse
|
50
|
HSV-mediated gene transfer of C3 transferase inhibits Rho to promote axonal regeneration. Exp Neurol 2012; 237:126-33. [PMID: 22749877 DOI: 10.1016/j.expneurol.2012.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/08/2012] [Accepted: 06/16/2012] [Indexed: 11/20/2022]
Abstract
Although surgical re-implantation of spinal roots may improve recovery of proximal motor function after cervical root avulsion, recovery of sensory function necessary for fine motor coordination of the hand has been difficult to achieve, in large part because of failure of regeneration of axons into the spinal cord. In order to enhance regeneration, we constructed a non-replicating herpes simplex virus (HSV)-vector carrying the gene coding for bacterial C3 transferase (C3t). Subcutaneous inoculation of the vector into the skin of the forepaw 1 week after a dorsal C5-T1 rhizotomy resulted in expression of C3t in dorsal root ganglion (DRG) neurons and inhibition of Rho GTPase activity, resulting in extensive axonal regeneration into the spinal cord that correlated with improved sensory-motor coordination of the forepaw.
Collapse
|