1
|
Del Bene VA, Fazeli PL, Blake JA, Li W, Collette C, Triebel KL, Byun JY, Jacob AE, Kamath V, Vance DE. Social Determinants of Health and Cross-Sectional Cognitive Intra-Individual Variability in Adults from the Deep South Living with HIV. Arch Clin Neuropsychol 2025:acae126. [PMID: 39778187 DOI: 10.1093/arclin/acae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Cognitive intra-individual variability (IIV) is a sensitive marker of neuropathology and is increased in people with HIV (PWH). In a sample of PWH from the United States Deep South, we examined the relationship of cognitive IIV with cognitive impairment and social determinants of health (SDoH). This secondary analysis included 131 PWH from a larger cognitive training protocol. Our primary outcome measure was the coefficient of variation (CoV). We also included the individual standard deviation (iSD), with both calculated from demographically adjusted T-scores and unadjusted sample-based scores. Mixed-effects models investigated the relationship between IIV and cognitive impairment severity (i.e., Global Rating Score), SDoH, and clinical variables. Bivariate correlations were used to further explore these relationships. Greater cognitive IIV was associated with greater cognitive impairment in PWH, when accounting for demographic factors. When IIV is calculated from the sample, then IIV is no longer associated with cognitive impairment, but is associated with race (>IIV in Black and African American participants). Demographically adjusted IIV is associated with global cognition, Wide Range Achievement Test-Fourth Edition reading score, and viral load (iSD only). No correlations were significant when using the unadjusted sample-based IIV metrics. In PWH from the Deep South, greater cognitive variability is seen in those with greater cognitive impairment, in Black participants, and in those with lower reading scores. Further research on the psychometric properties of IIV in HIV and other populations is needed, as results varied depending on the normative adjustments.
Collapse
Affiliation(s)
- Victor A Del Bene
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pariya L Fazeli
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jason A Blake
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Li
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Collette
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristen L Triebel
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jun Y Byun
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexandra E Jacob
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David E Vance
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Doifode T, Maziero MP, Quevedo J, Barichello T. Biomarkers Unveiling the Interplay of Mind, Nervous System, and Immunity. Methods Mol Biol 2025; 2868:73-90. [PMID: 39546226 DOI: 10.1007/978-1-0716-4200-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The field of psychoneuroimmunology has significantly expanded in the last few decades and so has our understanding of the bidirectional communications between the immune and central nervous systems (CNS). There is a preponderance of evidence supporting the fact that immunological pathways and neuroinflammation are involved in the pathophysiology of multiple neurological and mental health conditions. In this chapter, we have explored various neuroimmunological biomarkers involved in these pathways, responsible for developing and perpetuating different neuropsychiatric disorders. This chapter will examine inflammatory biomarkers and those associated with intestinal homeostasis, blood-brain barrier (BBB) permeability, glial cells, and neuronal injury. A range of tests has been developed to evaluate these markers, and we will also explore the existing methods currently employed for these techniques. Further studies of these inflammatory and neurological markers are needed to support their utility as biomarkers for diagnosis and prognosis and to inform treatment strategies for various neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Maria Paula Maziero
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
3
|
Moschopoulos CD, Stanitsa E, Protopapas K, Kavatha D, Papageorgiou SG, Antoniadou A, Papadopoulos A. Multimodal Approach to Neurocognitive Function in People Living with HIV in the cART Era: A Comprehensive Review. Life (Basel) 2024; 14:508. [PMID: 38672778 PMCID: PMC11050956 DOI: 10.3390/life14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral treatment (cART) has revolutionized the management of human immunodeficiency virus (HIV) and has markedly improved the disease burden and life expectancy of people living with HIV. HIV enters the central nervous system (CNS) early in the course of infection, establishes latency, and produces a pro-inflammatory milieu that may affect cognitive functions, even in the cART era. Whereas severe forms of neurocognitive impairment (NCI) such as HIV-associated dementia have declined over the last decades, milder forms have become more prevalent, are commonly multifactorial, and are associated with comorbidity burdens, mental health, cART neurotoxicity, and ageing. Since 2007, the Frascati criteria have been used to characterize and classify HIV-associated neurocognitive disorders (HAND) into three stages, namely asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), and HIV-associated dementia (HAD). These criteria are based on a comprehensive neuropsychological assessment that presupposes the availability of validated, demographically adjusted, and normative population data. Novel neuroimaging modalities and biomarkers have been proposed in order to complement NCI assessments, elucidate neuropathogenic mechanisms, and support HIV-associated NCI diagnosis, monitoring, and prognosis. By integrating neuropsychological assessments with biomarkers and neuroimaging into a holistic care approach, clinicians can enhance diagnostic accuracy, prognosis, and patient outcomes. This review interrogates the value of these modes of assessment and proposes a unified approach to NCI diagnosis.
Collapse
Affiliation(s)
- Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Konstantinos Protopapas
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| |
Collapse
|
4
|
Starr A, Nickoloff-Bybel E, Abedalthaqafi R, Albloushi N, Jordan-Sciutto KL. Human iPSC-derived neurons reveal NMDAR-independent dysfunction following HIV-associated insults. Front Mol Neurosci 2024; 16:1353562. [PMID: 38348237 PMCID: PMC10859444 DOI: 10.3389/fnmol.2023.1353562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
The central nervous system encounters a number of challenges following HIV infection, leading to increased risk for a collection of neurocognitive symptoms clinically classified as HIV-associated neurocognitive disorders (HAND). Studies attempting to identify causal mechanisms and potential therapeutic interventions have historically relied on primary rodent neurons, but a number of recent reports take advantage of iPSC-derived neurons in order to study these mechanisms in a readily reproducible, human model. We found that iPSC-derived neurons differentiated via an inducible neurogenin-2 transcription factor were resistant to gross toxicity from a number of HIV-associated insults previously reported to be toxic in rodent models, including HIV-infected myeloid cell supernatants and the integrase inhibitor antiretroviral drug, elvitegravir. Further examination of these cultures revealed robust resistance to NMDA receptor-mediated toxicity. We then performed a comparative analysis of iPSC neurons exposed to integrase inhibitors and activated microglial supernatants to study sub-cytotoxic alterations in micro electrode array (MEA)-measured neuronal activity and gene expression, identifying extracellular matrix interaction/morphogenesis as the most consistently altered pathways across HIV-associated insults. These findings illustrate that HIV-associated insults dysregulate human neuronal activity and organization even in the absence of gross NMDA-mediated neurotoxicity, which has important implications on the effects of these insults in neurodevelopment and on the interpretation of primary vs. iPSC in vitro neuronal studies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly L. Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Guha D, Misra V, Chettimada S, Yin J, Gabuzda D. CSF Extracellular Vesicle Aβ42 and Tau/Aβ42 Ratio Are Associated with Cognitive Impairment in Older People with HIV. Viruses 2023; 16:72. [PMID: 38257772 PMCID: PMC10818296 DOI: 10.3390/v16010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent despite viral suppression on antiretroviral therapy (ART). Older people with HIV (PWH) are also at risk for amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). β-amyloid (Aβ) and Tau biomarkers are associated with aMCI/AD, but their relationship to HAND is unclear. Given the role of extracellular vesicles (EVs) in age-related neurological disorders, we investigated soluble and EV-associated Aβ42, total Tau, NFL, GFAP, ICAM-1, VCAM-1, and CRP in relation to cognitive impairment in PWH. Plasma and CSF EVs were isolated from 184 participants (98 PWH on ART and 86 HIV- controls). Biomarkers were measured using Meso Scale Discovery assays. The median age of PWH was 53 years, and 52% were diagnosed with mild forms of HAND. PWH had increased plasma NFL (p = 0.04) and CSF Aβ42 (p = 0.0003) compared with HIV- controls but no significant difference in Tau or EV-associated forms of these markers. CSF EV Aβ42 was decreased (p = 0.0002) and CSF EV Tau/Aβ42 ratio was increased (p = 0.001) in PWH with HAND vs. no HAND, while soluble forms of these markers showed no significant differences. Decreased CSF EV Aβ42 (p < 0.0001) and an increased CSF EV Tau/Aβ42 ratio (p = 0.0003) were associated with lower neurocognitive T scores in age-adjusted models; an optimal model included both CSF EV Aβ42 and plasma NFL. Levels of soluble, but not EV-associated, ICAM-1, VCAM-1, and CRP were increased in PWH with HAND vs. no HAND (p < 0.05). These findings suggest that decreased Aβ42 and an increased Tau/Aβ42 ratio in CSF EVs are associated with cognitive impairment in older PWH, and these EV-associated biomarkers may help to distinguish aMCI/AD from HIV-related cognitive disorders in future studies.
Collapse
Affiliation(s)
- Debjani Guha
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jun Yin
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Tavasoli A, Gelman BB, Marra CM, Clifford DB, Iudicello JE, Rubin LH, Letendre SL, Tang B, Ellis RJ. Increasing Neuroinflammation Relates to Increasing Neurodegeneration in People with HIV. Viruses 2023; 15:1835. [PMID: 37766242 PMCID: PMC10536802 DOI: 10.3390/v15091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND HIV infection causes neuroinflammation and immune activation (NIIA) and systemic inflammation and immune activation (SIIA), which in turn drive neurodegeneration (ND). Cross-sectionally, higher levels of NIIA biomarkers correlate with increased biomarkers of ND. A more convincing confirmation would be a longitudinal demonstration. METHODS PWH in the US multisite CHARTER Aging project were assessed at a baseline visit and after 12 years using standardized evaluations. We measured a panel of 14 biomarkers of NIIA, SIIA, and ND in plasma and CSF at two time points and calculated changes from baseline to the 12-year visit. Factor analysis yielded simplified indices of NIIA, SIIA, and ND. RESULTS The CSF NIIA factor analysis yielded Factor1 loading on soluble tumor necrosis factor type-2 (sTNFR-II) and neopterin, and Factor2, loading on MCP1, soluble CD14, and IL-6. The SIIA factor analysis yielded Factor1 loading on CRP, D-dimer, and Neopterin; Factor2 loading on sTNFR-II. The ND analysis yielded Factor1 loading on Phosphorylated tau (p-tau) and Aβ42; Factor2 loading on NFL. NIIA Factor1, but not Factor2, correlated with increases in CSF NFL (r = 0.370, p = 0.0002). CONCLUSIONS Increases in NIIA and SIIA in PWH were associated with corresponding increases in ND, suggesting that reducing neuro/systemic inflammation might slow or reverse neurodegeneration.
Collapse
Affiliation(s)
- Azin Tavasoli
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas at Galveston, Galveston, TX 77555, USA;
| | - Christina M. Marra
- Department of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - David B. Clifford
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Jennifer E. Iudicello
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.E.I.); (B.T.)
| | - Leah H. Rubin
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Scott L. Letendre
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA; (J.E.I.); (B.T.)
| | - Ronald J. Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA;
| |
Collapse
|
7
|
Rocha NP, Teixeira AL, Colpo GD, Babicz MA, Thompson JL, Woods SP. Blood Biomarkers of Neuronal/Axonal and Glial Injury in Human Immunodeficiency Virus-Associated Neurocognitive Disorders. Dement Geriatr Cogn Disord 2023; 51:467-474. [PMID: 36746132 PMCID: PMC9992101 DOI: 10.1159/000527659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/17/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Approximately half of the people living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HANDs). However, the neuropathogenesis of HAND is complex, and identifying reliable biomarkers has been challenging. METHODS This study included 132 participants aged 50 and older from greater San Diego County. The participants were divided into three groups: PLWH with HAND (n = 29), PLWH without HAND (n = 73), and seronegatives without cognitive impairment (n = 30). Peripheral blood was collected at the clinical assessment, and plasma levels of neurofilament light chain (NfL), phosphorylated Tau 181 (pTau181), and glial fibrillary acidic protein (GFAP) were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Plasma levels of NfL (but not pTau181 and GFAP) were significantly associated with HAND at a medium effect size (p = 0.039, Cohen's d = 0.45 for HAND + vs. HAND-). Notably, higher levels of NfL were significantly associated with HAND diagnosis even after adjusting for sex. DISCUSSION Our data suggest that neuronal degeneration (as evidenced by increased levels of NfL), but not tau pathology or glial degeneration, is related to cognitive status in PLWH. Our results corroborate the view that blood NfL is a promising biomarker of cognitive impairment in PLWH.
Collapse
Affiliation(s)
- Natalia P. Rocha
- Mitchell Center for Alzheimer’s disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriela D. Colpo
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
8
|
Saunders TS, Gadd DA, Spires‐Jones TL, King D, Ritchie C, Muniz‐Terrera G. Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. Eur J Neurosci 2022; 56:5650-5713. [PMID: 35338546 PMCID: PMC9790745 DOI: 10.1111/ejn.15656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022]
Abstract
A biomarker associated with cognition in neurodegenerative dementias would aid in the early detection of disease progression, complement clinical staging and act as a surrogate endpoint in clinical trials. The current systematic review evaluates the association between cerebrospinal fluid protein markers of synapse loss and neuronal injury and cognition. We performed a systematic search which revealed 67 studies reporting an association between cerebrospinal fluid markers of interest and neuropsychological performance. Despite the substantial heterogeneity between studies, we found some evidence for an association between neurofilament-light and worse cognition in Alzheimer's diseases, frontotemporal dementia and typical cognitive ageing. Moreover, there was an association between cerebrospinal fluid neurogranin and cognition in those with an Alzheimer's-like cerebrospinal fluid biomarker profile. Some evidence was found for cerebrospinal fluid neuronal pentraxin-2 as a correlate of cognition across dementia syndromes. Due to the substantial heterogeneity of the field, no firm conclusions can be drawn from this review. Future research should focus on improving standardization and reporting as well as establishing the importance of novel markers such as neuronal pentraxin-2 and whether such markers can predict longitudinal cognitive decline.
Collapse
Affiliation(s)
- Tyler S. Saunders
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Danni A. Gadd
- Center for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tara L. Spires‐Jones
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Declan King
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Craig Ritchie
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Graciela Muniz‐Terrera
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| |
Collapse
|
9
|
Teunissen CE, Rohlwink U, Pajkrt D, Naudé PJW. Biomarkers of Tuberculous Meningitis and Pediatric Human Immunodeficiency Virus on the African Continent. Front Neurol 2022; 13:793080. [PMID: 35665032 PMCID: PMC9160376 DOI: 10.3389/fneur.2022.793080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Biomarkers in body fluids are helpful objective tools in diagnosis, prognosis and monitoring of (therapeutic) responses of many neurological diseases. Cerebrospinal fluid (CSF) biomarkers are part of the diagnostic toolbox for infectious neurological diseases. Tuberculous meningitis (TBM) and Human immunodeficiency virus (HIV), are important burdens of disease in Africa and can negatively affect brain health. Two thirds of the world's population of people living with HIV reside in sub-Saharan Africa and 25% of the global burden of tuberculosis (TB) is carried by the African continent. Neuroinflammation and damage of specific neuronal cell types are key constituents in the pathophysiology of these central nervous system (CNS) diseases, and important potential sources of circulating biomarkers. In this review, we summarize current research in the use of biomarkers in TBM and pediatric HIV as case demonstrations for high prevalence neurological diseases in Africa. Inflammatory molecules, primarily when detected in CSF, appear to have diagnostic value in these diseases, especially when measured as profiles. Brain injury molecules, such as S100, Neuron specific enolase and glial fibrillary acidic protein may have prognostic value in TBM, but more studies are needed. There is a need for more cost-economic and high sensitivity technologies to drive further biomarker discoveries and translate into healthcare improvements for these important healthcare problems in a globally fair way.
Collapse
Affiliation(s)
- Charlotte Elisabeth Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Ursula Rohlwink
- Division of Neurosurgery, Neuroscience Institute, Department of Surgery, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Petrus J. W. Naudé
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
de Almeida SM, Tang B, Vaida F, Letendre S, Ellis RJ. Soluble CD14 is subtype-dependent in serum but not in cerebrospinal fluid in people with HIV. J Neuroimmunol 2022; 366:577845. [PMID: 35313166 PMCID: PMC10373575 DOI: 10.1016/j.jneuroim.2022.577845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Monocytes and macrophages activation are crucial in human immunodeficiency virus (HIV) central nervous system (CNS) infection and HIV associated neurocognitive disorders (HAND) pathogenesis. The soluble form of CD14 (sCD14) is a marker of monocyte activation. We hypothesized that sCD14 levels would be lower in people with HIV-1 subtype C (HIV-1C) than in HIV-1B owing to a variant Tat cysteine dimotif (C30S31) with reduced chemotactic activity. A total of 68 paired cerebrospinal fluid (CSF) and blood samples from people with HIV (PWH); 27 samples of the HIV-1B subtype and 40 of the non-B HIV-1 subtypes (including 26,HIV-1C), and 18 HIV-negative controls were included. sCD14 levels were quantified using a high-sensitivity enzyme-linked immunosorbent assay. sCD14 increase in serum, but not in CSF, was higher in samples from HIV-1B than HIV-1C (p = 0.002; Cohen's d, 0.7). CSF or serum sCD14 values were not correlated with global deficit score or specific cognitive domains. The impact of HIV-1 on monocyte stimulation biomarkers evaluated by sCD14 in serum was subtype-dependent, higher in HIV-1B than HIV-1C, consistent with reduced chemotactic activity as hypothesized.
Collapse
Affiliation(s)
| | - Bin Tang
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Florin Vaida
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | - Scott Letendre
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California, San Diego, CA, USA; HIV Neurobehavioral Research Center, University of California, San Diego, CA, USA
| |
Collapse
|
11
|
Nass SR, Ohene-Nyako M, Hahn YK, Knapp PE, Hauser KF. Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Front Neurosci 2022; 16:804774. [PMID: 35600626 PMCID: PMC9115100 DOI: 10.3389/fnins.2022.804774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-β (Aβ) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aβ monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Kurt F. Hauser,
| |
Collapse
|
12
|
Ellis RJ, Heaton RK, Tang B, Collier A, Marra CM, Gelman BB, Morgello S, Clifford DB, Sacktor N, Cookson D, Letendre S. Peripheral inflammation and depressed mood independently predict neurocognitive worsening over 12 years. Brain Behav Immun Health 2022; 21:100437. [PMID: 35308084 PMCID: PMC8928134 DOI: 10.1016/j.bbih.2022.100437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/26/2022] [Indexed: 10/25/2022] Open
Abstract
Background Neurocognitive (NC) impairment in people with HIV (PWH) is associated with important adverse outcomes, but no markers exist to predict long-term NC decline. We evaluated depressed mood and markers of persistent inflammation, oxidative stress and altered amyloid processing (all common in PWH) as predictors of NC worsening over 12 years. Methods PWH were enrolled and followed longitudinally in the CNS HIV Antiretroviral Effects Research (CHARTER) study at six US sites. At entry we quantified biomarkers in blood of inflammation: (interleukin-6 [IL-6], C-reactive protein [CRP], monocyte chemoattractant protein type 1 [MCP-1], D-dimer, soluble sCD14 (sCD14), soluble tumor necrosis factor receptor - type II [sTNFR-II], neopterin, and soluble CD40 ligand [sCD40L], oxidative stress (protein carbonyls, 8-oxo-2'-deoxyguanosine [8-oxo-dG]) and altered amyloid processing [amyloid beta (Aβ)-42, soluble amyloid precursor protein-α (sAPPα)] using commercial immunoassays. The Beck Depression Inventory-II (BDI-II) assessed depressed mood at entry. NC decline over 12 years was evaluated using the published and validated summary (global) regression-based change score (sRBCS). A factor analysis reduced dimensionality of the biomarkers. Univariable and multiple regression models tested the relationship between baseline predictors and the outcome of neurocognitive decline. Results Participants were 191 PWH, 37 (19.4%) women, 46.6% African American, 43.5% non-Hispanic white, 8.83% Hispanic, 15.7% white, 1.6% other; at study entry mean (SD) age 43.6 (8.06) years, estimated duration of HIV infection (median, IQR) 9.82 [4.44, 14.5] years, nadir CD4 104/μL (19,205), current CD4 568/μL (356, 817), and 80.1% had plasma HIV RNA <50 c/mL. Participants were enrolled between 2003 and 2007; median (IQR) duration of follow-up 12.4 [9.69, 16.2] years. Three biomarker factors were identified: Factor (F)1 (IL-6, CRP), F2 (sTNFR-II, neopterin) and F3 (sCD40L, sAPPα). Participants with higher F1, reflecting worse systemic inflammation at baseline, and higher F3, had greater decline in global neurocognition (r = -0.168, p = 0.0205 and r = -0.156, p = 0.0309, respectively). Of the F1 components, higher CRP levels were associated with worse decline (r = -0.154, p = 0.0332), while IL-6 did not (r = -0.109, p = 0.135). NC change was not significantly related to F2, nor to demographics, nadir and current CD4, viral suppression or baseline NC comorbidity ratings. Individuals with worse depressed mood at entry also experienced more NC decline (r = -0.1734, p = 0.0006). Together BDI-II (p = 0.0290), F1 (p = 0.0484) and F3 (p = 0.0309) contributed independently to NC decline (p = 0.0028); their interactions were not significant. Neither CRP nor IL-6 correlated significantly with depression. Conclusions PWH with greater systemic inflammation and more depression at entry had greater NC decline over 12 years. Understanding the basis of this inflammatory state might be particularly important. These findings raise the possibility that targeted anti-inflammatory or antidepressant therapies may help prevent NC worsening in PWH with depression and inflammation.
Collapse
Affiliation(s)
- Ronald J. Ellis
- University of California San Diego, San Diego, CA, United States
| | - Robert K. Heaton
- University of California San Diego, San Diego, CA, United States
| | - Bin Tang
- University of California San Diego, San Diego, CA, United States
| | - A.C. Collier
- University of Washington, Seattle, WA, United States
| | | | | | - S. Morgello
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - N. Sacktor
- Johns-Hopkins University, Baltimore, MD, United States
| | - D. Cookson
- University of California San Diego, San Diego, CA, United States
| | - Scott Letendre
- University of California San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
van der Post J, van Genderen JG, Heijst JA, Blokhuis C, Teunissen CE, Pajkrt D. Plasma Neurofilament Light Is Not Associated with Ongoing Neuroaxonal Injury or Cognitive Decline in Perinatally HIV Infected Adolescents: A Brief Report. Viruses 2022; 14:v14040671. [PMID: 35458401 PMCID: PMC9030750 DOI: 10.3390/v14040671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/01/2022] Open
Abstract
Despite combination antiretroviral therapy (cART), adolescents with perinatally acquired human immunodeficiency virus (PHIV) exhibit cerebral injury and cognitive impairment. Plasma neurofilament light (pNfL) is a biomarker identified as a promising marker associated with neuroaxonal injury and cognitive impairment. To investigate whether cerebral injury in cART-treated PHIV adolescents is persistent, we longitudinally measured pNfL. We included 21 PHIV adolescents and 23 controls, matched for age, sex, ethnic origin and socio-economic status. We measured pNfL in both groups and CSF NfL in PHIV adolescents using a highly sensitive Single Molecule Array (Simoa) immunoassay. We compared pNfL between groups over time with a mean follow-up time of 4.6 years and assessed its association with MRI outcomes, cognitive function and HIV-related characteristics using linear mixed models. The median age was 17.5 years (15.5–20.7) and 16.4 years (15.8–19.6) at the second assessment for PHIV adolescents and controls, respectively. We found comparable pNfL (PHIV vs. controls) at the first (2.9 pg/mL (IQR 2.0–3.8) and 3.0 pg/mL (IQR 2.3–3.5), p = 0.499) and second assessment (3.3 pg/mL (IQR 2.5–4.1) and 3.0 pg/mL (IQR 2.5–3.7), p = 0.658) and observed no longitudinal change (coefficient; −0.19, 95% −0.5 to 0.1, p = 0.244). No significant associations were found between pNfL and HIV- or cART-related variables, MRI outcomes or cognitive function. We observed low CSF NfL concentrations at the baseline in PHIV adolescents (100.8 pg/mL, SD = 47.5). Our results suggest that there is no ongoing neuroaxonal injury in cART-treated PHIV adolescents and that the neuroaxonal injury is acquired in the past, emphasizing the importance of early cART to mitigate HIV-related neuroaxonal damage.
Collapse
Affiliation(s)
- Julie van der Post
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
- Correspondence: ; Tel.: +31-630-595-488
| | - Jason G. van Genderen
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| | - Johannes A. Heijst
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands; (J.A.H.); (C.E.T.)
| | - Charlotte Blokhuis
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1117 Amsterdam, The Netherlands; (J.A.H.); (C.E.T.)
| | - Dasja Pajkrt
- Pediatric Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC Location University of Amsterdam, 1105 Amsterdam, The Netherlands; (J.G.v.G.); (C.B.); (D.P.)
| |
Collapse
|
14
|
Elevated Cerebrospinal Fluid Anti-CD4 Autoantibody Levels in HIV Associate with Neuroinflammation. Microbiol Spectr 2022; 10:e0197521. [PMID: 34985329 PMCID: PMC8729763 DOI: 10.1128/spectrum.01975-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The mechanisms of persistent central nervous system (CNS) inflammation in people with HIV (PWH) despite effective antiretroviral therapy (ART) are not fully understood. We have recently shown that plasma anti-CD4 IgGs contribute to poor CD4+ T cell recovery during suppressive ART via antibody-mediated cytotoxicity (ADCC) against CD4+ T cells, and that plasma anti-CD4 IgG levels are associated with worse cognitive performance and specific brain area atrophy. However, the role of anti-CD4 IgGs in neuroinflammation remains unclear. In the current study, plasma and cerebrospinal fluid (CSF) samples from 31 ART-naive and 26 treated, virologically suppressed PWH, along with 16 HIV-seronegative controls, were evaluated for CSF levels of anti-CD4 IgG, white blood cell (WBC) counts, soluble biomarkers of neuroinflammation, and neurofilament light chain (NfL). We found that 37% of the PWH exhibited elevated CSF anti-CD4 IgG levels, but few or none of the PWH were observed with elevated CSF anti-CD4 IgM, anti-CD8 IgG, or anti-double-strand DNA IgG. CSF anti-CD4 IgG levels in PWH were directly correlated with neuroinflammation (WBC counts, neopterin, and markers of myeloid cell activation), but not with CSF NfL levels. Using cells from one immune nonresponder to ART, we generated a pathogenic anti-CD4 monoclonal IgG (JF19) presenting with ADCC activity; JF19 induced the production of soluble CD14 (sCD14) and interleukin-8 (IL-8) in human primary monocyte-derived macrophages via CD4 binding in vitro. This study demonstrates for the first time that elevated CSF anti-CD4 IgG levels present in a subgroup of PWH which may play a role in neuroinflammation in HIV. IMPORTANCE This study reports that an autoantibody presents in the CNS of HIV patients and that its levels in the CSF correlate with some markers of neuroinflammation.
Collapse
|
15
|
Zhou C, Zhang W, Lu R, Ouyang L, Xing H, Shao Y, Wu G, Ruan Y. Higher Risk of Mortality and Virologic Failure in HIV-Infected Patients With High Viral Load at Antiretroviral Therapy Initiation: An Observational Cohort Study in Chongqing, China. Front Public Health 2022; 10:800839. [PMID: 35186841 PMCID: PMC8851314 DOI: 10.3389/fpubh.2022.800839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Background Viral load (VL) is a strong predictor of human immunodeficiency virus (HIV) disease progression. The aim of this study was to evaluate the effect of high baseline VL on antiretroviral therapy (ART) outcomes among HIV-infected patients. Methods This retrospective study observed HIV-infected patients who had baseline VL test at ART initiation between 2015 and 2019 in Chongqing, China. Cox proportional hazards regression and logistic regression models were used to evaluate the effects of baseline VL on Acquired immunodeficiency syndrome (AIDS)-related mortality and virologic failure, respectively. Results The cohort included 7,176 HIV-infected patients, of whom 38.7% had a baseline VL ≥ 100,000 copies/mL. Of the patients who died during follow-up, 58.9% had a baseline VL ≥ 100,000 copies/mL. Compared with a baseline VL < 10,000 copies/mL, ART initiation at VL ≥ 100,000 copies/mL was significantly associated with the AIDS-related death (adjusted hazard ratio, AHR = 1.4) and virologic failure (adjusted odds ratio, AOR = 2.4). Compared with patients with a baseline VL < 10,000 copies/mL, patients on the recommended first-line regimen with a VL ≥ 100,000 copies/mL at ART initiaition had higher mortality rate (5.1 vs. 1.7 per 100 person-years), but there was no significant difference in the mortality accoding to the initial VL level among patients on second-line ART (2.8 vs. 2.7 per 100 person-years). ART initiation ≤ 30 days after HIV diagnosis was associated with a lower risk of AIDS-related death (AHR = 0.6). Conclusions ART initiation with VL ≥ 100,000 copies/mL was associated with a significantly greater risk of mortality and virologic failure. Optimizing the ART regimen and initiating ART early may help to reduce mortality effectively among patients with a high baseline VL. VL testing for all HIV patients is recommended at HIV diagnosis or on ART initiation.
Collapse
Affiliation(s)
- Chao Zhou
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Wei Zhang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Rongrong Lu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Lin Ouyang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Hui Xing
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yiming Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Guohui Wu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
- *Correspondence: Guohui Wu
| | - Yuhua Ruan
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
- Yuhua Ruan
| |
Collapse
|
16
|
Alzheimer's-Like Pathology at the Crossroads of HIV-Associated Neurological Disorders. Vaccines (Basel) 2021; 9:vaccines9080930. [PMID: 34452054 PMCID: PMC8402792 DOI: 10.3390/vaccines9080930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the widespread success of combined antiretroviral therapy (cART) in suppressing viremia, the prevalence of human immunodeficiency virus (HIV)-associated neurological disorders (HAND) and associated comorbidities such as Alzheimer’s disease (AD)-like symptomatology is higher among people living with HIV. The pathophysiology of observed deficits in HAND is well understood. However, it has been suggested that it is exacerbated by aging. Epidemiological studies have suggested comparable concentrations of the toxic amyloid protein, amyloid-β42 (Aβ42), in the cerebrospinal fluid (CSF) of HAND patients and in the brains of patients with dementia of the Alzheimer’s type. Apart from abnormal amyloid-β (Aβ) metabolism in AD, a better understanding of the role of similar pathophysiologic processes in HAND could be of substantial value. The pathogenesis of HAND involves either the direct effects of the virus or the effect of viral proteins, such as Tat, Gp120, or Nef, as well as the effects of antiretrovirals on amyloid metabolism and tauopathy, leading, in turn, to synaptodendritic alterations and neuroinflammatory milieu in the brain. Additionally, there is a lack of knowledge regarding the causative or bystander role of Alzheimer’s-like pathology in HAND, which is a barrier to the development of therapeutics for HAND. This review attempts to highlight the cause–effect relationship of Alzheimer’s-like pathology with HAND, attempting to dissect the role of HIV-1, HIV viral proteins, and antiretrovirals in patient samples, animal models, and cell culture model systems. Biomarkers associated with Alzheimer’s-like pathology can serve as a tool to assess the neuronal injury in the brain and the associated cognitive deficits. Understanding the factors contributing to the AD-like pathology associated with HAND could set the stage for the future development of therapeutics aimed at abrogating the disease process.
Collapse
|
17
|
Moretti S, Virtuoso S, Sernicola L, Farcomeni S, Maggiorella MT, Borsetti A. Advances in SIV/SHIV Non-Human Primate Models of NeuroAIDS. Pathogens 2021; 10:pathogens10081018. [PMID: 34451482 PMCID: PMC8398602 DOI: 10.3390/pathogens10081018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Non-human primates (NHPs) are the most relevant model of Acquired Immunodeficiency Syndrome (AIDS) and neuroAIDS, being of great importance in explaining the pathogenesis of HIV-induced nervous system damage. Simian Immunodeficiency Virus (SIV)/ Simian-Human Immunodeficiency Virus (SHIV)-infected monkeys have provided evidence of complex interactions between the virus and host that include host immune response, viral genetic diversity, and genetic susceptibility, which may explain virus-associated central nervous system (CNS) pathology and HIV-associated neurocognitive disorders (HAND). In this article, we review the recent progress contributions obtained using monkey models of HIV infection of the CNS, neuropathogenesis and SIV encephalitis (SIVE), with an emphasis on pharmacologic therapies and dependable markers that predict development of CNS AIDS.
Collapse
|
18
|
Zahid M, Kumar K, Patel H. Encephalitis Due to Co-Infection with Cytomegalovirus and Herpes Simplex Virus Type 2 in a Patient with Acquired Immunodeficiency Syndrome. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e931821. [PMID: 34349095 PMCID: PMC8351248 DOI: 10.12659/ajcr.931821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/23/2021] [Accepted: 06/16/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Opportunistic infections are commonly seen in immunocompromised patients. Here, we present an interesting case of a patient with poorly controlled human immunodeficiency virus (HIV) infection who presented with multiple opportunistic infections. CASE REPORT A 44-year-old woman with medical history of HIV infection (CD4 <20 cells/µl, viral load 172 996 copies/ml), presented with symptoms of headache for 2 days and changes in mentation. She was recently treated for pulmonary mycobacterium avium complex infection. Her physical examination revealed normal breath sounds and her abdominal examination was unremarkable. She did not have any focal neurological deficits, nuchal rigidity, or papilledema on examination. Computed tomography (CT) head was negative for any acute lesions. She was empirically started on vancomycin and piperacillin-tazobactam. Due to persistent symptoms, a lumbar puncture was performed, which revealed elevated total proteins in CSF, and a viral polymerase chain reaction test was positive for herpes simplex virus type 2 (HSV-2) and cytomegalovirus (CMV). Magnetic resonance imaging of the brain showed mild enhancement of the ventricular lining. She was treated with acyclovir, which was later changed to ganciclovir, with resulting clinical improvement. The patient had clinical improvement and was discharged home. CONCLUSIONS Multiple opportunistic co-infections should be considered in patients with poorly controlled HIV infection.
Collapse
|
19
|
Possible mechanisms of HIV neuro-infection in alcohol use: Interplay of oxidative stress, inflammation, and energy interruption. Alcohol 2021; 94:25-41. [PMID: 33864851 DOI: 10.1016/j.alcohol.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
Alcohol use and HIV-1 infection have a pervasive impact on brain function, which extends to the requirement, distribution, and utilization of energy within the central nervous system. This effect on neuroenergetics may explain, in part, the exacerbation of HIV-1 disease under the influence of alcohol, particularly the persistence of HIV-associated neurological complications. The objective of this review article is to highlight the possible mechanisms of HIV/AIDS progression in alcohol users from the perspective of oxidative stress, neuroinflammation, and interruption of energy metabolism. These include the hallmark of sustained immune cell activation and high metabolic energy demand by HIV-1-infected cells in the central nervous system, with at-risk alcohol use. Here, we discussed the point that the increase in energy supply requirement by HIV-1-infected neuroimmune cells as well as the deterrence of nutrient uptake across the blood-brain barrier significantly depletes the energy source and neuro-environment homeostasis in the CNS. We also described the mechanistic idea that comorbidity of HIV-1 infection and alcohol use can cause a metabolic shift and redistribution of energy usage toward HIV-1-infected neuroimmune cells, as shown in neuropathological evidence. Under such an imbalanced neuro-environment, meaningless energy waste is expected in infected cells, along with unnecessary malnutrition in non-infected neuronal cells, which is likely to accelerate HIV neuro-infection progression in alcohol use. Thus, it will be important to consider the factor of nutrients/energy imbalance in formulating treatment strategies to help impede the progression of HIV-1 disease and associated neurological disorders in alcohol use.
Collapse
|
20
|
The Impact of Antiretroviral Therapy on Neurocognitive Outcomes Among People Living with HIV in Low- and Middle-Income Countries (LMICs): A Systematic Review. AIDS Behav 2021; 25:492-523. [PMID: 32851562 DOI: 10.1007/s10461-020-03008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Low and middle-income countries (LMICs) are the epicenter of the HIV epidemic. The scale-up of antiretroviral therapy (ART) has reduced mortality, but HIV-associated neurocognitive impairment (HANI) remains prevalent, which impacts functional performance, medication adherence, and quality of life. We aimed to evaluate the effect of ART on neurocognitive outcomes among people living with HIV/AIDS in LMICs and to identify determinants of these outcomes. We searched electronic databases and reference lists for studies published between 1996 and 2019. Two reviewers screened the primary studies for inclusion and performed the critical appraisal. Results were synthesized using the 'Synthesis without meta-analysis' approach through simple vote counting. We identified 31 studies conducted across four regions (Africa, Asia, South America, and Eastern Europe). Nine studies were cross-sectional, 15 were prospective, and seven were randomized controlled trials. The majority of the articles showed improved neurocognitive performance with ART use but found no association with treatment duration, regimen, central penetrating effectiveness, and conventional biomarkers. Despite the lack of appropriate norms and not accounting for practice effect in most studies, the evidence suggests ART is useful in the treatment of HIV-associated neurocognitive impairment (HANI) but limited in addressing legacy effects, and peripheral, and central viral reservoirs. Improved early ART treatment programs, viral reservoir eradication strategies, and identification of novel biomarkers will be critical in efforts to minimize HIV-associated neurocognitive impairment. PROSPERO registration: CRD42020152908.
Collapse
|
21
|
Bharti AR, McCutchan JA, Umlauf A, Okwuegbuna OK, Letendre S, Cherner M, Burdo T, Jumare J, Williams K, Blattner W, Royal W. Asymptomatic Malaria Co-infection of HIV-Infected Adults in Nigeria: Prevalence of and Impact on Cognition, Mood, and Biomarkers of Systemic Inflammation. J Acquir Immune Defic Syndr 2021; 86:91-97. [PMID: 33021552 PMCID: PMC10742372 DOI: 10.1097/qai.0000000000002516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV and malaria are associated with immunological perturbations and neurocognitive disorders even when asymptomatic. However, the effect of asymptomatic malaria (AM) in HIV-infected adults on neurocognitive impairment (NCI) is not well understood. This study investigated the biomarkers of systemic inflammation and neurocognition in dually infected Nigerian adults. METHODS We assessed the HIV and AM status of 269 adults and measured their global and domain-specific neurocognition and depression using standardized measures. Blood levels of sCD14 and sCD163 were also measured. RESULTS The mean age of the participants (n = 269) was 33 years, 62% were women, and AM among HIV+ and HIV- was similar (36% versus 37%). NCI was found in 23% (62/269) of participants. HIV+/AM+ had a higher prevalence of impaired learning and executive functions and were more depressed than HIV-/AM- or HIV+/AM-. HIV+ with CD4 T-cell counts ≤200/µL were more impaired in the learning domain than those with >200/µL. HIV+/AM+ group had higher levels of sCD14 compared to the other 3 groups and higher levels of sCD163 than the HIV-/AM- group. Higher levels of sCD14 and sCD163 were each associated with NCI. The sCD163 (log10) levels were higher for those with 1+ versus 2+ parasitemia level. CONCLUSIONS HIV and AM coinfection was associated with an increased risk of reduced learning and executive functions, and elevated systemic inflammation. Mood was more depressed in HIV patients with than those without AM. The mechanisms and long-term effects on neurocognition and depression among HIV+/AM+ individuals should be studied because this coinfection is common globally.
Collapse
Affiliation(s)
- Ajay R. Bharti
- University of California San Diego, School of Medicine, San Diego, CA
| | | | - Anya Umlauf
- University of California San Diego, School of Medicine, San Diego, CA
| | | | - Scott Letendre
- University of California San Diego, School of Medicine, San Diego, CA
| | - Mariana Cherner
- University of California San Diego, School of Medicine, San Diego, CA
| | - Tricia Burdo
- Temple University, Lewis Katz School of Medicine, Philadelphia, PA
| | - Jibreel Jumare
- University of Maryland, School of Medicine, Baltimore, MD
| | | | | | - Walter Royal
- University of Maryland, School of Medicine, Baltimore, MD
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
| |
Collapse
|
22
|
Dysfunctional Immunometabolism in HIV Infection: Contributing Factors and Implications for Age-Related Comorbid Diseases. Curr HIV/AIDS Rep 2020; 17:125-137. [PMID: 32140979 DOI: 10.1007/s11904-020-00484-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW An increasing body of evidence indicates that persons living with HIV (PLWH) display dysfunctional immunometabolism. Here, we provide an updated review of this topic and its relationship to HIV-associated immune stimuli and age-related disease. RECENT FINDINGS HIV infection alters immunometabolism by increasing reliance on aerobic glycolysis for energy and productive infection and repurposing oxidative phosphorylation machinery for immune cell proliferation and survival. Recent studies in PLWH with diabetes mellitus or cardiovascular disease have identified an association with elevated T cell and monocyte glucose metabolism, respectively. Immunometabolic dysfunction has also been observed in PLWH in frailty and additional studies suggest a role for immunometabolism in non-AIDS defining cancers and neurocognitive disease. There is a plethora of HIV-associated immune stimuli that could drive immunometabolic dysfunction and age-related disease in PLWH, but studies directly examining their relationship are lacking. Immunometabolic dysfunction is characteristic of HIV infection and is a potential link between HIV-associated stimuli and age-related comorbidities.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Biological and societal influences are different for men and women leading to different HIV outcomes and related infectious and non-infectious complications. This review evaluates sex differences in the epidemiology and immunological response to HIV and looks at major complications and coinfections, as well as care delivery systems focusing on low- and middle-income countries (LMICs) where most people with HIV live. RECENT FINDINGS More women than men access testing and treatment services in LMIC; women are more likely to be virologically suppressed in that environment. There is a growing recognition that the enhanced immunological response to several pathogens including HIV may result in improved outcomes for infectious comorbidities but may result in a greater burden of non-communicable diseases. Men and women have different requirements for HIV care. Attention to these differences may improve outcomes for all.
Collapse
|
24
|
Moidunny S, Benneyworth MA, Titus DJ, Beurel E, Kolli U, Meints J, Jalodia R, Ramakrishnan S, Atkins CM, Roy S. Glycogen synthase kinase-3 inhibition rescues sex-dependent contextual fear memory deficit in human immunodeficiency virus-1 transgenic mice. Br J Pharmacol 2020; 177:5658-5676. [PMID: 33080056 DOI: 10.1111/bph.15288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE A significant number of HIV-1 patients on antiretroviral therapy develop HIV-associated neurocognitive disorders (HAND). Evidence indicate that biological sex may regulate HAND pathogenesis, but the mechanisms remain unknown. We investigated synaptic mechanisms associated with sex differences in HAND, using the HIV-1-transgenic 26 (Tg26) mouse model. EXPERIMENTAL APPROACH Contextual- and cue-dependent memories of male and female Tg26 mice and littermate wild type mice were assessed in a fear conditioning paradigm. Hippocampal electrophysiology, immunohistochemistry, western blot, qRT-PCR and ELISA techniques were used to investigate cellular, synaptic and molecular impairments. KEY RESULTS Cue-dependent memory was unaltered in male and female Tg26 mice, when compared to wild type mice. Male, but not female, Tg26 mice showed deficits in contextual fear memory. Consistently, only male Tg26 mice showed depressed hippocampal basal synaptic transmission and impaired LTP induction in area CA1. These deficits in male Tg26 mice were independent of hippocampal neuronal loss and microglial activation but were associated with increased HIV-1 long terminal repeat mRNA expression, reduced hippocampal synapsin-1 protein, reduced BDNF mRNA and protein, reduced AMPA glutamate receptor (GluA1) phosphorylation levels and increased glycogen synthase kinase 3 (GSK3) activity. Importantly, selective GSK3 inhibition using 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione increased levels of synapsin-1, BDNF and phosphorylated-GluA1 proteins, restored hippocampal basal synaptic transmission and LTP, and improved contextual fear memory in male Tg26 mice. CONCLUSION AND IMPLICATIONS Sex-dependent impairments in contextual fear memory and synaptic plasticity in Tg26 mice are associated with increased GSK3 activity. This implicates GSK3 inhibition as a potential therapeutic strategy to improve cognition in HIV-1 patients.
Collapse
Affiliation(s)
- Shamsudheen Moidunny
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - David J Titus
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eleonore Beurel
- Department of Psychiatry and Behavioral Sciences, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Udhghatri Kolli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Richa Jalodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
25
|
Weber EA, Singh MV, Singh VB, Jackson JW, Ture SK, Suwunnakorn S, Morrell CN, Maggirwar SB. Novel Mechanism of Microvesicle Regulation by the Antiviral Protein Tetherin During HIV Infection. J Am Heart Assoc 2020; 9:e015998. [PMID: 32819189 PMCID: PMC7660781 DOI: 10.1161/jaha.120.015998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Background Microvesicles are cell membrane-derived vesicles that have been shown to augment inflammation. Specifically, monocyte-derived microvesicles (MDMVs), which can express the coagulation protein tissue factor, contribute to thrombus formation and cardiovascular disease. People living with HIV experience higher prevalence of cardiovascular disease and also exhibit increased levels of plasma microvesicles. The process of microvesicle release has striking similarity to budding of enveloped viruses. The surface protein tetherin inhibits viral budding by physically tethering budding virus particles to cells. Hence, we investigated the role of tetherin in regulating the release of MDMVs during HIV infection. Methods and Results The plasma of aviremic HIV-infected individuals had increased levels of tissue factor + MDMVs, as measured by flow cytometry, and correlated to reduced tetherin expression on monocytes. Superresolution confocal and electron microscopy showed that tetherin localized at the site of budding MDMVs. Mechanistic studies revealed that the exposure of monocytes to HIV-encoded Tat triggered tetherin loss and subsequent rise in MDMV production. Overexpression of tetherin in monocytes led to morphologic changes in the pseudopodia directly underneath the MDMVs. Further, tetherin knockout mice demonstrated a higher number of circulating MDMVs and less time to bleeding cessation. Conclusions Our studies define a novel regulatory mechanism of MDMV release through tetherin and explore its contribution to the procoagulatory state that is frequently observed in people with HIV. Such insights could lead to improved therapies for individuals infected with HIV and also for those with cardiovascular disease.
Collapse
Affiliation(s)
- Emily A. Weber
- Department of Microbiology & ImmunologyUniversity of Rochester Medical CenterRochesterNY
| | - Meera V. Singh
- Department of Microbiology & ImmunologyUniversity of Rochester Medical CenterRochesterNY
| | - Vir B. Singh
- Department of Basic and Clinical SciencesAlbany College of Pharmacy and Health SciencesRochesterNY
| | - Joseph W. Jackson
- Department of Microbiology & ImmunologyUniversity of Rochester Medical CenterRochesterNY
| | - Sara K. Ture
- Aab Cardiovascular Research InstituteUniversity of Rochester Medical CenterRochesterNY
| | - Sumanun Suwunnakorn
- Department of Microbiology & ImmunologyUniversity of Rochester Medical CenterRochesterNY
| | - Craig N. Morrell
- Aab Cardiovascular Research InstituteUniversity of Rochester Medical CenterRochesterNY
| | - Sanjay B. Maggirwar
- Department of Microbiology & ImmunologyUniversity of Rochester Medical CenterRochesterNY
| |
Collapse
|
26
|
Using neuronal extracellular vesicles and machine learning to predict cognitive deficits in HIV. J Neurovirol 2020; 26:880-887. [PMID: 32681213 DOI: 10.1007/s13365-020-00877-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022]
Abstract
Our objective was to predict HIV-associated neurocognitive disorder (HAND) in HIV-infected people using plasma neuronal extracellular vesicle (nEV) proteins, clinical data, and machine learning. We obtained 60 plasma samples from 38 women and 22 men, all with HIV infection and 40 with HAND. All underwent neuropsychological testing. nEVs were isolated by immunoadsorption with neuron-specific L1CAM antibody. High-mobility group box 1 (HMGB1), neurofilament light (NFL), and phosphorylated tau-181 (p-T181-tau) proteins were quantified by ELISA. Three different computational algorithms were performed to predict cognitive impairment using clinical data and nEV proteins. Of the 3 different algorithms, support vector machines performed the best. Applying 4 different models of clinical data with 3 nEV proteins, we showed that selected clinical data and HMGB1 plus NFL best predicted cognitive impairment with an area under the curve value of 0.82. The most important features included CD4 count, HMGB1, and NFL. Previous published data showed nEV p-T181-tau was elevated in Alzheimer's disease (AD), and in this study, p-T181-tau had no importance in assessing HAND but may actually differentiate it from AD. Machine learning can access data without programming bias. Identifying a few nEV proteins plus key clinical variables can better predict neuronal damage. This approach may differentiate other neurodegenerative diseases and determine recovery after therapies are identified.
Collapse
|
27
|
Omeragic A, Kayode O, Hoque MT, Bendayan R. Potential pharmacological approaches for the treatment of HIV-1 associated neurocognitive disorders. Fluids Barriers CNS 2020; 17:42. [PMID: 32650790 PMCID: PMC7350632 DOI: 10.1186/s12987-020-00204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
HIV associated neurocognitive disorders (HAND) are the spectrum of cognitive impairments present in patients infected with human immunodeficiency virus type 1 (HIV-1). The number of patients affected with HAND ranges from 30 to 50% of HIV infected individuals and although the development of combinational antiretroviral therapy (cART) has improved longevity, HAND continues to pose a significant clinical problem as the current standard of care does not alleviate or prevent HAND symptoms. At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that it stems from neuronal injury due to chronic release of neurotoxins, chemokines, viral proteins, and proinflammatory cytokines secreted by HIV-1 activated microglia, macrophages and astrocytes in the central nervous system (CNS). Furthermore, the blood-brain barrier (BBB) not only serves as a route for HIV-1 entry into the brain but also prevents cART therapy from reaching HIV-1 brain reservoirs, and therefore could play an important role in HAND. The goal of this review is to discuss the current data on the epidemiology, pathology and research models of HAND as well as address the potential pharmacological treatment approaches that are being investigated.
Collapse
Affiliation(s)
- Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Olanre Kayode
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Room 1001, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
28
|
Jumare J, Akolo C, Ndembi N, Bwala S, Alabi P, Okwuasaba K, Adebiyi R, Umlauf A, Cherner M, Abimiku A, Charurat M, Blattner WA, Royal W. Elevated Plasma Levels of sCD14 and MCP-1 Are Associated With HIV Associated Neurocognitive Disorders Among Antiretroviral-Naive Individuals in Nigeria. J Acquir Immune Defic Syndr 2020; 84:196-202. [PMID: 32084055 PMCID: PMC11637321 DOI: 10.1097/qai.0000000000002320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mononuclear cells play key roles in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Limited studies have looked at the association of markers of monocyte activation with HAND in Africa. We examined this association among HIV-1-infected patients in Nigeria. METHOD A total of 190 HIV-infected treatment-naive participants with immune marker data were included in this cross-sectional study. Plasma levels of soluble CD14 (sCD14), soluble CD163, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), and neopterin were measured. Demographically adjusted T scores obtained from a 7-domain neuropsychological test battery were generated, and functional status was assessed using activities of daily living questionnaire. Participants were classified as unimpaired, having asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), or HIV-associated dementia (HAD) in line with the "Frascati" criteria. RESULTS Thirty-two participants (16.8%) had ANI, 14 (7.4%) had MND, whereas none had HAD. In multivariable linear regression analyses, after adjusting for age, gender, education, CD4 count, and viral load, mean levels of sCD14 were higher among those with ANI and MND as compared with the unimpaired (P = 0.033 and 0.023, respectively). Similarly, the mean level of MCP-1 was greater among those with HAND as compared with the unimpaired (P = 0.047). There were also trends for higher levels of sCD163 and TNF-α among females with MND in univariable analyses. CONCLUSIONS Levels of monocyte activation markers correlate with the severity of impairment among individuals with HAND. The mechanisms that underlie these effects and the potential role of gender require further study.
Collapse
Affiliation(s)
- Jibreel Jumare
- University of Maryland School of Medicine, Baltimore, United States, MD 21201
| | - Christopher Akolo
- University of Maryland School of Medicine, Baltimore, United States, MD 21201
| | - Nicaise Ndembi
- University of Maryland School of Medicine, Baltimore, United States, MD 21201
- Institute of Human Virology Nigeria, Federal Capital Territory Abuja, Nigeria
| | - Sunday Bwala
- National Hospital Abuja, Federal Capital Territory Abuja, Nigeria
| | - Peter Alabi
- University of Abuja Teaching Hospital, Federal Capital Territory Abuja, Nigeria
| | - Kanayo Okwuasaba
- Institute of Human Virology Nigeria, Federal Capital Territory Abuja, Nigeria
| | - Ruxton Adebiyi
- Institute of Human Virology Nigeria, Federal Capital Territory Abuja, Nigeria
| | - Anya Umlauf
- University of California San Diego, School of Medicine, San Diego, United States, CA 92103
| | - Mariana Cherner
- University of California San Diego, School of Medicine, San Diego, United States, CA 92103
| | - Alash’le Abimiku
- University of Maryland School of Medicine, Baltimore, United States, MD 21201
| | - Man Charurat
- University of Maryland School of Medicine, Baltimore, United States, MD 21201
| | - William A. Blattner
- University of Maryland School of Medicine, Baltimore, United States, MD 21201
| | - Walter Royal
- University of Maryland School of Medicine, Baltimore, United States, MD 21201
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, United States, GA 30310
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This article describes the use of biomarkers in expanding our understanding of chronic non-AIDS comorbidities among persons living with HIV (PLWH) receiving antiretroviral therapy (ART). RECENT FINDINGS We review current evidence that biomarkers of chronic immune activation and inflammation associate with a broad spectrum of end-organ diseases in PLWH. We discuss how ART may impact inflammation associated with HIV infection and the degree to which inflammation persists despite effective suppression of viral replication in plasma. We then discuss the limitations of the current literature, which lacks evidence of causality and disproportionately involves a few protein biomarkers that are unable to disentangle complex and overlapping biological pathways. SUMMARY Premature end-organ disease among PLWH has been repeatedly associated with higher levels of blood biomarkers reflecting inflammation and immune activation, which, despite viral suppression and CD4 T-cell increases after ART treatment, remain elevated relative to uninfected persons. There remain important unanswered questions with implications for the development of anti-inflammatory treatment strategies aimed at mitigating excess risk for end-organ comorbidities among PLWH.
Collapse
|
30
|
New Potential Axes of HIV Neuropathogenesis with Relevance to Biomarkers and Treatment. Curr Top Behav Neurosci 2020; 50:3-39. [PMID: 32040843 DOI: 10.1007/7854_2019_126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) affect approximately half of people living with HIV despite viral suppression with antiretroviral therapies and represent a major cause of morbidity. HAND affects activities of daily living including driving, using the Internet and, importantly, maintaining drug adherence. Whilst viral suppression with antiretroviral therapies (ART) has reduced the incidence of severe dementia, mild neurocognitive impairments continue to remain prevalent. The neuropathogenesis of HAND in the context of viral suppression remains ill-defined, but underlying neuroinflammation is likely central and driven by a combination of chronic intermittent low-level replication of whole virus or viral components, latent HIV infection, peripheral inflammation possibly from a disturbed gut microbiome or chronic cellular dysfunction in the central nervous system. HAND is optimally diagnosed by clinical assessment with imaging and neuropsychological testing, which can be difficult to perform in resource-limited settings. Thus, the identification of biomarkers of disease is a key focus of the field. In this chapter, recent advances in the pathogenesis of HAND and biomarkers that may aid its diagnosis and treatment will be discussed.
Collapse
|
31
|
High Plasma Soluble CD163 During Infancy Is a Marker for Neurocognitive Outcomes in Early-Treated HIV-Infected Children. J Acquir Immune Defic Syndr 2019; 81:102-109. [PMID: 30768490 DOI: 10.1097/qai.0000000000001979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Monocyte activation may contribute to neuronal injury in aviremic HIV-infected adults; data are lacking in children. We examined the relation between monocyte activation markers and early and long-term neurodevelopmental outcomes in early-treated HIV-infected children. SETTING Prospective study of infant and child neurodevelopmental outcomes nested within a randomized clinical trial (NCT00428116) and extended cohort study in Kenya. METHODS HIV-infected infants (N = 67) initiated antiretroviral therapy (ART) at age <5 months. Plasma soluble (s) CD163 (sCD163), sCD14, and neopterin were measured before ART (entry) and 6 months later. Milestone attainment was ascertained monthly during 24 months, and neuropsychological tests were performed at 5.8-8.2 years after initiation of ART (N = 27). The relationship between neurodevelopment and sCD163, sCD14, and neopterin at entry and 6 months after ART was assessed using Cox proportional hazards models and linear regression. RESULTS Infants with high entry sCD163 had unexpected earlier attainment of supported sitting (5 vs 6 months; P = 0.006) and supported walking (10 vs 12 months; P = 0.02) with trends in adjusted analysis. Infants with high 6-month post-ART sCD163 attained speech later (17 vs 15 months; P = 0.006; adjusted hazard ratio, 0.47; P = 0.02), threw toys later (18 vs 17 months; P = 0.01; adjusted hazard ratio, 0.53; P = 0.04), and at median 6.8 years after ART, had worse neuropsychological test scores (adj. mean Z-score differences, cognition, -0.42; P = 0.07; short-term memory, -0.52; P = 0.08; nonverbal test performance, -0.39, P = 0.05). CONCLUSIONS Before ART, monocyte activation may reflect transient neuroprotective mechanisms in infants. After ART and viral suppression, monocyte activation may predict worse short- and long-term neurodevelopment outcomes.
Collapse
|
32
|
Robertson K, Landay A, Miyahara S, Vecchio A, Masters MC, Brown TT, Taiwo BO. Limited correlation between systemic biomarkers and neurocognitive performance before and during HIV treatment. J Neurovirol 2019; 26:107-113. [PMID: 31468473 DOI: 10.1007/s13365-019-00795-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
The AIDS Clinical Trials Group (ACTG) study A5303 investigated the associations between neuropsychological performance (NP) and inflammatory biomarkers in HIV-infected participants. Fifteen NP tests were administered at baseline and week 48 to 233 ART naïve participants randomized to maraviroc- or tenofovir-containing ART. Neurocognition correlated modestly with markers of lymphocyte activation and inflammation pre-ART (percent CD38+/HLA-DR+(CD4+) (r = - 0.22, p = 0.02) and percent CD38+/HLA-DR+(CD8+) (r = - 0.25, p = 0.02)), and with some monocyte subsets during ART (r = 0.25, p = 0.02). Higher interleukin-6 and percent CD38+/HLA-DR+(CD8+) were independently associated with worse severity of HIV-associated neurocognitive disorders (HAND) (p = 0.04 and 0.01, respectively). More studies to identify HAND biomarkers are needed.
Collapse
Affiliation(s)
- Kevin Robertson
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alan Landay
- Department of Microbial Pathogens and Immunity, Rush Medical College, Chicago, IL, USA
| | | | - Alyssa Vecchio
- Department of Neurology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern Univeristy, 645 N. Michigan Avenue, Suite 900, Chicago, IL, 60611, USA
| | - Todd T Brown
- Departmet of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Babafemi O Taiwo
- Division of Infectious Diseases, Northwestern Univeristy, 645 N. Michigan Avenue, Suite 900, Chicago, IL, 60611, USA.
| |
Collapse
|
33
|
Abstract
In the era of combination antiretroviral therapy, the diagnosis and management of HIV-associated neurocognitive disorders (HANDs) has arisen. Traditionally, severe HAND was seen in those with untreated HIV infection and had a guarded prognosis. Antiretroviral therapy has provided longevity and viral control to many living with the disease, revealing an increase in prevalence of less severe forms of HAND. Despite peripheral blood and cerebrospinal fluid viral suppression, cognitive impairment occurs and progresses for reasons that are unclear at present. This article provides a review of current theories behind the development of HAND, clinical and pathologic findings, recent developments, and future research opportunities.
Collapse
|
34
|
The Association of Immune Markers with Cognitive Performance in South African HIV-Positive Patients. J Neuroimmune Pharmacol 2019; 14:679-687. [PMID: 31388873 DOI: 10.1007/s11481-019-09870-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
Abstract
Dysregulated expression of neuro-immune markers has previously been linked to HIV-associated neurocognitive impairment. We undertook an exploratory approach in a HIV clade-C cohort, investigating the association between eight immune markers and neurocognitive performance in 99 HIV+ and 51 HIV- participants. Markers were selected on preliminary and putative evidence of their link to key neuro-immune functions. Cognitive performance was established using a battery of tests sensitive to HIV-associated neurocognitive impairment, with domain-based scores utilized in analysis. The markers Thymidine phosphorylase (TYMP) and Neutrophil gelatinase-associated lipocalin (NGAL) were significantly higher while Matrix Metalloproteinase (MMP)9 was significantly lower in HIV+ participants. Our results further showed that in the HIV+ group, worse psychomotor processing speed was associated with higher TYMP and NGAL levels and worse motor function was associated with higher NGAL levels. Future studies should explore the underlying mechanisms of these markers in HIV-associated neurocognitive impairment. Graphical Abstract The association of peripheral immune markers with neurocognitive performance in South African HIV-positive patients.
Collapse
|
35
|
Bandera A, Taramasso L, Bozzi G, Muscatello A, Robinson JA, Burdo TH, Gori A. HIV-Associated Neurocognitive Impairment in the Modern ART Era: Are We Close to Discovering Reliable Biomarkers in the Setting of Virological Suppression? Front Aging Neurosci 2019; 11:187. [PMID: 31427955 PMCID: PMC6687760 DOI: 10.3389/fnagi.2019.00187] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/10/2019] [Indexed: 11/24/2022] Open
Abstract
The prevalence of the most severe forms of HIV-associated neurocognitive disorders (HAND) is decreasing due to worldwide availability and high efficacy of antiretroviral treatment (ART). However, several grades of HIV-related cognitive impairment persist with effective ART and remain a clinical concern for people with HIV (PWH). The pathogenesis of these cognitive impairments has yet to be fully understood and probably multifactorial. In PWH with undetectable peripheral HIV-RNA, the presence of viral escapes in cerebrospinal fluid (CSF) might explain a proportion of cases, but not all. Many other mechanisms have been hypothesized to be involved in disease progression, in order to identify possible therapeutic targets. As potential indicators of disease staging and progression, numerous biomarkers have been used to characterize and implicate chronic inflammation in the pathogenesis of neuronal injuries, such as certain phenotypes of activated monocytes/macrophages, in the context of persistent immune activation. Despite none of them being disease-specific, the correlation of several CSF cellular biomarkers to HIV-induced neuronal damage has been investigated. Furthermore, recent studies have been evaluating specific microRNA (miRNA) profiles in the CSF of PWH with neurocognitive impairment (NCI). The aim of the present study is to review the body of evidence on different biomarkers use in research and clinical settings, focusing on PWH on ART with undetectable plasma HIV-RNA.
Collapse
Affiliation(s)
- Alessandra Bandera
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Lucia Taramasso
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Infectious Diseases Clinic, Department of Health Sciences, School of Medical and Pharmaceutical Sciences, Policlinico Hospital San Martino, University of Genova (DISSAL), Genova, Italy
| | - Giorgio Bozzi
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Andrea Gori
- Infectious Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
36
|
Chahroudi A, Wagner TA, Persaud D. CNS Persistence of HIV-1 in Children: the Untapped Reservoir. Curr HIV/AIDS Rep 2019; 15:382-387. [PMID: 30159813 DOI: 10.1007/s11904-018-0412-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW The central nervous system (CNS) represents a potential HIV-1 reservoir that may need to be specifically targeted by remission strategies. Perinatally HIV-1-infected children and youth are exposed to HIV-1 at a critical period of brain development. This review summarizes the current literature regarding HIV-1 and the CNS in perinatal infection. RECENT FINDINGS HIV-1-associated encephalopathy is prevalent with perinatal infection and neurocognitive impairment persists even following antiretroviral treatment (ART)-mediated suppression of viremia. Compartmentalization of HIV-1 between plasma and CSF of ART-naïve, perinatally infected children suggests the presence of a CNS reservoir; however, similar studies have not yet been conducted with ART suppression. CSF viral escape where CSF and plasma virus concentrations are discordant has been reported in this population, but larger studies with well-defined virologic and immunologic parameters are needed. A better understanding of HIV-1 persistence in the CNS with perinatal infection is essential for improving long-term neurocognitive outcomes and for designing strategies to induce HIV-1 remission in this population.
Collapse
Affiliation(s)
- Ann Chahroudi
- Emory University School of Medicine, Atlanta, GA, USA
| | - Thor A Wagner
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Deborah Persaud
- Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 1170, Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Systemic and intrathecal immune activation in association with cerebral and cognitive outcomes in paediatric HIV. Sci Rep 2019; 9:8004. [PMID: 31142789 PMCID: PMC6541601 DOI: 10.1038/s41598-019-44198-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 04/24/2019] [Indexed: 01/23/2023] Open
Abstract
Despite treatment, immune activation is thought to contribute to cerebral injury in children perinatally infected with human immunodeficiency virus (HIV). We aimed to characterize immune activation in relation to neuroimaging and cognitive outcomes. We therefore measured immunological, coagulation, and neuronal biomarkers in plasma and cerebrospinal fluid (CSF) samples of 34 perinatally HIV-infected children aged 8–18 years, and in plasma samples of 37 controls of comparable age, sex, ethnicity, and socio-economic status. We then compared plasma biomarker levels between groups, and explored associations between plasma/CSF biomarkers and neuroimaging and cognitive outcomes using network analysis. HIV-infected children showed higher plasma levels of C-reactive protein, interferon-gamma, interferon-gamma-inducible protein-10, and monocyte chemoattractant protein-1 than controls. In HIV-infected participants, plasma soluble CD14 was positively associated with microstructural white matter (WM) damage, and plasma D-dimer was negatively associated with WM blood flow. In CSF, IL-6 was negatively associated with WM volume, and neurofilament heavy-chain (NFH) was negatively associated with intelligence quotient and working memory. These markers of ongoing inflammation, immune activation, coagulation, and neuronal damage could be used to further evaluate the pathophysiology and clinical course of cerebral and cognitive deficits in perinatally acquired HIV.
Collapse
|
38
|
Srinivas N, Joseph SB, Robertson K, Kincer LP, Menezes P, Adamson L, Schauer AP, Blake KH, White N, Sykes C, Luciw P, Eron JJ, Forrest A, Price RW, Spudich S, Swanstrom R, Kashuba AD. Predicting Efavirenz Concentrations in the Brain Tissue of HIV-Infected Individuals and Exploring their Relationship to Neurocognitive Impairment. Clin Transl Sci 2019; 12:302-311. [PMID: 30675981 PMCID: PMC6510381 DOI: 10.1111/cts.12620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022] Open
Abstract
Sparse data exist on the penetration of antiretrovirals into brain tissue. In this work, we present a framework to use efavirenz (EFV) pharmacokinetic (PK) data in plasma, cerebrospinal fluid (CSF), and brain tissue of eight rhesus macaques to predict brain tissue concentrations in HIV-infected individuals. We then perform exposure-response analysis with the model-predicted EFV area under the concentration-time curve (AUC) and neurocognitive scores collected from a group of 24 HIV-infected participants. Adult rhesus macaques were dosed daily with 200 mg EFV (as part of a four-drug regimen) for 10 days. Plasma was collected at 8 time points over 10 days and at necropsy, whereas CSF and brain tissue were collected at necropsy. In the clinical study, data were obtained from one paired plasma and CSF sample of participants prescribed EFV, and neuropsychological test evaluations were administered across 15 domains. PK modeling was performed using ADAPT version 5.0 Biomedical Simulation Resource, Los Angeles, CA) with the iterative two-stage estimation method. An eight-compartment model best described EFV distribution across the plasma, CSF, and brain tissue of rhesus macaques and humans. Model-predicted median brain tissue concentrations in humans were 31 and 8,000 ng/mL, respectively. Model-predicted brain tissue AUC was highly correlated with plasma AUC (γ = 0.99, P < 0.001) but not CSF AUC (γ = 0.34, P = 0.1) and did not show any relationship with neurocognitive scores (γ < 0.05, P > 0.05). This analysis provides an approach to estimate PK the brain tissue in order to perform PK/pharmacodynamic analyses at the target site.
Collapse
Affiliation(s)
- Nithya Srinivas
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Present address:
Incyte CorporationWilmingtonDelawareUSA
| | - Sarah Beth Joseph
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kevin Robertson
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Laura P. Kincer
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Prema Menezes
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Lourdes Adamson
- School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Amanda P. Schauer
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kimberly H. Blake
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nicole White
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Craig Sykes
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Paul Luciw
- School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Joseph J. Eron
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | | | - Richard W. Price
- Department of NeurologySchool of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Serena Spudich
- Department of NeurologyYale School of MedicineNew HavenConnecticutUSA
| | - Ronald Swanstrom
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Angela D.M. Kashuba
- Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
39
|
Ambrosius B, Gold R, Chan A, Faissner S. Antineuroinflammatory drugs in HIV-associated neurocognitive disorders as potential therapy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e551. [PMID: 31119186 PMCID: PMC6501636 DOI: 10.1212/nxi.0000000000000551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/17/2019] [Indexed: 12/23/2022]
Abstract
Today, HIV-infected (HIV+) patients can be treated efficiently with combined antiretroviral therapy (cART), leading to long-term suppression of viral load, in turn increasing life expectancy. While cART reduced the occurrence of HIV-associated dementia, the prevalence of subtle forms of HIV-associated neurocognitive disorders (HAND) is unchanged. This is related to persistent immune activation within the CNS, which is not addressed by cART. Pathologic processes leading to HAND consist of the release of proinflammatory cytokines, chemokines, reactive oxygen metabolites and glutamate, and the release of HIV proteins. Some of those processes can be targeted using medications with immunomodulatory and neuroprotective properties such as dimethyl fumarate, teriflunomide, or minocycline. In this review, we will summarize the knowledge about key pathogenic processes involved in HAND and potential therapeutic avenues to target HAND.
Collapse
Affiliation(s)
- Björn Ambrosius
- Department of Neurology (B.A., R.G., S.F.), St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr, Bochum, Germany; and Department of Neurology (A.C.), University Hospital Bern, Bern University, Switzerland
| | - Ralf Gold
- Department of Neurology (B.A., R.G., S.F.), St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr, Bochum, Germany; and Department of Neurology (A.C.), University Hospital Bern, Bern University, Switzerland
| | - Andrew Chan
- Department of Neurology (B.A., R.G., S.F.), St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr, Bochum, Germany; and Department of Neurology (A.C.), University Hospital Bern, Bern University, Switzerland
| | - Simon Faissner
- Department of Neurology (B.A., R.G., S.F.), St. Josef-Hospital, Ruhr-University Bochum, Gudrunstr, Bochum, Germany; and Department of Neurology (A.C.), University Hospital Bern, Bern University, Switzerland
| |
Collapse
|
40
|
Cerebrospinal fluid extracellular vesicles and neurofilament light protein as biomarkers of central nervous system injury in HIV-infected patients on antiretroviral therapy. AIDS 2019; 33:615-625. [PMID: 30557159 PMCID: PMC6399073 DOI: 10.1097/qad.0000000000002121] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective: The relationship of cerebrospinal fluid (CSF) extracellular vesicles to neurocognitive impairment (NCI) in HIV-infected individuals is unclear. Here, we characterize CSF extracellular vesicles and their association with central nervous system (CNS) injury related biomarkers [neurofilament light (NFL), S100B, neopterin] and NCI in HIV-positive individuals on combination antiretroviral therapy (cART). Design: A cross-sectional and longitudinal study of CSF samples from HIV-positive individuals on cART. Methods: NFL, S100B and neopterin were measured by ELISA in 190 CSF samples from 112 individuals (67 HIV-positive and 45 HIV-negative). CSF extracellular vesicles were isolated and characterized by electron microscopy, nanoparticle tracking analysis, immunoblotting for exosome markers (CD9, CD63, CD81, FLOT-1) and ELISA for HLA-DR. Results: HIV-positive individuals had median age 52 years, 67% with suppressed plasma viral load (< 50 copies/ml), median CD4+ nadir 66 cells/μl and CD4+ cell count 313 cells/μl. CSF NFL, S100B and neopterin levels were higher in HIV-positive vs. HIV-negative individuals, and nonsuppressed vs. suppressed HIV-positive individuals. Although CSF NFL and S100B levels were higher in NCI vs. unimpaired HIV-positive individuals (P < 0.05), only NFL was associated with NCI in adjusted models (P < 0.05). CSF extracellular vesicles were increased in HIV-positive vs. HIV-negative individuals, and NCI vs. unimpaired HIV-positive individuals (P < 0.05), and correlated positively with NFL (P < 0.001). HLA-DR was enriched in CSF extracellular vesicles from HIV-positive individuals with NCI (P < 0.05), suggesting that myeloid cells are a potential source of CSF extracellular vesicles during HIV infection. Conclusion: Increased CSF extracellular vesicles correlate with neuronal injury biomarker NFL in cART-treated HIV-positive individuals with neurocognitive impairment, suggesting potential applications as novel biomarkers of CNS injury.
Collapse
|
41
|
Bertero L, Joseph SB, Trunfio M, Allice T, Catera S, Imperiale D, Cassoni P, Kincer LP, Pirriatore V, Ghisetti V, Amasio E, Zanusso G, Bonora S, Di Perri G, Calcagno A. HIV-1 detection in the olfactory mucosa of HIV-1-infected participants. AIDS 2019; 33:665-674. [PMID: 30608272 DOI: 10.1097/qad.0000000000002102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HIV infection chronically affects the central nervous system (CNS). Olfactory mucosa is a unique site in the respiratory tract that is directly connected to the CNS; thus we wanted to evaluate olfactory mucosa as a surrogate of CNS sampling. DESIGN We conducted a preliminary study examining HIV populations and susceptible cells in the olfactory mucosa. METHODS Olfactory mucosa was sampled by minimally invasive brushing. Cerebrospinal fluid (CSF) analyses were performed as per routine clinical procedures. Olfactory marker protein, CD4+, CD8+, and trans-activator of transcription (TAT) expressions were assessed by immunohistochemistry. Plasma, CSF, and olfactory mucosa HIV-RNA were quantified using the Cobas AmpliPrep/Cobas TaqMan assay, whereas HIV proviral DNA was evaluated on peripheral blood mononuclear cell and olfactory mucosa. HIV-1 env deep sequencing was performed for phylogenetic analysis. RESULTS Among ART-naive participants, 88.2% (15/17), and among ART-treated participants, 21.4% (6/28) had detectable HIV-RNA in samples from their olfactory mucosa; CSF escape was more common in patients with olfactory mucosa escape (50 vs. 7.9%; P = 0.010). Olfactory mucosa samples contained few cells positive for CD4, CD8, or HIV-DNA, and no HIV TAT-positive cells, indicating that this approach efficiently samples virions in the olfactory mucosa, but not HIV-infected cells. Yet, using a deep sequencing approach to phylogenetically compare partial HIV env genes in five untreated participants, we identified distinct viral lineages in the OM. CONCLUSIONS The results of this study suggest that nasal brushing is a well tolerated and useful technique for sampling the olfactory mucosa. HIV-RNA was detected in most naïve and in some treated patients, warranting larger longitudinal studies.
Collapse
|
42
|
Aging, comorbidities, and the importance of finding biomarkers for HIV-associated neurocognitive disorders. J Neurovirol 2019; 25:673-685. [PMID: 30868422 DOI: 10.1007/s13365-019-00735-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) continue to affect a large proportion of persons living with HIV despite effective viral suppression with combined antiretroviral therapy (cART). Importantly, milder versions of HAND have become more prevalent. The pathogenesis of HAND in the era of cART appears to be multifactorial with contributions from central nervous system (CNS) damage that occur prior to starting cART, chronic immune activation, cART neurotoxicity, and various age-related comorbidities (i.e., cardiovascular and cerebrovascular disease, diabetes, hyperlipidemia). Individuals with HIV may experience premature aging, which could also contribute to cognitive impairment. Likewise, degenerative disorders aside from HAND increase with age and there is evidence of shared pathology between HAND and other neurodegenerative diseases, such as Alzheimer's disease, which can occur with or without co-existing HAND. Given the aforementioned complex interactions associated with HIV, cognitive impairment, and aging, it is important to consider an age-appropriate differential diagnosis for HAND as the HIV-positive population continues to grow older. These factors make the accuracy and reliability of the diagnosis of mild forms of HAND in an aging population of HIV-infected individuals challenging. The complexity of current diagnosis of mild HAND also highlights the need to develop reliable biomarkers. Ultimately, the identification of a set of specific biomarkers will be required to achieve early and accurate diagnosis, which will be necessary assuming specific treatments for HAND are developed.
Collapse
|
43
|
Fernandes N, Pulliam L. Inflammatory Mechanisms and Cascades Contributing to Neurocognitive Impairment in HIV/AIDS. Curr Top Behav Neurosci 2019; 50:77-103. [PMID: 31385260 DOI: 10.1007/7854_2019_100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurocognitive impairment caused by chronic human immunodeficiency virus (HIV) infection is a growing concern. In this chapter we discuss the inflammatory mechanisms underlying the pathology of asymptomatic and mild neurocognitive impairment in the context of antiretroviral therapy. We discuss the role of HIV, viral proteins, and virally infected cells on the development of neuroinflammation and the effect of viral proteins on the cells of the central nervous system.We examine how these collective factors result in an inflammatory context that triggers the development of neurocognitive impairment in HIV. We assess the contribution of antiretrovirals and drugs of abuse, including methamphetamine, cannabis, and opioids, to the neurotoxic and neuroinflammatory milieu that leads to the development of neurocognitive impairment in HIV-infected individuals. We also examined circulating biomarkers, NF-L, sCD163, and sCD14, pertinent to identifying changes in the CNS that could indicate real-time changes in patient physiology. Lastly, we discuss future studies, such as exosomes and the microbiome, which could play a role in the HIV-induced neuroinflammation that eventually manifests as cognitive impairment.
Collapse
Affiliation(s)
- Nicole Fernandes
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA, USA.,University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Pulliam
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA, USA. .,University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
44
|
Gisslén M, Heslegrave A, Veleva E, Yilmaz A, Andersson LM, Hagberg L, Spudich S, Fuchs D, Price RW, Zetterberg H. CSF concentrations of soluble TREM2 as a marker of microglial activation in HIV-1 infection. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 6:e512. [PMID: 30568991 PMCID: PMC6278890 DOI: 10.1212/nxi.0000000000000512] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022]
Abstract
Objective To explore changes in CSF sTREM2 concentrations in the evolving course of HIV-1 infection. Methods In this retrospective cross-sectional study, we measured concentrations of the macrophage/microglial activation marker sTREM2 in CSF samples from 121 HIV-1-infected adults and 11 HIV-negative controls and examined their correlations with other CSF and blood biomarkers of infection, inflammation, and neuronal injury. Results CSF sTREM2 increased with systemic and CNS HIV-1 disease severity, with the highest levels found in patients with HIV-associated dementia (HAD). In untreated HIV-1-infected patients without an HAD diagnosis, levels of CSF sTREM2 increased with decreasing CD4+ T-cell counts. CSF concentrations of both sTREM2 and the neuronal injury marker neurofilament light protein (NFL) were significantly associated with age. CSF sTREM2 levels were also independently correlated with CSF NFL. Notably, this association was also observed in HIV-negative controls with normal CSF NFL. HIV-infected patients on suppressive antiretroviral treatment had CSF sTREM2 levels comparable to healthy controls. Conclusions Elevations in CSF sTREM2 levels, an indicator of macrophage/microglial activation, are a common feature of untreated HIV-1 infection that increases with CD4+ T-cell loss and reaches highest levels in HAD. The strong and independent association between CSF sTREM2 and CSF NFL suggests a linkage between microglial activation and neuronal injury in HIV-1 infection. CSF sTREM2 has the potential of being a useful biomarker of innate CNS immune activation in different stages of untreated and treated HIV-1 infection.
Collapse
Affiliation(s)
- Magnus Gisslén
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Amanda Heslegrave
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Elena Veleva
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Lars-Magnus Andersson
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Serena Spudich
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Dietmar Fuchs
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Richard W Price
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Infectious Diseases (M.G., A.Y., L.-M.A., L.H.), Institute of Biomedicine, the Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Molecular Neuroscience (A.H., E.V., H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (A.H., E.V., H.Z.), London, United Kingdom; Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research (S.S.), Yale University, New Haven, CT; Division of Biological Chemistry (D.F.), Biocenter, Medical University of Innsbruck, Austria; Department of Neurology (R.W.P.), University of California San Francisco; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital; and Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| |
Collapse
|
45
|
Srinivas N, Maffuid K, Kashuba ADM. Clinical Pharmacokinetics and Pharmacodynamics of Drugs in the Central Nervous System. Clin Pharmacokinet 2018; 57:1059-1074. [PMID: 29464550 PMCID: PMC6062484 DOI: 10.1007/s40262-018-0632-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite contributing significantly to the burden of global disease, the translation of new treatment strategies for diseases of the central nervous system (CNS) from animals to humans remains challenging, with a high attrition rate in the development of CNS drugs. The failure of clinical trials for CNS therapies can be partially explained by factors related to pharmacokinetics/pharmacodynamics (PK/PD), such as lack of efficacy or improper selection of the initial dosage. A focused assessment is needed for CNS-acting drugs in first-in-human studies to identify the differences in PK/PD from animal models, as well as to choose the appropriate dose. In this review, we summarize the available literature from human studies on the PK and PD in brain tissue, cerebrospinal fluid, and interstitial fluid for drugs used in the treatment of psychosis, Alzheimer's disease and neuro-HIV, and address critical questions in the field. We also explore newer methods to characterize PK/PD relationships that may lead to more efficient dose selection in CNS drug development.
Collapse
Affiliation(s)
- Nithya Srinivas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, 1094 Genetic Medicine Building, CB# 7361, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
46
|
Peripheral and cerebrospinal fluid immune activation and inflammation in chronically HIV-infected patients before and after virally suppressive combination antiretroviral therapy (cART). J Neurovirol 2018; 24:679-694. [PMID: 29987585 DOI: 10.1007/s13365-018-0661-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Cerebrospinal fluid (CSF)/plasma HIV-RNA ratio has been associated with residual neurocognitive impairment on cART, leading us to hypothesize a specific peripheral and/or CSF immune feature in patients with high CSF/plasma ratio (≥ 1). In patients with diverse pre-cART CSF/plasma ratio (61/70 with CSF/plasma ratio < 1, L-CSF, 9/70 with CSF/plasma ratio ≥ 1, H-CSF), we investigated the effects of 12 months of effective cART on peripheral and CSF inflammatory markers, on T cell activation/maturation and HIV/CMV-specific intracellular cytokine pattern. We also studied the possible clinical association between peripheral/CSF pro-inflammatory milieu and neurocognitive screening tests (MMSE, FAB, IHDS). Prior to cART, the two groups were comparable for peripheral and CSF inflammation, T cell activation/proliferation and maturation, and HIV/CMV-specific response. Upon cART initiation, both H-CSF and L-CSF featured a significant reduction in plasma TNF-α and circulating CD8 activation, with a redistribution of memory/naïve T cell subsets in L-CSF alone. In the CSF compartment, cART seemed able to reduce pro-inflammatory cytokine/chemokine levels in both H-CSF and L-CSF patients. Interestingly, despite a reduction in the pro-inflammatory milieu, no changes were shown in neurocognitive screening tests in both patients' groups. We hereby show that 12-month cART is able to reduce intratechal and peripheral pro-inflammatory burden; a longer cART exposure and a more comprehensive neuropsychological evaluation might be necessary to gain a broader insight into the possible effects on neurocognitive performance.
Collapse
|
47
|
González RG, Fell R, He J, Campbell J, Burdo TH, Autissier P, Annamalai L, Taheri F, Parker T, Lifson JD, Halpern EF, Vangel M, Masliah E, Westmoreland SV, Williams KC, Ratai EM. Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS. PLoS One 2018; 13:e0196949. [PMID: 29750804 PMCID: PMC5947913 DOI: 10.1371/journal.pone.0196949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023] Open
Abstract
Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.
Collapse
Affiliation(s)
- R. Gilberto González
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Robert Fell
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Julian He
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Jennifer Campbell
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Tricia H. Burdo
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Patrick Autissier
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | | | - Faramarz Taheri
- New England Primate Research Center, Southborough, MA, United States of America
| | - Termara Parker
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Elkan F. Halpern
- Harvard Medical School, Boston, MA, United States of America
- Institute for Technology Assessment, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark Vangel
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, United States of America
| | | | - Kenneth C. Williams
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Eva-Maria Ratai
- Department of Radiology, Neuroradiology Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW HIV-associated neurocognitive disease is the most active topic for neuroAIDS investigations at present. Although impairment is mild in patients successfully treated with modern antiviral regimens, it remains an ongoing problem for HIV patients. It is important to update the emerging research concerning HIV-associated neurocognitive disease. RECENT FINDINGS The virus enters the brain during acute infection, with evidence for abnormal functioning that may occur early and often persists. Direct relationships with ongoing viral infection continue to be monitored, but chronic inflammation often associated with monocytes and macrophages appears to be the most likely driver of cognitive dysfunction. Appreciation for cerebrovascular disease as a significant comorbidity that is associated with cognitive deficits is increasing. Neuroimaging is actively being developed to address detection and measurement of changes in the brain. Optimal combined antiretroviral treatment therapy has vastly improved neurologic outcomes, but so far has not been demonstrated to reverse the remaining mild impairment. Inflammatory and vascular mechanisms of cerebral dysfunction may need to be addressed to achieve better outcomes. SUMMARY Ongoing research is required to improve neurological outcomes for persons living with HIV. It is likely that interventions beyond antiviral approaches will be required to control or reverse HIV-associated neurocognitive disease.
Collapse
|
49
|
Chan P, Hellmuth J, Colby D, Kroon E, Sacdalan C, Fletcher J, Patel P, Pinyakorn S, Valcour V, Ananworanich J, Spudich S. Safety of lumbar puncture procedure in an international research setting during acute HIV infection. J Virus Erad 2018; 4:16-20. [PMID: 29568548 PMCID: PMC5851179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background: Cerebrospinal fluid (CSF) sampling at the time of acute HIV infection (AHI) is crucial in understanding NeuroAIDS pathogenesis. Here, we report on the safety of performing a lumbar puncture (LP) during untreated AHI and follow-up after initiation of combination antiretroviral therapy (cART). Methods: We reviewed clinical records of participants who took part in an AHI protocol in Bangkok, Thailand, including untreated AHI subjects (baseline), and longitudinal visits following immediate initiation of cART to assess rates and risk of post-lumbar puncture headaches (PLPH). A cerebrospinal fluid (CSF) volume of 10-20 mL was collected using standard cutting-edge or atraumatic needles. Results: From April 2009 to February 2016, 195 LPs were performed, of which 89 (46%) were at baseline. The LP procedures at baseline were not associated with an additional PLPH risk as compared to repeat LPs after cART initiation (26/89 [29%] vs 4/27 [15%], respectively; P=0.134). Higher body mass index (BMI) at baseline (P=0.070) and use of an atraumatic needle (P=0.058) had trend-level associations with reduced PLPH. A higher CSF volume collection (20 mL) was independently associated with a lower PLPH frequency (P=0.024). This association was similar in a subgroup analysis with the use of atraumatic needles. The CD4+ T lymphocyte count, blood and CSF HIV viral load, Fiebig staging, and the presence of an acute retroviral syndrome did not correlate with risk for PLPH (all P>0.05). Conclusion: The frequency of PLPH during AHI was similar to that seen in the setting of cART-treated HIV infection and not higher with a larger CSF volume collection. Our study adds to the existing evidence that atraumatic needles should be used to minimise the risk of PLPH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Serena Spudich
- Corresponding author: Serena Spudich,
Department of Neurology,
Yale University,
15 York St,
New Haven,
CT06510,
USA
| |
Collapse
|
50
|
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects roughly half the HIV-positive population. The symptoms of cognitive slowing, poor concentration, and memory problems can impact on everyday life. Its diagnosis is validated where possible by identifying deficits in two cognitive domains on neuropsychologic testing in patients either with or without symptoms. Corroborating evidence may be found on imaging, blood tests, and cerebrospinal fluid analysis, though sensitive and specific biomarkers are currently lacking. The introduction of combined antiretroviral therapy in the 1990s has generated a therapeutic paradox whereby the number of severe cases of HAND has fallen, yet milder forms continue to rise in prevalence. New emphasis has been placed on identifying the cause of apparent ongoing HIV infection and inflammation of the central nervous system (CNS) in the face of durable systemic viral suppression, and how this equates to the neuronal dysfunction underlying HAND. The interaction with aging and comorbidities is becoming increasingly common as the HIV-positive population enters older adulthood, with neurodegenerative, metabolic, and vascular causes of cognitive impairment combining and probably accelerating in the context of chronic HIV infection. Therapies targeted to the CNS, but without neurotoxic side-effects, are being investigated to attempt to reduce the likelihood of developing, and improving, HAND.
Collapse
Affiliation(s)
| | - Bruce James Brew
- Departments of Neurology and HIV Medicine, St. Vincent's Hospital and Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|