1
|
Bohannon DG, Wellman LL, Kaul M, Galkina EV, Guo ML, Datta PK, Kim WK. Type-1-to-type-2 transition of brain microvascular pericytes induced by cytokines and disease-associated proteins: Role in neuroinflammation and blood-brain barrier disruption. J Cereb Blood Flow Metab 2024:271678X241296270. [PMID: 39473432 PMCID: PMC11563511 DOI: 10.1177/0271678x241296270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
While the concept of pericyte heterogeneity in the brain microvasculature is becoming more widely accepted, little is known about how they arise, or their functional contributions to the blood-brain barrier (BBB). We therefore set out to examine the distribution of subtypes of pericytes at the BBB and sought to elucidate some of their functional characteristics by examining their unique mRNA expression patterns. We demonstrate that type-1 pericytes (PC1) that are associated with young healthy brains and BBB homeostasis, can transition into type-2 pericytes (PC2) that are associated with disease and BBB breakdown, both in vitro and in vivo, in the presence of both endogenous and disease associated ligands. We identified PC1 and PC2 in single-cell RNA-sequencing from vascular enriched mouse brain and identified transcriptional differences between PC1 and PC2. PC2 showed increased expression of genes associated with phagocytosis and peripheral immune cell infiltration. On the contrary, PC1 displayed increased expression of genes involved in hedgehog signaling, which is known to promote tight junction formation at the BBB. Our data support the PC1-to-PC2 transition as an origin of PC diversity and suggest a functional role for PC1 in maintaining BBB homeostasis and PC2 in responding to pathological conditions.
Collapse
Affiliation(s)
- Diana G Bohannon
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Laurie L Wellman
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Ming-Lei Guo
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Prasun K Datta
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
2
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
3
|
Namba MD, Xie Q, Park K, Jackson JG, Barker JM. EcoHIV Infection Modulates the Effects of Cocaine Exposure Pattern and Abstinence on Cocaine Seeking and Neuroimmune Protein Expression in Male Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589615. [PMID: 38659915 PMCID: PMC11042347 DOI: 10.1101/2024.04.15.589615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cocaine use disorders (CUDs) and human immunodeficiency virus (HIV) remain persistent public health dilemmas throughout the world. One major hurdle for treating CUD is the increase in cocaine craving and seeking behavior that occurs over a protracted period of abstinence, an effect known as the incubation of craving. Little is known about how HIV may modulate this process. Thus, we sought to examine the impact of chronic HIV infection on the incubation of cocaine craving and associated changes in the central and peripheral immune systems. Here, mice were inoculated with EcoHIV, which is a chimeric HIV-1 construct that produces chronic HIV infection in mice. EcoHIV- and sham-infected mice were conditioned with cocaine daily or intermittently in a conditioned place preference (CPP) paradigm, followed by 1 or 21 days of forced abstinence prior to assessing preference for the cocaine-paired chamber. Under both conditioning regimens, sham mice exhibited incubation of cocaine CPP after 21 days of abstinence. EcoHIV-infected mice conditioned daily with cocaine showed enhanced cocaine seeking at both abstinence timepoints, whereas infected mice conditioned intermittently showed a reversal of the incubation effect, with higher cocaine seeking after 1 day of abstinence compared to 21 days. Analysis of corticolimbic CX3CL1-CX3CR1 and glutamate receptor expression revealed alterations in medial prefrontal cortex (mPFC) CX3CL1 and nucleus accumbens (NAc) GluN2A receptors that correlated with cocaine seeking following daily cocaine exposure. Moreover, examination of peripheral immune markers showed that the effect of abstinence and EcoHIV infection on these measures depended on the cocaine exposure regimen. Altogether, these results highlight the importance of cocaine abstinence and exposure pattern as critical variables that modulate HIV-associated neuroimmune outcomes and relapse vulnerability.
Collapse
Affiliation(s)
- Mark D. Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
- Graduate Program in Pharmacology and Physiology, College of Medicine, Drexel University
| | - Kyewon Park
- Center for AIDS Research (CFAR), University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua G. Jackson
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M. Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Vines L, Sotelo D, Giddens N, Manza P, Volkow ND, Wang GJ. Neurological, Behavioral, and Pathophysiological Characterization of the Co-Occurrence of Substance Use and HIV: A Narrative Review. Brain Sci 2023; 13:1480. [PMID: 37891847 PMCID: PMC10605099 DOI: 10.3390/brainsci13101480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Combined antiretroviral therapy (cART) has greatly reduced the severity of HIV-associated neurocognitive disorders in people living with HIV (PLWH); however, PLWH are more likely than the general population to use drugs and suffer from substance use disorders (SUDs) and to exhibit risky behaviors that promote HIV transmission and other infections. Dopamine-boosting psychostimulants such as cocaine and methamphetamine are some of the most widely used substances among PLWH. Chronic use of these substances disrupts brain function, structure, and cognition. PLWH with SUD have poor health outcomes driven by complex interactions between biological, neurocognitive, and social factors. Here we review the effects of comorbid HIV and psychostimulant use disorders by discussing the distinct and common effects of HIV and chronic cocaine and methamphetamine use on behavioral and neurological impairments using evidence from rodent models of HIV-associated neurocognitive impairments (Tat or gp120 protein expression) and clinical studies. We also provide a biopsychosocial perspective by discussing behavioral impairment in differentially impacted social groups and proposing interventions at both patient and population levels.
Collapse
Affiliation(s)
- Leah Vines
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Diana Sotelo
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Natasha Giddens
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA;
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| |
Collapse
|
6
|
Kulbe JR, Le AA, Mante M, Florio J, Laird AE, Swinton MK, Rissman RA, Fields JA. GP120 and tenofovir alafenamide alter cannabinoid receptor 1 expression in hippocampus of mice. J Neurovirol 2023; 29:564-576. [PMID: 37801175 PMCID: PMC10645617 DOI: 10.1007/s13365-023-01155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Central nervous system (CNS) dysfunction remains prevalent in people with HIV (PWH) despite effective antiretroviral therapy (ART). There is evidence that low-level HIV infection and ART drugs may contribute to CNS damage in the brain of PWH with suppressed viral loads. As cannabis is used at a higher rate in PWH compared to the general population, there is interest in understanding how HIV proteins and ART drugs interact with the endocannabinoid system (ECS) and inflammation in the CNS. Therefore, we investigated the effects of the HIV envelope protein gp120 and tenofovir alafenamide (TAF) on cannabinoid receptor 1 (CB1R), glial fibrillary acidic protein (GFAP), and IBA1 in the brain and on locomotor activity in mice. The gp120 transgenic (tg) mouse model was administered TAF daily for 30 days and then analyzed using the open field test before being euthanized, and their brains were analyzed for CB1R, GFAP, and IBA1 expression using immunohistochemical approaches. CB1R expression levels were significantly increased in CA1, CA2/3, and dentate gyrus of gp120tg mice compared to wt littermates; TAF reversed these effects. As expected, TAF showed a medium effect of enhancing GFAP in the frontal cortex of gp120tg mice in the frontal cortex. TAF had minimal effect on IBA1 signal. TAF showed medium to large effects on fine movements, rearing, total activity, total distance, and lateral activity in the open-field test. These findings suggest that TAF may reverse gp120-induced effects on CB1R expression and, unlike tenofovir disoproxil fumarate (TDF), may not affect gliosis in the brain.
Collapse
Affiliation(s)
| | - Alexandra Anh Le
- University of California, San Diego Department of Psychiatry, San Diego, CA, USA
| | - Michael Mante
- University of California, San Diego Department of Neurosciences, San Diego, CA, USA
| | - Jazmin Florio
- University of California, San Diego Department of Neurosciences, San Diego, CA, USA
| | - Anna Elizabeth Laird
- University of California, San Diego Department of Psychiatry, San Diego, CA, USA
| | - Mary K Swinton
- University of California, San Diego Department of Psychiatry, San Diego, CA, USA
| | - Robert A Rissman
- University of California, San Diego Department of Neurosciences, San Diego, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine of USC, Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Jerel Adam Fields
- University of California, San Diego Department of Psychiatry, San Diego, CA, USA.
| |
Collapse
|
7
|
Namba MD, Xie Q, Barker JM. Advancing the preclinical study of comorbid neuroHIV and substance use disorders: Current perspectives and future directions. Brain Behav Immun 2023; 113:453-475. [PMID: 37567486 PMCID: PMC10528352 DOI: 10.1016/j.bbi.2023.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a persistent public health concern throughout the world. Substance use disorders (SUDs) are a common comorbidity that can worsen treatment outcomes for people living with HIV. The relationship between HIV infection and SUD outcomes is likely bidirectional, making clear interrogation of neurobehavioral outcomes challenging in clinical populations. Importantly, the mechanisms through which HIV and addictive drugs disrupt homeostatic immune and CNS function appear to be highly overlapping and synergistic within HIV-susceptible reward and motivation circuitry in the central nervous system. Decades of animal research have revealed invaluable insights into mechanisms underlying the pathophysiology SUDs and HIV, although translational studies examining comorbid SUDs and HIV are very limited due to the technical challenges of modeling HIV infection preclinically. In this review, we discuss preclinical animal models of HIV and highlight key pathophysiological characteristics of each model, with a particular emphasis on rodent models of HIV. We then review the implementation of these models in preclinical SUD research and identify key gaps in knowledge in the field. Finally, we discuss how cutting-edge behavioral neuroscience tools, which have revealed key insights into the neurobehavioral mechanisms of SUDs, can be applied to preclinical animal models of HIV to reveal potential, novel treatment avenues for comorbid HIV and SUDs. Here, we argue that future preclinical SUD research would benefit from incorporating comorbidities such as HIV into animal models and would facilitate the discovery of more refined, subpopulation-specific mechanisms and effective SUD prevention and treatment targets.
Collapse
Affiliation(s)
- Mark D Namba
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Jacqueline M Barker
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Liu J, Xie J, Dutta D, Xiong H. HIV-1 envelope protein gp120 modulation of glutamate effects on cortical neuronal synapses: implications for HIV-1-associated neuropathogenesis. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2023; 15:75-87. [PMID: 37457651 PMCID: PMC10349318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Despite the introduction of combined antiretroviral therapy (cART) HIV-1 virus persists in the brain in a latent or restricted manner and viral proteins, such as gp120, continue to play a significant disease-inciting role. Gp120 is known to interact with N-methyl-D-aspartate (NMDA) receptors (NMDARs) resulting in neuronal injury. Glutamate is the main excitatory neurotransmitter in the brain and plays an important role in cognitive function and dysregulation of excitatory synaptic transmission impairs neurocognition. It is our hypothesis that gp120 may alter synaptic function via modulating glutamate function from a physiological molecule to a pathophysiological substance. To test this hypothesis, we studied the modulatory effects of gp120 and glutamate on NMDAR-mediated spontaneous excitatory postsynaptic current (sEPSCNMDAR) and dynamic dendritic spine changes in rat cortical neuronal cultures. Our results revealed that gp120 and glutamate each, at low concentrations, had no significant effects on sEPSCNMDAR and dendritic spines, but increased sEPSCNMDAR frequency, decreased numbers of dendritic spines when tested in combination. The observed effects were blocked by either a CXCR4 blocker or an NMDAR antagonist, indicating the involvements of chemokine receptor CXCR4 and NMDARs in gp120 modulation of glutamate effects. These results may imply a potential mechanism for HIV-1-associated neuropathogenesis in the cART era.
Collapse
Affiliation(s)
- Jianuo Liu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198-5880, USA
| | - Jinyan Xie
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198-5880, USA
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Debashis Dutta
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198-5880, USA
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198-5880, USA
| |
Collapse
|
9
|
Canonico D, Casale S, Look T, Cao L. Effects of Morphine on Gp120-induced Neuroinflammation Under Immunocompetent Vs. Immunodeficient Conditions. J Neuroimmune Pharmacol 2023; 18:24-40. [PMID: 35059975 DOI: 10.1007/s11481-021-10040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is a common complication of HIV infection, whose development is known to be facilitated by inflammation and exacerbated by morphine. Previously, using the gp120 transgenic (tg) mouse model in combination with LP-BM5 (a murine retrovirus that can cause systemic immunodeficiency in susceptible mouse strains) we demonstrated differential gp120-associated central nervous system (CNS) neuroinflammatory responses under immunocompetent (-LP-BM5) vs. immunocompromised (+LP-BM5) conditions. Here, we further investigated the effects of morphine on gp120-associated neuroinflammatory response within the hippocampus under differential immune status. First, we confirmed that morphine treatment (2 × 25 mg pellets) did not significantly affect the development of immunodeficiency induced by LP-BM5 and all brain regions examined (hippocampus, striatum, and frontal lobe) had detectable LP-BM5 viral gag genes. Morphine notably reduced the performance of gp120tg+ mice in the alteration T-maze assay when 2-minute retention was used, regardless of LP-BM5 treatment. Morphine further enhanced GFAP expression in gp120tg+ mice regardless of host immune status, while promoted CD11b expression only in immunocompetent mice, regardless of gp120tg expression. In immunocompetent gp120tg+ mice, morphine increased the RNA expression of CCL2, CCL5, CXCL10, IL-12p40, and IFNβ; while under the immunodeficient condition, morphine downregulated the expression of CCL2, CCL5, CXCL10, IL-12p40, and IL-1β. Further, expression of TNFα and IFNγ were enhanced by morphine regardless of host immune status. Altogether, our results suggest that the effects of morphine are complex and dependent on the immune status of the host, and host immune status-specific, targeted anti-neuroinflammatory strategies are required for effective treatment of HAND.
Collapse
Affiliation(s)
- Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Sadie Casale
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Tristan Look
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, United States, ME
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, United States, ME.
- , 11 Hills Beach Road, 04005, Biddeford, United States, ME.
| |
Collapse
|
10
|
Ayoub S, Kenton JA, Milienne-Petiot M, Deben DS, Achim C, Geyer MA, Perry W, Grant IE, Young JW, Minassian A. iTat transgenic mice exhibit hyper-locomotion in the behavioral pattern monitor after chronic exposure to methamphetamine but are unaffected by Tat expression. Pharmacol Biochem Behav 2023; 222:173499. [PMID: 36462584 PMCID: PMC10014034 DOI: 10.1016/j.pbb.2022.173499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Although antiretroviral therapy (ART) has increased the quality of life and lifespan in people living with HIV (PWH), millions continue to suffer from the neurobehavioral effects of the virus. Additionally, the abuse of illicit drugs (methamphetamine in particular) is significantly higher in PWH compared to the general population, which may further impact their neurological functions. The HIV regulatory protein, Tat, has been implicated in the neurobehavioral impacts of HIV and is purported to inhibit dopamine transporter (DAT) function in a way similar to methamphetamine. Thus, we hypothesized that a combination of Tat expression and methamphetamine would exert synergistic deleterious effects on behavior and DAT expression. We examined the impact of chronic methamphetamine exposure on exploration in transgenic mice expressing human Tat (iTat) vs. their wildtype littermates using the behavioral pattern monitor (BPM). During baseline, mice exhibited sex-dependent differences in BPM behavior, which persisted through methamphetamine exposure, and Tat activation with doxycycline. We observed a main effect of methamphetamine, wherein exposure, irrespective of genotype, increased locomotor activity and decreased specific exploration. After doxycycline treatment, mice continued to exhibit drug-dependent alterations in locomotion, with no effect of Tat, or methamphetamine interactions. DAT levels were higher in wildtype, saline-exposed males compared to all other groups. These data support stimulant-induced changes of locomotor activity and exploration, and suggest that viral Tat and methamphetamine do not synergistically interact to alter these behaviors in mice. These findings are important for future studies attempting to disentangle the effect of substances that impact DAT on HAND-relevant behaviors using such transgenic animals.
Collapse
Affiliation(s)
- Samantha Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Debbie S Deben
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Research Service, VA San Diego Healthcare System, San Diego, CA, United States of America
| | - William Perry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Igor E Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; Research Service, VA San Diego Healthcare System, San Diego, CA, United States of America.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States of America
| |
Collapse
|
11
|
Yuan NY, Maung R, Xu Z, Han X, Kaul M. Arachidonic Acid Cascade and Eicosanoid Production Are Elevated While LTC4 Synthase Modulates the Lipidomics Profile in the Brain of the HIVgp120-Transgenic Mouse Model of NeuroHIV. Cells 2022; 11:2123. [PMID: 35805207 PMCID: PMC9265961 DOI: 10.3390/cells11132123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Combination antiretroviral therapy (cART) has transformed HIV infection from a terminal disease to a manageable chronic health condition, extending patients' life expectancy to that of the general population. However, the incidence of HIV-associated neurocognitive disorders (HANDs) has persisted despite virological suppression. Patients with HIV display persistent signs of immune activation and inflammation despite cART. The arachidonic acid (AA) cascade is an important immune response system responsible for both pro- and anti-inflammatory processes. METHODS Lipidomics, mRNA and Western blotting analysis provide valuable insights into the molecular mechanisms surrounding arachidonic acid metabolism and the resulting inflammation caused by perturbations thereof. RESULTS Here, we report the presence of inflammatory eicosanoids in the brains of a transgenic mouse model of NeuroHIV that expresses soluble HIV-1 envelope glycoprotein in glial cells (HIVgp120tg mice). Additionally, we report that the effect of LTC4S knockout in HIVgp120tg mice resulted in the sexually dimorphic transcription of COX- and 5-LOX-related genes. Furthermore, the absence of LTC4S suppressed ERK1/2 and p38 MAPK signaling activity in female mice only. The mass spectrometry-based lipidomic profiling of these mice reveals beneficial alterations to lipids in the brain. CONCLUSION Targeting the AA cascade may hold potential in the treatment of neuroinflammation observed in NeuroHIV and HANDs.
Collapse
Affiliation(s)
- Nina Y. Yuan
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA; (N.Y.Y.); (R.M.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricky Maung
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA; (N.Y.Y.); (R.M.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ziying Xu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Z.X.); (X.H.)
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (Z.X.); (X.H.)
- Department of Medicine-Diabetes, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA; (N.Y.Y.); (R.M.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Aberrant Synaptic Pruning in CNS Diseases: A Critical Player in HIV-Associated Neurological Dysfunction? Cells 2022; 11:cells11121943. [PMID: 35741071 PMCID: PMC9222069 DOI: 10.3390/cells11121943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Even in the era of effective antiretroviral therapies, people living with Human Immunodeficiency Virus (HIV) are burdened with debilitating neurological dysfunction, such as HIV-associated neurocognitive disorders (HAND) and HIV-associated pain, for which there are no FDA approved treatments. Disruption to the neural circuits of cognition and pain in the form of synaptic degeneration is implicated in developing these dysfunctions. Glia-mediated synaptic pruning is a mechanism of structural plasticity in the healthy central nervous system (CNS), but recently, it has been discovered that dysregulated glia-mediated synaptic pruning is the cause of synaptic degeneration, leading to maladaptive plasticity and cognitive deficits in multiple diseases of the CNS. Considering the essential contribution of activated glial cells during the development of HAND and HIV-associated pain, it is possible that glia-mediated synaptic pruning is the causative mechanism of synaptic degeneration induced by HIV. This review will analyze the known examples of synaptic pruning during disease in order to better understand how this mechanism could contribute to the progression of HAND and HIV-associated pain.
Collapse
|
13
|
Jordan Walter T, Minassian A, Perry W, Young JW. Combined prior chronic methamphetamine treatment and gp120 expression reduce PPI in aged male but not female mice. Neurosci Lett 2022; 780:136639. [PMID: 35452766 DOI: 10.1016/j.neulet.2022.136639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022]
Abstract
Methamphetamine (METH) use disorder is highly prevalent among people with HIV and is a significant public health problem. Furthermore, people with HIV are living longer and using drugs such as METH even into old age, making it important to understand the effects of METH use and aging in this population. HIV, METH, and aging negatively impact a variety of brain functions, including sensorimotor gating (i.e. - automatic, pre-conscious information processing). Sensorimotor gating is often measured using prepulse inhibition (PPI), a paradigm that can be conducted in animals, thereby allowing for preclinical studies. Little is known about how HIV, METH, and aging interact to affect PPI. The goal of this study was therefore to examine how METH affects PPI in aged gp120 mice, a mouse model of HIV. PPI was measured at 8, 14, and 22 months in male and female wild type (WT) and gp120 mice. PPI was also measured during and after METH treatment at 23-24 months. Aging was associated with decreased PPI in both sexes and genotypes. Combined prior METH treatment and gp120 expression caused the greatest reduction in PPI in aged male mice. Prior METH treatment decreased PPI in aged WT female mice, but not aged gp120 female mice. Overall, these results suggest the effects of HIV and METH on information processing seem to be influenced by age and sex. Combined HIV and METH may impair information processing in older men, but not older women.
Collapse
Affiliation(s)
- T Jordan Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Research Services, Veterans Administration San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
14
|
Shrestha J, Santerre M, Allen CNS, Arjona SP, Merali C, Mukerjee R, Chitrala KN, Park J, Bagashev A, Bui V, Eugenin EA, Merali S, Kaul M, Chin J, Sawaya BE. HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein. Front Aging Neurosci 2022; 14:811481. [PMID: 35615594 PMCID: PMC9124804 DOI: 10.3389/fnagi.2022.811481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Carmen Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | | | - Jin Park
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
| | - Viet Bui
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Salim Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jeannie Chin
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|
15
|
Wang L, Zeng Y, Zhou Y, Yu J, Liang M, Qin L, Zhou Y. Win55,212-2 Improves Neural Injury induced by HIV-1 Glycoprotein 120 in Rats by Exciting CB2R. Brain Res Bull 2022; 182:67-79. [DOI: 10.1016/j.brainresbull.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
|
16
|
Synergistic Impairment of the Neurovascular Unit by HIV-1 Infection and Methamphetamine Use: Implications for HIV-1-Associated Neurocognitive Disorders. Viruses 2021; 13:v13091883. [PMID: 34578464 PMCID: PMC8473422 DOI: 10.3390/v13091883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The neurovascular units (NVU) are the minimal functional units of the blood-brain barrier (BBB), composed of endothelial cells, pericytes, astrocytes, microglia, neurons, and the basement membrane. The BBB serves as an important interface for immune communication between the brain and peripheral circulation. Disruption of the NVU by the human immunodeficiency virus-1 (HIV-1) induces dysfunction of the BBB and triggers inflammatory responses, which can lead to the development of neurocognitive impairments collectively known as HIV-1-associated neurocognitive disorders (HAND). Methamphetamine (METH) use disorder is a frequent comorbidity among individuals infected with HIV-1. METH use may be associated not only with rapid HIV-1 disease progression but also with accelerated onset and increased severity of HAND. However, the molecular mechanisms of METH-induced neuronal injury and cognitive impairment in the context of HIV-1 infection are poorly understood. In this review, we summarize recent progress in the signaling pathways mediating synergistic impairment of the BBB and neuronal injury induced by METH and HIV-1, potentially accelerating the onset or severity of HAND in HIV-1-positive METH abusers. We also discuss potential therapies to limit neuroinflammation and NVU damage in HIV-1-infected METH abusers.
Collapse
|
17
|
Red Algal Sulfated Galactan Binds and Protects Neural Cells from HIV-1 gp120 and Tat. Pharmaceuticals (Basel) 2021; 14:ph14080714. [PMID: 34451811 PMCID: PMC8398392 DOI: 10.3390/ph14080714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/31/2023] Open
Abstract
The potential neuroprotective capacity of four different sulfated glycans: Botryocladia occidentalis-derived sulfated galactan (BoSG) (MW > 100 kDa), Lytechinus variegatus-derived sulfated fucan (LvSF) (MW~90 kDa), high-molecular weight dextran sulfate (DxS) (MW 100 kDa), and unfractionated heparin (UFH) (MW~15 kDa), was assessed in response to the HIV-1 proteins, R5-tropic glycoprotein 120 (gp120) and/or trans-activator of transcription (Tat), using primary murine neurons co-cultured with mixed glia. Compared to control-treated cells in which HIV-1 proteins alone or combined were neurotoxic, BoSG was, among the four tested sulfated glycans, the only one capable of showing significant concentration-dependent neuroprotection against Tat and/or gp120, alone or combined. Surface plasmon resonance-based data indicate that BoSG can bind both HIV-1 proteins at nM concentrations with preference for Tat (7.5 × 10−8 M) over gp120 (3.2 × 10−7 M) as compared to UFH, which bound gp120 (8.7 × 10−7 M) over Tat (5.7 × 10−6 M). Overall, these data support the notion that sulfated glycan extracted from the red alga B. occidentalis, BoSG, can exert neuroprotection against HIV-1 Tat and gp120, potentially via direct molecular interactions.
Collapse
|
18
|
Arabatzis TJ, Wakley AA, McLane VD, Canonico D, Cao L. Effects of HIV gp120 on Neuroinflammation in Immunodeficient vs. Immunocompetent States. J Neuroimmune Pharmacol 2021; 16:437-453. [PMID: 32627098 PMCID: PMC7785647 DOI: 10.1007/s11481-020-09936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
HIV affects 37 million people worldwide, 25-69% of which develop HIV-associated neurocognitive disorders (HAND) regardless of antiviral treatment. HIV infection of the brain decreases cognitive function, disrupts/impairs learning and memory, and reduces quality of life for those affected. HIV-induced neuroinflammation has been associated with viral proteins such as gp120 and Tat, which remain elevated in the CNS even in patients with low peripheral viremia counts. In this study, we examined the effects of gp120 on neuroinflammation in immunodeficient vs. immunocompetent states by examining neuroinflammatory markers in gp120tg mice with or without systemic immunodeficiency caused by murine retroviral administration (LP-BM5 murine AIDS). Changes in inflammatory cytokine/chemokine mRNA expression was complex and dependent upon expression of gp120 protein, immunodeficiency status, brain region (hippocampus, frontal lobe, or striatum), and age. Gp120 expression reduced hippocampal synaptophysin expression but did not affect animals' learning/memory on the spontaneous T-maze test in our experimental conditions. Our results emphasize the critical role of the neuroinflammatory micro-environment and the peripheral immune system context in which gp120 acts. Multiple factors, particularly system-level differences in the immune response of different brain regions, need to be considered when developing treatment for HAND. Graphical Abstract.
Collapse
Affiliation(s)
- Taxiarhia J Arabatzis
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Alexa A Wakley
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
| | - Virginia D McLane
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Dalton Canonico
- Department of Biology, University of New England College of Arts and Sciences, Biddeford, ME, USA
| | - Ling Cao
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, 11 Hills Beach Road, Biddeford, ME, 04005, USA.
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
19
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
20
|
Walter TJ, Young JW, Milienne-Petiot M, Deben DS, Heaton RK, Letendre S, Grelotti DJ, Perry W, Grant I, Minassian A. Both HIV and Tat expression decrease prepulse inhibition with further impairment by methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110089. [PMID: 32891668 PMCID: PMC7750302 DOI: 10.1016/j.pnpbp.2020.110089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
Abstract
HIV infection and methamphetamine (METH) use are highly comorbid and represent a significant public health problem. Both conditions are known to negatively impact a variety of brain functions. One brain function that may be affected by HIV and METH use is sensorimotor gating, an automatic, pre-conscious filtering of sensory information that is thought to contribute to higher order cognitive processes. Sensorimotor gating is often measured using prepulse inhibition (PPI), a paradigm that can be conducted in both humans and animals, thereby enabling cross-species translational studies. While previous studies suggest HIV and METH may individually impair PPI, little research has been conducted on the effects of combined HIV and METH on PPI. The goal of this cross-species study was to determine the effects of METH on PPI in the inducible Tat (iTat) mouse model of HIV and in people with HIV. PPI was measured in the iTat mouse model before, during, and after chronic METH treatment and after Tat induction. Chronic METH treatment decreased PPI in male but not female mice. PPI normalized with cessation of METH. Inducing Tat expression decreased PPI in male but not in female mice. No interactions between chronic METH treatment and Tat expression were observed in mice. In humans, HIV was associated with decreased PPI in both men and women. Furthermore, PPI was lowest in people with HIV who also had a history of METH dependence. Overall, these results suggest HIV and METH may additively impair early information processing in humans, potentially affecting downstream cognitive function.
Collapse
Affiliation(s)
- T. Jordan Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Corresponding Author at: 410 Dickinson St, Office 6, San Diego CA, 92103, Telephone: 619-543-3098,
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Research Services, Veterans Administration San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego CA, 92161, USA
| | - Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - D. S. Deben
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Scott Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - David J. Grelotti
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | | |
Collapse
|
21
|
Yang S, Deng X, Zhang T, Xiao Y, Peng L, Li L, He X, Wei Y, Liu L, Cao H, Long B, Huang S. [SBi4211 alleviates gp120-induced central nervous system injury via inhibiting S100B/ RAGE]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1693-1702. [PMID: 33380406 DOI: 10.12122/j.issn.1673-4254.2020.12.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the protective effect of SBi4211 (heptamidine), an inhibitor of S100B, against central nervous system injury induced by HIV-1 envelope protein gp120. METHODS In an in vitro model, U251 glioma cells were co-cultured with SH-SY5Y cells to explore the protective effect of SBi4211 against gp120-induced central nervous system injury. In a gp120 transgenic (Tg) mouse model (8 months old) mimicking HIV-associated neurocognitive disorder (HAND), the effect of treatment with gp120 or both gp120 and SBi4211 on neuronal activity and apoptosis were assessed using Cell Counting kit-8 (CCK-8) and flow cytometry. ELISA, Western blotting and immunohistochemistry were used to determine the expression levels of S100B, RAGE, GFAP, NeuN, Syn, MAP-2 and the inflammatory factors IL-6 and TNF-α. RESULTS In the cell co-culture system, SBi4211 treatment significantly inhibited gp120-induced expression of S100B, RAGE and GFAP in U251 cells (P < 0.001), reduced the levels of inflammatory factors iNOS, IL-6 and TNF-α (P < 0.001) and enhanced the expressions of neuron-related proteins NeuN, Syn and MAP-2 (P < 0.001). In the transgenic mouse model, SBi4211 treatment significantly reduced the expressions of S100B, RAGE and inflammation levels (P < 0.05), inhibited the activation of astrocytes in the brain, and maintained the integrity of the neurons (P < 0.05). CONCLUSIONS SBi4211 can protect neurons from gp120-induced neurotoxicity possibly by inhibiting the S100B/ RAGE-mediated signaling pathway.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyan Deng
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Tiesong Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China
| | - Yi Xiao
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Liang Peng
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yi Wei
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Liqun Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Beiguo Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shenghe Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Ojeda-Juárez D, Shah R, Fields JA, Harahap-Carrillo I, Koury J, Maung R, Gelman BB, Baaten BJ, Roberts AJ, Kaul M. Lipocalin-2 mediates HIV-1 induced neuronal injury and behavioral deficits by overriding CCR5-dependent protection. Brain Behav Immun 2020; 89:184-199. [PMID: 32534984 PMCID: PMC8153086 DOI: 10.1016/j.bbi.2020.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/27/2023] Open
Abstract
People living with HIV (PLWH) continue to develop HIV-associated neurocognitive disorders despite combination anti-retroviral therapy. Lipocalin-2 (LCN2) is an acute phase protein that has been implicated in neurodegeneration and is upregulated in a transgenic mouse model of HIV-associated brain injury. Here we show that LCN2 is significantly upregulated in neocortex of a subset of HIV-infected individuals with brain pathology and correlates with viral load in CSF and pro-viral DNA in neocortex. However, the question if LCN2 contributes to HIV-associated neurotoxicity or is part of a protective host response required further investigation. We found that the knockout of LCN2 in transgenic mice expressing HIVgp120 in the brain (HIVgp120tg) abrogates behavioral impairment, ameliorates neuronal damage, and reduces microglial activation in association with an increase of the neuroprotective CCR5 ligand CCL4. In vitro experiments show that LCN2 neurotoxicity also depends on microglia and p38 MAPK activity. Genetic ablation of CCR5 in LCN2-deficient HIVgp120tg mice restores neuropathology, suggesting that LCN2 overrides neuroprotection mediated by CCR5 and its chemokine ligands. RNA expression of 168 genes involved in neurotransmission reveals that neuronal injury and protection are each associated with genotype- and sex-specific patterns affecting common neural gene networks. In conclusion, our study identifies LCN2 as a novel factor in HIV-associated brain injury involving CCR5, p38 MAPK and microglia. Furthermore, the mechanistic interaction between LCN2 and CCR5 may serve as a diagnostic and therapeutic target in HIV patients at risk of developing brain pathology and neurocognitive impairment.
Collapse
Affiliation(s)
- Daniel Ojeda-Juárez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Rohan Shah
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Indira Harahap-Carrillo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Ricky Maung
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, 77555-0419 Galveston, TX USA,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd, 77555-0419 Galveston, TX USA
| | - Bas J. Baaten
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Amanda J. Roberts
- Animal Models Core, The Scripps Research Institute, 10550 N. Torrey Pines Rd, MB-P300, La Jolla, CA 92037, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
24
|
胡 彤, 龚 泽, 万 宇, 李 煜, 高 雪, 伦 静, 黄 胜, 曹 虹. [Establishment of a gp120 transgenic mouse model with α7 nAChR knockout]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1184-1191. [PMID: 32895175 PMCID: PMC7429164 DOI: 10.12122/j.issn.1673-4254.2020.08.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct a HIV-1 gp120 transgenic mouse model (gp120+) with α7 nicotinic acetylcholine receptor (α7nAChR) gene knockout. METHODS The α7nAChR gene knockout mice (α7R-/-) were crossed with HIV-1gp120 transgenic mice (gp120+) to generate F1 generation mice. We selected the F1 mice with the genotype of α7R+/-/gp120+ to mate to obtain the F2 mice. The genotypes of the F3 mice were identified by PCR, and the protein expressions in the double transgenic animal model was analyzed by immunohistochemistry. BV2 cells were treated with gp120 protein and α7nAChR inhibitor, and the expressions of IL-1β and TNF-α were detected using ELISA. RESULTS The results of PCR showed the bands of the expected size in F3 mice. Two F3 mice with successful double gene editing (α7R-/-/gp120+) were obtained, and immunohistochemistry showed that the brain tissue of the mice did not express α7 nAChR but with high gp120 protein expression. In the in vitro cell experiment, treatment with gp120 promoted the secretion of IL-1β and TNF-α in BV2 cells, while inhibition of α7nAChR significantly decreased the expression of IL-1β and TNF-α (P < 0.001). CONCLUSIONS By mating gp120 Tg mice with α7R-/- mice, we obtained gp120 transgenic mice with α7nAChR gene deletion, which serve as a new animal model for exploring the role of α7nAChR in gp120-induced neurotoxicity.
Collapse
Affiliation(s)
- 彤彤 胡
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 泽龙 龚
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 宇 万
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 煜彬 李
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 雪锋 高
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 静娴 伦
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| | - 胜和 黄
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
- 南加州大学洛杉矶儿童医院,洛杉矶 90027Los Angeles Children's Hospital, University of Southern California, Los Angeles, 90027, USA
| | - 虹 曹
- 南方医科大学公共卫生学院//广东省热带病研究重点实验室,微生物学系,广东 广州 510515Department of Microbiology, School of Public Health, Southern Medical University/Guangdong Key Laboratory of Tropical Diseases, Guangzhou 510515, China
| |
Collapse
|
25
|
He X, Peng L, Zhang B, Li L, Wu C, Xiao H, Yang W, Zeng Z, Yang X, Long M, Cao H, Huang S. [Establishment of a vimentin knockout and HIV-1 gp120 transgenic mouse model]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:519-524. [PMID: 32895127 DOI: 10.12122/j.issn.1673-4254.2020.04.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct a HIV-1 gp120 transgenic mice (gp120 Tg) with vimentin (VIM) gene knockout. METHODS Female HIV-1 gp120 Tg mice were mated to VIM heterozygote mice (F0). All the offspring mice were derived from these original founders so that both genotypes had the same mixed genetic background. The F1 mice were bred to generate of VIM+/+, VIM-/-, VIM+/+/gp120 Tg and VIM-/-/gp120 Tg mice. PCR was performed for genotyping of the mice, and the expressions of VIM and gp120 in the brain tissues were examined using immunoblotting. RESULTS The results of PCR showed the presence of the target bands in VIM+/+, VIM-/-, VIM+/+/gp120 Tg and VIM-/-/gp120 Tg mice. In VIM-/-/gp120 Tg mice, gp120 expression was detected throughout the brain regions while no VIM expression was detected. CONCLUSIONS We generated gp120 transgenic mouse models with VIM gene knockout, which facilitate the exploration of the role of VIM in gp120-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Liang Peng
- Clinical Laboratory, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles 90027, USA
| | - Bao Zhang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles 90027, USA
| | - Chunhua Wu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China
| | - Hansen Xiao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Weijun Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijie Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiao Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Min Long
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shenghe Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Kunming Key Laboratory of Children Infection and Immunity, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles 90027, USA
| |
Collapse
|
26
|
Systems Biology Analysis of the Antagonizing Effects of HIV-1 Tat Expression in the Brain over Transcriptional Changes Caused by Methamphetamine Sensitization. Viruses 2020; 12:v12040426. [PMID: 32283831 PMCID: PMC7232389 DOI: 10.3390/v12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (Meth) abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein, trans-activator of transcription (Tat), has been described to induce changes in brain gene transcription that can result in impaired reward circuitry, as well as in inflammatory processes. In transgenic mice with doxycycline-induced Tat protein expression in the brain, i.e., a mouse model of neuroHIV, we tested global gene expression patterns induced by Meth sensitization. Meth-induced locomotor sensitization included repeated daily Meth or saline injections for seven days and Meth challenge after a seven-day abstinence period. Brain samples were collected 30 min after the Meth challenge. We investigated global gene expression changes in the caudate putamen, an area with relevance in behavior and HIV pathogenesis, and performed pathway and transcriptional factor usage predictions using systems biology strategies. We found that Tat expression alone had a very limited impact in gene transcription after the Meth challenge. In contrast, Meth-induced sensitization in the absence of Tat induced a global suppression of gene transcription. Interestingly, the interaction between Tat and Meth broadly prevented the Meth-induced global transcriptional suppression, by maintaining regulation pathways, and resulting in gene expression profiles that were more similar to the controls. Pathways associated with mitochondrial health, initiation of transcription and translation, as well as with epigenetic control, were heavily affected by Meth, and by its interaction with Tat in anti-directional ways. A series of systems strategies have predicted several components impacted by these interactions, including mitochondrial pathways, mTOR/RICTOR, AP-1 transcription factor, and eukaryotic initiation factors involved in transcription and translation. In spite of the antagonizing effects of Tat, a few genes identified in relevant gene networks remained downregulated, such as sirtuin 1, and the amyloid precursor protein (APP). In conclusion, Tat expression in the brain had a low acute transcriptional impact but strongly interacted with Meth sensitization, to modify effects in the global transcriptome.
Collapse
|
27
|
Santerre M, Wang Y, Arjona S, Allen C, Sawaya BE. Differential Contribution of HIV-1 Subtypes B and C to Neurological Disorders: Mechanisms and Possible Treatments. AIDS Rev 2019; 21:76-83. [PMID: 31332398 DOI: 10.24875/aidsrev.19000051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the introduction of combinatory antiretroviral therapy, patients infected with human immunodeficiency virus type 1 (HIV-1) can live much longer than before. However, the identification of HIV-associated neurocognitive disorder (HAND), especially HIV-associated dementia in 15-20% of patients infected with HIV-1, indicates additional complexity. These disorders turn out to be subtype dependent. Recently, many studies are ongoing trying to understand how the virus induces neuronal injury which could lead to neurological dysfunction. Most of these studies are focusing on the HIV-1 release of proteins such as Tat. However, the exact role of these proteins and their involvement in neuronal degeneration remains unidentified; this is especially true since viral proteins from different HIV-1 subtypes differ in their ability to cause neuronal damage. This review describes the role of different HIV-1 subtypes, identifies probable pathways involved in neuronal damage, the contribution of different HIV-1 subtypes to the progression of HAND, and potential treatments for HAND.
Collapse
Affiliation(s)
- Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Ying Wang
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Sterling Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Charles Allen
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Bassel E Sawaya
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 2019; 68:878-897. [PMID: 31626364 DOI: 10.1002/glia.23734] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Tianming Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Li Tong
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Speidell A, Asuni GP, Avdoshina V, Scognamiglio S, Forcelli P, Mocchetti I. Reversal of Cognitive Impairment in gp120 Transgenic Mice by the Removal of the p75 Neurotrophin Receptor. Front Cell Neurosci 2019; 13:398. [PMID: 31543761 PMCID: PMC6730486 DOI: 10.3389/fncel.2019.00398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
Activation of the p75 neurotrophin receptor (p75NTR), by the proneurotrophin brain-derived neurotrophic factor (proBDNF), triggers loss of synapses and promotes neuronal death. These pathological features are also caused by the human immunodeficiency virus-1 (HIV) envelope protein gp120, which increases the levels of proBDNF. To establish whether p75NTR plays a role in gp120-mediated neurite pruning, we exposed primary cultures of cortical neurons from p75NTR–/– mice to gp120. We found that the lack of p75NTR expression significantly reduced gp120-mediated neuronal cell death. To determine whether knocking down p75NTR is neuroprotective in vivo, we intercrossed gp120 transgenic (tg) mice with p75NTR heterozygous mice to obtain gp120tg mice lacking one or two p75NTR alleles. The removal of p75NTR alleles inhibited gp120-mediated decrease of excitatory synapses in the hippocampus, as measured by the levels of PSD95 and subunits of the N-methyl-D-Aspartate receptor in synaptosomes. Moreover, the deletion of only one copy of the p75NTR gene was sufficient to restore the cognitive impairment observed in gp120tg mice. Our data suggest that activation of p75NTR is one of the mechanisms crucial for the neurotoxic effect of gp120. These data indicate that p75NTR antagonists could provide an adjunct therapy against synaptic simplification caused by HIV.
Collapse
Affiliation(s)
- Andrew Speidell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Gino Paolo Asuni
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Valeria Avdoshina
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Serena Scognamiglio
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - Patrick Forcelli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
30
|
Abstract
In the era of combination antiretroviral therapy, the diagnosis and management of HIV-associated neurocognitive disorders (HANDs) has arisen. Traditionally, severe HAND was seen in those with untreated HIV infection and had a guarded prognosis. Antiretroviral therapy has provided longevity and viral control to many living with the disease, revealing an increase in prevalence of less severe forms of HAND. Despite peripheral blood and cerebrospinal fluid viral suppression, cognitive impairment occurs and progresses for reasons that are unclear at present. This article provides a review of current theories behind the development of HAND, clinical and pathologic findings, recent developments, and future research opportunities.
Collapse
|
31
|
NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cell Mol Immunol 2019; 17:283-299. [PMID: 31320730 DOI: 10.1038/s41423-019-0260-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) envelope protein gp120 is the major contributor to the pathogenesis of HIV-associated neurocognitive disorder (HAND). Neuroinflammation plays a pivotal role in gp120-induced neuropathology, but how gp120 triggers neuroinflammatory processes and subsequent neuronal death remains unknown. Here, we provide evidence that NLRP3 is required for gp120-induced neuroinflammation and neuropathy. Our results showed that gp120-induced NLRP3-dependent pyroptosis and IL-1β production in microglia. Inhibition of microglial NLRP3 inflammasome activation alleviated gp120-mediated neuroinflammatory factor release and neuronal injury. Importantly, we showed that chronic administration of MCC950, a novel selective NLRP3 inhibitor, to gp120 transgenic mice not only attenuated neuroinflammation and neuronal death but also promoted neuronal regeneration and restored the impaired neurocognitive function. In conclusion, our data revealed that the NLRP3 inflammasome is important for gp120-induced neuroinflammation and neuropathology and suggest that NLRP3 is a potential novel target for the treatment of HAND.
Collapse
|
32
|
Pandey HS, Seth P. Friends Turn Foe-Astrocytes Contribute to Neuronal Damage in NeuroAIDS. J Mol Neurosci 2019; 69:286-297. [PMID: 31236774 DOI: 10.1007/s12031-019-01357-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes play a wide variety of roles in the central nervous system (CNS). Various facets of astrocyte-neuron interplay, investigated for the past few decades, have placed these most abundant and important glial cell types to be of supreme importance for the maintenance of the healthy CNS. Interestingly, glial dysfunctions have proven to be the major contributor to neuronal loss in several CNS disorders and pathologies. Specifically, in the field of neuroAIDS, glial dysfunction-mediated neuronal stress is a major factor contributing to the HIV-1 neuropathogenesis. As there is increasing evidence that astrocytes harbor HIV-1 and serve as "safe haven" for the dormant virus in the brain, the indirect pathway of neuronal damage has taken over the direct neuronal damage in its contribution to HIV-1 neuropathogenesis. In this review, we provide a brief insight into the astrocyte functions and dysfunctions in different CNS conditions with an elaborated insight into neuroAIDS. Detailed understanding of the role of astrocytes in neuroAIDS will help in the better therapeutic management of the neurological problems associated with HIV-1 patients.
Collapse
Affiliation(s)
- Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
33
|
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses 2019; 11:E252. [PMID: 30871179 PMCID: PMC6466164 DOI: 10.3390/v11030252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Well-developed mouse models are important for understanding the pathogenesis and progression of immunological response to viral infections in humans. Moreover, to test vaccines, anti-viral drugs and therapeutic agents, mouse models are fundamental for preclinical investigations. Human viruses, however, seldom infect mice due to differences in the cellular receptors used by the viruses for entry, as well as in the innate immune responses in mice and humans. In other words, a species barrier exists when using mouse models for investigating human viral infections. Developing transgenic (Tg) mice models expressing the human genes coding for viral entry receptors and knock-out (KO) mice models devoid of components involved in the innate immune response have, to some extent, overcome this barrier. Humanized mouse models are a third approach, developed by engrafting functional human cells and tissues into immunodeficient mice. They are becoming indispensable for analyzing human viral diseases since they nearly recapitulate the human disease. These mouse models also serve to test the efficacy of vaccines and antiviral agents. This review provides an update on the Tg, KO, and humanized mouse models that are used in studies investigating the pathogenesis of three important human-specific viruses, namely human immunodeficiency (HIV) virus 1, influenza, and dengue.
Collapse
Affiliation(s)
- Vinodhini Krishnakumar
- Department of Microbiology, School of Life Sciences, Central University of Tamilnadu, Tiruvarur 610 005, India.
| | | | - Kalichamy Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India.
| | - Min Li
- Neuroscience Research Laboratory, Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR, China.
| | | |
Collapse
|
34
|
Green MV, Thayer SA. HIV gp120 upregulates tonic inhibition through α5-containing GABA ARs. Neuropharmacology 2019; 149:161-168. [PMID: 30797029 DOI: 10.1016/j.neuropharm.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
HIV-Associated Neurocognitive disorder (HAND) affects nearly half of infected patients. The HIV envelope protein gp120 is shed by infected cells and is a potent neurotoxin in vitro that reproduces many aspects of HAND when expressed in vivo. Here, we show that HIV gp120 increases the amplitude of a tonic current mediated by γ-aminobutyric acid type-A receptors (GABAARs). Treating rat hippocampal cultures with 600 pM gp120IIIB for 4 h increased a tonic bicuculline-sensitive current, which remained elevated for 24 h. The increased current resulted from upregulation of extrasynaptic α5-containing GABAARs, as indicated by inhibition with the selective inverse agonist basmisanil. Treatment with gp120 increased α5-GABAAR immunoreactivity on the cell surface without new protein synthesis. The increase in tonic inhibition was prevented by a C-X-C chemokine receptor type 4 (CXCR4) antagonist or elimination of microglia from the culture. Treatment with interleukin-1β (IL-1β) increased the tonic current and an IL-1 receptor antagonist blocked the gp120-evoked response. Pharmacological or genetic inhibition of p38 mitogen-activated protein kinase (MAPK) prevented the gp120-evoked increase in tonic current and direct activation of a mutant form of p38 MAPK expressed in neurons increased the current. Collectively, these data show that gp120 activates CXCR4 to stimulate microglia to release IL-1β. Subsequent stimulation of IL-1 receptors activates p38 MAPK in neurons leading to the upregulation of α5-containing GABAARs. Increased tonic inhibition impairs neuroplasticity and inhibition of α5-containing GABAARs improves cognitive function in disease models. Thus, gp120-induced upregulation of α5-containing GABAARs presents a novel therapeutic target for HAND.
Collapse
Affiliation(s)
- Matthew V Green
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Stanley A Thayer
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA; Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
35
|
Zhang X, Green MV, Thayer SA. HIV gp120-induced neuroinflammation potentiates NMDA receptors to overcome basal suppression of inhibitory synapses by p38 MAPK. J Neurochem 2019; 148:499-515. [PMID: 30520043 DOI: 10.1111/jnc.14640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
HIV-associated neurocognitive disorder affects about half of HIV-infected patients. HIV impairs neuronal function through indirect mechanisms mainly mediated by inflammatory cytokines and neurotoxic viral proteins, such as the envelope protein gp120. HIV gp120 elicits a neuroinflammatory response that potentiates NMDA receptor function and induces the loss of excitatory synapses. How gp120 influences neuronal inhibition remains unknown. In this study, we expressed a green fluorescent protein (GFP)-tagged recombinant antibody-like protein that binds to the post-synaptic scaffolding protein gephyrin to label inhibitory synapses in living neurons. Treatment with 600 pM gp120 for 24 h increased the number of labeled inhibitory synapses. HIV gp120 evoked the release of interleukin-1β (IL-1β) from microglia to activate IL-1 receptors on neurons. Subsequent activation of the tyrosine kinase Src and GluN2A-containing NMDA receptors increased the number of inhibitory synapses via a process that required protein synthesis. In naïve cultures, inhibition of neuronal p38 mitogen-activated protein kinase (p38 MAPK) increased the number of inhibitory synapses suggesting that p38 MAPK produces a basal suppression of inhibitory synapses that is overcome in the presence of gp120. Direct activation of a mutant form of p38 MAPK expressed in neurons mimicked basal suppression of inhibitory synapses. This study shows for the first time that gp120-induced neuroinflammation increases the number of inhibitory synapses and that this increase overcomes a basal suppression of synaptic inhibition. Increased inhibition may be an adaptive mechanism enabling neurons to counteract excess excitatory input in order to maintain network homeostasis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Matthew V Green
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Putatunda R, Zhang Y, Li F, Yang XF, Barbe MF, Hu W. Adult neurogenic deficits in HIV-1 Tg26 transgenic mice. J Neuroinflammation 2018; 15:287. [PMID: 30314515 PMCID: PMC6182864 DOI: 10.1186/s12974-018-1322-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023] Open
Abstract
Background Even in the antiretroviral treatment (ART) era, HIV-1-infected patients suffer from milder forms of HIV-1-associated neurocognitive disorders (HAND). While the viral proteins Tat and gp120 have been shown to individually inhibit the proliferation and neural differentiation of neural stem cells (NSCs), no studies have characterized the effects of all the combined viral proteins on adult neurogenesis. Methods The HIV-1 Tg26 transgenic mouse model was used due to its clinical relevance to ART-controlled HIV-1-infected patients who lack active viral replication but suffer from continuous stress from the viral proteins. Quantitative RT-PCR analysis was performed to validate the expression of viral genes in the neurogenic zones. In vitro stemness and lineage differentiation assays were performed in cultured NSCs from HIV-1 Tg26 transgenic mice and their wild-type littermates. Hippocampal neurogenic lineage analysis was performed to determine potential changes in initial and late differentiation of NSCs in the subgranular zone (SGZ). Finally, fluorescent retroviral labeling of mature dentate granule neurons was performed to assess dendritic complexity and dendritic spine densities. Results Varying copy numbers of partial gag (p17), tat (unspliced and spliced variants), env (gp120), vpu, and nef transcripts were detected in the neurogenic zones of Tg26 mice. Significantly fewer primary neurospheres and a higher percentage of larger sized primary neurospheres were generated from Tg26 NSCs than from littermated wild-type mouse NSCs, implying that Tg26 mouse NSCs exhibit deficits in initial differentiation. In vitro differentiation assays revealed that Tg26 mouse NSCs have reduced neuronal differentiation and increased astrocytic differentiation. In the SGZs of Tg26 mice, significantly higher amounts of quiescent NSCs, as well as significantly lower levels of active NSCs, proliferating neural progenitor cells, and neuroblasts, were observed. Finally, newborn mature granule neurons in the dentate gyri of Tg26 mice had deficiencies in dendritic arborization, dendritic length, and dendritic spine density. Conclusions Both in vitro and in vivo studies demonstrate that HIV-1 Tg26 mice have early- and late-stage neurogenesis deficits, which could possibly contribute to the progression of HAND. Future therapies should be targeting this process to ameliorate, if not eliminate HAND-like symptoms in HIV-1-infected patients.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Yonggang Zhang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Fang Li
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
37
|
Optimizing animal models for HIV-associated CNS dysfunction and CNS reservoir research. J Neurovirol 2018; 24:137-140. [PMID: 29582355 DOI: 10.1007/s13365-018-0631-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
|