1
|
Van Duyne R, Irollo E, Lin A, Johnson JA, Guillem AM, O’Brien EV, Merja L, Nash B, Jackson JG, Sarkar A, Klase ZA, Meucci O. Adult Human Brain Tissue Cultures to Study NeuroHIV. Cells 2024; 13:1127. [PMID: 38994979 PMCID: PMC11240386 DOI: 10.3390/cells13131127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) persist under antiretroviral therapy as a complex pathology that has been difficult to study in cellular and animal models. Therefore, we generated an ex vivo human brain slice model of HIV-1 infection from surgically resected adult brain tissue. Brain slice cultures processed for flow cytometry showed >90% viability of dissociated cells within the first three weeks in vitro, with parallel detection of astrocyte, myeloid, and neuronal populations. Neurons within brain slices showed stable dendritic spine density and mature spine morphologies in the first weeks in culture, and they generated detectable activity in multi-electrode arrays. We infected cultured brain slices using patient-matched CD4+ T-cells or monocyte-derived macrophages (MDMs) that were exposed to a GFP-expressing R5-tropic HIV-1 in vitro. Infected slice cultures expressed viral RNA and developed a spreading infection up to 9 days post-infection, which were significantly decreased by antiretrovirals. We also detected infected myeloid cells and astrocytes within slices and observed minimal effect on cellular viability over time. Overall, this human-centered model offers a promising resource to study the cellular mechanisms contributing to HAND (including antiretroviral toxicity, substance use, and aging), infection of resident brain cells, and new neuroprotective therapeutics.
Collapse
Affiliation(s)
- Rachel Van Duyne
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Angel Lin
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James A. Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Alain M. Guillem
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Erick V. O’Brien
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Laura Merja
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Joshua G. Jackson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Atom Sarkar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Neurosurgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Global Neurosciences Institute, LLC, Philadelphia, PA 19107, USA
| | - Zachary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
2
|
Endsley JJ, Huante MB, Naqvi KF, Gelman BB, Endsley MA. Advancing our understanding of HIV co-infections and neurological disease using the humanized mouse. Retrovirology 2021; 18:14. [PMID: 34134725 PMCID: PMC8206883 DOI: 10.1186/s12977-021-00559-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
Humanized mice have become an important workhorse model for HIV research. Advances that enabled development of a human immune system in immune deficient mouse strains have aided new basic research in HIV pathogenesis and immune dysfunction. The small animal features facilitate development of clinical interventions that are difficult to study in clinical cohorts, and avoid the high cost and regulatory burdens of using non-human primates. The model also overcomes the host restriction of HIV for human immune cells which limits discovery and translational research related to important co-infections of people living with HIV. In this review we emphasize recent advances in modeling bacterial and viral co-infections in the setting of HIV in humanized mice, especially neurological disease, and Mycobacterium tuberculosis and HIV co-infections. Applications of current and future co-infection models to address important clinical and research questions are further discussed.
Collapse
Affiliation(s)
- Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
3
|
Sanna PP, Fu Y, Masliah E, Lefebvre C, Repunte-Canonigo V. Central nervous system (CNS) transcriptomic correlates of human immunodeficiency virus (HIV) brain RNA load in HIV-infected individuals. Sci Rep 2021; 11:12176. [PMID: 34108514 PMCID: PMC8190104 DOI: 10.1038/s41598-021-88052-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
To generate new mechanistic hypotheses on the pathogenesis and disease progression of neuroHIV and identify novel therapeutic targets to improve neuropsychological function in people with HIV, we investigated host genes and pathway dysregulations associated with brain HIV RNA load in gene expression profiles of the frontal cortex, basal ganglia, and white matter of HIV+ patients. Pathway analyses showed that host genes correlated with HIV expression in all three brain regions were predominantly related to inflammation, neurodegeneration, and bioenergetics. HIV RNA load directly correlated particularly with inflammation genesets representative of cytokine signaling, and this was more prominent in white matter and the basal ganglia. Increases in interferon signaling were correlated with high brain HIV RNA load in the basal ganglia and the white matter although not in the frontal cortex. Brain HIV RNA load was inversely correlated with genesets that are indicative of neuronal and synaptic genes, particularly in the cortex, indicative of synaptic injury and neurodegeneration. Brain HIV RNA load was inversely correlated with genesets that are representative of oxidative phosphorylation, electron transfer, and the tricarboxylic acid cycle in all three brain regions. Mitochondrial dysfunction has been implicated in the toxicity of some antiretrovirals, and these results indicate that mitochondrial dysfunction is also associated with productive HIV infection. Genes and pathways correlated with brain HIV RNA load suggest potential therapeutic targets to ameliorate neuropsychological functioning in people living with HIV.
Collapse
Affiliation(s)
- Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- , Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Gruenewald AL, Garcia-Mesa Y, Gill AJ, Garza R, Gelman BB, Kolson DL. Neuroinflammation associates with antioxidant heme oxygenase-1 response throughout the brain in persons living with HIV. J Neurovirol 2020; 26:846-862. [PMID: 32910432 PMCID: PMC7716923 DOI: 10.1007/s13365-020-00902-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Previous studies showed that persons living with HIV (PLWH) demonstrate higher brain prefrontal cortex neuroinflammation and immunoproteasome expression compared to HIV-negative individuals; these associate positively with HIV levels. Lower expression of the antioxidant enzyme heme oxygenase 1 (HO-1) was observed in PLWH with HIV-associated neurocognitive impairment (HIV-NCI) compared to neurocognitively normal PLWH. We hypothesized that similar expression patterns occur throughout cortical, subcortical, and brainstem regions in PLWH, and that neuroinflammation and immunoproteasome expression associate with lower expression of neuronal markers. We analyzed autopsied brains (15 regions) from 9 PLWH without HIV-NCI and 7 matched HIV-negative individuals. Using Western blot and RT-qPCR, we quantified synaptic, inflammatory, immunoproteasome, endothelial, and antioxidant biomarkers, including HO-1 and its isoform heme oxygenase 2 (HO-2). In these PLWH without HIV-NCI, we observed higher expression of neuroinflammatory, endothelial, and immunoproteasome markers in multiple cortical and subcortical regions compared to HIV-negative individuals, suggesting a global brain inflammatory response to HIV. Several regions, including posterior cingulate cortex, globus pallidus, and cerebellum, showed a distinct pattern of higher type I interferon (IFN)-stimulated gene and immunoproteasome expression. PLWH without HIV-NCI also had (i) stable or higher HO-1 expression and positive associations between (ii) HO-1 and HIV levels (CSF, plasma) and (iii) HO-1 expression and neuroinflammation, in multiple cortical, subcortical, and brainstem regions. We observed no differences in synaptic marker expression, suggesting little, if any, associated neuronal injury. We speculate that this may reflect a neuroprotective effect of a concurrent HO-1 antioxidant response despite global neuroinflammation, which will require further investigation.
Collapse
Affiliation(s)
- Analise L Gruenewald
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Yoelvis Garcia-Mesa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Alexander J Gill
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Rolando Garza
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Keiller 3.118A, Route 0609, Galveston, TX, 77555, USA
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Faia C, Plaisance-Bonstaff K, Peruzzi F. In vitro models of HIV-1 infection of the Central Nervous System. DRUG DISCOVERY TODAY. DISEASE MODELS 2020; 32:5-11. [PMID: 33692833 PMCID: PMC7938360 DOI: 10.1016/j.ddmod.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Neurocognitive disorders associated with HIV-1 infection affect more than half of persons living with HIV (PLWH) under retroviral therapy. Understanding the molecular mechanisms and the complex cellular network communication underlying neurological dysfunction is critical for the development of an effective therapy. As with other neurological disorders, challenges to studying HIV infection of the brain include limited access to clinical samples and proper reproducibility of the complexity of brain networks in cellular and animal models. This review focuses on cellular models used to investigate various aspects of neurological dysfunction associated with HIV infection.
Collapse
Affiliation(s)
- Celeste Faia
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
| | | | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and S Stanley Scott Cancer Center
- Department of Microbiology Immunology and Parasitology
- Department of Medicine
- Corresponding author: Francesca Peruzzi, 1700 Tulane Ave, New Orleans, LA 70112, Tel: (504) 210-2978,
| |
Collapse
|
6
|
Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. MOLECULAR BIOMEDICINE 2020; 1:15. [PMID: 34765998 PMCID: PMC7725542 DOI: 10.1186/s43556-020-00019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
NeuroAIDS (Neuro Acquired Immunodeficiency Syndrome) or HIV (Human Immunodeficiency Virus) associated neuronal abnormality is continuing to be a significant health issue among AIDS patients even under the treatment of combined antiretroviral therapy (cART). Injury and damage to neurons of the brain are the prime causes of neuroAIDS, which happens due to the ingress of HIV by direct permeation across the blood-brain barrier (BBB) or else via peripherally infected macrophage into the central nervous system (CNS). The BBB performs as a stringent barricade for the delivery of therapeutics drugs. The intranasal route of drug administration exhibits as a non-invasive technique to bypass the BBB for the delivery of antiretroviral drugs and other active pharmaceutical ingredients inside the brain and CNS. This method is fruitful for the drugs that are unable to invade the BBB to show its action in the CNS and thus erase the demand of systemic delivery and thereby shrink systemic side effects. Drug delivery from the nose to the brain/CNS takes very less time through both olfactory and trigeminal nerves. Intranasal delivery does not require the involvement of any receptor as it occurs by an extracellular route. Nose to brain delivery also involves nasal associated lymphatic tissues (NALT) and deep cervical lymph nodes. However, very little research has been done to explore the utility of nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. This review focuses on the potential of nasal route for the effective delivery of antiretroviral nanoformulations directly from nose to the brain.
Collapse
Affiliation(s)
- Anupam Sarma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.,Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026 India
| | - Malay K Das
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
7
|
Abreu C, Shirk EN, Queen SE, Beck SE, Mangus LM, Pate KAM, Mankowski JL, Gama L, Clements JE. Brain macrophages harbor latent, infectious simian immunodeficiency virus. AIDS 2019; 33 Suppl 2:S181-S188. [PMID: 31789817 PMCID: PMC7058191 DOI: 10.1097/qad.0000000000002269] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The current review examines the role of brain macrophages, that is perivascular macrophages and microglia, as a potential viral reservoir in antiretroviral therapy (ART) treated, simian immunodeficiency virus (SIV)-infected macaques. The role, if any, of latent viral reservoirs of HIV and SIV in the central nervous system during ART suppression is an unresolved issue. HIV and SIV infect both CD4 lymphocytes and myeloid cells in blood and tissues during acute and chronic infection. HIV spread to the brain occurs during acute infection by the infiltration of activated CD4 lymphocytes and monocytes from blood and is established in both embryonically derived resident microglia and monocyte-derived perivascular macrophages. ART controls viral replication in peripheral blood and cerebrospinal fluid in HIV-infected individuals but does not directly eliminate infected cells in blood, tissues or brain. Latently infected resting CD4 lymphocytes in blood and lymphoid tissues are a well recognized viral reservoir that can rebound once ART is withdrawn. In contrast, central nervous system resident microglia and perivascular macrophages in brain have not been examined as potential reservoirs for HIV during suppressive ART. Macrophages in tissues are long-lived cells that are HIV and SIV infected in tissues such as gut, lung, spleen, lymph node and brain and contribute to ongoing inflammation in tissues. However, their potential role in viral persistence and latency or their potential to rebound in the absence ART has not been examined. It has been shown that measurement of HIV latency by HIV DNA PCR in CD4 lymphocytes overestimates the size of the latent reservoirs of HIV that contribute to rebound that is cells containing the genomes of replicative viruses. Thus, the quantitative viral outgrowth assay has been used as a reliable measure of the number of latent cells that harbor infectious viral DNA and, may constitute a functional latent reservoir. Using quantitative viral outgrowth assays specifically designed to quantitate latently infected CD4 lymphocytes and myeloid cells in an SIV macaque model, we demonstrated that macrophages in brain harbor SIV genomes that reactivate and produce infectious virus in this assay, demonstrating that these cells have the potential to be a reservoir.
Collapse
Affiliation(s)
- Celina Abreu
- Department of Molecular and Comparative Pathobiology
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology
| | | | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology
| | | | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology
- Department of Neurology
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology
- Department of Neurology
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Kelschenbach J, He H, Kim BH, Borjabad A, Gu CJ, Chao W, Do M, Sharer LR, Zhang H, Arancio O, Potash MJ, Volsky DJ. Efficient Expression of HIV in Immunocompetent Mouse Brain Reveals a Novel Nonneurotoxic Viral Function in Hippocampal Synaptodendritic Injury and Memory Impairment. mBio 2019; 10:e00591-19. [PMID: 31266862 PMCID: PMC6606797 DOI: 10.1128/mbio.00591-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/29/2019] [Indexed: 01/05/2023] Open
Abstract
HIV causes neurodegeneration and dementia in AIDS patients, but its function in milder cognitive impairments in virologically suppressed patients on antiretroviral therapy is unknown. Such patients are immunocompetent, have low peripheral and brain HIV burdens, and show minimal brain neuropathology. Using the model of HIV-related memory impairment in EcoHIV-infected conventional mice, we investigated the neurobiological and cognitive consequences of efficient EcoHIV expression in the mouse brain after intracerebral infection. HIV integrated and persisted in an expressed state in brain tissue, was detectable in brain monocytic cells, and caused neuroinflammatory responses and lasting spatial, working, and associative memory impairment. Systemic antiretroviral treatment prevented direct brain infection and memory dysfunction indicating the requirement for HIV expression in the brain for disease. Similarly inoculated murine leukemia virus used as a control replicated in mouse brain but not in monocytic cells and was cognitively benign, linking the disease to HIV-specific functions. Memory impairment correlated in real time with hippocampal dysfunction shown by defective long-term potentiation in hippocampal slices ex vivo and with diffuse synaptodendritic injury in the hippocampus reflected in significant reduction in microtubule-associated protein 2 and synapsin II staining. In contrast, there was no evidence of overt neuronal loss in this region as determined by neuron-specific nuclear protein quantification, TUNEL assay, and histological observations. Our results reveal a novel capacity of HIV to induce neuronal dysfunction and memory impairment independent of neurotoxicity, distinct from the neurotoxicity of HIV infection in dementia.IMPORTANCE HIV neuropathogenesis has been attributed in large measure to neurotoxicity of viral proteins and inflammatory factors produced by infected monocytic cells in the brain. We show here that HIV expression in mouse brain causes lasting memory impairment by a mechanism involving injury to hippocampal synaptodendritic arbors and neuronal function but not overt neuronal loss in the region. Our results mirror the observation of minimal neurodegeneration in cognitively impaired HIV patients on antiretroviral therapy and demonstrate that HIV is nonneurotoxic in certain brain abnormalities that it causes. If neurons comprising the cognition-related networks survive HIV insult, at least for some time, there is a window of opportunity for disease treatment.
Collapse
Affiliation(s)
- Jennifer Kelschenbach
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongxia He
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Boe-Hyun Kim
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alejandra Borjabad
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chao-Jiang Gu
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wei Chao
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Meilan Do
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Leroy R Sharer
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Hong Zhang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Mary Jane Potash
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David J Volsky
- Department of Medicine, Infectious Diseases Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Sachan V, Lodge R, Mihara K, Hamelin J, Power C, Gelman BB, Hollenberg MD, Cohen ÉA, Seidah NG. HIV-induced neuroinflammation: impact of PAR1 and PAR2 processing by Furin. Cell Death Differ 2019; 26:1942-1954. [PMID: 30683917 DOI: 10.1038/s41418-018-0264-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) is a syndrome defined by neurocognitive deficits that are driven by viral neurotoxins, cytokines, free radicals, and proteases expressed in the brain. This neurological disease has also been linked to activation of Protease-Activated Receptors 1 and 2 (PAR1,2). These receptors are highly expressed in the central nervous system and are upregulated in HAND. Secretory basic-amino-acid-specific Proprotein Convertases (PCs), which cleave precursor proteins at basic residues, are also induced in HAND. They are vital for many biological processes including HIV-1 entry into cells. The cytoprotective role of Furin, PC5, and PACE4 has been linked to the presence of a potential PC-cleavage site R41XXXXR46↓ in PAR1. Furthermore, Furin binds PAR1 and both are trapped in the trans-Golgi-network (TGN) as inactive proteins, likely due to the intermediary trafficking role of phospho-Furin acidic cluster sorting protein 1 (PACS1). Nothing is known about PAR2 and its possible recognition by PCs at its putative R31XXXXR36↓ processing site. The present study implicates PACS1 in the retrograde trafficking of PAR1 to the TGN and demonstrates that the cytosolic extreme C-terminal tail of PAR1 contains an acidic phosphorylatable PACS1-sensitive domain. We further show the requirement of Asn47 in PAR1 for its Furin-dependent TGN localization. Our data revealed that Furin is the only convertase that efficiently cleaves PAR2 at Arg36↓. N-glycosylation of PAR2 at Asn30 reduces the efficacy, but enhances selectivity of the Furin cleavage. Finally, in co-cultures comprised of human neuroblastoma SK-N-SH cells (stably expressing PAR1/2 and/or Furin) and HIV-1-infected primary macrophages, we demonstrate that the expression of Furin enhances neuronal cell viability in the context of PAR1- or PAR2-induced neuronal cytotoxicity. The present study provides insights into early stages of HIV-1 induced neuronal injury and the protective role of Furin in neurons co-expressing PAR1 and/or PAR2, as observed in HAND.
Collapse
Affiliation(s)
- Vatsal Sachan
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Robert Lodge
- Laboratory of Human Retrovirology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Koichiro Mihara
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Josée Hamelin
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, AB, T6G2S2, Canada
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch Houston, Galveston, 77555, TX, USA
| | - Morley D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Éric A Cohen
- Laboratory of Human Retrovirology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W1R7, Canada.
| |
Collapse
|
10
|
Evering TH, Tsuji M. Human Immune System Mice for the Study of Human Immunodeficiency Virus-Type 1 Infection of the Central Nervous System. Front Immunol 2018; 9:649. [PMID: 29670623 PMCID: PMC5893637 DOI: 10.3389/fimmu.2018.00649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/16/2018] [Indexed: 01/08/2023] Open
Abstract
Immunodeficient mice transplanted with human cell populations or tissues, also known as human immune system (HIS) mice, have emerged as an important and versatile tool for the in vivo study of human immunodeficiency virus-type 1 (HIV-1) pathogenesis, treatment, and persistence in various biological compartments. Recent work in HIS mice has demonstrated their ability to recapitulate critical aspects of human immune responses to HIV-1 infection, and such studies have informed our knowledge of HIV-1 persistence and latency in the context of combination antiretroviral therapy. The central nervous system (CNS) is a unique, immunologically privileged compartment susceptible to HIV-1 infection, replication, and immune-mediated damage. The unique, neural, and glia-rich cellular composition of this compartment, as well as the important role of infiltrating cells of the myeloid lineage in HIV-1 seeding and replication makes its study of paramount importance, particularly in the context of HIV-1 cure research. Current work on the replication and persistence of HIV-1 in the CNS, as well as cells of the myeloid lineage thought to be important in HIV-1 infection of this compartment, has been aided by the expanded use of these HIS mouse models. In this review, we describe the major HIS mouse models currently in use for the study of HIV-1 neuropathogenesis, recent insights from the field, limitations of the available models, and promising advances in HIS mouse model development.
Collapse
Affiliation(s)
- Teresa H Evering
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, An Affiliate of the Rockefeller University, New York, NY, United States
| |
Collapse
|
11
|
Optimizing animal models for HIV-associated CNS dysfunction and CNS reservoir research. J Neurovirol 2018; 24:137-140. [PMID: 29582355 DOI: 10.1007/s13365-018-0631-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
|