1
|
Chauhan G, Shaik AA, Sawant SS, Diwan R, Mokashi M, Goyal M, Shukla SK, Kunda NK, Gupta V. Continuously producible aztreonam-loaded inhalable lipid nanoparticles for cystic fibrosis-associated Pseudomonas aeruginosa infections - Development and in-vitro characterization. BIOMATERIALS ADVANCES 2025; 166:214027. [PMID: 39255571 DOI: 10.1016/j.bioadv.2024.214027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder affecting nearly 105,000 patients worldwide and is characterized by poor respiratory function due to accumulation of thick mucus in the lungs, which not just acts as a physical barrier, but also provides a breeding ground for bacterial infections. These infections can be controlled with the help of antibiotics which can be delivered directly into the lungs for amplifying the local anti-bacterial effect. More than 50 % of CF patients are associated with Pseudomonas aeruginosa infection in their lungs which requires antibiotics such as Aztreonam (AZT). In this study, we prepared inhalable AZT-loaded lipid nanoparticles using Hot-melt extrusion (HME) coupled with probe sonication to target Pseudomonas aeruginosa infection in the lungs. The optimized nanoparticles were tested for physicochemical properties, stability profile, in-vitro aerosolization, and antimicrobial activity against Pseudomonas aeruginosa. The optimized nanoparticles with a PEI concentration of 0.1 % demonstrated a uniform particle size of <50 nm, a spherical shape observed under a transmission electron microscope, and >70 % drug entrapment. Incorporating cationic polymer, PEI, resulted in sustained drug release from the lipid nanoparticles. The in-vitro aerosolization studies exhibited a mass median aerodynamic diameter (MMAD) of <4.3 μm, suggesting deposition of the nanoparticles in the respirable airway. The antimicrobial activity against Pseudomonas aeruginosa showed the minimum inhibitory concentration of the formulation is 2-fold lower than plain AZT. Stability profile showed the formulations are stable after exposure to accelerated conditions. In conclusion, hot-melt extrusion in combination with probe sonication can be used as a potential method for the continuous production of AZT-loaded lipid nanoparticles with enhanced anti-bacterial activity.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abdul A Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shruti S Sawant
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Meghana Mokashi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
2
|
Kumar A, Vaiphei KK, Gulbake A. A nanotechnology driven effectual localized lung cancer targeting approaches using tyrosine kinases inhibitors: Recent progress, preclinical assessment, challenges, and future perspectives. Int J Pharm 2024; 666:124745. [PMID: 39321904 DOI: 10.1016/j.ijpharm.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The higher incidence and mortality rate among all populations worldwide explains the unmet solutions in the treatment of lung cancer. The evolution of targeted therapies using tyrosine kinase inhibitors (TKI) has encouraged anticancer therapies. However, on-target and off-target effects and the development of drug resistance limited the anticancer potential of such targeted biologics. The advances in nanotechnology-driven-TKI embedded carriers that offered a new path toward lung cancer treatment. It is the inhalation route of administration known for its specific, precise, and efficient drug delivery to the lungs. The development of numerous TKI-nanocarriers through inhalation is proof of TKI growth. The future scopes involve using potential lung cancer biomarkers to achieve localized active cancer-targeting strategies. The adequate knowledge of in vitro absorption models usually helps establish better in vitro - in vivo correlation/extrapolation (IVIVC/E) to successfully evaluate inhalable drugs and drug products. The advanced in vitro and ex vivo lung tissue/ organ models offered better tumor heterogeneity, etiology, and microenvironment heterogeneity. The involvement of lung cancer organoids (LCOs), human organ chip models, and genetically modified mouse models (GEMMs) has resolved the challenges associated with conventional in vitro and in vivo models. To access potential inhalation-based drugtherapies, biological barriers, drug delivery, device-based challenges, and regulatory challenges must be encountered associated with their development. A proper understanding of material toxicity, size-based particle deposition at active disease sites, mucociliary clearance, phagocytosis, and the presence of enzymes and surfactants are required to achieve successful inhalational drug delivery (IDD). This article summarizes the future of lung cancer therapy using targeted drug-mediated inhalation using TKI.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
3
|
Weissberger D, Stenzel MH, Hunter L. Precious Cargo: The Role of Polymeric Nanoparticles in the Delivery of Covalent Drugs. Molecules 2024; 29:4949. [PMID: 39459317 PMCID: PMC11510600 DOI: 10.3390/molecules29204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Covalent drugs can offer significant advantages over non-covalent drugs in terms of pharmacodynamics (i.e., target-binding properties). However, the development of covalent drugs is sometimes hampered by pharmacokinetic limitations (e.g., low bioavailability, rapid metabolism and toxicity due to off-target binding). Polymeric nanoparticles offer a potential solution to these limitations. Delivering covalent drugs via polymeric nanoparticles provides myriad benefits in terms of drug solubility, permeability, lifetime, selectivity, controlled release and the opportunity for synergistic administration alongside other drugs. In this short review, we examine each of these benefits in turn, illustrated through multiple case studies.
Collapse
Affiliation(s)
| | - Martina H. Stenzel
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
5
|
Nijhawan HP, Prabhakar B, Yadav KS. Central composite design augmented quality-by-design-based systematic formulation of erlotinib hydrochloride-loaded chitosan-poly (lactic-co-glycolic acid) nanoparticles. Ther Deliv 2024; 15:427-447. [PMID: 38722230 DOI: 10.1080/20415990.2024.2342771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/21/2024] [Indexed: 06/19/2024] Open
Abstract
Aim: This study aimed to formulate erlotinib hydrochloride (ERT-HCL)-loaded chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using Quality-by-Design (QbD) to optimize critical quality attributes (CQAs). Materials & methods: Quality target product profile (QTPP) and CQAs were initially established. Based on L8-Taguchi screening and risk assessments, central composite design (CCD) design was used to optimize NPs. Results: ERT-HCL-loaded CS-PLGA NPs had a mean particle diameter, zeta potential and entrapment efficiency of 226.50 ± 1.62 d.nm, 27.66 ± 0.64 mV and 78.93 ± 1.94 %w/w, respectively. The NPs exhibited homogenous spherical morphology and sustained release for 72 h. Conclusion: Using systematic QbD approach, ERT-HCL was encapsulated in CS-PLGA NPs, optimizing CQAs. These findings propel future research for improved NSCLC treatment.
Collapse
Affiliation(s)
- Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
6
|
Gadhave DG, Quadros M, Ugale AR, Goyal M, Ayehunie S, Gupta V. Mucoadhesive chitosan-poly (lactic-co-glycolic acid) nanoparticles for intranasal delivery of quetiapine - Development & characterization in physiologically relevant 3D tissue models. Int J Biol Macromol 2024; 267:131491. [PMID: 38599435 DOI: 10.1016/j.ijbiomac.2024.131491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Quetiapine hemifumarate (QF) delivery to the CNS via conventional formulations is challenging due to poor solubility and lower oral bioavailability (9 %). Similarly, many other second-generation antipsychotics, such as olanzapine, clozapine, and paliperidone, have also shown low oral bioavailability of <50 %. Hence, the present work was intended to formulate QF-loaded biodegradable PLGA-NPs with appropriate surface charge modification through poloxamer-chitosan and investigate its targeting potential on RPMI-2650 cell lines to overcome the limitations of conventional therapies. QF-loaded poloxamer-chitosan-PLGA in-situ gel (QF-PLGA-ISG) was designed using emulsification and solvent evaporation techniques. Developed QF-PLGA-ISG were subjected to evaluation for particle size, PDI, zeta potential, ex-vivo mucoadhesion, entrapment efficiency (%EE), and drug loading, which revealed 162.2 nm, 0.124, +20.5 mV, 52.4 g, 77.5 %, and 9.7 %, respectively. Additionally, QF-PLGA formulation showed >90 % release within 12 h compared to 80 % of QF-suspension, demonstrating that the surfactant with chitosan-poloxamer polymers could sustainably release medicine across the membrane. Ex-vivo hemolysis study proved that developed PLGA nanoparticles did not cause any hemolysis compared to negative control. Further, in-vitro cellular uptake and transepithelial permeation were assessed using the RPMI-2650 nasal epithelial cell line. QF-PLGA-ISG not only improved intracellular uptake but also demonstrated a 1.5-2-fold increase in QF transport across RPMI-2650 epithelial monolayer. Further studies in the EpiNasal™ 3D nasal tissue model confirmed the safety and efficacy of the developed QF-PLGA-ISG formulation with up to a 4-fold increase in transport compared to plain QF after 4 h. Additionally, histological reports demonstrated the safety of optimized formulation. Finally, favorable outcomes of IN QF-PLGA-ISG formulation could provide a novel platform for safe and effective delivery of QF in schizophrenic patients.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mural Quadros
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Akanksha R Ugale
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
7
|
Xie L, Xie D, Du Z, Xue S, Wang K, Yu X, Liu X, Peng Q, Fang C. A novel therapeutic outlook: Classification, applications and challenges of inhalable micron/nanoparticle drug delivery systems in lung cancer (Review). Int J Oncol 2024; 64:38. [PMID: 38391039 PMCID: PMC10901537 DOI: 10.3892/ijo.2024.5626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Lung cancer represents a marked global public health concern. Despite existing treatment modalities, the average 5‑year survival rate for patients with patients with lung cancer is only ~20%. As there are numerous adverse effects of systemic administration routes, there is an urgent need to develop a novel therapeutic strategy tailored specifically for patients with lung cancer. Non‑invasive aerosol inhalation, as a route of drug administration, holds unique advantages in the context of respiratory diseases. Nanoscale materials have extensive applications in the field of biomedical research in recent years. The present study provides a comprehensive review of the classification, applications summarized according to existing clinical treatment modalities for lung cancer and challenges associated with inhalable micron/nanoparticle drug delivery systems (DDSs) in lung cancer. Achieving localized treatment of lung cancer preclinical models through inhalation is deemed feasible. However, further research is required to substantiate the efficacy and long‑term safety of inhalable micron/nanoparticle DDSs in the clinical management of lung cancer.
Collapse
Affiliation(s)
- Lixin Xie
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Daihan Xie
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Zhefei Du
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Shaobo Xue
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Kesheng Wang
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xin Yu
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xiuli Liu
- Department of Medical Oncology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P.R. China
| | - Qiuxia Peng
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| | - Chao Fang
- Department of Medical Ultrasound and Central Laboratory of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
8
|
Ding L, Agrawal P, Singh SK, Chhonker YS, Sun J, Murry DJ. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024; 16:843. [PMID: 38543448 PMCID: PMC10974363 DOI: 10.3390/polym16060843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 11/12/2024] Open
Abstract
Chemotherapy together with surgery and/or radiotherapy are the most common therapeutic methods for treating cancer. However, the off-target effects of chemotherapy are known to produce side effects and dose-limiting toxicities. Novel delivery platforms based on natural and synthetic polymers with enhanced pharmacokinetic and therapeutic potential for the treatment of cancer have grown tremendously over the past 10 years. Polymers can facilitate selective targeting, enhance and prolong circulation, improve delivery, and provide the controlled release of cargos through various mechanisms, including physical adsorption, chemical conjugation, and/or internal loading. Notably, polymers that are biodegradable, biocompatible, and physicochemically stable are considered to be ideal delivery carriers. This biomimetic and bio-inspired system offers a bright future for effective drug delivery with the potential to overcome the obstacles encountered. This review focuses on the barriers that impact the success of chemotherapy drug delivery as well as the recent developments based on natural and synthetic polymers as platforms for improving drug delivery for treating cancer.
Collapse
Affiliation(s)
- Ling Ding
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Prachi Agrawal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
| | - Sandeep K. Singh
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Yashpal S. Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
| | - Jingjing Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (P.A.); (J.S.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.D.); (S.K.S.); (Y.S.C.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
10
|
Li X, Su Z, Wang C, Wu W, Zhang Y, Wang C. Mapping the evolution of inhaled drug delivery research: Trends, collaborations, and emerging frontiers. Drug Discov Today 2024; 29:103864. [PMID: 38141779 DOI: 10.1016/j.drudis.2023.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Inhaled drug delivery is a unique administration route known for its ability to directly target pulmonary or brain regions, facilitating rapid onset and circumventing the hepatic first-pass effect. To characterize current global trends and provide a visual overview of the latest trends in inhaled drug delivery research, bibliometric analysis of data acquired from the Web of Science Core Collection database was performed via VOSviewer and CiteSpace. Inhaled drug delivery can not only be utilized in respiratory diseases but also has potential in other types of diseases for both fundamental and clinical applications. Overall, we provide an overview of present trends, collaborations, and newly discovered frontiers of inhaled drug delivery.
Collapse
Affiliation(s)
- Xinyuan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China
| | - Zhengxing Su
- Sichuan Kelun Pharmaceutical Research Institute Co. Ltd, Chengdu 611138, Sichuan, PR China
| | - Chunyou Wang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| | - Wen Wu
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 404120, PR China.
| | - Yan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China.
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing 401331, PR China.
| |
Collapse
|
11
|
Korucu Aktas P, Baysal I, Yabanoglu-Ciftci S, Lamprecht A, Arica B. Recent progress in drug delivery systems for tyrosine kinase inhibitors in the treatment of lung cancer. Int J Pharm 2024; 650:123703. [PMID: 38092263 DOI: 10.1016/j.ijpharm.2023.123703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
Lung cancer ranks as the second most commonly diagnosed cancer in both men and women worldwide. Despite the availability of diverse diagnostic and treatment strategies, it remains the leading cause of cancer-related deaths globally. The current treatment approaches for lung cancer involve the utilization of first generation (e.g., erlotinib, gefitinib) and second generation (e.g., afatinib) tyrosine kinase inhibitors (TKIs). These TKIs exert their effects by inhibiting a crucial enzyme called tyrosine kinase, which is responsible for cell survival signaling. However, their clinical effectiveness is hindered by limited solubility and oral bioavailability. Nanotechnology has emerged as a significant application in modern cancer therapy. Nanoparticle-based drug delivery systems, including lipid, polymeric, hybrid, inorganic, dendrimer, and micellar nanoparticles, have been designed to enhance the bioavailability, stability, and retention of these drugs within the targeted lung area. Furthermore, these nanoparticle-based delivery systems offer several advantages, such as increased therapeutic efficacy and reduced side effects and toxicity. This review focuses on the recent advancements in drug delivery systems for some of the most important TKIs, shedding light on their potential in improving lung cancer treatment.
Collapse
Affiliation(s)
- Pelinsu Korucu Aktas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara,Turkey
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
12
|
Chaudhary KR, Singh K, Singh C. Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. Curr Drug Deliv 2024; 21:1320-1345. [PMID: 37870055 DOI: 10.2174/0115672018265571231011093546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Research and Development, United Biotech [P] Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Pharmaceutical Sciences HNB Garhwal University, Madhi Chauras, Srinagar, Uttarakhand 246174, India
| |
Collapse
|
13
|
Andrade F, German-Cortés J, Montero S, Carcavilla P, Baranda-Martínez-Abascal D, Moltó-Abad M, Seras-Franzoso J, Díaz-Riascos ZV, Rafael D, Abasolo I. The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers. Pharmaceutics 2023; 15:1686. [PMID: 37376135 DOI: 10.3390/pharmaceutics15061686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Kirsten rat sarcoma (KRAS) is a small GTPase which acts as a molecular switch to regulate several cell biological processes including cell survival, proliferation, and differentiation. Alterations in KRAS have been found in 25% of all human cancers, with pancreatic cancer (90%), colorectal cancer (45%), and lung cancer (35%) being the types of cancer with the highest mutation rates. KRAS oncogenic mutations are not only responsible for malignant cell transformation and tumor development but also related to poor prognosis, low survival rate, and resistance to chemotherapy. Although different strategies have been developed to specifically target this oncoprotein over the last few decades, almost all of them have failed, relying on the current therapeutic solutions to target proteins involved in the KRAS pathway using chemical or gene therapy. Nanomedicine can certainly bring a solution for the lack of specificity and effectiveness of anti-KRAS therapy. Therefore, nanoparticles of different natures are being developed to improve the therapeutic index of drugs, genetic material, and/or biomolecules and to allow their delivery specifically into the cells of interest. The present work aims to summarize the most recent advances related to the use of nanotechnology for the development of new therapeutic strategies against KRAS-mutated cancers.
Collapse
Affiliation(s)
- Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Júlia German-Cortés
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Sara Montero
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Pilar Carcavilla
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Diego Baranda-Martínez-Abascal
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Joaquín Seras-Franzoso
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Zamira Vanessa Díaz-Riascos
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Clinical Biochemistry Service, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
14
|
Gaur M, Maurya S, Akhtar MS, Yadav AB. Synthesis and Evaluation of BSA-Loaded PLGA-Chitosan Composite Nanoparticles for the Protein-Based Drug Delivery System. ACS OMEGA 2023; 8:18751-18759. [PMID: 37273604 PMCID: PMC10233659 DOI: 10.1021/acsomega.3c00738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to synthesize composite nanoparticles (NPs) based on poly(d,l-lactic-co-glycolic acid) (PLGA) and chitosan (CS) and evaluate their suitability for the delivery of protein-based therapeutic molecules. Composite NPs possess a unique property which is not exhibited by any other polymer. Unlike other polymers, only the composite NPs lead to improved transfection efficiency and sustained release of protein. The composite NP were prepared by grafting CS on the surface of PLGA NPs through EDC-NHS coupling reaction. The size of bovine serum albumin (BSA)-loaded PLGA NPs and BSA-loaded PLGA-CS composite NPs was 288 ± 3 and 363 ± 4 nm, respectively. The zeta potential of PLGA NPs is -18 ± 0.23, and that of composite particles is 19 ± 0.40, thus confirming the successful addition of CS on the surface of PLGA NPs. Composite NPs were characterized using dynamic light scattering, scanning/transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, release profile, and gel electrophoresis. The encapsulation efficiency of PLGA NPs was 88%. These composite NPs were easily uptaken by the A549 cell line with no or minimal cytotoxicity. The present study emphasizes that the composite NPs are suitable for delivery of BSA into the cells with no cytotoxicity or very little cytotoxicity, while maintaining the integrity of the encapsulated BSA.
Collapse
Affiliation(s)
- Manish Gaur
- Centre
of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Sarita Maurya
- Centre
of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Mohd. Sohail Akhtar
- Molecular
and Structural Biology Division, CSIR-Central
Drug Research Institute, Lucknow 226031, India
| | - Awadh Bihari Yadav
- Centre
of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
15
|
Chauhan G, Wang X, Yousry C, Gupta V. Scalable Production and In Vitro Efficacy of Inhaled Erlotinib Nanoemulsion for Enhanced Efficacy in Non-Small Cell Lung Cancer (NSCLC). Pharmaceutics 2023; 15:pharmaceutics15030996. [PMID: 36986858 PMCID: PMC10054254 DOI: 10.3390/pharmaceutics15030996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a global concern as one of the leading causes of cancer deaths. The treatment options for NSCLC are limited to systemic chemotherapy, administered either orally or intravenously, with no local chemotherapies to target NSCLC. In this study, we have prepared nanoemulsions of tyrosine kinase inhibitor (TKI), erlotinib, using the single step, continuous manufacturing, and easily scalable hot melt extrusion (HME) technique without additional size reduction step. The formulated nanoemulsions were optimized and evaluated for their physiochemical properties, in vitro aerosol deposition behavior, and therapeutic activity against NSCLC cell lines both in vitro and ex vivo. The optimized nanoemulsion showed suitable aerosolization characteristics for deep lung deposition. The in vitro anti-cancer activity was tested against the NSCLC A549 cell line which exhibited 2.8-fold lower IC50 for erlotinib-loaded nanoemulsion, as compared to erlotinib-free solution. Furthermore, ex vivo studies using a 3D spheroid model also revealed higher efficacy of erlotinib-loaded nanoemulsion against NSCLC. Hence, inhalable nanoemulsion can be considered as a potential therapeutic approach for the local lung delivery of erlotinib to NSCLC.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Carol Yousry
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
16
|
Parvathaneni V, Shukla SK, Gupta V. Development and Characterization of Folic Acid-Conjugated Amodiaquine-Loaded Nanoparticles-Efficacy in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15031001. [PMID: 36986861 PMCID: PMC10053199 DOI: 10.3390/pharmaceutics15031001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The objective of this study was to construct amodiaquine-loaded, folic acid-conjugated polymeric nanoparticles (FA-AQ NPs) to treat cancer that could be scaled to commercial production. In this study, folic acid (FA) was conjugated with a PLGA polymer followed by the formulation of drug-loaded NPs. The results of the conjugation efficiency confirmed the conjugation of FA with PLGA. The developed folic acid-conjugated nanoparticles demonstrated uniform particle size distributions and had visible spherical shapes under transmission electron microscopy. The cellular uptake results suggested that FA modification could enhance the cellular internalization of nanoparticulate systems in non-small cell lung cancer, cervical, and breast cancer cell types. Furthermore, cytotoxicity studies showed the superior efficacy of FA-AQ NPs in different cancer cells such as MDAMB-231 and HeLA. FA-AQ NPs had better anti-tumor abilities demonstrated via 3D spheroid cell culture studies. Therefore, FA-AQ NPs could be a promising drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
17
|
Hu Z, Wang G, Zhang R, Yang Y, Wang J, Hu J, Reheman A. Sustained-release behavior and the antitumor effect of charge-convertible poly(amino acid)s drug-loaded nanoparticles. Drug Deliv Transl Res 2023:10.1007/s13346-023-01323-w. [PMID: 36913103 DOI: 10.1007/s13346-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Enhancing tissue permeability and achieving drug aggregation is the key to targeted tumor therapy. A series triblock copolymers of poly(ethylene glycol)-poly(L-lysine)-poly(L-glutamine) were synthesized by ring-opening polymerization, and charge-convertible nano-delivery system was constructed by loading doxorubicin (DOX) with 2-(hexaethylimide) ethanol on side chain. In normal environment (pH = 7.4), the zeta potential of the drug-loaded nanoparticle solution is negative, which is conducive to avoiding the identification and clearance of nanoparticles by the reticulo-endothelial system, while potential-reversal can be achieved in the tumor microenvironment, which effectively promotes cellular uptake. Nanoparticles could effectively reduce the distribution of DOX in normal tissues and achieve targeted aggregation at tumor sites, which can effectively improve the antitumor effect, while would not causing toxicity and damage to normal body.
Collapse
Affiliation(s)
- Zhuang Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Gongshu Wang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Rui Zhang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Yingyu Yang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| | - Jiwei Wang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Aikebaier Reheman
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, Fujian, 352100, People's Republic of China
| |
Collapse
|
18
|
Wang X, Chauhan G, Tacderas ARL, Muth A, Gupta V. Surface-Modified Inhaled Microparticle-Encapsulated Celastrol for Enhanced Efficacy in Malignant Pleural Mesothelioma. Int J Mol Sci 2023; 24:5204. [PMID: 36982279 PMCID: PMC10049545 DOI: 10.3390/ijms24065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer affecting the pleural lining of the lungs. Celastrol (Cela), a pentacyclic triterpenoid, has demonstrated promising therapeutic potential as an antioxidant, anti-inflammatory, neuroprotective agent, and anti-cancer agent. In this study, we developed inhaled surface-modified Cela-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles (Cela MPs) for the treatment of MPM using a double emulsion solvent evaporation method. The optimized Cela MPs exhibited high entrapment efficiency (72.8 ± 6.1%) and possessed a wrinkled surface with a mean geometric diameter of ~2 µm and an aerodynamic diameter of 4.5 ± 0.1 µm, suggesting them to be suitable for pulmonary delivery. A subsequent release study showed an initial burst release up to 59.9 ± 2.9%, followed by sustained release. The therapeutic efficacy of Cela MPs was evaluated against four mesothelioma cell lines, where Cela MP exhibited significant reduction in IC50 values, and blank MPs produced no toxicity to normal cells. Additionally, a 3D-spheroid study was performed where a single dose of Cela MP at 1.0 µM significantly inhibited spheroid growth. Cela MP was also able to retain the antioxidant activity of Cela only while mechanistic studies revealed triggered autophagy and an induction of apoptosis. Therefore, these studies highlight the anti-mesothelioma activity of Cela and demonstrate that Cela MPs are a promising inhalable medicine for MPM treatment.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Alison R. L. Tacderas
- Department of Biological Sciences, College of Liberal Arts and Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
19
|
Shu L, Wang W, Ng CI, Zhang X, Huang Y, Wu C, Pan X, Huang Z. A Pilot Study Exploiting the Industrialization Potential of Solid Lipid Nanoparticle-Based Metered-Dose Inhalers. Pharmaceutics 2023; 15:pharmaceutics15030866. [PMID: 36986727 PMCID: PMC10052976 DOI: 10.3390/pharmaceutics15030866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Delivery of inhalable nanoparticles through metered-dose inhalers (MDI) is a promising approach to treat lung disease such as asthma and chronic obstructive pulmonary disease. Nanocoating of the inhalable nanoparticles helps in stability and cellular uptake enhancement but complicates the production process. Thus, it is meaningful to accelerate the translation process of MDI encapsulating inhalable nanoparticles with nanocoating structure. METHODS In this study, solid lipid nanoparticles (SLN) are selected as a model inhalable nanoparticle system. An established reverse microemulsion strategy was utilized to explore the industrialization potential of SLN-based MDI. Three categories of nanocoating with the functions of stabilization (by Poloxamer 188, encoded as SLN(0)), cellular uptake enhancement (by cetyltrimethylammonium bromide, encoded as SLN(+)), and targetability (by hyaluronic acid, encoded as SLN(-)) were constructed upon SLN, whose particle size distribution and zeta-potential were characterized. Subsequently, SLN were loaded into MDI, and evaluated for the processing reliability, physicochemical nature, formulation stability, and biocompatibility. RESULTS The results elucidated that three types of SLN-based MDI were successfully fabricated with good reproducibility and stability. Regarding safety, SLN(0) and SLN(-) showed negligible cytotoxicity on cellular level. CONCLUSIONS This work serves as a pilot study for the scale-up of SLN-based MDI, and could be useful for the future development of inhalable nanoparticles.
Collapse
Affiliation(s)
- Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chon-Iong Ng
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
20
|
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023; 11:biomedicines11030705. [PMID: 36979684 PMCID: PMC10045176 DOI: 10.3390/biomedicines11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lung cancer remains a major public health problem both in terms of incidence and specific mortality despite recent developments in terms of prevention, such as smoking reduction policies and clinical management advances. Better lung cancer prognosis could be achieved by early and accurate diagnosis and improved therapeutic interventions. Nanotechnology is a dynamic and fast-developing field; various medical applications have been developed and deployed, and more exist as proofs of concepts or experimental models. We aim to summarize current knowledge relevant to the use of nanotechnology in lung cancer management. Starting from the chemical structure-based classification of nanoparticles, we identify and review various practical implementations roughly organized as diagnostic or therapeutic in scope, ranging from innovative contrast agents to targeted drug carriers. Available data are presented starting with standards of practice and moving to highly experimental methods and proofs of concept; particularities, advantages, limits and future directions are explored, focusing on the potential impact on lung cancer clinical prognosis.
Collapse
Affiliation(s)
- Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Andrei Cernomaz
- III-rd Medical Department, Discipline of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Bogdan Veliceasa
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Vasile Marinca
- III-rd Medical Department, Discipline of Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
21
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
23
|
Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS OPEN 2022. [DOI: 10.1186/s41120-022-00060-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AbstractResearch on cancer treatment is always of great importance because of the extensive and difficult treatment options and side effects of chemotherapeutic agents. Due to this, novel techniques for cancer treatment are the need of the day. Nowadays, nanotechnology is of great interest for its applications as diagnostic tools, theragnostic, contrasting agents, and vehicles for delivering drugs. Nanoparticles (NPs) are made up of biocompatible and biodegradable polymers that improve the pharmacokinetic and pharmacodynamic properties of drugs, reduce side effects, improve stability, prolong the release of drug, and reduce the dosing frequency. Poly (lactic-co-glycolic acid) (PLGA) is FDA-approved synthetic polymer which can be used to formulate NPs that can be targeted to a specific site for the safe and effective delivery of drugs. PLGA-based NPs can be used for a variety of cancer therapies including tumor-targeted drug delivery, gene therapy, hyperthermia, and photodynamic therapy. This article discusses the method of preparation, characterization, encapsulation of chemotherapeutic drugs, effect of physicochemical properties of PLGA- based NPs, and how we can exploit these aspects through various methods of preparation for drug loading, biodistribution, target specificity, and their use in cancer treatment. Along with these targeting strategies, gene therapy, cancer immunotherapy, and various applications have also been discussed. This article also aims to discuss the incorporation of diagnostic tools and therapeutic moiety in one versatile formulation of PLGA-NPs and the difficulties faced in translating this promising tool to clinical use.
Collapse
|
24
|
Xu W, Ye C, Qing X, Liu S, Lv X, Wang W, Dong X, Zhang Y. Multi-target tyrosine kinase inhibitor nanoparticle delivery systems for cancer therapy. Mater Today Bio 2022; 16:100358. [PMID: 35880099 PMCID: PMC9307458 DOI: 10.1016/j.mtbio.2022.100358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Multi-target Tyrosine Kinase Inhibitors (MTKIs) have drawn substantial attention in tumor therapy. MTKIs could inhibit tumor cell proliferation and induce apoptosis by blocking the activity of tyrosine kinase. However, the toxicity and drug resistance of MTKIs severely restrict their further clinical application. The nano pharmaceutical technology based on MTKIs has attracted ever-increasing attention in recent years. Researchers deliver MTKIs through various types of nanocarriers to overcome drug resistance and improve considerably therapeutic efficiency. This review intends to summarize comprehensive applications of MTKIs nanoparticles in malignant tumor treatment. Firstly, the mechanism and toxicity were introduced. Secondly, various nanocarriers for MTKIs delivery were outlined. Thirdly, the combination treatment schemes and drug resistance reversal strategies were emphasized to improve the outcomes of cancer therapy. Finally, conclusions and perspectives were summarized to guide future research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
25
|
Rethi L, Mutalik C, Rethi L, Chiang WH, Lee HL, Pan WY, Yang TS, Chiou JF, Chen YJ, Chuang EY, Lu LS. Molecularly Targeted Photothermal Ablation of Epidermal Growth Factor Receptor-Expressing Cancer Cells with a Polypyrrole-Iron Oxide-Afatinib Nanocomposite. Cancers (Basel) 2022; 14:cancers14205043. [PMID: 36291827 PMCID: PMC9599920 DOI: 10.3390/cancers14205043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary In this manuscript, we describe the design and synthesis of a nanocomposite containing afatinib, polypyrrole, and iron oxide (PIA-NC) to molecularly target epidermal growth factor receptor (EGFR)-overexpressing cancer cells for photothermal conversion. In addition to physical and chemical characterization, we also showed that PIA-NC induces selective reactive oxygen species surge and apoptosis in response to sublethal near-infrared light only in EGFR-overexpressing cancer cells, not in EGFR-negative fibroblasts. The work demonstrates the feasibility of photothermal therapy with cellular precision. Abstract Near-infrared–photothermal therapy (NIR-PTT) is a potential modality for cancer treatment. Directing photothermal effects specifically to cancer cells may enhance the therapeutic index for the best treatment outcome. While epithelial growth factor receptor (EGFR) is commonly overexpressed/genetically altered in human malignancy, it remains unknown whether targeting EGFR with tyrosine kinase inhibitor (TKI)-conjugated nanoparticles may direct NIR-PTT to cancers with cellular precision. In the present study, we tested this possibility through the fabrication of a polypyrrole–iron oxide–afatinib nanocomposite (PIA-NC). In the PIA-NC, a biocompatible and photothermally conductive polymer (polypyrrole) was conjugated to a TKI (afatinib) that binds to overexpressed wild-type EGFR without overt cytotoxicity. A Fenton catalyst (iron oxide) was further encapsulated in the NC to drive the intracellular ROS surge upon heat activation. Diverse physical and chemical characterization experiments were conducted. Particle internalization, cytotoxicity, ROS production, and apoptosis in EGFR-positive and -negative cell lines were investigated in the presence and absence of NIR. We found that the PIA-NCs were stable with a size of 243 nm and a zeta potential of +35 mV. These PIA-NCs were readily internalized close to the cell membrane by all types of cells used in the study. The Fourier transform infrared spectra showed 3295 cm−1 peaks; substantial O–H stretching was seen, with significant C=C stretching at 1637 cm−1; and a modest appearance of C–O–H bending at 1444 cm−1 confirmed the chemical conjugation of afatinib but not iron oxide to the NC. At a NIR-PTT energy level that has a minimal cytotoxic effect, PIA-NC significantly sensitizes EGFR-overexpressing A549 lung cancer cells to NIR-PTT-induced cytotoxicity at a rate of 70%, but in EGFR-negative 3T3 fibroblasts the rate was 30%. Within 1 min of NIR-PTT, a surge of intracellular ROS was found in PIA-NC-treated A549 cells. This was followed by early induction of cellular apoptosis for 54 ± 0.081% of A549 cells. The number of viable cells was less than a quarter of a percent. Viability levels of A549 cells that had been treated with NIR or PIA were only 50 ± 0.216% and 80 ± 0.216%, respectively. Only 10 ± 0.816% of NIH3T3 cells had undergone necrosis, meaning that 90 ± 0.124% were alive. Viability levels were 65 ± 0.081% and 81 ± 0.2%, respectively, when only NIR and PIA were used. PIA binding was effective against A549 cells but not against NIH3T3 cells. The outcome revealed that higher levels of NC + NIR exposure caused cancer cells to produce more ROS. In summary, our findings proved that a molecularly targeted NC provides an orchestrated platform for cancer cell-specific delivery of NIR-PTT. The geometric proximity design indicates a novel approach to minimizing the off-target biological effects of NIR-PTT. The potential of PIA-NC to be further developed into real-world application warrants further investigation.
Collapse
Affiliation(s)
- Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekha Rethi
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Yu Pan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tze-Sen Yang
- Graduate Institute of Biomedical Opto Mechatronics, Taipei Medical University, Taipei 11031, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yin-Ju Chen
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, 111, Section 3, Xinglong Road, Wenshan District, Taipei 11696, Taiwan
- Correspondence: (E.-Y.C.); (L.-S.L.)
| | - Long-Sheng Lu
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (E.-Y.C.); (L.-S.L.)
| |
Collapse
|
26
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
27
|
Maarof NNN, Abdulmalek E, Fakurazi S, Rahman MBA. Biodegradable Carbonate Apatite Nanoparticle as a Delivery System to Promote Afatinib Delivery for Non-Small Cell Lung Cancer Treatment. Pharmaceutics 2022; 14:1230. [PMID: 35745802 PMCID: PMC9228174 DOI: 10.3390/pharmaceutics14061230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Nanomedicine-based drug-delivery systems have significant interest in cancer treatment, such as improving the stabilities and biocompatibilities, precise targeting, and reducing toxicities for non-cancerous cells. Herein, this study presents the synthesis and characterisation of carbonate apatite nanoparticles (nCA) and encapsulated afatinib (AFA) as promising drug delivery candidates for lung cancer treatment. nCA/AFA was synthesised and physicochemically characterised, then the encapsulation capacity, drug loading, and cumulative drug release profile were evaluated. Powder X-ray diffraction (PXRD) confirmed that the synthesised nCA is apatite. Fourier-transform infrared spectroscopy (FTIR) results confirmed the drug loading into the nanoparticles. High-resolution transmission electron microscopy (HR-TEM) determined the morphology of nCA and nCA/AFA and the diameters of 47.36 ± 3.16 and 42.97 ± 2.78 nm, respectively, without an unaltered nCA phase. Encapsulation efficiency (%) and drug loading (%) were 55.08% ± 1.68% and 8.19% ± 0.52%. Brunauer-Emmett-Teller (BET) and dynamic light-scattering (DLS) results revealed that the synthesised nCA is mesoporous, with a surface area of 55.53 m2/g, and is negatively charged. Atomic force microscopy (AFM) showed increasing roughness of nCA/AFA compared to nCA. The drug release from the nano-formulation nCA/AFA demonstrated slow and sustained release compared to the pure drug. Accordingly, nCA/AFA represents a promising drug delivery system for NSCLC treatment.
Collapse
Affiliation(s)
- Nian N. N. Maarof
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.N.M.); (E.A.)
- Department of Chemistry, College of Education, University of Sulaimani, Sulaimani 46001, Iraq
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.N.M.); (E.A.)
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia;
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.N.M.); (E.A.)
- UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
28
|
Ejigah V, Mandala B, Akala EO. Nanotechnology in the development of small and large molecule tyrosine kinase inhibitors and immunotherapy for the treatment of HER2-positive breast cancer. JOURNAL OF CANCER & METASTASIS RESEARCH 2022; 4:6-22. [PMID: 38966076 PMCID: PMC11223443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The HER2 receptor tyrosine kinase is a member of the epidermal growth factor receptor family which includes EGFR, HER3 and HER4. They are known to play critical roles in both normal development and cancer. A subset of breast cancers is associated with the HER2 gene, which is amplified and/or overexpressed in 20-25% of invasive breast cancers and is correlated with tumor resistance to chemotherapy, Metastatic Breast Cancer (MBC) and poor patient survival. The advent of receptor tyrosine kinase inhibitors has improved the prognosis of HER2-postive breast cancers; however, HER2+MBC invariably progresses (acquired resistance or de novo resistance). The monoclonal antibody-based drugs (large molecule TKIs) target the extracellular binding domain of HER2; while the small molecule TKIs act intracellularly to inhibit proliferation and survival signals. We reviewed the modes of action of the TKIs with a view to showing which of the TKIs could be combined in nanoparticles to benefit from the power of nanotechnology (reduced toxicity, improved solubility of hydrophobic drugs, long circulation half-lives, circumventing efflux pumps and preventing capture by the reticuloendothelial system (mononuclear phagocyte system). Nanotherapeutics also mediate the synchronization of the pharmacokinetics and biodistribution of multiple drugs incorporated in the nanoparticles. Novel TKIs that are currently under investigation with or without nanoparticle delivery are mentioned, and nano-based strategies to improve their delivery are suggested. Immunotherapies currently in clinical practice, clinical trials or at the preclinical stage are discussed. However, immunotherapy only works well in relatively small subsets of patients. Combining nanomedicine with immunotherapy can boost therapeutic outcomes, by turning "cold" non-immunoresponsive tumors and metastases into "hot" immunoresponsive lesions.
Collapse
Affiliation(s)
- Victor Ejigah
- Department of Pharmaceutical Sciences, College of Pharmacy Howard University Washington DC, Center for Drug Research and Development (CDRD), USA
| | - Bharathi Mandala
- Department of Pharmaceutical Sciences, College of Pharmacy Howard University Washington DC, Center for Drug Research and Development (CDRD), USA
| | - Emmanuel O Akala
- Department of Pharmaceutical Sciences, College of Pharmacy Howard University Washington DC, Center for Drug Research and Development (CDRD), USA
| |
Collapse
|
29
|
Study on the Mechanism of Action of Paclitaxel-Loaded Polylactic-co-glycolic Acid Nanoparticles in Non-Small-Cell Lung Carcinoma Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8524951. [PMID: 35432585 PMCID: PMC9007685 DOI: 10.1155/2022/8524951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
Objective. To study effective carriers that can enhance the antitumor effect of paclitaxel (PTX). Methods. PTX-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) (PTX-PLGA NPs), constructed using the emulsification solvent evaporation method, were characterized by scanning electron microscopy and dynamic light scattering. Non-small-cell lung carcinoma (NSCLC) cells were divided into the dimethyl sulfoxide (DMSO) group, PLGA NPs group, PTX group, and PTX-PLGA NPs group. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell apoptosis was determined by flow cytometry, and cell migration and invasion were assessed using Transwell assay. Results. PTX-PLGA NPs were smooth in the surface and spherical in shape, with a particle size of
nm. Both PTX and PTX-PLGA NPs could effectively inhibit the activity of A549 and H1650 cells. At 12 and 24 h, PTX-PLGA NPs presented weaker inhibition on the activity of NSCLC cells than PTX, but at 48 and 72 h, PTX-PLGA NPs presented stronger inhibition. Compared with PTX, PTX-PLGA NPs were more effective in enhancing apoptosis and inhibiting migration and invasion of NSCLC cells. Conclusion. With good sustained release and the ability to promote cellular uptake, PTX-PLGA NPs can strongly inhibit the malignant activities of NSCLC cells, which can be used as a promising drug carrier.
Collapse
|
30
|
Ercin E, Kecel-Gunduz S, Gok B, Aydin T, Budama-Kilinc Y, Kartal M. Laurus nobilis L. Essential Oil-Loaded PLGA as a Nanoformulation Candidate for Cancer Treatment. Molecules 2022; 27:1899. [PMID: 35335262 PMCID: PMC8951774 DOI: 10.3390/molecules27061899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to obtain essential oil (LNEO) from the Laurus nobilis L. plant, and to prepare LNEO-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) as an approach in cancer treatment. The components of the obtained LNEO were analyzed using GC-MS. The LNEO-NPs were synthesized by the single-emulsion method. The LNEO-NPs were characterized using UV-Vis spectrometry, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and a DNA binding assay, which was performed via the UV-Vis titration method. According to the results, the LNEO-NPs had a 211.4 ± 4.031 nm average particle size, 0.068 ± 0.016 PdI, and -7.87 ± 1.15 mV zeta potential. The encapsulation efficiency and loading capacity were calculated as 59.25% and 25.65%, respectively, and the in vitro drug release study showed an LNEO release of 93.97 ± 3.78% over the 72 h period. Moreover, the LNEO was intercalatively bound to CT-DNA. In addition, the mechanism of action of LNEO on a dual PI3K/mTOR inhibitor was predicted, and its antiproliferative activity and mechanism were determined using molecular docking analysis. It was concluded that LNEO-loaded PLGA NPs may be used for cancer treatment as a novel phytotherapeutic agent-based controlled-release system.
Collapse
Affiliation(s)
- Esin Ercin
- Department of Pharmacognosy and Natural Product Chemistry, Institute of Health Sciences, Bezmialem Vakıf University, Istanbul 34093, Turkey; (E.E.); (T.A.)
| | - Serda Kecel-Gunduz
- Department of Physics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey;
| | - Bahar Gok
- Department of Bioengineering, Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Tugba Aydin
- Department of Pharmacognosy and Natural Product Chemistry, Institute of Health Sciences, Bezmialem Vakıf University, Istanbul 34093, Turkey; (E.E.); (T.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Istinye University, Istanbul 34010, Turkey
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey;
| |
Collapse
|
31
|
Zhou X, Jin T, Wang L, Zhao E, Xiao X. Clinical practice of epidermal growth factor receptor-tyrosine kinase inhibitor targeted drugs combined with gadolinium oxide nanoparticles in the treatment of non-small cell lung cancer. Bioengineered 2022; 13:128-139. [PMID: 34818973 PMCID: PMC8805885 DOI: 10.1080/21655979.2021.2009969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022] Open
Abstract
It was to explore the clinical efficacy and safety of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeted drugs combined with hyaluronic acid-gadolinium sesquioxide-nanoparticles (HA-Gd2O3-NPs) in non-small cell lung cancer (NSCLC). In this study, 70 patients with stage IV EGFR mutant NSCLC diagnosed in the First Affiliated Hospital of Jinzhou Medical University were selected. They were randomly divided into the combined group (35 cases) and the control group (35 cases). HA-Gd2O3-NPs were prepared by hydrothermal polymerization, and combined with EGFR-TKI in the clinical treatment of NSCLC. The results showed that HA-Gd2O3-NPs were spherical with a uniform particle size of about 124 nm. The NSCLC survival rate of the combined group was 37.2 ± 5.3% under 6 Gy X-ray irradiation, and that of the control group was 98.4 ± 12.6% under 6 Gy X-ray irradiation. The total effective rate of the control group (20%) was significantly lower than that of the study group (42.86%) (P < 0.05). The one-year survival rate of the combined group (94%) was significantly higher than that of the control group (75%) (P < 0.05). The median progression-free survival (PFS) in the control group was 8 months, and that in the combined group was 12 months, with statistical difference (P < 0.05). EGFR-TKI targeted drugs combined with HA-Gd2O3-NPs can significantly improve the clinical efficacy of stage IV EGFR mutant NSCLC patients and benefit their survival.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ting Jin
- Department of Rehabilitation, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Likun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Erlin Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xuyang Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
32
|
Shukla SK, Sarode A, Kanabar DD, Muth A, Kunda NK, Mitragotri S, Gupta V. Bioinspired particle engineering for non-invasive inhaled drug delivery to the lungs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112324. [PMID: 34474875 DOI: 10.1016/j.msec.2021.112324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/02/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Pulmonary drug delivery is governed by several biophysical parameters of delivery carriers, such as particle size, shape, density, charge, and surface modifications. Although much attention has been given to other parameters, particle shape effects have rarely been explored. In this work, we assess the influence of particle shape of inhaled delivery carriers on their aerodynamic properties and macrophage uptake by using polymeric microparticles of different geometries ranging in various sizes. Doxorubicin was conjugated to the polymer particles and the bioconjugates were characterized. Interestingly, the results of in-vitro lung deposition, performed using a next generation impactor, demonstrated a significant improvement in the aerodynamic properties of the rod-shaped particles with a high aspect ratio as compared to spherical particles with the same equivalent volume. The results of a macrophage uptake experiment demonstrate that the high aspect ratio particles were phagocytosed less than spherical particles. Furthermore, the cytotoxicity of these doxorubicin-conjugated particles was determined against murine macrophages, resulting in reduced toxicity when treated with high aspect ratio particles as compared to spherical particles. This project provides valuable insights into the influence of particle shape on aerodynamic properties and primary defense mechanisms in the peripheral lungs, while using polymeric microparticles of various sizes and geometries. Further systematic development can help translate these findings to preclinical and clinical studies for designing efficient inhalable delivery carriers.
Collapse
Affiliation(s)
- Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Apoorva Sarode
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Dipti D Kanabar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
33
|
Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021; 337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023]
Abstract
Triple negative breast cancer (TNBC) and non-small cell lung cancer (NSCLC) are amongst the most aggressive forms of solid tumors. TNBC is highlighted by absence of genetic components of progesterone receptor, HER2/neu and estrogen receptor in breast cancer. NSCLC is characterized by integration of malignant carcinoma into respiratory system. Both cancers are associated with poor median and overall survival rates with low progression free survival with high incidences of relapse. These cancers are characterized by tumor heterogeneity, genetic mutations, generation of cancer-stem cells, immune-resistance and chemoresistance. Further, these neoplasms have been reported for tumor cross-talk into second primary cancers for each other. Current chemotherapeutic regimens include usage of multiple agents in tandem to affect tumor cells through multiple mechanisms with various such combinations being clinically tested. However, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Consequently, passive targeted albumin bound paclitaxel and PEGylated liposomal doxorubicin have been clinically used and tested with newer drugs for improved therapeutic efficacy in these cancers. Active targeting of nanocarriers against surface overexpressed proteins in both neoplasms have been explored. However, use of single agent nanoparticulate formulations against both cancers have failed to elicit desired outcomes. This review aims to identify clinical unmet need in these cancers while establishing a correlation with tested nano-formulation approaches and issues with preclinical to clinical translation. Lipid and polymer-based drug-drug and drug-gene combinatorial nanocarriers delivering multiple chemotherapeutics simultaneously to desired site of action have been detailed. Finally, emerging opportunities such as pharmacological targets (immune check point and epigentic modulators) as well as gene-based modulation (siRNA/CRISPR/Cas9) and the nano-formulation challenges for effective treatment of both cancers have been explored.
Collapse
|
34
|
Skibba M, Drelich A, Poellmann M, Hong S, Brasier AR. Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis. Front Pharmacol 2020; 11:607689. [PMID: 33384604 PMCID: PMC7770469 DOI: 10.3389/fphar.2020.607689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronically progressive interstitial lung that affects over 3 M people worldwide and rising in incidence. With a median survival of 2-3 years, IPF is consequently associated with high morbidity, mortality, and healthcare burden. Although two antifibrotic therapies, pirfenidone and nintedanib, are approved for human use, these agents reduce the rate of decline of pulmonary function but are not curative and do not reverse established fibrosis. In this review, we discuss the prevailing epithelial injury hypothesis, wherein pathogenic airway epithelial cell-state changes known as Epithelial Mesenchymal Transition (EMT) promotes the expansion of myofibroblast populations. Myofibroblasts are principal components of extracellular matrix production that result in airspace loss and mortality. We review the epigenetic transition driving EMT, a process produced by changes in histone acetylation regulating mesenchymal gene expression programs. This mechanistic work has focused on the central role of bromodomain-containing protein 4 in mediating EMT and myofibroblast transition and initial preclinical work has provided evidence of efficacy. As nanomedicine presents a promising approach to enhancing the efficacy of such anti-IPF agents, we then focus on the state of nanomedicine formulations for inhalable delivery in the treatment of pulmonary diseases, including liposomes, polymeric nanoparticles (NPs), inorganic NPs, and exosomes. These nanoscale agents potentially provide unique properties to existing pulmonary therapeutics, including controlled release, reduced systemic toxicity, and combination delivery. NP-based approaches for pulmonary delivery thus offer substantial promise to modify epigenetic regulators of EMT and advance treatments for IPF.
Collapse
Affiliation(s)
- Melissa Skibba
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Adam Drelich
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Poellmann
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Seungpyo Hong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, South Korea
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
35
|
Repurposing Quinacrine for Treatment of Malignant Mesothelioma: In-Vitro Therapeutic and Mechanistic Evaluation. Int J Mol Sci 2020; 21:ijms21176306. [PMID: 32878257 PMCID: PMC7503636 DOI: 10.3390/ijms21176306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma (MM) is a rare type of cancer primarily affecting mesothelial cells lining the pleural cavity. In this study, we propose to repurpose quinacrine (QA), a widely approved anti-malarial drug, for Malignant Pleural Mesothelioma (MPM) treatment. QA demonstrates high degree of cytotoxicity against both immortalized and primary patient-derived cell lines with sub-micromolar 50% inhibitory concentration (IC50) values ranging from 1.2 µM (H2452) to 5.03 µM (H28). Further, QA also inhibited cellular migration and colony formation in MPM cells, demonstrated using scratch and clonogenic assays, respectively. A 3D-spheroid cell culture experiment was performed to mimic in-vivo tumor conditions, and QA was reported to be highly effective in this simulated cellular model. Anti-angiogenic properties were also discovered for QA. Autophagy inhibition assay was performed, and results revealed that QA successfully inhibited autophagy process in MPM cells, which has been cited to be one of the survival pathways for MPM. Annexin V real-time apoptosis study revealed significant apoptotic induction in MPM cells following QA treatment. Western blots confirmed inhibition of autophagy and induction of apoptosis. These studies highlight anti-mesothelioma efficacy of QA at low doses, which can be instrumental in developing it as a stand-alone treatment strategy for MPM.
Collapse
|