1
|
Weinstein JJ, Moeller SJ, Perlman G, Gil R, Van Snellenberg JX, Wengler K, Meng J, Slifstein M, Abi-Dargham A. Imaging the Vesicular Acetylcholine Transporter in Schizophrenia: A Positron Emission Tomography Study Using [ 18F]-VAT. Biol Psychiatry 2024; 96:352-364. [PMID: 38309322 DOI: 10.1016/j.biopsych.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Despite longstanding interest in the central cholinergic system in schizophrenia (SCZ), cholinergic imaging studies with patients have been limited to receptors. Here, we conducted a proof-of-concept positron emission tomography study using [18F]-VAT, a new radiotracer that targets the vesicular acetylcholine transporter as a proxy measure of acetylcholine transmission capacity, in patients with SCZ and explored relationships of vesicular acetylcholine transporter with clinical symptoms and cognition. METHODS A total of 18 adult patients with SCZ or schizoaffective disorder (the SCZ group) and 14 healthy control participants underwent a positron emission tomography scan with [18F]-VAT. Distribution volume (VT) for [18F]-VAT was derived for each region of interest, and group differences in VT were assessed with 2-sample t tests. Functional significance was explored through correlations between VT and scores on the Positive and Negative Syndrome Scale and a computerized neurocognitive battery (PennCNB). RESULTS No group differences in [18F]-VAT VT were observed. However, within the SCZ group, psychosis symptom severity was positively associated with VT in multiple regions of interest, with the strongest effects in the hippocampus, thalamus, midbrain, cerebellum, and cortex. In addition, in the SCZ group, working memory performance was negatively associated with VT in the substantia innominata and several cortical regions of interest including the dorsolateral prefrontal cortex. CONCLUSIONS In this initial study, the severity of 2 important features of SCZ-psychosis and working memory deficit-was strongly associated with [18F]-VAT VT in several cortical and subcortical regions. These correlations provide preliminary evidence of cholinergic activity involvement in SCZ and, if replicated in larger samples, could lead to a more complete mechanistic understanding of psychosis and cognitive deficits in SCZ and the development of therapeutic targets.
Collapse
Affiliation(s)
- Jodi J Weinstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York.
| | - Scott J Moeller
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Roberto Gil
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jared X Van Snellenberg
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Kenneth Wengler
- Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York; Department of Radiology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Jiayan Meng
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, New York; Department of Psychiatry, Columbia University Vagelos School of Medicine and New York State Psychiatric Institute, New York, New York
| |
Collapse
|
2
|
Ryczko D. The Mesencephalic Locomotor Region: Multiple Cell Types, Multiple Behavioral Roles, and Multiple Implications for Disease. Neuroscientist 2024; 30:347-366. [PMID: 36575956 PMCID: PMC11107129 DOI: 10.1177/10738584221139136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mesencephalic locomotor region (MLR) controls locomotion in vertebrates. In humans with Parkinson disease, locomotor deficits are increasingly associated with decreased activity in the MLR. This brainstem region, commonly considered to include the cuneiform and pedunculopontine nuclei, has been explored as a target for deep brain stimulation to improve locomotor function, but the results are variable, from modest to promising. However, the MLR is a heterogeneous structure, and identification of the best cell type to target is only beginning. Here, I review the studies that uncovered the role of genetically defined MLR cell types, and I highlight the cells whose activation improves locomotor function in animal models of Parkinson disease. The promising cell types to activate comprise some glutamatergic neurons in the cuneiform and caudal pedunculopontine nuclei, as well as some cholinergic neurons of the pedunculopontine nucleus. Activation of MLR GABAergic neurons should be avoided, since they stop locomotion or evoke bouts flanked with numerous stops. MLR is also considered a potential target in spinal cord injury, supranuclear palsy, primary progressive freezing of gait, or stroke. Better targeting of the MLR cell types should be achieved through optimized deep brain stimulation protocols, pharmacotherapy, or the development of optogenetics for human use.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
- Neurosciences Sherbrooke, Sherbrooke, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
3
|
Zhang S, Zhang J, Yang Y, Zang W, Cao J. Activation of Pedunculopontine Tegmental Nucleus Alleviates the Pain Induced by the Lesion of Midbrain Dopaminergic Neurons. Int J Mol Sci 2024; 25:5636. [PMID: 38891832 PMCID: PMC11171649 DOI: 10.3390/ijms25115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The loss of midbrain dopaminergic (DA) neurons is the fundamental pathological feature of Parkinson's disease (PD). PD causes chronic pain in two-thirds of patients. Recent studies showed that the activation of the pedunculopontine tegmental nucleus (PPTg) can effectively relieve inflammatory pain and neuropathic pain. The PPTg is located in the pontomesencephalic tegmentum, a target of deep brain stimulation (DBS) treatment in PD, and is involved in motor control and sensory integration. To test whether the lesion of midbrain DA neurons induced pain hypersensitivity, and whether the chemogenetic activation of the PPTg could modulate the pain, the AAV-hM3Dq receptor was transfected and expressed into the PPTg neurons of 6-hydroxydopamine-lesioned mice. In this study, von Frey, open field, and adhesive tape removal tests were used to assess animals' pain sensitivity, locomotor activity, and sensorimotor function and somatosensory perception, respectively. Here, we found that the lesion of midbrain DA neurons induced a minor deficit in voluntary movement but did not affect sensorimotor function and somatosensory perception in the tape removal test. The results showed that lesion led to pain hypersensitivity, which could be alleviated both by levodopa and by the chemogenetic activation of the PPTg. Activating the PPTg may be a potential therapeutic strategy to relieve pain phenotypes in PD.
Collapse
Affiliation(s)
- Shiqiang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yihao Yang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Weidong Zang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.Z.); (J.Z.); (Y.Y.)
- Neuroscience Research Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Kovács P, Kitka T, Bali ZK, Nagy LV, Bodó A, Kovács-Öller T, Péterfi Z, Hernádi I. Chemogenetic inhibition of the lateral hypothalamus effectively reduces food intake in rats in a translational proof-of-concept study. Sci Rep 2024; 14:11402. [PMID: 38762561 PMCID: PMC11102470 DOI: 10.1038/s41598-024-62014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Despite the therapeutic potential of chemogenetics, the method lacks comprehensive preclinical validation, hindering its progression to human clinical trials. We aimed to validate a robust but simple in vivo efficacy assay in rats which could support chemogenetic drug discovery by providing a quick, simple and reliable animal model. Key methodological parameters such as adeno-associated virus (AAV) serotype, actuator drug, dose, and application routes were investigated by measuring the food-intake-reducing effect of chemogenetic inhibition of the lateral hypothalamus (LH) by hM4D(Gi) designer receptor stimulation. Subcutaneous deschloroclozapine in rats transfected with AAV9 resulted in a substantial reduction of food-intake, comparable to the efficacy of exenatide. We estimated that the effect of deschloroclozapine lasts 1-3 h post-administration. AAV5, oral administration of deschloroclozapine, and clozapine-N-oxide were also effective but with slightly less potency. The strongest effect on food-intake occurred within the first 30 min after re-feeding, suggesting this as the optimal experimental endpoint. This study demonstrates that general chemogenetic silencing of the LH can be utilized as an optimal, fast and reliable in vivo experimental model for conducting preclinical proof-of-concept studies in order to validate the in vivo effectiveness of novel chemogenetic treatments. We also hypothesize based on our results that universal LH silencing with existing and human translatable genetic neuroengineering techniques might be a viable strategy to affect food intake and influence obesity.
Collapse
Affiliation(s)
- Péter Kovács
- VRG Therapeutics, Füvészkert utca 3., Budapest, 1083, Hungary
| | - Tamás Kitka
- VRG Therapeutics, Füvészkert utca 3., Budapest, 1083, Hungary
| | - Zsolt Kristóf Bali
- Grastyán Endre Translational Research Centre, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary.
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary.
| | - Lili Veronika Nagy
- Grastyán Endre Translational Research Centre, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
| | - Angelika Bodó
- Grastyán Endre Translational Research Centre, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary
| | - Tamás Kovács-Öller
- Department of Neurobiology, Faculty of Sciences, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Histology and Light Microscopy Core Facility, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary
| | - Zalán Péterfi
- VRG Therapeutics, Füvészkert utca 3., Budapest, 1083, Hungary
| | - István Hernádi
- Grastyán Endre Translational Research Centre, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Translational Neuroscience Research Group, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, 20 Ifjúság str., Pécs, 7624, Hungary
- Department of Neurobiology, Faculty of Sciences, University of Pécs, 6 Ifjúság str., Pécs, 7624, Hungary
- Institute of Physiology, Medical School, University of Pécs, 12 Szigeti út, Pécs, 7624, Hungary
| |
Collapse
|
5
|
Hu Y, Ma TC, Alberico SL, Ding Y, Jin L, Kang UJ. Substantia Nigra Pars Reticulata Projections to the Pedunculopontine Nucleus Modulate Dyskinesia. Mov Disord 2023; 38:1850-1860. [PMID: 37461292 PMCID: PMC10932617 DOI: 10.1002/mds.29558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yong Hu
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Thong C. Ma
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | | | - Yunmin Ding
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Un Jung Kang
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
6
|
Seo DC, Ju YH, Seo JJ, Oh SJ, Lee CJ, Lee SE, Nam MH. DDC-Promoter-Driven Chemogenetic Activation of SNpc Dopaminergic Neurons Alleviates Parkinsonian Motor Symptoms. Int J Mol Sci 2023; 24:ijms24032491. [PMID: 36768816 PMCID: PMC9916413 DOI: 10.3390/ijms24032491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with typical motor symptoms. Recent studies have suggested that excessive GABA from reactive astrocytes tonically inhibits dopaminergic neurons and reduces the expression of tyrosine hydroxylase (TH), the key dopamine-synthesizing enzyme, in the substantia nigra pars compacta (SNpc). However, the expression of DOPA decarboxylase (DDC), another dopamine-synthesizing enzyme, is relatively spared, raising a possibility that the live but non-functional TH-negative/DDC-positive neurons could be the therapeutic target for rescuing PD motor symptoms. However, due to the absence of a validated DDC-specific promoter, manipulating DDC-positive neuronal activity has not been tested as a therapeutic strategy for PD. Here, we developed an AAV vector expressing mCherry under rat DDC promoter (AAV-rDDC-mCherry) and validated the specificity in the rat SNpc. Modifying this vector, we expressed hM3Dq (Gq-DREADD) under DDC promoter in the SNpc and ex vivo electrophysiologically validated the functionality. In the A53T-mutated alpha-synuclein overexpression model of PD, the chemogenetic activation of DDC-positive neurons in the SNpc significantly alleviated the parkinsonian motor symptoms and rescued the nigrostriatal TH expression. Altogether, our DDC-promoter will allow dopaminergic neuron-specific gene delivery in rodents. Furthermore, we propose that the activation of dormant dopaminergic neurons could be a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Dong-Chan Seo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Ha Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Jin-Ju Seo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Correspondence: (S.E.L.); (M.-H.N.)
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02456, Republic of Korea
- Department of KHU-KIST Convergence Science & Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (S.E.L.); (M.-H.N.)
| |
Collapse
|
7
|
Davin A, Chabardès S, Devergnas A, Benstaali C, Gutekunst CAN, David O, Torres-Martinez N, Piallat B. Excessive daytime sleepiness in a model of Parkinson's disease improved by low-frequency stimulation of the pedunculopontine nucleus. NPJ Parkinsons Dis 2023; 9:9. [PMID: 36697421 PMCID: PMC9876933 DOI: 10.1038/s41531-023-00455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Patients with Parkinson's disease often complain of excessive daytime sleepiness which negatively impacts their quality of life. The pedunculopontine nucleus, proposed as a target for deep brain stimulation to improve freezing of gait in Parkinson's disease, is also known to play a key role in the arousal system. Thus, the putative control of excessive daytime sleepiness by pedunculopontine nucleus area stimulation merits exploration for treating Parkinson's disease patients. To this end, two adult nonhuman primates (macaca fascicularis) received a deep brain stimulation electrode implanted into the pedunculopontine nucleus area along with a polysomnographic equipment. Stimulation at low frequencies and high frequencies was studied, in healthy and then MPTP-treated nonhuman primates. Here, we observed that MPTP-treated nonhuman primates suffered from excessive daytime sleepiness and that low-frequency stimulation of the pedunculopontine nucleus area was effective in reducing daytime sleepiness. Indeed, low-frequency stimulation of the pedunculopontine nucleus area induced a significant increase in sleep onset latency, longer continuous periods of wakefulness and thus, a partially restored daytime wake architecture. These findings may contribute to the development of new therapeutic strategies in patients suffering from excessive daytime sleepiness.
Collapse
Affiliation(s)
- Aurélie Davin
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Stéphan Chabardès
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Univ. Grenoble Alpes, Inserm, Department of Neurosurgery, 38000, Grenoble, France
| | - Annaelle Devergnas
- Yerkes National Primate Research Center, 30307, Atlanta, USA
- Emory University School of Medicine, 30307, Atlanta, GA, USA
| | - Caroline Benstaali
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | | | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Univ. Aix Marseille, Inserm, INS, Institut de Neurosciences des Systèmes, 13000, Marseille, France
| | | | - Brigitte Piallat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
8
|
Alosaimi F, Boonstra JT, Tan S, Temel Y, Jahanshahi A. The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson’s disease. Front Neurosci 2022; 16:998932. [PMID: 36278000 PMCID: PMC9579467 DOI: 10.3389/fnins.2022.998932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is among the most successful paradigms in both translational and reverse translational neuroscience. DBS has developed into a standard treatment for movement disorders such as Parkinson’s disease (PD) in recent decades, however, specific mechanisms behind DBS’s efficacy and side effects remain unrevealed. Several hypotheses have been proposed, including neuronal firing rate and pattern theories that emphasize the impact of DBS on local circuitry but detail distant electrophysiological readouts to a lesser extent. Furthermore, ample preclinical and clinical evidence indicates that DBS influences neurotransmitter dynamics in PD, particularly the effects of subthalamic nucleus (STN) DBS on striatal dopaminergic and glutamatergic systems; pallidum DBS on striatal dopaminergic and GABAergic systems; pedunculopontine nucleus DBS on cholinergic systems; and STN-DBS on locus coeruleus (LC) noradrenergic system. DBS has additionally been associated with mood-related side effects within brainstem serotoninergic systems in response to STN-DBS. Still, addressing the mechanisms of DBS on neurotransmitters’ dynamics is commonly overlooked due to its practical difficulties in monitoring real-time changes in remote areas. Given that electrical stimulation alters neurotransmitter release in local and remote regions, it eventually exhibits changes in specific neuronal functions. Consequently, such changes lead to further modulation, synthesis, and release of neurotransmitters. This narrative review discusses the main neurotransmitter dynamics in PD and their role in mediating DBS effects from preclinical and clinical data.
Collapse
Affiliation(s)
- Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
- *Correspondence: Faisal Alosaimi,
| | - Jackson Tyler Boonstra
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sonny Tan
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Ali Jahanshahi,
| |
Collapse
|
9
|
Characterization of social behavior in young and middle-aged ChAT-IRES-Cre mouse. PLoS One 2022; 17:e0272141. [PMID: 35925937 PMCID: PMC9352053 DOI: 10.1371/journal.pone.0272141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Abstract
The cholinergic system is an important modulator of brain processes. It contributes to the regulation of several cognitive functions and emotional states, hence altering behaviors. Previous works showed that cholinergic (nicotinic) receptors of the prefrontal cortex are needed for adapted social behaviors. However, these data were obtained in mutant mice that also present alterations of several neurotransmitter systems, in addition to the cholinergic system. ChAT-IRES-Cre mice, that express the Cre recombinase specifically in cholinergic neurons, are useful tools to investigate the role of the cholinergic circuits in behavior. However, their own behavioral phenotype has not yet been fully characterized, in particular social behavior. In addition, the consequences of aging on the cholinergic system of ChAT-IRES-Cre mice has never been studied, despite the fact that aging is known to compromise the cholinergic system efficiency. The aim of the current study was thus to characterize the social phenotype of ChAT-IRES-Cre mice both at young (2–3 months) and middle (10–11 months) ages. Our results reveal an alteration of the cholinergic system, evidenced by a decrease of ChAT, CHT and VAChT gene expression in the striatum of the mice, that was accompanied by mild social disturbances and a tendency towards anxiety. Aging decreased social dominance, without being amplified by the cholinergic alterations. Altogether, this study shows that ChAT-IRES-Cre mice are useful models for studying the cholinergic system‘s role in social behavior using appropriate modulating technics (optogenetic or DREADD).
Collapse
|
10
|
Joza S, Camicioli R, Martin WRW, Wieler M, Gee M, Ba F. Pedunculopontine Nucleus Dysconnectivity Correlates With Gait Impairment in Parkinson’s Disease: An Exploratory Study. Front Aging Neurosci 2022; 14:874692. [PMID: 35875799 PMCID: PMC9304714 DOI: 10.3389/fnagi.2022.874692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Gait impairment is a debilitating and progressive feature of Parkinson’s disease (PD). Increasing evidence suggests that gait control is partly mediated by cholinergic signaling from the pedunculopontine nucleus (PPN). Objective We investigated whether PPN structural connectivity correlated with quantitative gait measures in PD. Methods Twenty PD patients and 15 controls underwent diffusion tensor imaging to quantify structural connectivity of the PPN. Whole brain analysis using tract-based spatial statistics and probabilistic tractography were performed using the PPN as a seed region of interest for cortical and subcortical target structures. Gait metrics were recorded in subjects’ medication ON and OFF states, and were used to determine if specific features of gait dysfunction in PD were related to PPN structural connectivity. Results Tract-based spatial statistics revealed reduced structural connectivity involving the corpus callosum and right superior corona radiata, but did not correlate with gait measures. Abnormalities in PPN structural connectivity in PD were lateralized to the right hemisphere, with pathways involving the right caudate nucleus, amygdala, pre-supplementary motor area, and primary somatosensory cortex. Altered connectivity of the right PPN-caudate nucleus was associated with worsened cadence, stride time, and velocity while in the ON state; altered connectivity of the right PPN-amygdala was associated with reduced stride length in the OFF state. Conclusion Our exploratory analysis detects a potential correlation between gait dysfunction in PD and a characteristic pattern of connectivity deficits in the PPN network involving the right caudate nucleus and amygdala, which may be investigated in future larger studies.
Collapse
Affiliation(s)
- Stephen Joza
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Richard Camicioli
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Marguerite Wieler
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Myrlene Gee
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Fang Ba
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Fang Ba,
| |
Collapse
|
11
|
Ray NJ, Lawson RA, Martin SL, Sigurdsson HP, Wilson J, Galna B, Lord S, Alcock L, Duncan GW, Khoo TK, O’Brien JT, Burn DJ, Taylor JP, Rea RC, Bergamino M, Rochester L, Yarnall AJ. Free-water imaging of the cholinergic basal forebrain and pedunculopontine nucleus in Parkinson's disease. Brain 2022; 146:1053-1064. [PMID: 35485491 PMCID: PMC9976974 DOI: 10.1093/brain/awac127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Free-water imaging can predict and monitor dopamine system degeneration in people with Parkinson's disease. It can also enhance the sensitivity of traditional diffusion tensor imaging (DTI) metrics for indexing neurodegeneration. However, these tools are yet to be applied to investigate cholinergic system degeneration in Parkinson's disease, which involves both the pedunculopontine nucleus and cholinergic basal forebrain. Free-water imaging, free-water-corrected DTI and volumetry were used to extract structural metrics from the cholinergic basal forebrain and pedunculopontine nucleus in 99 people with Parkinson's disease and 46 age-matched controls. Cognitive ability was tracked over 4.5 years. Pearson's partial correlations revealed that free-water-corrected DTI metrics in the pedunculopontine nucleus were associated with performance on cognitive tasks that required participants to make rapid choices (behavioural flexibility). Volumetric, free-water content and DTI metrics in the cholinergic basal forebrain were elevated in a sub-group of people with Parkinson's disease with evidence of cognitive impairment, and linear mixed modelling revealed that these metrics were differently associated with current and future changes to cognition. Free water and free-water-corrected DTI can index cholinergic degeneration that could enable stratification of patients in clinical trials of cholinergic interventions for cognitive decline. In addition, degeneration of the pedunculopontine nucleus impairs behavioural flexibility in Parkinson's disease, which may explain this region's role in increased risk of falls.
Collapse
Affiliation(s)
- Nicola J Ray
- Correspondence to: Nicola Jane Ray Brooks Building Manchester Metropolitan University Manchester M15 6GX, UK E-mail:
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah L Martin
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Hilmar P Sigurdsson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Joanna Wilson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Brook Galna
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,Health Futures Institute, Murdoch University, Perth, Australia
| | - Sue Lord
- Auckland University of Technology, Auckland, New Zealand
| | - Lisa Alcock
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gordon W Duncan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK,NHS Lothian, Edinburgh, UK
| | - Tien K Khoo
- School of Medicine & Dentistry, Menzies Health Institute Queensland, Griffith University, Queensland, Australia,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - David J Burn
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - River C Rea
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | | | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK,The Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
12
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
13
|
Rauf MA, Alam MT, Ishtikhar M, Ali N, Alghamdi A, AlAsmari AF. Investigating Chaperone like Activity of Green Silver Nanoparticles: Possible Implications in Drug Development. Molecules 2022; 27:944. [PMID: 35164209 PMCID: PMC8838336 DOI: 10.3390/molecules27030944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
Protein aggregation and amyloidogenesis have been associated with several neurodegenerative disorders like Alzheimer's, Parkinson's etc. Unfortunately, there are still no proper drugs and no effective treatment available. Due to the unique properties of noble metallic nanoparticles, they have been used in diverse fields of biomedicine like drug designing, drug delivery, tumour targeting, bio-sensing, tissue engineering etc. Small-sized silver nanoparticles have been reported to have anti-biotic, anti-cancer and anti-viral activities apart from their cytotoxic effects. The current study was carried out in a carefully designed in-vitro to observe the anti-amyloidogenic and inhibitory effects of biologically synthesized green silver nanoparticles (B-AgNPs) on human serum albumin (HSA) aggregation taken as a model protein. We have used different biophysical assays like thioflavin T (ThT), 8-Anilino-1-naphthalene-sulphonic acid (ANS), Far-UV CD etc. to analyze protein aggregation and aggregation inhibition in vitro. It has been observed that the synthesized fluorescent B-AgNPs showed inhibitory effects on protein aggregation in a concentration-dependent manner reaching a plateau, after which the effect of aggregation inhibition was significantly declined. We also observed meaningful chaperone-like aggregation-inhibition activities of as-synthesized florescent B-AgNPs in astrocytes.
Collapse
Affiliation(s)
- Mohd Ahmar Rauf
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Md Tauqir Alam
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Ishtikhar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.A.)
| | - Adel Alghamdi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.A.)
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.A.)
| |
Collapse
|
14
|
Iarkov A, Mendoza C, Echeverria V. Cholinergic Receptor Modulation as a Target for Preventing Dementia in Parkinson's Disease. Front Neurosci 2021; 15:665820. [PMID: 34616271 PMCID: PMC8488354 DOI: 10.3389/fnins.2021.665820] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) in the midbrain resulting in progressive impairment in cognitive and motor abilities. The physiological and molecular mechanisms triggering dopaminergic neuronal loss are not entirely defined. PD occurrence is associated with various genetic and environmental factors causing inflammation and mitochondrial dysfunction in the brain, leading to oxidative stress, proteinopathy, and reduced viability of dopaminergic neurons. Oxidative stress affects the conformation and function of ions, proteins, and lipids, provoking mitochondrial DNA (mtDNA) mutation and dysfunction. The disruption of protein homeostasis induces the aggregation of alpha-synuclein (α-SYN) and parkin and a deficit in proteasome degradation. Also, oxidative stress affects dopamine release by activating ATP-sensitive potassium channels. The cholinergic system is essential in modulating the striatal cells regulating cognitive and motor functions. Several muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors (nAChRs) are expressed in the striatum. The nAChRs signaling reduces neuroinflammation and facilitates neuronal survival, neurotransmitter release, and synaptic plasticity. Since there is a deficit in the nAChRs in PD, inhibiting nAChRs loss in the striatum may help prevent dopaminergic neurons loss in the striatum and its pathological consequences. The nAChRs can also stimulate other brain cells supporting cognitive and motor functions. This review discusses the cholinergic system as a therapeutic target of cotinine to prevent cognitive symptoms and transition to dementia in PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Cristhian Mendoza
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
15
|
Tan T, Wang W, Liu T, Zhong P, Conrow-Graham M, Tian X, Yan Z. Neural circuits and activity dynamics underlying sex-specific effects of chronic social isolation stress. Cell Rep 2021; 34:108874. [PMID: 33761364 DOI: 10.1016/j.celrep.2021.108874] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Exposure to prolonged stress in critical developmental periods induces heightened vulnerability to psychiatric disorders, which may have sex-specific consequences. Here we investigate the neuronal circuits mediating behavioral changes in mice after chronic adolescent social isolation stress. Escalated aggression is exhibited in stressed males, while social withdrawal is shown in stressed females. In vivo multichannel recordings of free-moving animals indicate that pyramidal neurons in prefrontal cortex (PFC) from stressed males exhibit the significantly decreased spike activity during aggressive attacks, while PFC pyramidal neurons from stressed females show a blunted increase of discharge rates during sociability tests. Chemogenetic and electrophysiological evidence shows that PFC hypofunctioning and BLA principal neuron hyperactivity contribute to the elevated aggression in stressed males, while PFC hypofunctioning and VTA dopamine neuron hypoactivity contribute to the diminished sociability in stressed females. These results establish a framework for understanding the circuit and physiological mechanisms underlying sex-specific divergent effects of stress.
Collapse
Affiliation(s)
- Tao Tan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tiaotiao Liu
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Megan Conrow-Graham
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
16
|
Chambers NE, Coyle M, Sergio J, Lanza K, Saito C, Topping B, Clark SD, Bishop C. Effects of pedunculopontine nucleus cholinergic lesion on gait and dyskinesia in hemiparkinsonian rats. Eur J Neurosci 2021; 53:2835-2847. [PMID: 33426708 DOI: 10.1111/ejn.15106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Pedunculopontine nucleus (PPN) cholinergic neurons are implicated in freezing of gait in Parkinson's disease (PD) and motor stereotypy in normal animals, but the causal role of these neurons on specific gait parameters and treatment-induced dyskinesia remains speculative. Therefore, we examined whether selective cholinergic lesion of the rostral PPN affects PD motor and gait deficits, L-DOPA-induced dyskinesia and motor improvement, and DA-agonist-induced dyskinesia. Sprague-Dawley rats were assigned to one unilaterally lesioned group: Sham lesion, PPN cholinergic lesion with diphtheria urotensin II fusion toxin, medial forebrain bundle dopamine lesion with 6-hydroxydopamine, or dual acetylcholine and dopamine lesion. We used gait analysis and forepaw adjusting steps to examine PD gait and motor deficits. Forepaw adjusting steps were also used to assess motor improvement with L-DOPA treatment. The abnormal involuntary movements scale measured L-DOPA and dopamine D1- and D2-receptor agonist-induced dyskinesia. Lesions, verified via tyrosine hydroxylase and choline acetyltransferase immunohistochemistry reduced an average of 95% of nigral dopamine neurons and 80% of PPN cholinergic neurons, respectively. Rats receiving acetylcholine and dual lesion demonstrated enhanced freezing, and acetylcholine lesioned rats exhibited increased print area and stand index. Dopamine and dual lesion produced similar forepaw adjusting steps task on and off L-DOPA. Relative to DA lesioned rats, dual lesioned rats displayed reduced L-DOPA and DA agonist-induced dyskinesia at specific time points. Our results indicate that PPN cholinergic neurons affect gait parameters related to postural stability. Therefore, therapeutically targeting PPN cholinergic neurons could reduce intractable postural instability in PD without affecting motor benefits or side effects of L-DOPA treatment.
Collapse
Affiliation(s)
- Nicole E Chambers
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Michael Coyle
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Jordan Sergio
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Kathryn Lanza
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Carolyn Saito
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Brent Topping
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christopher Bishop
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
17
|
Lewis FW, Fairooz S, Elson JL, Hubscher-Bruder V, Brandel J, Soundararajan M, Smith D, Dexter DT, Tétard D, Pienaar IS. Novel 1-hydroxypyridin-2-one metal chelators prevent and rescue ubiquitin proteasomal-related neuronal injury in an in vitro model of Parkinson's disease. Arch Toxicol 2020; 94:813-831. [PMID: 32078022 DOI: 10.1007/s00204-020-02672-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Ubiquitin proteasome system (UPS) impairment, excessive cellular oxidative stress, and iron dyshomeostasis are key to substantia nigra dopaminergic neuronal degeneration in Parkinson's disease (PD); however, a link between these features remains unconfirmed. Using the proteasome inhibitor lactacystin we confirm that nigral injury via UPS impairment disrupts iron homeostasis, in turn increasing oxidative stress and promoting protein aggregation. We demonstrate the neuroprotective potential of two novel 1-hydroxy-2(1H)-pyridinone (1,2-HOPO) iron chelators, compounds C6 and C9, against lactacystin-induced cell death. We demonstrate that this cellular preservation relates to the compounds' iron chelating capabilities and subsequent reduced capacity of iron to form reactive oxygen species (ROS), where we also show that the ligands act as antioxidant agents. Our results also demonstrate the ability of C6 and C9 to reduce intracellular lactacystin-induced α-synuclein burden. Stability constant measurements confirmed a high affinity of C6 and C9 for Fe3+ and display a 3:1 HOPO:Fe3+ complex formation at physiological pH. Reducing iron reactivity could prevent the demise of nigral dopaminergic neurons. We provide evidence that the lactacystin model presents with several neuropathological hallmarks of PD related to iron dyshomeostasis and that the novel chelating compounds C6 and C9 can protect against lactacystin-related neurotoxicity.
Collapse
Affiliation(s)
- Frank W Lewis
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Safiya Fairooz
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Véronique Hubscher-Bruder
- Hubert Curien Pluridisciplinary Institute (IPHC), Université de Strasbourg, 67087, Strasbourg, France
| | - Jeremy Brandel
- Hubert Curien Pluridisciplinary Institute (IPHC), Université de Strasbourg, 67087, Strasbourg, France
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - David Smith
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - David T Dexter
- Centre for Neuroinflammation and Neurodegeneration, Faculty of Medicine, Imperial College London, London, W12 ONN, UK
| | - David Tétard
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, UK.
| |
Collapse
|