1
|
Singh R, Ray A. Therapeutic potential of hedgehog signaling in advanced cancer types. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:49-80. [PMID: 38782501 DOI: 10.1016/bs.ircmb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this chapter, we have made an attempt to elucidate the relevance of hedgehog signaling pathway in tumorigenesis. Here, we have described different types of hedgehog signaling (canonical and non-canonical) with emphasis on the different mechanisms (mutation-driven, autocrine, paracrine and reverse paracrine) it adopts during tumorigenesis. We have discussed the role of hedgehog signaling in regulating cell proliferation, invasion and epithelial-to-mesenchymal transition in both local and advanced cancer types, as reported in different studies based on preclinical and clinical models. We have specifically addressed the role of hedgehog signaling in aggressive neuroendocrine tumors as well. We have also elaborated on the studies showing therapeutic relevance of the inhibitors of hedgehog signaling in cancer. Evidence of the crosstalk of hedgehog signaling components with other signaling pathways and treatment resistance due to tumor heterogeneity have also been briefly discussed. Together, we have tried to put forward a compilation of the studies on therapeutic potential of hedgehog signaling in various cancers, specifically aggressive tumor types with a perspective into what is lacking and demands further investigation.
Collapse
Affiliation(s)
- Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States.
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
2
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
3
|
Rather TB, Parveiz I, Bhat GA, Rashid G, Akhtar K, Haque R, Ola MS, Ali M, Wani RA, Khan IY, Besina S, Mudassar S. Colorectal Cancer (CRC): Investigating the Expression of the Suppressor of Fused ( SuFu) Gene and Its Relationship with Several Inflammatory Blood-Based Biomarkers. Biomedicines 2023; 11:biomedicines11020540. [PMID: 36831076 PMCID: PMC9953361 DOI: 10.3390/biomedicines11020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Suppressor of fused (SuFu) is a tumor-suppressor gene that regulates hedgehog signaling. Its involvement in some malignancies is broadly accepted. However, its association with colorectal cancer (CRC) pathogenesis is not clear. Likewise, no study has clearly associated blood-based inflammatory biomarkers with cancer diagnosis/prognosis as yet. AIM Our goal was to look at SuFu expression levels in CRC patients and its relationship with other clinicopathological factors. Additionally, we looked into the function of a few blood-based biomarkers in CRC and whether or not a combined strategy at the genetic and clinical levels can be applied in CRC. METHODS The investigation included 98 histopathologically confirmed CRC samples and adjacent normal tissues (controls). A colonoscopy was followed by a targeted biopsy for each suspected colon cancer patient. A CT scan and MRI were also performed on every patient with rectal cancer. Real-time polymerase chain reaction and immunohistochemistry (IHC) were used for assessment. A Beckman Coulter DxH900 was used to examine blood parameters. A Beckman Coulter DxI800 was used to identify pretreatment carcinoma embryonic antigens (CEA) and carbohydrate antigens (CA 19-9) in CRC patients. RESULTS The expression of SuFu was associated with gender, education, passive smoking, tumor grade, perineural invasion (PNI), lymph node metastasis (LNM), node status, stage, vital status, and recurrence (p < 0.05). In the combined analysis, the areas under the curve produced by the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), and red cell distribution width (RDW) were the greatest (AUCRDW+PLR+NLR = 0.91, 95% CI: 0.86-0.93, p < 0.05). Furthermore, the most severe pathological features were linked to RDW, PLR, NLR, and HPR. SuFu expression, node status, LNM, PNI, and stage all had significant correlations with OS and DFS rates in IHC-based univariate survival analysis (p < 0.05). According to the Cox regression, CA-19.9 had a strong independent predictive link with 3-year DFS (p < 0.05). CONCLUSION In CRC, SuFu was downregulated both transcriptionally and translationally, was primarily nucleo-cytoplasmic, and was expressed less in high-grade tumors. In addition, SuFu was linked to a poor overall and disease-free survival rate. It may be possible to use SuFu as a therapeutic target for CRC in the future. However, SuFu expression had no effect on RDW, PLR, NLR, or HPR serum levels.
Collapse
Affiliation(s)
- Tahseen Bilal Rather
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Ishrat Parveiz
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Gulzar A Bhat
- Scientist Multidisciplinary Research Unit, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Gowhar Rashid
- Department of Amity Medical School, Amity University Haryana, Haryana 125001, India
| | - Kulsum Akhtar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Rizwanul Haque
- Department of Biotechnology, SEBES, Central University of South Bihar (Gaya), Bihar 824236, India
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mehboob Ali
- Senior Scientist Toxicology Invivotek Nexus, a Genesis Biotech Group LLC Company, 17 Black Forest RD, Hamilton, NJ 08690, USA
| | - Rauf A Wani
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Ishrat Younas Khan
- Department of Pathology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Syed Besina
- Department of Pathology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar 190011, India
- Correspondence:
| |
Collapse
|
4
|
Lu S, Peng L, Ma F, Chai J, Hua Y, Yang W, Zhang Z. Increased Expression of POSTN Predicts Poor Prognosis: a Potential Therapeutic Target for Gastric Cancer. J Gastrointest Surg 2023; 27:233-249. [PMID: 36451060 DOI: 10.1007/s11605-022-05517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/30/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Periostin (POSTN) is involved in many biological processes and is associated with the occurrence and development of several cancers, while its role in gastric cancer is not clear. We aimed to demonstrate the relationship between POSTN and gastric cancer based on publicly available data from The Cancer Genome Atlas (TCGA) database. METHODS POSTN expression data and corresponding clinical information were downloaded from TCGA database. We compared the expression of POSTN in gastric cancer samples and normal samples. POSTN-related differentially expressed genes (DEGs) were identified for further functional enrichment analysis. In addition, the relationships between POSTN expression and clinicopathological features and survival in patients with gastric cancer were also investigated through univariate and multivariate Cox regression analyses. Furthermore, a nomogram was constructed to predict the survival probability of gastric cancer patients. RESULTS POSTN expression in gastric cancer was significantly higher than that in normal gastric tissues (p < 0.001). High POSTN expression in gastric cancer was significantly related to poor prognostic features, including greater tumor extent (odds ratio [OR] = 1.638 for T3 and T4 vs. T1 and T2), worse histological type (OR = 0.329 for diffuse type vs. tubular type), and advanced histological grade (OR = 1.646 for grade 3 vs. grades 1 and 2) (all p < 0.05). The 118 identified DEGs were primarily enriched in pathways related to tumorigenesis and tumor progression, including the TGF-β signaling pathway, the WNT signaling pathway, and the signaling by VEGF. POSTN expression was positively correlated with the enrichment of the macrophages (r = 0.599, p < 0.001), helper T2 cells (r = 0.146, p = 0.005), and CD8 + T cells (r = 0.190, p < 0.001), but negatively correlated with the enrichment of Th17 cells (r = - 0.130, p = 0.012) and NK CD56bright cells. Kaplan-Meier survival analysis showed that high POSTN expression is associated with a short overall survival (hazard ratio [HR] = 1.54; p = 0.011). In the multivariate cox regression analysis, high POSTN expression was confirmed to be an independent predictor of poor overall survival (HR = 1.681; p = 0.017). The constructed nomogram can well predict the 1 and 3 years overall survival probability of patients with GC (0.696 [95% CI, 0.671-0.721]). CONCLUSION POSTN plays an important role in the progression and prognosis of gastric cancer, and it may serve as a useful biomarker to predict survival in gastric cancer patients.
Collapse
Affiliation(s)
- Shuaibing Lu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Rd, Zhengzhou, 450008, Henan, China
| | - Liangqun Peng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Rd, Zhengzhou, 450008, Henan, China
| | - Fei Ma
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Rd, Zhengzhou, 450008, Henan, China
| | - Junhui Chai
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Rd, Zhengzhou, 450008, Henan, China
| | - Yawei Hua
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Rd, Zhengzhou, 450008, Henan, China.
| | - Wei Yang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Rd, Zhengzhou, 450008, Henan, China.
| | - Zhandong Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Rd, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
5
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Shahrear S, Zinnia MA, Ahmed T, Islam ABMMK. Deciphering the role of predicted miRNAs of polyomaviruses in carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166537. [PMID: 36089125 DOI: 10.1016/j.bbadis.2022.166537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
Human polyomaviruses are relatively common in the general population. Polyomaviruses maintain a persistent infection after initial infection in childhood, acting as an opportunistic pathogen in immunocompromised populations and their association has been linked to carcinogenesis. A comprehensive understanding of the underlying molecular mechanisms of carcinogenesis in consequence of polyomavirus infection remains elusive. However, the critical role of viral miRNAs and their potential targets in modifying the transcriptome profile of the host remains largely unknown. Polyomavirus-derived miRNAs have the potential to play a substantial role in carcinogenesis. Employing computational approaches, putative viral miRNAs along with their target genes have been predicted and possible roles of the targeted genes in many significant biological processes have been obtained. Polyomaviruses have been observed to target intracellular signal transduction pathways through miRNA-mediated epigenetic regulation, which may contribute to cancer development. In addition, BKPyV-infected human renal cell microarray data was coupled with predicted target genes and analysis of the downregulated genes indicated that viruses target multiple signaling pathways (e.g. MAPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway) in the host as well as turning off several tumor suppression genes (e.g. FGGY, EPHX2, CACNA2D3, CDH16) through miRNA-induced mechanisms, assuring cell transformation. This study provides a conceptual framework for the underlying molecular mechanisms involved in the course of carcinogenesis upon polyomavirus infection.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Tasnim Ahmed
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
7
|
Lu J, Cao LL, Xu Y, Huang XY, Cho SJ, Ashktorab H, Smoot DT, Li P, Zheng CH, Kim JW, Ryeom SW, Yoon SS, Yoon C, Huang CM. WITHDRAWN: FOXC1 modulates stem-like cell properties and chemoresistance through hedgehog and EMT signaling in gastric adenocarcinoma. Mol Ther 2021:S1525-0016(21)00464-0. [PMID: 34534693 DOI: 10.1016/j.ymthe.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/30/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
This article has been withdrawn at the request of the editors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Jun Lu
- Department of Gastric Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10013, USA
| | - Long-Long Cao
- Department of Gastric Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Yu Xu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical, 35001 University, Fuzhou 35001, Fujian Province, China
| | - Xiao-Yan Huang
- Department of Gastric Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Soo-Jeong Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul 100-000, South Korea
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, DC 20541, USA
| | - Duane T Smoot
- Department of Medicine, Howard University, Washington, DC 20541, USA
| | - Ping Li
- Department of Gastric Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Ji-Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 100-000, South Korea
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19019, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032
| | - Sam S Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10013, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032
| | - Changhwan Yoon
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10013, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China.
| |
Collapse
|
8
|
Peng Y, Zhang X, Lin H, Deng S, Qin Y, He J, Hu F, Zhu X, Feng X, Wang J, Wei Y, Fan X, Lin H, Ashktorab H, Smoot D, Lv Y, Li S, Meltzer SJ, Jin Z. Dual activation of Hedgehog and Wnt/β-catenin signaling pathway caused by downregulation of SUFU targeted by miRNA-150 in human gastric cancer. Aging (Albany NY) 2021; 13:10749-10769. [PMID: 33848981 PMCID: PMC8064165 DOI: 10.18632/aging.202895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Mounting evidence has shown that miRNA-150 expression is upregulated in gastric cancer (GC) and is associated with gastric carcinogenesis, but the underlying oncogenic mechanism remains elusive. Here, we discovered that miRNA-150 targets the tumor suppressor SUFU to promote cell proliferation, migration, and the epithelial-mesenchymal transition (EMT) via the dual activation of Hedgehog (Hh) and Wnt signaling. MiRNA-150 was highly expressed in GC tissues and cell lines, and the level of this miRNA was negatively related to that of SUFU. In addition, both the miRNA-150 and SUFU levels were associated with tumor differentiation. Furthermore, miRNA-150 activated GC cell proliferation and migration in vitro. We found that miRNA-150 inhibitors repressed not only Wnt signaling by promoting cytoplasmic β-catenin localization, but also repressed Hh signaling and EMT. MiRNA-150 inhibition also resulted in significant tumor volume reductions in vivo, suggesting the potential application of miRNA-150 inhibitors in GC therapy. The expression of genes downstream of Hh and Wnt signaling was also reduced in tumors treated with miRNA-150 inhibitors. Notably, anti-SUFU siRNAs rescued the inhibitory effects of miRNA-150 inhibitors on Wnt signaling, Hh activation, EMT, cell proliferation, cell migration, and colony formation. Taken together, these findings indicate that miRNA-150 is oncogenic and promotes GC cell proliferation, migration, and EMT by activating Wnt and Hh signaling via the suppression of SUFU expression.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China,Department of Pathology, Guangdong Province Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong, P.R. China
| | - Huijuan Lin
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou 510000, Guangdong, P.R. China,Department of Pathology and Pathophysiology, Guangzhou Medical University, Guangzhou 510000, Guangdong, P.R. China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, P.R. China
| | - Jieqiong He
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Fan Hu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Xiaohui Zhu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Jian Wang
- Department of Pathology and Pathophysiology, Guangzhou Medical University, Guangzhou 510000, Guangdong, P.R. China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen 518000, Guangdong, P.R. China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Huan Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Yansi Lv
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Song Li
- Shenzhen Science and Technology Development Exchange Center, Shenzhen 518060, Guangdong, P.R. China
| | - Stephen J. Meltzer
- Department of Medicine, GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| |
Collapse
|
9
|
Peng Y, Qin Y, Zhang X, Deng S, Yuan Y, Feng X, Chen W, Hu F, Gao Y, He J, Cheng Y, Wei Y, Fan X, Ashktorab H, Smoot D, Li S, Meltzer SJ, Zhuang S, Tang N, Jin Z. MiRNA-20b/SUFU/Wnt axis accelerates gastric cancer cell proliferation, migration and EMT. Heliyon 2021; 7:e06695. [PMID: 33912703 PMCID: PMC8065298 DOI: 10.1016/j.heliyon.2021.e06695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/17/2020] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Previous research has found that miRNA-20b is highly expressed in gastric cancer (GC), however, its function and underlying mechanism are not clear. Wnt signaling pathway, implicated in tumorigeneisis, is activated in more than 30% of GC. We would like to characterize the biological behavior of miRNA-20b in terms of modulating Wnt/β-catenin signaling and EMT. We showed that miRNA-20b inhibitors suppressed Topflash/Fopflash dependent luciferase activity and the β-catenin nuclear translocation, resulting in inhibition of Wnt pathway activity and EMT. SUFU, negatively regulating Wnt and Hedgehog signaling pathway, was proved to be targeted by miRNA-20b. Moreover, additional knockdown of SUFU alleviated the inhibitory effect on Wnt pathway activity, EMT, cell proliferation/migration and colony formation caused by miRNA-20b inhibition. In summary, miRNA-20b is an oncogenic miRNA and promoted cell proliferation, migration and EMT in GC partially by activating Wnt pathway via targeting SUFU.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China,Corresponding author.
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China,Department of Pathology, Guangdong Province Key Laboratory of Molecular Oncologic Pathology, China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Yuan Yuan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wangchun Chen
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Fan Hu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Yuli Gao
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Jieqiong He
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Yulan Cheng
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, 518000, China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Song Li
- Shenzhen Science & Technology Development Exchange Center, Shenzhen Science and Technology Building, Shenzhen, Guangdong, 518055, China
| | - Stephen J. Meltzer
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Shutong Zhuang
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China
| | - Na Tang
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518055, China,Corresponding author.
| |
Collapse
|
10
|
Zhang J, Fan J, Zeng X, Nie M, Luan J, Wang Y, Ju D, Yin K. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment. Acta Pharm Sin B 2021; 11:609-620. [PMID: 33777671 PMCID: PMC7982428 DOI: 10.1016/j.apsb.2020.10.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The Hedgehog (HH) signaling pathway plays important roles in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment (TME). Aberrant HH signaling activation may accelerate the growth of gastrointestinal tumors and lead to tumor immune tolerance and drug resistance. The interaction between HH signaling and the TME is intimately involved in these processes, for example, tumor growth, tumor immune tolerance, inflammation, and drug resistance. Evidence indicates that inflammatory factors in the TME, such as interleukin 6 (IL-6) and interferon-γ (IFN-γ), macrophages, and T cell-dependent immune responses, play a vital role in tumor growth by affecting the HH signaling pathway. Moreover, inhibition of proliferating cancer-associated fibroblasts (CAFs) and inflammatory factors can normalize the TME by suppressing HH signaling. Furthermore, aberrant HH signaling activation is favorable to both the proliferation of cancer stem cells (CSCs) and the drug resistance of gastrointestinal tumors. This review discusses the current understanding of the role and mechanism of aberrant HH signaling activation in gastrointestinal carcinogenesis, the gastrointestinal TME, tumor immune tolerance and drug resistance and highlights the underlying therapeutic opportunities.
Collapse
Key Words
- 5-Fu, 5-fluorouracil
- ALK5, TGF-β receptor I kinase
- ATO, arsenic trioxide
- BCC, basal cell carcinoma
- BCL-2, B cell lymphoma 2
- BMI-1, B cell-specific moloney murine leukemia virus insertion region-1
- CAFs, cancer-associated fibroblasts
- CSCs, cancer stem cells
- Cancer stem cells
- Carcinogenesis
- DHH, Desert Hedgehog
- Drug resistance
- EGF, epidermal growth factor
- FOLFOX, oxaliplatin
- G protein coupled receptor kinase 2, HH
- Gastrointestinal cancer
- Hedgehog
- Hedgehog, HIF-1α
- IHH, Indian Hedgehog
- IL-10/6, interleukin 10/6
- ITCH, itchy E3 ubiquitin ligase
- MDSCs, myeloid-derived suppressor cells
- NK, natural killer
- NOX4, NADPH Oxidase 4
- PD-1, programmed cell death-1
- PD-L1, programmed cell death ligand-1
- PKA, protein kinase A
- PTCH, Patched
- ROS, reactive oxygen species
- SHH, Sonic Hedgehog
- SMAD3, mothers against decapentaplegic homolog 3
- SMO, Smoothened
- SNF5, sucrose non-fermenting 5
- STAT3, signal transducer and activator of transcription 3
- SUFU, Suppressor of Fused
- TAMs, tumor-related macrophages
- TGF-β, transforming growth factor β
- TME, tumor microenvironment
- Tumor microenvironment
- VEGF, vascular endothelial growth factor
- WNT, Wingless/Integrated
- and leucovorin, GLI
- ch5E1, chimeric monoclonal antibody 5E1
- glioma-associated oncogene homologue, GRK2
- hypoxia-inducible factor 1α, IFN-γ: interferon-γ
- βArr2, β-arrestin2
Collapse
Affiliation(s)
- Jinghui Zhang
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Xian Zeng
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Mingming Nie
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingyun Luan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Yichen Wang
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Shanghai Engineering Research Center of Immunotherapeutics, Shanghai 201203, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| | - Kai Yin
- Department of Gastrointestinal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel./fax: +86 21 65349106 (Kai Yin); Tel.: +86 21 5198 0037; Fax +86 21 5198 0036 (Dianwen Ju).
| |
Collapse
|
11
|
Sonic Hedgehog Signature in Pediatric Primary Bone Tumors: Effects of the GLI Antagonist GANT61 on Ewing's Sarcoma Tumor Growth. Cancers (Basel) 2020; 12:cancers12113438. [PMID: 33228057 PMCID: PMC7699338 DOI: 10.3390/cancers12113438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
Simple Summary The poor clinical outcomes for Osteosarcoma (OS) and Ewing’s sarcoma (ES) patients underscore the urgency of developing novel therapeutic strategies for these pathologies. In this context, the emerging role of Sonic hedgehog (SHH) signaling in cancer has been critically evaluated, focusing on the potential for targeting SHH signaling as an anticancer strategy. The aims of this work were (1) to highlight and to compare a possible SHH/Gli signature between OS and ES, (2) to strengthen our knowledge concerning the role of EWS-FLI1 in the SHH signature in ES and (3) to evaluate the effect of the specific Gli inhibitor GANT61 in vivo on the growth of ES tumors using an orthotopic mice model. Our work identifies Gli1 as a promising therapeutic target in ES and demonstrates that GANT61, through inhibition of Gli1 transcriptional activity, may be a promising therapeutic strategy hindering ES tumor progression, and specifically primary tumor growth. Abstract Osteosarcoma (OS) and Ewing’s sarcoma (ES) are the most common malignant bone tumors in children and adolescents. In many cases, the prognosis remains very poor. The Sonic hedgehog (SHH) signaling pathway, strongly involved in the development of many cancers, regulate transcription via the transcriptional factors Gli1-3. In this context, RNAseq analysis of OS and ES cell lines reveals an increase of some major compounds of the SHH signaling cascade in ES cells, such as the transcriptional factor Gli1. This increase leads to an augmentation of the transcriptional response of Gli1 in ES cell lines, demonstrating a dysregulation of Gli1 signaling in ES cells and thus the rationale for targeting Gli1 in ES. The use of a preclinical model of ES demonstrates that GANT61, an inhibitor of the transcriptional factor Gli1, reduces ES primary tumor growth. In vitro experiments show that GANT61 decreases the viability of ES cell, mainly through its ability to induce caspase-3/7-dependent cell apoptosis. Taken together, these results demonstrates that GANT61 may be a promising therapeutic strategy for inhibiting the progression of primary ES tumors.
Collapse
|
12
|
Zhang H, Hu L, Cheng M, Wang Q, Hu X, Chen Q. The Hedgehog signaling pathway promotes chemotherapy resistance via multidrug resistance protein 1 in ovarian cancer. Oncol Rep 2020; 44:2610-2620. [PMID: 33125122 PMCID: PMC7640363 DOI: 10.3892/or.2020.7798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Various studies have revealed that the Hedgehog (Hh) signaling pathway promotes ovarian cancer invasion, migration and drug resistance. Previous studies by our group have identified a set of genes, including multidrug resistance gene 1 (MDR1), that are regulated by Hh signaling in ovarian cancer. However, the association between Hh signaling activation and MDR1 expression requires further validation. In the present study, reverse transcription-quantitative PCR or western blot assays were used to evaluate the mRNA and protein expression levels of MDR1, Sonic Hh (Shh), glioma-associated oncogene 2 (Gli2), Gli1 and γ-phosphorylated H2A.X variant histone (γ-H2AX). MTT and colony-formation assays were performed to determine the effect of cisplatin (DDP) after inhibiting the Hh pathway in ovarian cancer cells. The results indicated that MDR1, Gli2 and Shh levels were much higher in SK-OV-3 cells with acquired DDP resistance than in native SK-OV-3 cells. ES-2 cells with overexpression of Gli2 were capable of efficiently forming colonies in the presence of low DDP concentrations. By contrast, Gli2 knockdown in SK-OV-3 cells decreased the colony-forming ability under the same concentration of DDP. As determined by MTT assays, knockdown of Gli2 or targeting of the Hh signaling pathway with either Gli-antagonist 61 (GANT61) or cyclopamine, in combination with DDP treatment, diminished the viability of ES-2 and SK-OV-3 cells, whereas Gli2 overexpression increased the viability of ES-2 cells in the presence of DDP. Knockdown of Gli2 or targeting the Hh signaling pathway with GANT61 also increased γ-H2AX levels but decreased the expression of MDR1 in the presence of DDP. MDR1 expression is regulated by the Hh signaling pathway and is likely a downstream transcription factor of Gli2. In conclusion, targeting the Hh signaling pathway increases the sensitivity of ovarian cancer to DDP. MDR1 is a target gene of the Hh signaling pathway and this pathway may affect chemoresistance of ovarian cancer to DDP via MDR1.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lanyan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinyue Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
13
|
Peng Y, Zhang X, Lin H, Deng S, Qin Y, Yuan Y, Feng X, Wang J, Chen W, Hu F, Yan R, Zhao Y, Cheng Y, Wei Y, Fan X, Ashktorab H, Smoot D, Li S, Meltzer SJ, Jin Z. SUFU mediates EMT and Wnt/β-catenin signaling pathway activation promoted by miRNA-324-5p in human gastric cancer. Cell Cycle 2020; 19:2720-2733. [PMID: 33017570 DOI: 10.1080/15384101.2020.1826632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The poor prognosis of late gastric carcinomas (GC) underscores the necessity to identify novel biomarkers for earlier diagnosis and effective therapeutic targets. MiRNA-324-5p has been shown to be over-expressed in GC, however the biological function of miRNA-324-5p implicated in gastric cancer and its downstream targets were not well understood. Wnt/β-catenin signaling pathway is aberrantly regulated in GC. We sought to explore if miRNA-324-5p promotes oncogenesis through modulating Wnt signaling and EMT. MiRNA-324-5p is highly expressed in GC based on qRT-PCR and TCGA data. In addition, in vitro cell proliferation, cell migration assays and in vivo animal exenograft were executed to show that miRNA-324-5p is an oncogenic miRNA in GC. MiRNA-324-5p activates Wnt signaling and induces EMT in GC. Further, SUFU was identified as a target of miRNA-324-5p confirmed by western blotting and luciferase assays. Spearson analysis and TCGA data indicate that the expression of SUFU is negatively associated with the expression of miRNA-324-5p. Rescue experiments were performed to determine if SUFU mediates the Wnt activation, EMT and oncogenic function of miRNA-324-5p. MiRNA-324-5p inhibitors plus SUFU siRNAs rescue partially the inhibitory effect on Wnt signaling and EMT caused by miRNA-324-5p inhibitors. Finally, the suppression of cell proliferation, migration, and colony formation ability induced by miRNA-324-5p inhibitors is alleviated by addition of SUFU siRNAs. In summary, miRNA-324-5p is overexpressed in vivo and exerts cell growth and migration-promoting effects through activating Wnt signaling and EMT by targeting SUFU in GC. It represents a potential miRNA with an oncogenic role in human gastric cancer.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Oncologic Pathology , Guangzhou, Guangdong, China
| | - Huijuan Lin
- Department of Pathology and Pathophysiology, Guangzhou Medical University , Guangzhou, Guangdong, China.,Department of Ultrasound, Guangdong Women and Children Hospital , Guangzhou, Guangdong, China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital , Shenzhen, Guangdong, China
| | - Yuan Yuan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Jian Wang
- Department of Pathology and Pathophysiology, Guangzhou Medical University , Guangzhou, Guangdong, China
| | - Wangchun Chen
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Fan Hu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Ruibin Yan
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong, P.R. China
| | - Yanqiu Zhao
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong, P.R. China
| | - Yulan Cheng
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center , Baltimore, MD, USA
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology , Shenzhen, Guangdong, P.R. China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine , Washington, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center , Nashville, TN, USA
| | - Song Li
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong, P.R. China
| | - Stephen J Meltzer
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center , Baltimore, MD, USA
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Shao Z, Gao D, Chen L, Ding W, Yu Q. Non‑coding RNAs that regulate the Wnt/β‑catenin signaling pathway in gastric cancer: Good cop, bad cop? (Review). Oncol Rep 2020; 44:1314-1321. [PMID: 32945460 DOI: 10.3892/or.2020.7705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer‑related mortality worldwide. Despite remarkable progress in the diagnosis and treatment of GC, a large number of cases are diagnosed as advanced GC, and treatment failure occurs. Emerging evidence has shown that non‑coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non‑coding RNAs (lncRNAs), play a vital role in the tumorigenesis and development of GC. Moreover, the pathogenesis of GC is closely related to aberrant activation of the Wnt (Wingless‑type MMTV integration site family) signaling pathway. ncRNAs serve as potential novel biomarkers in the clinical examination, prognosis and therapeutic targeting of GC. Furthermore, dysregulation of ncRNAs has been demonstrated to affect tumor initiation, epithelial‑mesenchymal transition (EMT), angiogenesis, tumor development, invasion, metastasis and resistance to therapy via the Wnt/β‑catenin signaling pathway. This review focuses on the role of ncRNAs in modulating the Wnt/β‑catenin signaling pathway in the pathogenesis of GC, which may provide a reference for the clinical diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Zhaozhao Shao
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjie Ding
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Ke B, Wang XN, Liu N, Li B, Wang XJ, Zhang RP, Liang H. Sonic Hedgehog/Gli1 Signaling Pathway Regulates Cell Migration and Invasion via Induction of Epithelial-to-mesenchymal Transition in Gastric Cancer. J Cancer 2020; 11:3932-3943. [PMID: 32328197 PMCID: PMC7171499 DOI: 10.7150/jca.42900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The aberrant activation of the Sonic hedgehog (Shh) signaling pathway is involved in progression of several types of cancer, including gastric cancer (GC). However, it remains uncertain whether it also plays a critical role in promoting cancer initiation and progression by inducing epithelial-to-mesenchymal transition (EMT) in GC. Thus, the aim of the present study was to determine whether the Shh pathway is involved in GC, and to investigate the function of the Shh pathway in the induction of EMT in GC. Materials and methods: The expression levels of Shh pathway members and EMT markers were examined in GC tissues by immunohistochemistry. The association between these factors and patient clinicopathological characteristics was analyzed. In addition, Gli-antagonist 61 (GANT61) was used to block Shh/Gli1 pathway activity, and recombinant Shh proteins (N-Shh) were used to activate the Shh pathway in GC cells. Wound healing and Transwell invasion and migration assays were performed to assess the effects of the Shh pathway on the migration and invasion of GC cells in vitro. Furthermore, western blot analysis was used to examine the changes in protein expression. Results: The results demonstrated that these Shh/Gli1 pathway members were upregulated in GC tissues, and that Gli1 upregulation was associated with tumor progression and a poor prognosis. Gli1 expression was negatively associated with E-cadherin (E-Cad) expression, and positively with Vimentin (VIM) expression in GC specimens. Further analysis revealed that when the Shh/Gli1 pathway was activated, the migratory and invasive abilities of GC cells were enhanced, and the expression levels of Gli1 and VIM were increased, while E-Cad expression was decreased. Opposite results were observed when the Shh/Gli1 pathway was blocked by GANT61. Conclusions: The present study indicated that the Shh/Gli1 pathway exhibits an abnormal activation pattern in GC with possible predictive and prognostic significance. The Shh/Gli1 pathway may promote the migratory and invasive potential of GC cells by inducing EMT. The Shh/Gli1 pathway can thus be considered as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Bin Ke
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Xiao-Na Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Ning Liu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Bin Li
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Xue-Jun Wang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Ru-Peng Zhang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| | - Han Liang
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, P.R. China
| |
Collapse
|
16
|
IL-24 Inhibits Lung Cancer Growth by Suppressing GLI1 and Inducing DNA Damage. Cancers (Basel) 2019; 11:cancers11121879. [PMID: 31783569 PMCID: PMC6966580 DOI: 10.3390/cancers11121879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/18/2023] Open
Abstract
Aberrant expression of GLI1 is responsible for aggressive tumor behavior and survival due to its effects on the DNA damage response (DDR). We investigated whether interleukin (IL)-24, a tumor suppressor, inhibits GLI1 and the associated DDR pathway in human NSCLCs. IL-24 treatment reduces mRNA and protein expression of GLI1 in lung tumor cells, but not in normal cells. GLI1 reporter assay and mRNA studies demonstrated that IL-24 regulates GLI1 at the post-transcriptional level by favoring mRNA degradation. Associated with GLI1 inhibition was marked suppression of the ATM-mediated DDR pathway resulting in increased DNA damage, as evidenced by γ-H2AX foci and Comet assay. Furthermore, attenuation of GLI1-associated DDR by IL-24 increased caspase-3 and PARP activity, resulting in cancer cell apoptosis. GLI1 inhibition and overexpression confirmed that IL-24-mediated anti-tumor effects involved the GLI-dependent pathway. Finally, we observed that IL-24-mediated alteration in GLI1 is independent of the canonical hedgehog-signaling pathway. Our study provides evidence that IL-24 treatment induces DNA damage, and reduces GLI1 expression and offers an opportunity for testing IL-24-based therapy for inhibiting GLI1 in lung cancer.
Collapse
|
17
|
Xu Y, Song S, Wang Z, Ajani JA. The role of hedgehog signaling in gastric cancer: molecular mechanisms, clinical potential, and perspective. Cell Commun Signal 2019; 17:157. [PMID: 31775795 PMCID: PMC6882007 DOI: 10.1186/s12964-019-0479-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced gastric cancer usually have a poor prognosis and limited therapeutic options. Overcoming this challenge requires novel targets and effective drugs. The Hedgehog (Hh) signaling pathway plays a crucial role in the development of the gastrointestinal tract and maintenance of the physiologic function of the stomach. Aberrantly activated Hh signaling is implicated in carcinogenesis as well as maintenance of cancer stem cells. Somatic mutations in the components of Hh signaling (PTCH1 and SMO) have been shown to be a major cause of basal cell carcinoma, and dozens of Hh inhibitors have been developed. To date, two inhibitors (GDC-0449 and LDE225) have been approved by the U.S. Food and Drug Administration to treat basal cell carcinoma and medulloblastoma. Here, we review the role of the Hh signaling in the carcinogenesis and progression of gastric cancer and summarize recent findings on Hh inhibitors in gastric cancer. Hedgehog signaling is often aberrantly activated and plays an important role during inflammation and carcinogenesis of gastric epithelial cells. Further study of the precise mechanisms of Hh signaling in this disease is needed for the validation of therapeutic targets and evaluation of the clinical utility of Hh inhibitors for gastric cancer.
Collapse
Affiliation(s)
- Yan Xu
- Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA.,Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, People's Republic of China.
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030-4009, USA.
| |
Collapse
|
18
|
Konings K, Belmans N, Vermeesen R, Baselet B, Lamers G, Janssen A, Isebaert S, Baatout S, Haustermans K, Moreels M. Targeting the Hedgehog pathway in combination with X‑ray or carbon ion radiation decreases migration of MCF‑7 breast cancer cells. Int J Oncol 2019; 55:1339-1348. [PMID: 31638201 DOI: 10.3892/ijo.2019.4901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/28/2019] [Indexed: 11/06/2022] Open
Abstract
The use of carbon ion therapy for cancer treatment is becoming more widespread due to the advantages of carbon ions compared with X‑rays. Breast cancer patients may benefit from these advantages, as the surrounding healthy tissues receive a lower dose, and the increased biological effectiveness of carbon ions can better control radioresistant cancer cells. Accumulating evidence indicates that the Hedgehog (Hh) pathway is linked to the development and progression of breast cancer, as well as to resistance to X‑irradiation and the migratory capacity of cancer cells. Hence, there is an increasing interest in targeting the Hh pathway in combination with radiotherapy. Several studies have already investigated this treatment strategy with conventional radiotherapy. However, to the best of our knowledge, the combination of Hh inhibitors with particle therapy has not yet been explored. The aim of the present study was to investigate the potential of the Hh inhibitor GANT61 as an effective modulator of radiosensitivity and migration potential in MCF‑7 breast cancer cells, and compare potential differences between carbon ion irradiation and X‑ray exposure. Although Hh targeting was not able to radiosensitise cells to any radiation type used, the combination of GANT61 with X‑rays or carbon ions (energy: 95 MeV/n; linear energy transfer: 73 keV/µm) was more effective in decreasing MCF‑7 cell migration compared with either radiation type alone. Gene expression of the Hh pathway was affected to different degrees in response to X‑ray and carbon ion irradiation, as well as in response to the combination of GANT61 with irradiation. In conclusion, combining Hh inhibition with radiation (X‑rays or carbon ions) more effectively decreased breast cancer cell migration compared with radiation treatment alone.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Niels Belmans
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Greta Lamers
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Sofie Isebaert
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Flemish‑Brabant, 3000 Leuven, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| | - Karin Haustermans
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Flemish‑Brabant, 3000 Leuven, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Antwerp, 2400 Mol, Belgium
| |
Collapse
|
19
|
Saini F, Argent RH, Grabowska AM. Sonic Hedgehog Ligand: A Role in Formation of a Mesenchymal Niche in Human Pancreatic Ductal Adenocarcinoma. Cells 2019; 8:E424. [PMID: 31072042 PMCID: PMC6563044 DOI: 10.3390/cells8050424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by desmoplasia, thought to support progression and chemotherapeutic resistance. The Hedgehog pathway is known to play an important role in this cancer. While the upregulation of Sonic hedgehog (Shh) in the epithelium of PDAC is known, we investigated its expression in the tumour microenvironment in order to find new targets for new chemotherapeutical approaches. Immunohistochemistry was used for the investigation of Shh and Vimentin in primary human pancreatic tissues. Gene (qRT-PCR) and protein (immunofluorescence) expression of Shh, αSMA (a marker of the mesenchymal phenotype) and periostin (a marker of mesenchymal cells within a mixed population) were investigated in in vitro cell models. Shh expression was significantly upregulated in the stromal and epithelial compartments of poorly-differentiated PDAC samples, with a strong correlation with the amount of stroma present. Characterisation of stromal cells showed that there was expression of Shh ligand in a mixed population comprising αSMA+ myofibroblasts and αSMA- mesenchymal stem cells. Moreover, we demonstrated the interaction between these cell lines by showing a higher rate of mesenchymal cell proliferation and the upregulation of periostin. Therefore, targeting stromal Shh could affect the equilibrium of the tumour microenvironment and its contribution to tumour growth.
Collapse
Affiliation(s)
- Francesca Saini
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Richard H Argent
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Anna M Grabowska
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
20
|
Wu S, Han M, Zhang C. Overexpression of microRNA-186 inhibits angiogenesis in retinoblastoma via the Hedgehog signaling pathway by targeting ATAD2. J Cell Physiol 2019; 234:19059-19072. [PMID: 30993715 DOI: 10.1002/jcp.28545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Retinoblastoma (RB) represents an aggressive malignancy in the eye during the period of infancy and childhood. We delineated the ability of microRNA-186 (miR-186) to influence viability, invasion, migration, angiogenesis, and apoptosis of RB via the Hedgehog signaling pathway by targeting AAA domain-containing protein 2 (ATAD2). The microarray-based analysis was adopted to identify differentially expressed genes (DEGs) related to RB. Subsequently, RB cells were treated with miR-186 mimic, miR-186 inhibitor, or si-ATAD2. The expression of miR-186, ATAD2, Hedgehog signaling pathway-related genes were evaluated, and the target relationship between miR-186 and ATAD2 was verified. Finally, cell proliferation, invasion, migration, apoptosis, and angiogenesis were assessed. ATAD2 was identified as a DEG and modulated by miR-186. Moreover, we revealed that ATAD2 was highly expressed, whereas miR-186 was lowly expressed, and the Hedgehog signaling pathway was activated in RB. Then, ATAD2 as a putative target of miR-186 was validated using a luciferase assay. miR-186 mimic or siRNA-ATAD2 in RB cells reduced cell viability, invasion, and migration coordinating with elevated apoptosis via impairing the Hedgehog signaling pathway, where repressed angiogenesis was observed. Overexpression of miR-186 attenuates RB via the inactivation of the Hedgehog signaling pathway by downregulating ATAD2.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Orbital Disease & Ocular Plastic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Mei Han
- Department of Strabismus & Pediatric Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Zhang
- Department of Strabismus & Pediatric Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
21
|
Wang S, Ran L, Zhang W, Leng X, Wang K, Liu G, Song J, Wang Y, Zhang X, Wang Y, Zhang L, Ma Y, Liu K, Li H, Zhang W, Qin G, Song F. FOXS1 is regulated by GLI1 and miR-125a-5p and promotes cell proliferation and EMT in gastric cancer. Sci Rep 2019; 9:5281. [PMID: 30918291 PMCID: PMC6437149 DOI: 10.1038/s41598-019-41717-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant neoplasm and the second leading cause of cancer death. Identification of key molecular signaling pathways involved in gastric carcinogenesis and progression facilitates early GC diagnosis and the development of targeted therapies for advanced GC patients. Emerging evidence has revealed a close correlation between forkhead box (FOX) proteins and cancer development. However, the prognostic significance of forkhead box S1 (FOXS1) in patients with GC and the function of FOXS1 in GC progression remain undefined. In this study, we found that upregulation of FOXS1 was frequently detected in GC tissues and strongly correlated with an aggressive phenotype and poor prognosis. Functional assays confirmed that FOXS1 knockdown suppressed cell proliferation and colony numbers, with induction of cell arrest in the G0/G1 phase of the cell cycle, whereas forced expression of FOXS1 had the opposite effect. Additionally, forced expression of FOXS1 accelerated tumor growth in vivo and increased cell migration and invasion through promoting epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Mechanistically, the core promoter region of FOXS1 was identified at nucleotides −660~ +1, and NFKB1 indirectly bind the motif on FOXS1 promoters and inhibit FOXS1 expression. Gene set enrichment analysis revealed that the FOXS1 gene was most abundantly enriched in the hedgehog signaling pathway and that GLI1 expression was significantly correlated with FOXS1 expression in GC. GLI1 directly bound to the promoter motif of FOXS1 and significantly decreased FOXS1 expression. Finally, we found that miR-125a-5p repressed FOXS1 expression at the translational level by binding to the 3′ untranslated region (UTR) of FOXS1. Together, these results suggest that FOXS1 can promote GC development and could be exploited as a diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Sen Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Longke Ran
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Wanfeng Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Leng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Wang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan Province, 646000, China
| | - Geli Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yujing Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Xianqin Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Lian Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Ma
- Information Technology Office of Chongqing Medical University, Chongqing, 400016, China
| | - Kun Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Haiyu Li
- Chongqing Public Health Medical Center, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guijun Qin
- Department of Endocrinology of the Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China. .,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Han B, Yang Y, Chen J, He X, Lv N, Yan R. PRSS23 knockdown inhibits gastric tumorigenesis through EIF2 signaling. Pharmacol Res 2019; 142:50-57. [PMID: 30769097 DOI: 10.1016/j.phrs.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
Abstract
PRSS23 is a newly discovered serine protease that has been associated with tumor progression in various types of cancers. Our previous study showed PRSS23 is down-regulated obviously in Hedgehog pathway blocked gastric cancer cells. However, the correlation between PRSS23 and tumor progression of gastric cancer remains unclear. Here, the role and mechanism of PRSS23 in tumor progression of gastric cancer were determined. PRSS23 protein levels were significantly increased in gastric cancer tissues compared with the paired adjacent normal gastric mucosa tissues. The high expression of PRSS23 correlated strongly with both poor differentiated histology and cancer region of sinus ventriculi. Gastric cancer patients with low PRSS23 expression displayed a better prognosis. In gastric cancer cells, PRSS23 knockdown inhibited cell proliferation and induced apoptosis. In xenograft tumor model, PRSS23 knockdown led to dramatic decreases of the average tumor volume and the average tumor weight. In addition, PRSS23 knockdown suppressed gastric cancer growth through inhibiting EIF2 signaling using gene expression microarray analysis. Taken together, our results suggest PRSS23 is highly associated with human gastric tumorigenesis and progression. PRSS23 knockdown could suppress tumor growth of gastric cancer in vitro and in vivo through inhibiting EIF2 signaling, and EIF4E maybe a potential target of PRSS23. PRSS23 could serve as a potential target for gastric cancer therapy, and also a biomarker for the prediction of prognosis of gastric cancer.
Collapse
Affiliation(s)
- Bing Han
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China; Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China; Guilin Medical University, Guilin, China
| | - Jiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Xingxing He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China
| | - Nonghua Lv
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China.
| | - Runwei Yan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Key Laboratory of Digestive Diseases of Jiangxi Province, Nanchang, China.
| |
Collapse
|
23
|
Girardi D, Barrichello A, Fernandes G, Pereira A. Targeting the Hedgehog Pathway in Cancer: Current Evidence and Future Perspectives. Cells 2019; 8:cells8020153. [PMID: 30759860 PMCID: PMC6406365 DOI: 10.3390/cells8020153] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog pathway (HhP) plays an important role in normal embryonic development and its abnormal function has been linked to a variety of neoplasms. Recently, the complex mechanisms involved in this pathway have been deciphered and the cross talks with other important pathways involved in carcinogenesis have been characterized. This knowledge has led to the development of targeted therapies against key components of HhP, which culminated in the approval of vismodegib for the treatment of advanced basal cell carcinoma in 2012. Since then, other compounds have been developed and evaluated in preclinical and clinical studies with interesting results. Today, several medications against components of the HhP have demonstrated clinical activity as monotherapies and in combination with cytotoxic treatment or other targeted therapies against mitogenic pathways that are linked to the HhP. This review aims to clarify the mechanism of the HhP and the complex crosstalk with others pathways involved in carcinogenesis and to discuss both the evidence associated with the growing number of medications and combined therapies addressing this pathway and future perspectives.
Collapse
Affiliation(s)
- Daniel Girardi
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Adriana Barrichello
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Gustavo Fernandes
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Allan Pereira
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| |
Collapse
|
24
|
Zhang H, Wang Y, Chen T, Zhang Y, Xu R, Wang W, Cheng M, Chen Q. Aberrant Activation Of Hedgehog Signalling Promotes Cell Migration And Invasion Via Matrix Metalloproteinase-7 In Ovarian Cancer Cells. J Cancer 2019; 10:990-1003. [PMID: 30854105 PMCID: PMC6400802 DOI: 10.7150/jca.26478] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Accumulating evidence indicates that aberrant activation of the Hedgehog (Hh) signalling pathway by Glioma-associated oncogene (Gli) transcription factors is involved in the aggressive progression of cancers, including ovarian cancer. Whereas the molecular mechanism underlying this phenomenon remains unelucidated. Matrix metalloproteinase-7 (MMP-7) facilitates degradation of the extracellular matrix, promoting the invasion of tumour cells, and is associated with cancer progression and metastasis. In previous reports, we identified a set of genes regulated by Hh signalling in ovarian tumour cells among which MMP-7 was identified as a potential Hh target gene candidate. However, establishing an association between Hh signalling activation and MMP-7 expression requires further validation, and the function of this regulation remains unknown. Methods: A cDNA microarray was utilized to identify potential downstream targets of Hh signalling. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate mRNA expression, and immunoblotting (IB) was conducted to evaluate protein expression. The invasive and migratory capabilities of tumour cells were tested with the transwell and wound healing assays, respectively. The mRNA levels of Gli2 and MMP-7 in normal ovarian tissues and cancerous tissues in various stages together with the corresponding clinical information were acquired from the indicated GEO datasets to elucidate associations between MMP-7 expression and cancer progression and prognosis. Additionally, immunohistochemistry (IHC) was performed in multiple ovarian cancers, benign tumours and normal tissues to evaluate Gli2 and MMP-7 protein expression. Results: MMP-7 expression was regulated by the Hh ligand, antagonist and downstream transcript factor Gli2, demonstrating this gene as an Hh target. MMP-7 facilitated the invasion and migration of ovarian tumour cells, indicating its key function in ovarian cancer progression. IHC analysis demonstrated abnormally increased Gli2 and MMP-7 expression levels in benign tumours and ovarian cancer tissues. Moreover, high MMP-7 levels were significantly associated with poor overall survival (OS) and poor progression-free survival (PFS) in ovarian cancer patients. Conclusion: Aberrant activation of the Hh-Gli-MMP-7 signalling axis is essential for acceleration of the progression and metastasis of human ovarian cancer, implicating its use as a novel therapeutic target of ovarian cancer. In addition, MMP-7 can potentially serve as a prognostic marker of ovarian cancer.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yiting Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yan Zhang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Rong Xu
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wanwan Wang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qi Chen
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
25
|
Yao Y, Zhou D, Shi D, Zhang H, Zhan S, Shao X, Sun K, Sun L, Wu G, Tian K, Zhu X, He S. GLI1 overexpression promotes gastric cancer cell proliferation and migration and induces drug resistance by combining with the AKT-mTOR pathway. Biomed Pharmacother 2019; 111:993-1004. [PMID: 30841479 DOI: 10.1016/j.biopha.2019.01.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (HH) pathway significantly affected the pathogenesis of Gastric cancer (GC), but the multiple uncanonical HH pathways that are mediated by Zinc Finger protein GLI1 (GLI1) are still unclear. In the present work, we evaluated GLI1 and p-AKT expression in GC using immunohistochemistry (IHC) analysis. GLI1 and AKT specific shRNA was transfected into GC cell lines to investigate the cross-regulation between HH pathway and AKT-mTOR pathway. The effect of GLI1 and p-AKT on proliferation, migration, and drug resistance were examined. Moreover, a mouse xenograft model of GC was established to verify the role of GLI1 and p-AKT in promoting drug sensitivity in vivo. Our results suggested the clinicopathological factors and prognosis by the differential expression of GLI1 and p-AKT in GC patients. GLI1 was activated by the AKT-mTOR pathway. Co-expression of GLI1 and p-AKT was associated with cell viability, migration, and drug resistance and indicated a poor prognosis in GC patients. Agents targeted against both GLI1 and p-AKT may reverse drug-resistance and achieve better inhibition than agents targeted against a single molecule. There was a significant correlation between the high expression of GLI1 and p-AKT in GC. Additionally, our study confirmed the activity of the AKT-mTOR-GLI1 axis, which provided a new viable field for GC treatment.
Collapse
Affiliation(s)
- Yizhou Yao
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Diyuan Zhou
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Dongtao Shi
- Departments of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Hui Zhang
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China; Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, PR China
| | - Shenghua Zhan
- Departments of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, PR China
| | - Kang Sun
- Department of General Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, PR China
| | - Liang Sun
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Guangting Wu
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Kangjun Tian
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Xinguo Zhu
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| | - Songbing He
- Departments of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
26
|
Peng Y, Zhang X, Lin H, Deng S, Huang Y, Qin Y, Feng X, Yan R, Zhao Y, Cheng Y, Wei Y, Wang J, Chen W, Fan X, Ashktorab H, Smoot D, Meltzer SJ, Li S, Zhang Z, Jin Z. Inhibition of miR‑194 suppresses the Wnt/β‑catenin signalling pathway in gastric cancer. Oncol Rep 2018; 40:3323-3334. [PMID: 30542715 PMCID: PMC6196585 DOI: 10.3892/or.2018.6773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023] Open
Abstract
A mounting body of evidence has revealed that microRNAs (miRs) serve pivotal roles in various developmental processes, and in tumourigenesis, by binding to target genes and subsequently regulating gene expression. Continued activation of the Wnt/β-catenin signalling is positively associated with human malignancy. In addition, miR-194 dysregulation has been implicated in gastric cancer (GC); however, the molecular mechanisms underlying the effects of miR-194 on GC carcinogenesis remain to be elucidated. The present study demonstrated that miR-194 was upregulated in GC tissues and SUFU negative regulator of Ηedgehog signaling (SUFU) was downregulated in GC cell lines. Subsequently, inhibition of miR-194 attenuated nuclear accumulation of β-catenin, which consequently blocked Wnt/β-catenin signalling. In addition, the cytoplasmic translocation of β-catenin induced by miR-194 inhibition was mediated by SUFU. Furthermore, genes associated with the Wnt/β-catenin signalling pathway were revealed to be downregulated following inhibition of the Wnt signalling pathway by miR-194 suppression. Finally, the results indicated that cell apoptosis was markedly increased in response to miR-194 inhibition, strongly suggesting the carcinogenic effects of miR-194 in GC. Taken together, these findings demonstrated that miR-194 may promote gastric carcinogenesis through activation of the Wnt/β-catenin signalling pathway, making it a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Huijuan Lin
- Department of Pathology and Pathophysiology, The Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Yong Huang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Ruibin Yan
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Yanqiu Zhao
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Yulan Cheng
- Department of Medicine/GI Division, The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518000, P.R. China
| | - Jian Wang
- Department of Pathology and Pathophysiology, The Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Wangchun Chen
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Stephen J Meltzer
- Department of Medicine/GI Division, The Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Song Li
- Laboratory of Chemical Genomics, The Shenzhen Graduate School of Peking University, Shenzhen, Guangdong 518055, P.R. China
| | - Zhong Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
27
|
Wang Y, Lin P, Wang Q, Zheng M, Pang L. Wnt3a-regulated TCF4/β-catenin complex directly activates the key Hedgehog signalling genes Smo and Gli1. Exp Ther Med 2018; 16:2101-2107. [PMID: 30186446 DOI: 10.3892/etm.2018.6379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
The Wnt and Hedgehog signalling pathways serve key roles in diverse developmental processes. However, the molecular associations between these two signalling pathways remains unclear. Previous transcriptome studies on human foreskin fibroblasts have indicated that Wnt signalling activation induces the expression of key Hedgehog signalling genes, including smoothened, frizzled class receptor (Smo) and GLI family zinc finger 1 (Gli1). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results revealed that Wnt3a treatment induced the expression of the key Hedgehog signalling genes, including Smo, patched (PTCH), Gli1, Gli2 and Gli3. In addition, western blot analyses demonstrated that Wnt3a treatment resulted in the accumulation of cellular Smo and Gli proteins. Furthermore, promoter sequence analysis revealed that the putative β-catenin/T-cell factor (TCF)-4 complex binding motifs (T/AC/GAAAG) were located within 1.5 kb of the Smo and Gli1 promoters. Results of the chromatin immunoprecipitation experiments and yeast-one hybrid assays revealed that TCF4 directly binds to the Smo and Gli1 promoters, with two binding sites for Smo and a single binding site for Gli1. Further analysis showed that the β-catenin/TCF4 complex binds to the Smo and Gli1 promoters. To investigate the functions of TCF4 and β-catenin in transcriptional regulation of Smo and Gli1, TCF4 and β-catenin were transiently expressed in fibroblast cells. RT-qPCR results demonstrated that overexpression of TCF4 and β-catenin induced the expression of Smo and Gli1. In addition, small interfering RNA-mediated suppression of β-catenin resulted in the downregulation of Smo and Gli1 expression levels, even under Wnt3a treatment. Suppression of β-catenin and Gli1 expression inhibited cell proliferation. Taken together, the results of the present study suggested that the β-catenin/TCF4 complex directly activates Smo and Gli1 by binding to their promoters, which in turn controls cell proliferation in human fibroblasts.
Collapse
Affiliation(s)
- Youpei Wang
- Clinical Laboratory, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Peipei Lin
- Central Blood Station of Wenzhou, Wenzhou, Zhejiang 325000, P.R. China
| | - Qing Wang
- Function Experiment Teaching Center, Wenzhou Medical University, Wenzhou, Zhejiang 325305, P.R. China
| | - Meiqin Zheng
- Clinical Laboratory, The Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lingxia Pang
- Function Experiment Teaching Center, Wenzhou Medical University, Wenzhou, Zhejiang 325305, P.R. China
| |
Collapse
|
28
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
29
|
Yang H, Fu H, Wang B, Zhang X, Mao J, Li X, Wang M, Sun Z, Qian H, Xu W. Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog 2018; 57:1223-1236. [PMID: 29749061 DOI: 10.1002/mc.22838] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/28/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022]
Abstract
Exosomes are critically involved in tumor growth, metastasis, and therapy resistance. Exosomes have the potential to be utilized as cancer biomarkers. In this study, we aimed to explore the roles and clinical values of exosomal miRNAs in gastric cancer. We found that the concentration of exosomes was significantly higher in the serum of gastric cancer patients and the culture supernatants of gastric cancer cells than that in healthy volunteers and gastric mucosa epithelial cells. In particular, miR-423-5p was elevated in the serum exosomes of gastric cancer patients, and the level of exosomal miR-423-5p was remarkably correlated with lymph node metastasis. High level of exosomal miR-423-5p was associated with poor outcome in gastric cancer patients. MiR-423-5p enriched exosomes could be internalized into gastric cancer cells, which enhanced cell proliferation and migration both in vitro and in vivo. Mechanistically, miR-423-5p inhibited the expression of suppressor of fused protein (SUFU) to enhance the proliferation and migration of gastric cancer cells. The expression levels of SUFU were significantly decreased in gastric cancer cells and the tumor tissues of gastric cancer patients. Taken together, our findings indicate that exosomes could deliver miR-423-5p to promote cancer growth and metastasis and serum exosomal miR-423-5p may serve as a potential marker for gastric cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Huan Yang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hailong Fu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsum, China
| | - Bo Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiahui Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zixuan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
30
|
Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular Signaling in Tumorigenesis of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:217-30. [PMID: 29706061 PMCID: PMC5949124 DOI: 10.22034/ibj.22.4.217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
31
|
Lu L, Wu M, Zhao F, Fu W, Li W, Li X, Liu T. Prognostic and clinicopathological value of Gli-1 expression in gastric cancer: A meta-analysis. Oncotarget 2018; 7:69087-69096. [PMID: 27634907 PMCID: PMC5356614 DOI: 10.18632/oncotarget.12011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/05/2016] [Indexed: 02/06/2023] Open
Abstract
Glioma associated oncogene-1 (Gli-1) is considered as a strong positive activator of downstream target genes of hedgehog signal pathway in mammalians. However, its diagnostic and prognostic value in gastric cancer remains unclear and controversial. Therefore, a quantitative meta-analysis was conducted to determine the clinical value of Gli-1 in gastric cancer patients. Twelve eligible articles with 886 gastric cancer patients were included in this meta-analysis. The relationship between Gli-1 expression in gastric cancer patients and clinicopathological features and 5-year overall survival (OS) was evaluated using pooled odds ratios (ORs) and hazard ratio (HR) with 95% confidence intervals (CIs). The meta-analysis showed that the upregulated Gli-1 was associated with sample type (gastric cancer tissues) (OR 10.31, 95%CI 7.14-14.88; P = 0.000), differentiation type (OR 3.76, 95%CI 2.55-5.53; P = 0.000), depth of invasion (OR 8.17, 95%CI 3.60-18.55; P = 0.000), lymph node metastasis (OR 3.97, 95%CI 2.73-5.78; P = 0.000) and high TNM stage (OR 3.65, 95%CI 1.89-7.04; P = 0.000). Three studies including 316 patients were assessed for the correlation between Gli-1 and 5-year OS, which indicated that positive Gli-1 expression was associated with poor prognosis in gastric cancer patients (HR 2.14, 95%CI 1.35-3.40; P = 0.001). Little publication bias was identified by funnel plots and Egger's tests. The sensitivity analysis indicated that no study substantially influenced pooled OR/HR. Taken together, Gli-1 is a credible indicator for highly aggressive tumor with poor prognosis in gastric cancer patients.
Collapse
Affiliation(s)
- Li Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Menglin Wu
- Department of Radiology, Second Hospital of Tianjin Medical University,Tianjin, China
| | - Feixiang Zhao
- Department of Radiology, Second Hospital of Tianjin Medical University,Tianjin, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University,Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
32
|
Lin XL, Yang L, Fu SW, Lin WF, Gao YJ, Chen HY, Ge ZZ. Overexpression of NOX4 predicts poor prognosis and promotes tumor progression in human colorectal cancer. Oncotarget 2018; 8:33586-33600. [PMID: 28422720 PMCID: PMC5464892 DOI: 10.18632/oncotarget.16829] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/25/2017] [Indexed: 12/20/2022] Open
Abstract
NADPH oxidase 4 (NOX4), a major source of reactive oxygen species (ROS) production, has been increasingly reported to be involved in tumorigenesis and/or tumor progression, but limited data are available regarding the role of NOX4 in colorectal carcinoma (CRC). We retrieved six independent investigations from Oncomine database and found that NOX4 is highly expressed in CRC tissues compared with corresponding normal controls. Similar results were also found in clinical specimens at both mRNA and protein levels. Immunohistochemical analysis indicated that NOX4 overexpression was highly correlated with T classification, N classification, distant metastasis, and poor prognosis of CRC patients, which was also confirmed by GSE14333 and GSE17536 datasets from the Gene Expression Omnibus. Furthermore, we demonstrated that when NOX4 expression was knocked down by siRNAs, cell proliferation, cell-cycle and apoptosis, migration and invasion were significantly altered in CRC cell lines HCT116 and LOVO. Meanwhile, NOX4 promoted cancer cell proliferation and apoptosis, migration and invasion by regulating the expression of relevant genes. By these approaches we aim to elucidate NOX4 may be a reliable prognostic factor or therapeutic target in CRC.
Collapse
Affiliation(s)
- Xiao-Lu Lin
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Li Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Seng-Wang Fu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Wen-Feng Lin
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Yun-Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai 200001, China
| |
Collapse
|
33
|
Kurebayashi J, Koike Y, Ohta Y, Saitoh W, Yamashita T, Kanomata N, Moriya T. Anti-cancer stem cell activity of a hedgehog inhibitor GANT61 in estrogen receptor-positive breast cancer cells. Cancer Sci 2017; 108:918-930. [PMID: 28211214 PMCID: PMC5448645 DOI: 10.1111/cas.13205] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/09/2017] [Accepted: 02/12/2017] [Indexed: 12/28/2022] Open
Abstract
Estradiol (E2) increases not only the cell growth but also the cancer stem cell (CSC) proportion in estrogen receptor (ER)‐positive breast cancer cells. It has been suggested that the non‐canonical hedgehog (Hh) pathway activated by E2 plays an important role in the regulation of CSC proportion in ER‐positive breast cancer cells. We studied anti‐CSC activity of a non‐canonical Hh inhibitor GANT61 in ER‐positive breast cancer cells. Effects of GANT61 on the cell growth, cell cycle progression, apoptosis and CSC proportion were investigated in four ER‐positive breast cancer cell lines. CSC proportion was measured using either the mammosphere assay or CD44/CD24 assay. Expression levels of pivotal molecules in the Hh pathway were measured. Combined effects of GANT61 with antiestrogens on the anti‐cell growth and anti‐CSC activities were investigated. E2 significantly increased the cell growth and CSC proportion in all ER‐positive cell lines. E2 increased the expression levels of glioma‐associated oncogene (GLI) 1 and/or GLI2. GANT61 decreased the cell growth in association with a G1‐S cell cycle retardation and increased apoptosis. GANT61 decreased the E2‐induced CSC proportion measured by the mammosphere assay in all cell lines. Antiestrogens also decreased the E2‐induced cell growth and CSC proportion. Combined treatments of GANT61 with antiestrogens additively enhanced anti‐cell growth and/or anti‐CSC activities in some ER‐positive cell lines. In conclusion, the non‐canonical Hh inhibitor GANT61 inhibited not only the cell growth but also the CSC proportion increased by E2 in ER‐positive breast cancer cells. GANT61 enhanced anti‐cell growth and/or anti‐CSC activities of antiestrogens in ER‐positive cell lines.
Collapse
Affiliation(s)
- Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshikazu Koike
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yusuke Ohta
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Wataru Saitoh
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tetsumasa Yamashita
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kanomata
- Department of Pathology 2, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takuya Moriya
- Department of Pathology 2, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
34
|
Xu L, Liu H, Yan Z, Sun Z, Luo S, Lu Q. Inhibition of the Hedgehog signaling pathway suppresses cell proliferation by regulating the Gli2/miR-124/AURKA axis in human glioma cells. Int J Oncol 2017; 50:1868-1878. [PMID: 28393219 DOI: 10.3892/ijo.2017.3946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/22/2017] [Indexed: 11/06/2022] Open
Abstract
Multiple lines of evidence indicate that aberrant activation of Hedgehog (Hh) signaling plays an important role in tumorigenesis in human glioma. However, the underlying molecular mechanism and crucial downstream targets of glioma-associated oncogene (Gli), a primary transcriptional regulator of Hh signaling, are not fully understood. Here, we report the identification of miR-124 as a novel downstream target of the transcriptional factor Gli2, which is important for proliferation and tumor growth in human glioma cells. Blockade of Hh signaling leads to a remarkable increase in miR-124 expression in glioma cells, whereas overexpression of Gli2 suppresses miR-124 expression by increasing the direct binding of Gli2 to the upstream region of the transcriptional start site for miR-124. Furthermore, we found that miR-124 potentially interacts with the 3'-UTR region of AURKA. Overexpression of miR-124 significantly decreased the expression of AURKA in glioma cells. In contrast, the loss of miR-124 led to the increased expression of AURKA mRNA and protein. In addition, cell proliferation and colony formation ability were significantly decreased following Gli2 knockdown in human glioma cells, while transfection with a miR-124 inhibitor rescued the proliferative ability of cells. These results demonstrate that miR-124 is an important downstream target gene of Hh signaling, and the Gli2/miR-124/AURKA axis is essential for the proliferation and growth of human glioma cells.
Collapse
Affiliation(s)
- Liyao Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Liu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhangming Yan
- MOE Key Laboratory of Bioinformatics, School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Zhirong Sun
- MOE Key Laboratory of Bioinformatics, School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Quqin Lu
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
35
|
Zhu ZX, Sun CC, Ting Zhu Y, Wang Y, Wang T, Chi LS, Cai WH, Zheng JY, Zhou X, Cong WT, Li XK, Jin LT. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration. Exp Cell Res 2017; 355:83-94. [PMID: 28363830 DOI: 10.1016/j.yexcr.2017.03.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022]
Abstract
Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy.
Collapse
Affiliation(s)
- Zhong Xin Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong Cong Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Yu Ting Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Sha Chi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wan Hui Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Xuan Zhou
- Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Wei Tao Cong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Li Tai Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
36
|
Wang D, Hu G, Du Y, Zhang C, Lu Q, Lv N, Luo S. Aberrant activation of hedgehog signaling promotes cell proliferation via the transcriptional activation of forkhead Box M1 in colorectal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:23. [PMID: 28148279 PMCID: PMC5288899 DOI: 10.1186/s13046-017-0491-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent evidence suggests that the aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas, including colorectal cancer (CRC). Forkhead box M1 (FoxM1) controls the expression of a number of cell cycle regulatory proteins, and FoxM1 expression is elevated in a broad range of human malignancies, which suggests that it plays a crucial role in tumorigenesis. However, the mechanisms underlying FoxM1 expression are not fully understood. Here, we aim to further investigate the molecular mechanism by which Gli1 regulates FoxM1 in CRC. METHODS Western blotting and immunohistochemistry (IHC) were used to evaluate FoxM1 and Gli1 protein expression, respectively, in CRC tissues and matched adjacent normal mucosa. BrdU (5-bromo-2'-deoxyuridine) and clone formation assays were used to clarify the influence of FoxM1 on CRC cell growth and proliferation. Chromatin immunoprecipitation (ChIP) and luciferase experiments were performed to explore the potential mechanisms by which Gli1 regulates FoxM1. Additionally, the protein and mRNA expression levels of Gli1 and FoxM1 in six CRC cell lines were measured using Western blotting and real-time PCR. Finally, the effect of Hh signaling on the expression of FoxM1 was studied in cell biology experiments, and the effects of Hh signaling activation and FoxM1 inhibition on the distribution of CRC cells among cell cycle phases was assessed by flow cytometry. RESULTS Gli1 and FoxM1 were abnormally elevated in human CRC tissues compared with matched adjacent normal mucosa samples, and FoxM1 is a downstream target gene of the transcription factor Gli1 in CRC and promoted CRC cell growth and proliferation. Moreover, the aberrant activation of Hh signaling promoted CRC cell proliferation by directly binding to the promoter of FoxM1 and transactivating the activity of FoxM1 in CRC cells. CONCLUSION The dysregulation of the Hh-Gli1-FoxM1 axis is essential for the proliferation and growth of human CRC cells and offers a potent target for therapeutic intervention in CRC.
Collapse
Affiliation(s)
- DeJie Wang
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Guohui Hu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Ying Du
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Cheng Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Nonghua Lv
- Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China. .,Jiangxi Key Laboratory of Molecular Diagnosis and Precision Medicine, Nancahng, Jiangxi, 330006, China.
| |
Collapse
|
37
|
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao Y, Cheng Y, Yang M, Wang Q, Feng X, Huang Y, Huang W, Zhao Z, Wang L, Wei Y, He Z, Fan X, Li S, Jin Z, Meltzer SJ. MiRNA-194 activates the Wnt/β-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU. Cancer Lett 2017; 385:117-127. [DOI: 10.1016/j.canlet.2016.10.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022]
|
38
|
Song B, Du J, Feng Y, Gao YJ, Zhao JS. Co-expressed differentially expressed genes and long non-coding RNAs involved in the celecoxib treatment of gastric cancer: An RNA sequencing analysis. Exp Ther Med 2016; 12:2455-2468. [PMID: 27698747 PMCID: PMC5038183 DOI: 10.3892/etm.2016.3648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/26/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the mechanisms of long non-coding RNAs (lncRNAs) in a gastric cancer cell line treated with celecoxib. The human gastric carcinoma cell line NCI-N87 was treated with 15 µM celecoxib for 72 h (celecoxib group) and an equal volume of dimethylsulfoxide (control group), respectively. Libraries were constructed by NEBNext Ultra RNA Library Prep kit for Illumina. Paired-end RNA sequencing reads were aligned to a human hg19 reference genome using TopHat2. Differentially expressed genes (DEGs) and lncRNAs were identified using Cuffdiff. Enrichment analysis was performed using GO-function package and KEGG profile in Bioconductor. A protein-protein interaction network was constructed using STRING database and module analysis was performed using ClusterONE plugin of Cytoscape. ATP5G1, ATP5G3, COX8A, CYC1, NDUFS3, UQCRC1, UQCRC2 and UQCRFS1 were enriched in the oxidative phosphorylation pathway. CXCL1, CXCL3, CXCL5 and CXCL8 were enriched in the chemokine signaling and cytokine-cytokine receptor interaction pathways. ITGA3, ITGA6, ITGB4, ITGB5, ITGB6 and ITGB8 were enriched in the integrin-mediated signaling pathway. DEGs co-expressed with lnc-SCD-1:13, lnc-LRR1-1:2, lnc-PTMS-1:3, lnc-S100P-3:1, lnc-AP000974.1-1:1 and lnc-RAB3IL1-2:1 were enriched in the pathways associated with cancer, such as the basal cell carcinoma pathway in cancer. In conclusion, these DEGs and differentially expressed lncRNAs may be important in the celecoxib treatment of gastric cancer.
Collapse
Affiliation(s)
- Bin Song
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Juan Du
- Department of Medical Oncology, The Tumor Hospital of Jilin, Changchun, Jilin 130033, P.R. China
| | - Ye Feng
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yong-Jian Gao
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ji-Sheng Zhao
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
39
|
Yang Z, Xie C, Xu W, Liu G, Cao X, Li W, Chen J, Zhu Y, Luo S, Luo Z, Lu N. Phosphorylation and inactivation of PTEN at residues Ser380/Thr382/383 induced by Helicobacter pylori promotes gastric epithelial cell survival through PI3K/Akt pathway. Oncotarget 2016; 6:31916-26. [PMID: 26376616 PMCID: PMC4741650 DOI: 10.18632/oncotarget.5577] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation of PTEN at residues Ser380/Thr382/383 leads to loss of phosphatase activity and tumor suppressor function. Here, we found that phosphorylation of PTEN at residues Ser380/Thr382/383 was increased with gastric carcinogenesis, and more importantly, Helicobacter pylori was a trigger of this modification in chronic non-atrophic gastritis. H. pylori could phosphorylate and inactivate PTEN in vivo and in vitro, resulting in survival of gastric epithelial cells. Furthermore, stable expression of dominant-negative mutant PTEN or inhibition of Akt prevented the enhanced survival induced by H. pylori. These results indicate that PTEN phosphorylation at residues Ser380/Thr382/383 is a novel mechanism of PTEN inactivation in gastric carcinogenesis, and H. pylori triggers this modification, resulting in activation of the PI3K/Akt pathway and promotion of cell survival.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gongmeizi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ximei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shiwen Luo
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhijun Luo
- The Medical College of Nanchang University, Nanchang, Jiangxi, China.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
40
|
Riquelme I, Saavedra K, Espinoza JA, Weber H, García P, Nervi B, Garrido M, Corvalán AH, Roa JC, Bizama C. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy. Oncotarget 2016; 6:24750-79. [PMID: 26267324 PMCID: PMC4694793 DOI: 10.18632/oncotarget.4990] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer mortality worldwide. Although surgical resection is a potentially curative approach for localized cases of GC, most cases of GC are diagnosed in an advanced, non-curable stage and the response to traditional chemotherapy is limited. Fortunately, recent advances in our understanding of the molecular mechanisms that mediate GC hold great promise for the development of more effective treatment strategies. In this review, an overview of the morphological classification, current treatment approaches, and molecular alterations that have been characterized for GC are provided. In particular, the most recent molecular classification of GC and alterations identified in relevant signaling pathways, including ErbB, VEGF, PI3K/AKT/mTOR, and HGF/MET signaling pathways, are described, as well as inhibitors of these pathways. An overview of the completed and active clinical trials related to these signaling pathways are also summarized. Finally, insights regarding emerging stem cell pathways are described, and may provide additional novel markers for the development of therapeutic agents against GC. The development of more effective agents and the identification of biomarkers that can be used for the diagnosis, prognosis, and individualized therapy for GC patients, have the potential to improve the efficacy, safety, and cost-effectiveness for GC treatments.
Collapse
Affiliation(s)
- Ismael Riquelme
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco, Chile
| | - Kathleen Saavedra
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco, Chile
| | - Jaime A Espinoza
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC-Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Helga Weber
- Department of Pathology, School of Medicine, Universidad de La Frontera, CEGIN-BIOREN, Temuco, Chile
| | - Patricia García
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC-Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bruno Nervi
- UC-Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Garrido
- UC-Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- UC-Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDIS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC-Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDIS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Bizama
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,UC-Center for Investigational Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
41
|
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2016; 6:13899-913. [PMID: 26053182 PMCID: PMC4546439 DOI: 10.18632/oncotarget.4224] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.
Collapse
Affiliation(s)
- Annelies Gonnissen
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Sofie Isebaert
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
42
|
Vidal MTA, Lourenço SV, Soares FA, Gurgel CA, Studart EJB, Valverde LDF, Araújo IBDO, Ramos EAG, Xavier FCDA, dos Santos JN. The sonic hedgehog signaling pathway contributes to the development of salivary gland neoplasms regardless of perineural infiltration. Tumour Biol 2016; 37:9587-601. [DOI: 10.1007/s13277-016-4841-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
|
43
|
Yang Z, Li W, He C, Xie C, Zhu Y, Lu NH. Potential effect of chronic Helicobacter pylori infection on glucose metabolism of Mongolian gerbils. World J Gastroenterol 2015; 21:12593-12604. [PMID: 26640335 PMCID: PMC4658613 DOI: 10.3748/wjg.v21.i44.12593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/19/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the effect of Helicobacter pylori (H. pylori) infection on metabolic parameters in Mongolian gerbils.
METHODS: A total of 40 male, 5- to 8-wk-old, specific-pathogen-free Mongolian gerbils (30-50 g) were randomly allocated into two groups: a control group (n = 20) and an H. pylori group (n = 20). After a two-week acclimation period, the control group was administered Brucella broth and the H. pylori group was challenged intra-gastrically five times every other day with approximately 109/CFU H. pylori ATCC43504 (CagA+, VacA+). Each group was then divided into two subgroups, which were sacrificed at either 6 or 12 mo. The control and H. pylori subgroups each contained 10 Mongolian gerbils. Body weight, abdominal circumference, and body length were measured, and body mass index (BMI) and Lee’s index were calculated. Biochemical assays were used to detect serum indexes, including glucose, glycated hemoglobin (GHb), glycated hemoglobin A1c (HbA1c), triacylglycerol, and total cholesterol, using an automatic biochemistry analyzer. Inflammatory cytokines, including interleukin (IL)-1β, IL-2, IL-4, IL-10, IL-12, tumor necrosis factor-α (TNF-α) and interferon (IFN)-γ, were assayed using ELISA. The expression of insulin and insulin-like growth factor 1 (IGF-1) was detected by immunohistochemistry, and islet apoptosis was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay.
RESULTS: At each time point, body weight, abdominal circumference, BMI, and Lee’s index were increased after H. pylori infection. However, these differences were not significant. H. pylori infection significantly increased the GHb (5.45 ± 0.53 vs 4.98 ± 0.22, P < 0.05) and HbA1c (4.91 ± 0.61 vs 4.61 ± 0.15, P < 0.05) levels at 12 mo. We observed no significant differences in serum biochemical indexes, including fasting blood glucose, triacylglycerol and total cholesterol, at 6 or 12 mo after infection. H. pylori infection significantly increased the expression of IGF-1 (P < 0.05). Insulin levels from the pancreas and the apoptotic rate of islet β-cells remained unchanged. Also, we observed no significant differences among cytokines levels, including IL-1β, IL-2, IL-4, IL-10, IL-12, TNF-α and IFN-γ. IL-4 was the only exception, which increased at 6 (44.36 ± 25.17 vs 17.38 ± 3.47, P < 0.05) and 12 mo (33.41 ± 10.00 vs 18.91 ± 5.31, P < 0.05) after H. pylori infection.
CONCLUSION: Long-term H. pylori infection is significantly associated with high levels of HbA1c in Mongolian gerbils, indicating a potential role of H. pylori infection in glucose dysregulation.
Collapse
|
44
|
Kumar V, Mondal G, Dutta R, Mahato RI. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials 2015; 76:144-56. [PMID: 26524535 DOI: 10.1016/j.biomaterials.2015.10.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 01/18/2023]
Abstract
In liver fibrosis, secretion of growth factors and hedgehog (Hh) ligands by hepatic parenchyma upon repeated insults results in transdifferentiation of quiescent hepatic stellate cells (HSCs) into active myofibroblasts which secrete excessive amounts of extracellular matrix (ECM) proteins. An Hh inhibitor GDC-0449 and miR-29b1 can play an important role in treating liver fibrosis by inhibiting several pro-fibrotic genes. Our in-silico analysis indicate that miR-29b1 targets several profibrotic genes like collagen type I & IV, c-MYC, PDGF-β and PI3K/AKT which are upregulated in liver fibrosis. Common bile duct ligation (CBDL) resulted in an increase in Ptch-1, Shh and Gli-1 expression. miR-29b1 and GDC-0449 were co-formulated into micelles using methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol-graft-tetraethylenepentamine) (mPEG-b-PCC-g-DC-g-TEPA) copolymer, and injected systemically into CBDL mice. High concentrations of GDC-0449 and miR-29b1 were delivered to liver cells as determined by in situ liver perfusion at 30 min post systemic administration of their micelle formulation. There was a significant decrease in collagen deposition in the liver and serum injury markers, leading to improvement in liver morphology. Combination therapy was more effective in providing hepatoprotection, lowering liver injury related serum enzyme levels, reducing fibrotic protein markers such as collagen, α-SMA, FN-1 and p-AKT compared to monotherapy. In conclusion, inhibition of Hh pathway and restoration of miR-29b1 have the potential to act synergistically in treating CBDL-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rinku Dutta
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
45
|
Suppressor of fused (Sufu) represses Gli1 transcription and nuclear accumulation, inhibits glioma cell proliferation, invasion and vasculogenic mimicry, improving glioma chemo-sensitivity and prognosis. Oncotarget 2015; 5:11681-94. [PMID: 25373737 PMCID: PMC4294353 DOI: 10.18632/oncotarget.2585] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma are highly aggressive brain tumors with poor prognosis. While various dysregulation of signaling pathways in gliomas have been described, the identification of biomarkers and therapy targets remains an important task for novel diagnostic and therapeutic approaches. Here we described that the Suppressor of fused (also known as Sufu) is significantly down-regulated in high-grade gliomas, correlating with a poor prognosis. We demonstrated that ectopic expression of Sufu inhibited cell proliferation, invasion and vasculogenic mimicry. In addition, overexpression of Sufu reduced Gli reporter gene transcription activity and prevented Gli1 nuclear accumulation, whereas knockdown of Sufu reversed these effects. Furthermore, overexpressed Sufu sensitized glioblastoma to Temozolomide and Cyclopamine. Thus, Sufu is potential tumor suppressor and therapeutic target in glioblastoma.
Collapse
|
46
|
Rovida E, Stecca B. Mitogen-activated protein kinases and Hedgehog-GLI signaling in cancer: A crosstalk providing therapeutic opportunities? Semin Cancer Biol 2015; 35:154-67. [PMID: 26292171 DOI: 10.1016/j.semcancer.2015.08.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/07/2023]
Abstract
The Hedgehog-GLI (HH-GLI) signaling is of critical importance during embryonic development, where it regulates a number of cellular processes, including patterning, proliferation and differentiation. Its aberrant activation has been linked to several types of cancer. HH-GLI signaling is triggered by binding of ligands to the transmembrane receptor patched and is subsequently mediated by transcriptional effectors belonging to the GLI family, whose function is fine tuned by a series of molecular interactions and modifications. Several HH-GLI inhibitors have been developed and are in clinical trials. Similarly, the mitogen-activated protein kinases (MAPK) are involved in a number of biological processes and play an important role in many diseases including cancer. Inhibiting molecules targeting MAPK signaling, especially those elicited by the MEK1/2-ERK1/2 pathway, have been developed and are moving into clinical trials. ERK1/2 may be activated as a consequence of aberrant activation of upstream signaling molecules or during development of drug resistance following treatment with kinase inhibitors such as those for PI3K or BRAF. Evidence of a crosstalk between HH-GLI and other oncogenic signaling pathways has been reported in many tumor types, as shown by recent reviews. Here we will focus on the interaction between HH-GLI and the final MAPK effectors ERK1/2, p38 and JNK in cancer in view of its possible implications for cancer therapy. Several reports highlight the existence of a consistent crosstalk between HH signaling and MAPK, especially with the MEK1/2-ERK1/2 pathway, and this fact should be taken into consideration for designing optimal treatment and prevent tumor relapse.
Collapse
Affiliation(s)
- Elisabetta Rovida
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Sezione di Patologia, Università degli Studi di Firenze, Firenze, Italy
| | - Barbara Stecca
- Laboratory of Tumor Cell Biology, Core Research Laboratory-Istituto Toscano Tumori (CRL-ITT), Florence, Italy; Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| |
Collapse
|
47
|
Aberrant SOX11 promoter methylation is associated with poor prognosis in gastric cancer. Cell Oncol (Dordr) 2015; 38:183-94. [PMID: 25801783 DOI: 10.1007/s13402-015-0219-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second most common cause of cancer mortality world-wide. In recent years, aberrant SOX11 expression has been observed in various solid and hematopoietic malignancies, including GC. In addition, it has been reported that SOX11 expression may serve as an independent prognostic factor for the survival of GC patients. Here, we assessed the SOX11 gene promoter methylation status in various GC cell lines and primary GC tissues, and evaluated its clinical significance. METHODS Five GC cell lines were used to assess SOX11 expression by qRT-PCR. The effect of SOX11 expression restoration after 5-aza-2'-deoxycytidine (5-Aza-dC) treatment on GC growth was evaluated in GC cell line MKN45. Subsequently, 89 paired GC-normal gastric tissues were evaluated for their SOX11 gene promoter methylation status using methylation-specific PCR (MSP), and 20 paired GC-normal gastric tissues were evaluated for their SOX11 expression in relation to SOX11 gene promoter methylation. GC patient survival was assessed by Kaplan-Meier analyses and a Cox proportional hazard model was employed for multivariate analyses. RESULTS Down-regulation of SOX11 mRNA expression was observed in both GC cell lines and primary GC tissues. MSP revealed hyper-methylation of the SOX11 gene promoter in 55.1% (49/89) of the primary GC tissues tested and in 7.9% (7/89) of its corresponding non-malignant tissues. The SOX11 gene promoter methylation status was found to be related to the depth of GC tumor invasion, Borrmann classification and GC differentiation status. Upon 5-Aza-dC treatment, SOX11 expression was found to be up-regulated in MKN45 cells, in conjunction with proliferation inhibition. SOX11 gene promoter hyper-methylation was found to be significantly associated with a poor prognosis and to serve as an independent marker for survival using multivariate Cox regression analysis. CONCLUSIONS Our results indicate that aberrant SOX11 gene promoter methylation may underlie its down-regulation in GC. SOX11 gene promoter hyper-methylation may serve as a biomarker to predict the clinical outcome of GC.
Collapse
|
48
|
Tang X, Deng L, Chen Q, Wang Y, Xu R, Shi C, Shao J, Hu G, Gao M, Rao H, Luo S, Lu Q. Inhibition of Hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy. Eur J Cell Biol 2015; 94:223-33. [PMID: 25824057 DOI: 10.1016/j.ejcb.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
Multiple lines of evidence implicate that aberrant activation of Hedgehog (Hh) signaling is involved in a variety of human cancers. However, the molecular mechanisms underlying how cancer cells respond to Hh inhibition remain to be elucidated. In this study, we found that blockade of Hh signaling suppresses cell proliferation in human cancer cells. Microarray analysis revealed that differentially expressed genes (DEGs) in human cancer cells are enriched in autophagy pathway in response to the inhibition of Hh signaling. Interestingly, inhibition of Hh signaling induced autophagy, whereas activation of Hh signaling by ligand treatments prevented the induction of autophagy. In addition, inhibition of autophagy by 3-methyladenine (3-MA) partially suppressed cytotoxicity induced by inhibition of Hh signaling. Finally, in autophagy deficient cells, cytotoxic effect triggered by inhibition of Hh signaling was partially reversed, indicating the modulation of autophagy by Hh signaling is autophagy-specific. These results suggest that inhibition of Hh signaling impedes cancer cell proliferation in part through induction of autophagy.
Collapse
Affiliation(s)
- Xiaoli Tang
- Department of Biochemistry, School of Medicine, Nanchang University, China
| | - Libin Deng
- Department of Biochemistry, School of Medicine, Nanchang University, China; Institute of Translational Medicine, Nanchang University, China
| | - Qi Chen
- The Second Affiliated Hospital of Nanchang University, China
| | - Yao Wang
- The First Affiliated Hospital of Nanchang University, China
| | - Rong Xu
- The Second Affiliated Hospital of Nanchang University, China
| | - Chao Shi
- The First Affiliated Hospital of Nanchang University, China
| | - Jia Shao
- The First Affiliated Hospital of Nanchang University, China
| | - Guohui Hu
- The First Affiliated Hospital of Nanchang University, China
| | - Meng Gao
- The First Affiliated Hospital of Nanchang University, China
| | - Hai Rao
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Shiwen Luo
- The First Affiliated Hospital of Nanchang University, China
| | - Quqin Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
49
|
Abdel-Rahman O. Hedgehog pathway aberrations and gastric cancer; evaluation of prognostic impact and exploration of therapeutic potentials. Tumour Biol 2015; 36:1367-74. [PMID: 25680409 DOI: 10.1007/s13277-015-3216-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is an important cause for mortality and morbidity worldwide; it lies in the fourt rank as a cause of cancer-related death in males and in the fifth rank of cancer-related death in women. The prognosis of advanced/metastatic gastric cancer cases looks poor with the majority of available therapeutics. Thus, novel therapeutic strategies in this setting have been considered a priority for leading cooperative oncology groups. Hedgehog(Hh) pathway aberrations have sparked particular interest as prognostic markers with data from multiple studies showing consistent evidence of a poor prognostic value of Gli over expression in gastric cancer while on the other hand the prognostic significance of Hh protein over expression (particularly SHH) was not consistent among different studies. This review article revises the prognostic and potential therapeutic opportunities in the targeting of hedgehog pathway in gastric cancer.
Collapse
Affiliation(s)
- Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain shams University, Cairo, Egypt,
| |
Collapse
|
50
|
β1 integrin mediates colorectal cancer cell proliferation and migration through regulation of the Hedgehog pathway. Tumour Biol 2014; 36:2013-21. [PMID: 25387809 DOI: 10.1007/s13277-014-2808-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/04/2014] [Indexed: 12/31/2022] Open
Abstract
β1 integrin (ITGB1) is the major expressed integrin protein of normal cells and tumor-associated cells. It is often up-regulated in human malignancies and is involved in many developmental processes, such as tumor progression and metastasis. However, little is known about the function of ITGB1 in colorectal cancer. We constructed lentiviral vectors expressing ITGB1 or ITGB1-specific RNA interference (RNAi) and an unrelated control vector. After infecting HT29 cells in vitro, proliferation and migration were evaluated by Cell Counting Kit 8 (CCK-8) assays, transwell invasion assays, and Western blots. The influence of lentivirus infection on the tumor development capacity of HT29 cells in vivo was examined by xenografting the tumor cells. The expression of ITGB1 in the xenografted tumor cells was analyzed by immunohistochemistry. The up-regulation of ITGB1 significantly increased the proliferation in HT29 cells in vitro. Moreover, we found that the overexpression of ITGB1 up-regulated sonic hedgehog (Shh) while down-regulating Gli1 and SuFu in HT29-ITGB1 cells compared to controls. Moreover, the levels of c-myc and cyclin D1 proteins were up-regulated. Transwell assays showed that the number of migrating HT29-RNAi cells was lower than that in the other cell groups, indicating that ITGB1 significantly enhances the invasive ability of HT29 cells. In addition to these in vitro results, ITGB1 was found to be a significantly effective growth factor in a xenografted tumor mouse model. These results suggest that ITGB1 induces growth and invasion in a human colorectal cancer cell line through the hedgehog (Hh) signaling pathway in vitro and in vivo.
Collapse
|