1
|
Wang Y, Guo M, Wu P, Chen C, Zhang W, Ren F, Wang P, Wu S, Wei J, Luo J, Yu J. Size-dependent composition and in-situ structure analysis of the milk fat globule membrane in buffalo milk. Food Chem 2025; 464:141766. [PMID: 39467501 DOI: 10.1016/j.foodchem.2024.141766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
This study provides insights into the composition and in-situ structures of the milk fat globule membrane (MFGM) in buffalo milk with different fat globule sizes (0.55 μm and 8.04 μm). Small fat globules contained a higher amount of MFGM proteins and polar lipids, while the content of MFGM components (except for ADPH) was greater per unit membrane area in large fat globules. A total of 386 differentially expressed proteins were identified, with many of the most differentially expressed proteins being associated with human diseases, such as cancer and elderly diseases. The coverage of sphingomyelin and certain MFGM proteins (BTN and PAS 6/7) on large fat globules was higher, potentially linked to the presence of larger, irregular lipid rafts and patch-shaped glycocalyxes, respectively. These findings suggest that small fat globules are suitable for nutritional fortification of buffalo milk, while large fat globules are appropriate for the preparation of functional dairy-based ingredients.
Collapse
Affiliation(s)
- Yi Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Mengyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Peipei Wu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Chong Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Weibo Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Shouyun Wu
- Guangxi Baifei Dairy Co., Ltd, Guangxi 535400, China.
| | - Jianhuan Wei
- Guangxi Baifei Dairy Co., Ltd, Guangxi 535400, China.
| | - Jie Luo
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Chen X, Niu H, McClements DJ. Design and fabrication of plant-based milk fat globule mimetics: Flaxseed oil droplets coated with potato, soy, or pea protein. Food Res Int 2024; 197:115175. [PMID: 39593386 DOI: 10.1016/j.foodres.2024.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
An increasing number of plant-based milk products are appearing on the market as substitutes for dairy milk. These products are becoming more popular due to growing consumers concerns about environmental, health, or ethical issues linked to dairy milk. Typically, plant-based milks are produced using top-down approaches that involve mechanical disruption of plant tissues. In this study, we examined the possibility of using a bottom-up approach to mimic the structural and physicochemical properties of milk fat globules (MFGs) in homogenized milk. Plant-based MFGs (PB-MFGs) were prepared using flaxseed oil as an omega-3 fatty acid rich oil phase, and potato, soy, or pea protein as emulsifiers to create the interfacial membranes. PB-MFGs were prepared with the same oil content (10 %) but different protein contents (0.5, 1, 1.5, and 2 %). The mean particle diameters (d4,3 and d3,2) of the three types of PB-MFGs were slightly smaller than those of dairy MFGs, while their surface charges were somewhat more negative under neutral conditions. There was no significant difference in the shear viscosity of PB-MFGs and MFGs. In terms of stability, PB-MFGs prepared with potato protein exhibited the smallest particle size change after 30 days of storage. Moreover, the pH stability of these PB-MFGs was closest to that of dairy MFGs. Our results provide valuable insights into the design and development of plant-based milks with more dairy-like properties, which may increase their more widespread acceptance and application.
Collapse
Affiliation(s)
- Xianwei Chen
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
3
|
Bravo-Núñez Á, Valéro R, Reboul E. Evaluating the roles of food matrix, lipid micronutrients and bioactives in controlling postprandial hypertriglyceridaemia and inflammation. Nutr Res Rev 2024:1-14. [PMID: 39508161 DOI: 10.1017/s0954422424000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Lipids play an important role in human nutrition. Although adequate lipid consumption is necessary for an optimal functioning of the human body, overconsumption of saturated fatty acids can lead to postprandial hypertriglyceridaemia, which triggers the development of atherosclerosis. Important parameters that impact postprandial lipaemia and inflammation are related to the matrix structure and the fat-soluble micronutrient profile of ingested foods/lipids, but the specific effect of these parameters should be further studied, as most of the available studies evaluate their effect at fasting state. This review specifically explores the effects of food structure and fat-soluble micronutrients, from either micronutrient-rich foods or supplements, on postprandial hypertriglyceridaemia and inflammation. The review also highlights the potential of emerging biomarkers such as miRNAs or circulating microvesicles, as an alternative to the widely use biomarkers (e.g. low-density lipoproteins or blood concentration of pro-inflammatory cytokines), to identify inflammation associated with postprandial hypertriglyceridaemia at early stages.
Collapse
Affiliation(s)
- Ángela Bravo-Núñez
- Aix-Marseille University, INRAE, INSERM, C2VN, Marseille, France
- University of Valladolid, Valladolid, Spain
| | - René Valéro
- Aix-Marseille University, INRAE, INSERM, C2VN, Marseille, France
- APHM, Department of Nutrition, Metabolic Diseases and Endocrinology, University Hospital La Conception, Marseille, France
| | | |
Collapse
|
4
|
Kondrashina A, Mamone G, Giblin L, Lane JA. Infant Milk Formula Enriched in Dairy Cream Brings Its Digestibility Closer to Human Milk and Supports Intestinal Health in Pre-Clinical Studies. Nutrients 2024; 16:3065. [PMID: 39339664 PMCID: PMC11434767 DOI: 10.3390/nu16183065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Human breast milk (HBM) is the "gold standard" for infant nutrition. When breast milk is insufficient or unavailable, infant milk formula (IMF) can provide a safe and nutritious alternative. However, IMFs differ considerably from HBM in composition and health function. We compared the digestibility and potential health functions of IMF containing low cream (LC-) or high cream (HC-) with pooled HBM. After simulated infant digestion of these samples, the bioavailability of key nutrients and immunomodulatory activities were determined via cell-based in vitro assays. A Caenorhabditis elegans leaky gut model was established to investigate cream effects on gut health. Distinct differences were observed in peptide diversity and sequences released from HC-IMF compared with LC-IMF during simulated digestion (p < 0.05). Higher levels of free fatty acids were absorbed through 21-day differentiated Caco-2/HT-29MTX monolayers from HC-IMF, compared with LC-IMF and HBM (p < 0.05). Furthermore, the immune-modulating properties of HC-IMF appeared to be more similar to HBM than LC-IMF, as observed by comparable secretion of cytokines IL-10 and IL-1β from THP-1 macrophages (p > 0.05). HC-IMF also supported intestinal recovery in C. elegans following distortion versus LC-IMF (p < 0.05). These observations suggest that cream as a lipid source in IMF may provide added nutritional and functional benefits more aligned with HBM.
Collapse
Affiliation(s)
- Alina Kondrashina
- Health and Happiness (H&H) Group, H&H Research, Global Research and Technology Centre, Fermoy, P61 K202 Co. Cork, Ireland
| | - Gianfranco Mamone
- Institute of Food Science, National Research Council, 83100 Avellino, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 P302 Co. Cork, Ireland
| | - Jonathan A Lane
- Health and Happiness (H&H) Group, H&H Research, Global Research and Technology Centre, Fermoy, P61 K202 Co. Cork, Ireland
| |
Collapse
|
5
|
Ren Q, Keijzer P, Wichers HJ, Hettinga KA. Glycation of goat milk with different casein-to-whey protein ratios and its effects on simulated infant digestion. Food Chem 2024; 450:139346. [PMID: 38621311 DOI: 10.1016/j.foodchem.2024.139346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
This research compared the effects of dry heating on the digestion of goat milk proteins with different casein-to-whey ratios (40% casein, C40 and 80% casein, C80). The glycation markers of heated samples were determined by LC-MS. Heating at 60 °C for 8 h induced early glycation while heating at 60 °C for 72 h induced advanced glycation. Unheated C80 samples showed a higher digestibility than unheated C40 samples, which may be due to their higher protein solubility. After dry heating for 72 h, no significant difference in digestibility was observed between C80 and C40 samples. Heating for 72 h decreased the digestibility of C40 samples compared to unheated samples, probably due to glycation, while protein aggregation was the main reason for the reduced digestibility of heated C80 samples. Overall, this study showed that dry heating for 72 h induced a lower digestibility of C80 and C40 samples, although with different underlying mechanisms.
Collapse
Affiliation(s)
- Qing Ren
- Food Quality & Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Harry J Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Kasper A Hettinga
- Food Quality & Design Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Lavoisier A, Jamme T, Rousseau F, Morzel M. Impact of saliva incorporation on the rheological properties of in vitro gastric contents formulated from sour cream. J Texture Stud 2024; 55:e12851. [PMID: 38952153 DOI: 10.1111/jtxs.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Rheological properties of gastric contents depend on the food ingested, and on the volume and composition of secretions from the host, which may vary. This study investigates the impact of saliva regular incorporation in the stomach after a meal on the rheological properties of gastric contents, considering two levels of salivary flow (low = 0.5 and high = 1.5 mL/min). In vitro chymes were obtained by mixing sour cream, simulated gastric fluid, two different volumes of oral fluid (at-rest human saliva, SSF for Simulated Salivary Fluid or water) and adjusting pH at 3. Chymes samples were characterized at 37°C for their particle size and rheological properties. Overall, particle size distribution was not different between samples: incorporating a larger volume of saliva resulted in more heterogeneity, but the surface area moment D[3,2] and volume moment D[4,3] did not differ significantly with the oral fluid type. Shear viscosity of chyme samples was higher when saliva was incorporated, in comparison with water or SSF. In addition, as shown from data extracted atγ ̇ $$ \dot{\gamma} $$ = 20 s-1 the higher the fluid volume the lower the shear viscosity, which is attributed to a dilution effect. However, this dilution effect was attenuated in the case of saliva, most likely due to its composition in organic compounds (e.g., mucins) contributing to the rheological properties of this biological fluid. In these in vitro conditions, both saliva and the salivation rate had a significant but slight impact on the rheological properties of gastric contents (of the order of 1-5 mPa s atγ ̇ $$ \dot{\gamma} $$ = 20 s-1).
Collapse
Affiliation(s)
| | - Tino Jamme
- INRAE, Institut Agro, STLO, Rennes, France
| | | | | |
Collapse
|
7
|
Taormina VM, Unger AL, Kraft J. Full-fat dairy products and cardiometabolic health outcomes: Does the dairy-fat matrix matter? Front Nutr 2024; 11:1386257. [PMID: 39135556 PMCID: PMC11317386 DOI: 10.3389/fnut.2024.1386257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 08/15/2024] Open
Abstract
Reducing dairy fat intake is a common dietary guideline to limit energy and saturated fatty acid intake for the promotion of cardiometabolic health. However, research utilizing a holistic, food-based approach to assess the consumption of the fat found in dairy, a broad and diverse food group, may provide new insight into these guidelines. Dairy fat is comprised of a diverse assembly of fatty acids, triacylglycerols, sterols, and phospholipids, all uniquely packaged in a milk fat globule. The physical structure of this milk fat globule and its membrane is modified through different processing methods, resulting in distinctive dairy-fat matrices across each dairy product. The objectives of this narrative review were to first define and compare the dairy-fat matrix in terms of its unique composition, physical structure, and fat content across common dairy products (cow's milk, yogurt, cheese, and butter). With this information, we examined observational studies and randomized controlled trials published within the last 10 years (2013-2023) to assess the individual effects of the dairy-fat matrix in milk, yogurt, cheese, and butter on cardiometabolic health and evaluate the implications for nutrition guidance. Searches conducted on Ovid MEDLINE and PubMed® utilizing search terms for cardiometabolic health, both broadly and regarding specific disease outcomes and risk factors, yielded 59 studies that were analyzed and included in this review. Importantly, this review stratifies by both dairy product and fat content. Though the results were heterogeneous, most studies reported no association between intake of these individual regular-fat dairy products and cardiometabolic outcome measures, thus, the current body of evidence suggests that regular-fat dairy product consumption may be incorporated within overall healthy eating patterns. Research suggests that there may be a beneficial effect of regular-fat milk and yogurt intake on outcome measures related to body weight and composition, and an effect of regular-fat cheese intake on outcome measures related to blood lipids, but more research is necessary to define the directionality of this relationship. Lastly, we identify methodological research gaps and propose future research directions to bolster the current evidence base available for ascertaining the role of dairy fat in a healthy diet.
Collapse
Affiliation(s)
- Victoria M. Taormina
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, United States
| | - Allison L. Unger
- Department of Pathology and Laboratory Medicine, The University of Vermont, Burlington, VT, United States
- National Dairy Council, Rosemont, IL, United States
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT, United States
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, The University of Vermont, Colchester, VT, United States
- Department of Nutrition and Food Sciences, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
8
|
Mendonça MA, Arruda SF, de Alencar ER, Araújo WMC. Fat globule diameter in infant formulas. Nutrition 2024; 121:112264. [PMID: 38458145 DOI: 10.1016/j.nut.2023.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 03/10/2024]
Abstract
OBJECTIVES The lipid fraction, fatty acid profile, and diameter of fat globules of infant formulas show great differences from human milk. These characteristics influence fat digestion and, consequently, the development and health of infants. The aim of this study was to evaluate the diameter of fat globules in infant formulas and compare them with those in human milk. METHODS The diameter of fat globules of 10 infant formulas and human milk samples was determined using scanning electron microscopy. RESULTS The starter infant formula was the only one that showed a mean diameter value (3.52 ± 2.17 µm) similar to that obtained for human milk (3.44 ± 1.68 µm). The starter infant formula showed the highest values of volume-surface D3,2 (6.13 µm) and volume-weighted D4,3, (7.05 µm) mean diameters among the infant formulas analyzed, and close to those obtained for the human milk sample (5.16 and 5.98 µm, respectively). The infant formulas whey protein partially hydrolyzed, soy protein isolate-based, whey protein extensively hydrolyzed, and thickened with pregelatinized starch had the lowest mean diameters of fat globules 0.64 ± 0.22, 0.70 ± 0.19, 1.06 ± 0.34, and 1.22 ± 0.48 µm, respectively. CONCLUSION The analysis of principal components showed that none of the analyzed infant formulas had similarity with the diameter of fat globules and the fatty acid profile of human milk.
Collapse
Affiliation(s)
- Márcio Antônio Mendonça
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Brazil
| | - Sandra Fernandes Arruda
- Department of Nutrition, College of Health Sciences, University of Brasília, Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Brazil
| | | | - Wilma Maria Coelho Araújo
- Department of Nutrition, College of Health Sciences, University of Brasília, Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Brazil.
| |
Collapse
|
9
|
Kjølbæk L, Raben A. The impact of dairy matrix structure on postprandial lipid responses. Proc Nutr Soc 2024; 83:9-16. [PMID: 37728057 DOI: 10.1017/s0029665123003622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
This review presents evidence related to the postprandial responses after consumption of dairy products focusing on the effect of the dairy matrix and lipid response, which was also presented as part of a speech at the Nutrition Society Winter Conference, January 2023. The key findings are that the dairy product(s) that differentiate from others in the postprandial TAG response are products with a semi-solid structure. There were no differences in lipid responses between cheese and butter. The main factors viscosity, fat globule size and milk fat globule membrane do not seem to explain the effect of the dairy matrix in the acute postprandial response. In summary, it is very difficult to investigate the effects of the dairy matrix per see and with the few studies conducted to date, no clear cause and effect can be established. Future research should focus on the semi-solid dairy matrix, and studies investigating specifically the yoghurt matrix are warranted.
Collapse
Affiliation(s)
- Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Copenhagen, Denmark
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Copenhagen, Denmark
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
10
|
Li Y, Li R, Hu X, Liu J, Liu G, Gao L, Zhang Y, Wang H, Zhu B. Changes of the volatile compounds and odors in one-stage and three-stage infant formulas during their secondary shelf-life. Curr Res Food Sci 2024; 8:100693. [PMID: 38356611 PMCID: PMC10864756 DOI: 10.1016/j.crfs.2024.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
The odor of infant formula changes due to alterations in its volatile composition during the shelf life. However, there is currently a lack of research on whether the odor changes in infant formula during the secondary shelf life, which refers to the period of repeated opening and usage in daily life. This study used headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-electrostatic orbitrap high-resolution mass spectrometry (GC-Orbitrap-MS) to investigate the volatile composition changes in one-stage and three-stage infant formulas during different stages (0 day, 3 days, and 7 days during the secondary shelf-life, i.e. simulated daily use). A total of 32 volatiles were identified, including nine aldehydes, seven ketones, four alcohols, three furans, two sulfur compounds, two esters, and five terpenoids. Of these, 16 compounds changed significantly in one-stage samples and 23 compounds in three-stage samples within 7 days of the secondary shelf-life. Further the odor of the three-stage infant formula samples was found changed substantially after 3 days of simulated use by using the triangle test. This study highlighted the considerable alterations in volatile compound composition and sensory changes during the simulated daily use and provided valuable insights for consumers in selecting and using infant formula products, as well as a new perspective for enterprises to improve the sensory quality of their products.
Collapse
Affiliation(s)
- Yilin Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Ruotong Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Hu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiani Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Guirong Liu
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Lipeng Gao
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Yongjiu Zhang
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100015, China
| | - Houyin Wang
- China National Institute of Standardization, Beijing, 100191, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
11
|
Pradeilles R, Norris T, Sellem L, Markey O. Effect of Isoenergetic Substitution of Cheese with Other Dairy Products on Blood Lipid Markers in the Fasted and Postprandial State: An Updated and Extended Systematic Review and Meta-Analysis of Randomized Controlled Trials in Adults. Adv Nutr 2023; 14:1579-1595. [PMID: 37717700 PMCID: PMC10721513 DOI: 10.1016/j.advnut.2023.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Consumption of fat as part of a cheese matrix may differentially affect blood lipid responses when compared with other dairy foods. This systematic review was conducted to compare the impact of consuming equal amounts of fat from cheese and other dairy products on blood lipid markers in the fasted and postprandial state. Searches of PubMed (Medline), Cochrane Central and Embase databases were conducted up to mid-June 2022. Eligible human randomized controlled trials (RCTs) investigated the effect of isoenergetic substitution of hard or semi-hard cheese with other dairy products on blood lipid markers. Risk of bias (RoB) was assessed using the Cochrane RoB 2.0 tool. Random-effects meta-analyses assessed the effect of ≥2 similar dietary replacements on the same blood lipid marker. Of 1491 identified citations, 10 articles were included (RoB: all some concerns). Pooled analyses of 7 RCTs showed a reduction in fasting total cholesterol, LDL-C and HDL-C concentrations after ≥14 d mean daily intake of 135 g cheese (weighted mean difference [WMD]: -0.24 mmol/L; 95% confidence interval (CI): -0.34, -0.15; I2 = 59.8%, WMD: -0.19 mmol/L; 95% CI: -0.27, -0.12; I2 = 42.8%, and WMD: -0.04 mmol/L; 95% CI: -0.08, -0.00; I2 = 58.6%, respectively) relative to ∼52 g/d butter. We found no evidence of a benefit from replacing cheese for ≥14 d with milk on fasting blood lipid markers (n = 2). Limited postprandial RCTs, described in narrative syntheses, suggested that cheese-rich meals may induce differential fed-state lipid responses compared with some other dairy matrix structures, but not butter (n ≤ 2). In conclusion, these findings indicate that dairy fat consumed in the form of cheese has a differential effect on blood lipid responses relative to some other dairy food structures. However, owing to considerable heterogeneity and limited studies, further confirmation from RCTs is warranted. TRIAL REGISTRATION NUMBER: This systematic review protocol was registered at https://www.crd.york.ac.uk/PROSPERO/ as CRD42022299748.
Collapse
Affiliation(s)
- Rebecca Pradeilles
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom; Montpellier Interdisciplinary Centre on Sustainable Agri-Food Systems (UMR MoISA), University of Montpellier, CIRAD, CIHEAM-IAMM, INRAE, Institut Agro, IRD, Montpellier, France
| | - Tom Norris
- Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | | | - Oonagh Markey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom; Carenity (ELSE CARE), Paris, France.
| |
Collapse
|
12
|
Rathnakumar K, Ortega-Anaya J, Jimenez-Flores R, Martínez-Monteagudo SI. Partition of milk phospholipids during ice cream manufacturing. J Dairy Sci 2023; 106:7501-7514. [PMID: 37641266 DOI: 10.3168/jds.2022-23145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 08/31/2023]
Abstract
The distribution of phospholipids (PL) within the fat and serum phase of ice cream manufacturing was evaluated through partition coefficients (KPL) after mixing, pasteurization, freezing, and hardening. Ice creams containing about 40.41 ± 3.45 (± standard deviation; control formulation) and 112.29 ± 9.06 (enriched PL formulation) mg of PL per g of fat were formulated with nonfat dry milk and β-serum, respectively. Overall, the KPL were lower than 1, indicating that the PL were predominantly found in the fat phase, and only a small amount was left in the serum and sediment. Confocal micrographs visually confirmed this generalization. The addition of PL significantly increased the viscosity of the mixes between 4- and 9-fold, depending on the shear rate. Additionally, mixes containing high PL exhibited higher yield stress than those formulated with low PL (0.15 ± 0.09 and 0.016 ± 0.08 Pa, respectively). Ice creams with high PL delayed the onset of meltdown and exhibited a slower rate of a meltdown than low-PL ice creams (18.53 ± 0.57 and 14.83 ± 0.85 min, and 1.01 ± 0.05 and 0.71 ± 0.04% min-1, respectively). This study provides useful guidelines for manufacturing ice cream enriched in milk PL. Additionally, the use of β-serum, a byproduct stream, as a source of PL is illustrated. The development will require studying the sensorial description of the product as well as consumer acceptance.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Sergio I Martínez-Monteagudo
- Family and Consumer Sciences, New Mexico State University, Las Cruces, NM 88003; Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003; Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003.
| |
Collapse
|
13
|
Yu Y, Li X, Zhang J, Li X, Wang J, Sun B. Oat milk analogue versus traditional milk: Comprehensive evaluation of scientific evidence for processing techniques and health effects. Food Chem X 2023; 19:100859. [PMID: 37780279 PMCID: PMC10534225 DOI: 10.1016/j.fochx.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Milk, enriched with high-quality protein, is a healthy and nutritious food that meets people's needs. However, consumers are turning their attention to plant-based milk due to several concerns, such as lactose intolerance, allergies and some diseases caused by milk; carbon emission from cattle farming; economical aspects; and low access to vitamins and minerals. Oat milk, which is produced from whole grain oats, is lactose free and rich in a variety of nutrients and phytochemicals. With the significant development of food processing methods and advancement in milk simulation products, the production of plant-based milk, such as cereal milk, has greatly progressed. This review described some features of oat milk analogue versus traditional milk and compared the properties, processing technologies, health effects, environmental friendliness, and consumer acceptance of these products. It is expected to provide a reference for evaluating development trends and helping consumers choose between oat milk and traditional milk.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Xiao Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing); Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; Key Laboratory of Special Food Supervision Technology for State Market Regulation; China Food Flavor and Nutrition Health Innovation, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Sun Y, Liu S, Ma S, Sun L, Li X, Liu L, Ma C, Fanny MBA, Jiao Y, Bi L. Interfacial compositions of fat globules modulate structural characteristics and lipolysis of its model emulsions during in-vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4668-4675. [PMID: 36997692 DOI: 10.1002/jsfa.12591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND This study investigated whether milk fat globule membrane as an emulsifier could make fat easier for infants to digest. An emulsion was formed using the membrane material, where anhydrous milk fat was used as the core material, milk fat globule membrane polar lipid (MPL) as the emulsifier, and soybean phospholipid (PL) and milk protein concentrate (MPC) incorporated as control emulsifiers. Structural characterization, glyceride composition, and fatty acid release from emulsions by in vitro digestion were investigated. RESULTS The average particle size at the end of intestinal digestion was in the order MPL < PL < MPC, with diameters of 3.41 ± 0.51 μm, 3.53 ± 0.47 μm, and 10.46 ± 2.33 μm respectively. Meanwhile, laser scanning confocal microscopy results also illustrated that MPL could reduce the degree of aggregation during digestion. The lipolysis degree of MPL emulsion was higher than that of PL and MPC emulsions. MPL not only released higher levels of long-chain fatty acids, such as C18:1, C18:2, C18:3, which are of great significance for infant growth and development, but also released increased levels of C20:4 (arachidonic acid) and C22:6 (docosahexaenoic acid) than PL and MPC emulsions did. CONCLUSION Fat droplets enveloped by milk fat globule MPLs were easier to digest and are therefore more suitable for infant formula. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Sun
- Food College, Northeast Agricultural University, Harbin, China
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Co., Ltd, Suihua, China
| | - Shuaiyi Ma
- Food College, Northeast Agricultural University, Harbin, China
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Lina Sun
- Food College, Northeast Agricultural University, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- Food College, Northeast Agricultural University, Harbin, China
| | | | - Yang Jiao
- Food College, Northeast Agricultural University, Harbin, China
| | - Lianji Bi
- Food College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Vélez MA, Wolf VI, Espariz M, Acciarri G, Magni C, Hynes E, Perotti MC. Study of volatile compounds profiles in milk matrices using Enterococcus faecalis EstA and Rhizomucor miehei lipase. Food Res Int 2023; 169:112861. [PMID: 37254435 DOI: 10.1016/j.foodres.2023.112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/02/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
The use of esterase/lipase enzymes of different origins in food industry is a widely employed strategy to enhance the formation of characteristic aromatic compounds derived from fat and diversify flavour. In the present work, we studied EstA enzyme of Enterococcus faecalis and a high purity Rhizomucor miehei lipase (Palatase). EstA was obtained recombinantly in Escherichia coli BL21 (DE3), and optimum esterase activity was detected at pH 6.75 and 40 °C. We evaluated the effect of the enzymes on milk mixtures prepared with different fat contents (2.8 and 6%) and structure (native or homogenized) on volatile compounds profiles. The milk fat structure before and after the application of low homogenization was characterized by dynamic light dispersion and microscopy. Native milk fat mixtures presented particles of 4.6 μm and 184 nm and homogenized mixtures had particles of 1.4 μm and 258 nm; microscopy images were in concordance with these results. Fifteen volatile compounds were identified, including ketones, esters, alcohols, and acids. We showed the key role of milk fat levels and microstructure in the nature of the volatile compounds produced by the R. miehei enzyme. Both in native or homogenized states, the highest content of fat favored a higher production of acids whereas the lowest fat level favored a higher esters production along with a more balanced volatile profile. For EstA enzyme, results showed a limited action on fat, as biosynthesis of esters only increased with the highest fat level homogenized.
Collapse
Affiliation(s)
- María A Vélez
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina.
| | - Verónica I Wolf
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - Martín Espariz
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Giuliana Acciarri
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Suipacha 590, 2000, Rosario, Santa Fe, Argentina
| | - Erica Hynes
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| | - María C Perotti
- Instituto de Lactología Industrial (INLAIN, Universidad Nacional del Litoral/CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, S3000AOM, Santa Fe, Argentina
| |
Collapse
|
16
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Heiden-Hecht T, Wu B, Appavou MS, Förster S, Frielinghaus H, Holderer O. Multiscale Structural Insight into Dairy Products and Plant-Based Alternatives by Scattering and Imaging Techniques. Foods 2023; 12:foods12102021. [PMID: 37238839 DOI: 10.3390/foods12102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Dairy products and plant-based alternatives have a large range of structural features from atomic to macroscopic length scales. Scattering techniques with neutrons and X-rays provide a unique view into this fascinating world of interfaces and networks provided by, e.g., proteins and lipids. Combining these scattering techniques with a microscopic view into the emulsion and gel systems with environmental scanning electron microscopy (ESEM) assists in a thorough understanding of such systems. Different dairy products, such as milk, or plant-based alternatives, such as milk-imitating drinks, and their derived or even fermented products, including cheese and yogurt, are characterized in terms of their structure on nanometer- to micrometer-length scales. For dairy products, the identified structural features are milk fat globules, casein micelles, CCP nanoclusters, and milk fat crystals. With increasing dry matter content in dairy products, milk fat crystals are identified, whereas casein micelles are non-detectable due to the protein gel network in all types of cheese. For the more inhomogeneous plant-based alternatives, fat crystals, starch structures, and potentially protein structures are identified. These results may function as a base for improving the understanding of dairy products and plant-based alternatives, and may lead to enhanced plant-based alternatives in terms of structure and, thus, sensory aspects such as mouthfeel and texture.
Collapse
Affiliation(s)
- Theresia Heiden-Hecht
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Olaf Holderer
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| |
Collapse
|
18
|
Impact of process and composition of formulas for elderly on in vitro digestion using the dynamic DIDGI® model. Food Res Int 2023; 167:112716. [PMID: 37087275 DOI: 10.1016/j.foodres.2023.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Due to the lower efficiency of the elderly digestion system, new formulations are needed in order to increase the bioaccessibility of macronutrients. The aim of the work was to evaluate the effect of the process of protein sources production using either liquid (F2) vs spray dried milk proteins (F1/F3) and the source of lipids (vegetable oil (F1) vs mix of vegetable oil + bovine milk cream (F2/F3)) ingredients on the macronutrient digestion of three experimental elderly formulas. The dynamic in vitro digestion model DIDGI®, was adapted to simulate the digestive conditions of the elderly. An exhaustive review of the literature was carried out in order to simulate as closely as possible the elderly digestive parameters and constituted the starting point towards a consensus in vitro digestion model that will be proposed soon by the INFOGEST scientific network. The three experimental formulas (F1/F2/F3) differing by the composition and process applied were submitted to the DIDGI® dynamic in vitro digestion over four hours using parameters adapted to the elderly. The three formulas were compared in terms of proteolysis and lipolysis. A slight impact of the process (liquid vs spray-dried) on the degree of proteolysis at the end of digestion was observed with 50.8% for F2 compared to 56.8% for F1 and 52.9% for F3 with<5% of difference between the 3 formulas. Concerning the degree of lipolysis, the addition of bovine cream led to a lesser extent of lipolysis with 63.7 and 60.2% for F2 and F3 respectively versus 66.3% for F1 (containing only vegetable oil). Our results highlighted the beneficial input of the milk fat with a higher level of phospholipids and a lower ω6/ω3 PUFA ratio and can be a good alternative to the use of the vegetable fat in drinks for elderly people.
Collapse
|
19
|
Mehany T, Siddiqui SA, Olawoye B, Olabisi Popoola O, Hassoun A, Manzoor MF, Punia Bangar S. Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Crit Rev Food Sci Nutr 2023; 64:7237-7267. [PMID: 36861223 DOI: 10.1080/10408398.2023.2183381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The worldwide challenges related to food sustainability are presently more critical than ever before due to the severe consequences of climate change, outbreak of epidemics, and wars. Many consumers are shifting their dietary habits toward consuming more plant-based foods, such as plant milk analogs (PMA) for health, sustainability, and well-being reasons. The PMA market is anticipated to reach US$38 billion within 2024, making them the largest segment in plant-based foods. Nevertheless, using plant matrices to produce PMA has numerous limitations, including, among others, low stability and short shelf life. This review addresses the main obstacles facing quality and safety of PMA formula. Moreover, this literature overview discusses the emerging approaches, e.g., pulsed electric field (PEF), cold atmospheric plasma (CAP), ultrasound (US), ultra-high-pressure homogenization (UHPH), ultraviolet C (UVC) irradiation, ozone (O3), and hurdle technology used in PMA formulations to overcome their common challenges. These emerging technologies have a vast potential at the lab scale to improve physicochemical characteristics, increase stability and extend the shelf-life, decrease food additives, increase nutritional and organoleptic qualities of the end product. Although the PMA fabrication on a large scale using these technologies can be expected in the near future to formulate novel food products that can offer green alternatives to conventional dairy products, further development is still needed for wider commercial applications.
Collapse
Affiliation(s)
- Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Babatunde Olawoye
- Department of Food Science and Technology, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria
| | - Oyekemi Olabisi Popoola
- Department of Food Science and Technology, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation and Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
20
|
Jiang B, Xia Y, Zhou L, Liang X, Chen X, Chen M, Li X, Lin S, Zhang N, Zheng L, Tao M, Petocz P, Gallier S, Rowan A, Wang B. Safety and tolerance assessment of milk fat globule membrane-enriched infant formulas in healthy term Chinese infants: a randomised multicenter controlled trial. BMC Pediatr 2022; 22:465. [PMID: 35918695 PMCID: PMC9347101 DOI: 10.1186/s12887-022-03507-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Background Milk fat globule membrane (MFGM), natural to breast milk, is essential for neonatal development, but lacking from standard infant formulas. Objectives To evaluate the safety and tolerability of MFGM supplementation in formula for infants 0 to 12 months. Methods In a prospective, multicentre, double-blind, randomized trial, healthy term infants were randomized to a standard formula (SF, n = 104) or an MFGM-enriched formula (MF, n = 108) for 6 months and a corresponding follow-on formula until 12 months. Exclusively breast-fed infants (n = 206) were recruited as the reference group (BFR). Tolerance and safety events were recorded continuously. Anthropometric measurements were assessed at enrolment, 42 days and 4, 6, 8 and 12 months. Results Infants (n = 375) completed the study with average dropout of < 20%. Stool frequency, color, and consistency between SF and MF were not significantly different throughout, except the incidence of loose stools in MF at 6 months being lower than for SF (odds ratio 0.216, P < 0.05) and the frequency of green-colored stools at 12 months being higher in MF (CI 95%, odds ratio 8.92, P < 0.05). The BFR had a higher frequency of golden stools and lower rate of green stools (4–6 months) than the two formula-fed groups (P < 0.05). SF displayed more diarrhoea (4.8%) than MF (1%) and BFR (1%) at the 8-month visit (P < 0.05). BFR (0–1%) had significantly less (P < 0.05) lower respiratory infections than MF (4.6–6.5%) and SF (2.9–5.8%) at 6- and 8-months, respectively. Formula intake, frequency of spit-up/vomiting or poor sleep were similar between SF and MF. Growth rate (g/day) was similar at 4, 6, 8 and 12 months between the 3 groups, but growth rate for BFR was significantly higher than for SF and MF at 42 days (95% CI, P = 0.001). Conclusions MFGM-enriched formula was safe and well-tolerated in healthy term infants between 0 and 12 months, and total incidences of adverse events were similar to that for the SF group. A few differences in formula tolerance were observed, however these differences were not in any way related to poor growth.
Collapse
Affiliation(s)
- BoWen Jiang
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China.,School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - Yong Xia
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China.,School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - LiHong Zhou
- School of Medicine, Xiamen University, Xiamen City, 361005, China
| | - XiaoYing Liang
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China
| | - XuHui Chen
- Maternal &, Child Health Hospital of Fuqing, Fuqing, 350300, China
| | | | - XiaoXia Li
- Second Hospital of Fuzhou, Fuzhou, 350007, China
| | - Shan Lin
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China
| | - Nai Zhang
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China
| | - Ling Zheng
- Maternal &, Child Health Hospital of Fuqing, Fuqing, 350300, China
| | - Miao Tao
- Maternal &, Child Health Hospital of Fuzhou, Fuzhou, 350005, China
| | - Peter Petocz
- Macquarie University, Sydney, NSW, 2109, Australia
| | - Sophie Gallier
- Fonterra Co-Operative Group Limited, Wellington, New Zealand
| | - Angela Rowan
- Fonterra Co-Operative Group Limited, Wellington, New Zealand
| | - Bing Wang
- School of Medicine, Xiamen University, Xiamen City, 361005, China.
| |
Collapse
|
21
|
Ten-Doménech I, Ramos-Garcia V, Moreno-Torres M, Parra-Llorca A, Gormaz M, Vento M, Kuligowski J, Quintás G. The effect of Holder pasteurization on the lipid and metabolite composition of human milk. Food Chem 2022; 384:132581. [DOI: 10.1016/j.foodchem.2022.132581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022]
|
22
|
Kůrová V, Salek RN, Vašina M, Vinklárková K, Zálešáková L, Gál R, Adámek R, Buňka F. The effect of homogenization and addition of polysaccharides on the viscoelastic properties of processed cheese sauce. J Dairy Sci 2022; 105:6563-6577. [PMID: 35840407 DOI: 10.3168/jds.2021-21520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/16/2022] [Indexed: 11/19/2022]
Abstract
This study was conducted to determine the effect of 1-stage homogenization (OSH) and 2-stage homogenization (TSH) and the addition of polysaccharides [κ-carrageenan (CR) or furcellaran (FR) at levels ranging from 0.000 to 1.000% (wt/wt)] on the physicochemical, viscoelastic, and mechanical vibration damping properties of processed cheese sauces (PCS) after 30 d of storage (6 ± 2°C). The basic chemical properties (pH, dry matter content) were similar for all tested samples. Viscoelastic measurements indicated that PCS rigidity was directly proportional to increasing CR or FR concentration and to the application of homogenization. The interactions between the application of homogenization and the concentration of polysaccharides used were also significant. Compared with OSH, TSH did not lead to any further increase in the rigidity. The preceding results were also supported by data obtained from a nondestructive method of mechanical vibration damping. No changes in water activity were observed in any PCS sample. Overall, the addition of FR or CR appeared to be highly suitable for increasing the emulsion stability of PCS. If PCS products with softer consistency are desired, then a concentration of CR/FR ≤0.250% (wt/wt) could be recommended together with OSH/TSH. For products for which a firmer PCS consistency is required, the addition of CR in concentrations of ≥0.500% (wt/wt) or FR in concentrations of ≥1.000% (wt/wt) together with OSH is recommended. Finally, as the concentration of polysaccharides increased, a darker PCS color was observed.
Collapse
Affiliation(s)
- V Kůrová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - R N Salek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic.
| | - M Vašina
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - K Vinklárková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - L Zálešáková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - R Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - R Adámek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - F Buňka
- Food Research Laboratory, Department of Logistics, Faculty of Military Leadership, University of Defense, Kounicova 65, 662 10 Brno, Czech Republic
| |
Collapse
|
23
|
Feng R, van den Berg FW, Lillevang SK, Ahrné L. High shear cooking extrusion to create fibrous mozzarella cheese from renneted and cultured curd. Food Res Int 2022; 157:111192. [DOI: 10.1016/j.foodres.2022.111192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
|
24
|
Hokkanen S, Frey AD, Yang B, Linderborg KM. Similarity Index for the Fat Fraction between Breast Milk and Infant Formulas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6191-6201. [PMID: 35543583 PMCID: PMC9136929 DOI: 10.1021/acs.jafc.1c08029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The similarity of the fat fraction in infant formulas rich in either bovine milk fat (MF) or vegetable oil (VO) to breast milk was evaluated by analyzing their lipid composition. Milk fat-rich formulas were highly similar (average similarity index 0.68) to breast milk compared to the VO-rich formulas (average similarity index 0.56). The highest difference in the indices was found in the contents of cholesterol (0.66 vs 0.28 in MF- and VO-rich formulas, respectively, on average) and polar lipids (0.84 vs 0.53), the positional distribution of fatty acids in the sn-2 position of triacylglycerols (0.53 vs 0.28), and fatty acid composition (0.72 vs 0.54). The VO-based formulas were superior in similarity in n - 6 PUFA. Thus, the addition of bovine MF fractions is an effective way to increase the similarity between the lipid composition of infant formulas and human milk.
Collapse
Affiliation(s)
- Sanna Hokkanen
- Molecular
Biotechnology, Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Alexander D. Frey
- Molecular
Biotechnology, Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| | - Kaisa M. Linderborg
- Food
Chemistry and Food Development, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| |
Collapse
|
25
|
Chai C, Oh S, Imm JY. Roles of Milk Fat Globule Membrane on Fat Digestion and Infant Nutrition. Food Sci Anim Resour 2022; 42:351-371. [PMID: 35611078 PMCID: PMC9108948 DOI: 10.5851/kosfa.2022.e11] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Milk fats are present as globules emulsified in the aqueous phase of milk and stabilized by a delicate membrane architecture called milk fat globule membrane (MFGM). The unique structure and composition of the MFGM play an important role in fat digestion and the metabolic programming of neonates. The objective of this review is to compare the structure, composition, and physicochemical characteristics of fat globules in human milk, bovine milk, and infant formula. It provides an overview of the fat digestion process and enzymes in healthy infants, and describes the possible roles of the MFGM in association with factors affecting fat digestion. Lastly, the health benefits of the MFGM on infant nutrition and future perspectives are discussed with a focus on brain development, metabolic response, and gut health.
Collapse
Affiliation(s)
- Changhoon Chai
- Department of Applied Animal Science,
Kangwon National University, Chuncheon 24341, Korea
| | - Sejong Oh
- Devision of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| |
Collapse
|
26
|
Heat-induced changes in milk fat and milk fat globules and its derived effects on acid dairy gelation – A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Pan Y, Liu L, Tian S, Li X, Hussain M, Li C, Zhang L, Zhang Q, Leng Y, Jiang S, Liang S. Comparative analysis of interfacial composition and structure of fat globules in human milk and infant formulas. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107290] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
29
|
Fortier V, Levesque IR. Longitudinal relaxation in fat-water mixtures and its dependence on fat content at 3 T. NMR IN BIOMEDICINE 2022; 35:e4629. [PMID: 34636097 DOI: 10.1002/nbm.4629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Longitudinal (T1 ) relaxation of triglyceride molecules and water is of interest for fat-water separation and fat quantification. A better understanding of T1 relaxation could benefit modeling for applications in fat quantification and relaxation mapping. This work investigated T1 relaxation of spectral resonances of triglyceride molecules and water in liquid fat-water mixtures and its dependence on the fat fraction. Dairy cream and a safflower oil emulsion were used. These were diluted with distilled water to produce a variety of fat mass fractions (4.4% to 35% in dairy cream and 6.3% to 52.3% in safflower oil emulsion). T1 was measured at room temperature at 3 T using an inversion recovery STimulated Echo Acquisition Mode (STEAM) MR spectroscopy method with a series of inversion times. T1 variations as a function of fat fraction were investigated for various resonances. A two-component model was developed to describe the relaxation in a fat-water mixture as a function of the fat fraction. The T1 of water and of all fat resonances studied in this work decreased as the fat fraction increased. The relative variation in T1 was different for each fat resonance. The T1 of the methylene resonance showed the least variation as a function of the fat fraction. The proposed two-component model closely fits the observed T1 variations. In conclusion, this work clarifies how the T1 of major and minor fat resonances and of the water resonance varies as a function of the fat fraction in fat-water mixtures. Knowledge of these variations could serve modeling, analysis of MRI measurements in fat-water mixtures, and phantom preparation.
Collapse
Affiliation(s)
- Véronique Fortier
- Medical Physics Unit, McGill University, Montréal, QC, Canada
- Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Ives R Levesque
- Medical Physics Unit, McGill University, Montréal, QC, Canada
- Biomedical Engineering, McGill University, Montréal, QC, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Canada
| |
Collapse
|
30
|
Liu L, Lin S, Ma S, Sun Y, Li X, Liang S. A Comparative Analysis of Lipid Digestion in Human Milk and Infant Formulas Based on Simulated In Vitro Infant Gastrointestinal Digestion. Foods 2022; 11:foods11020200. [PMID: 35053931 PMCID: PMC8774497 DOI: 10.3390/foods11020200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
To investigate the lipid digestive behaviors of human and infant formulas and analyze the differences between them, we investigated the fat globule particle size distribution, lipolysis rate, and fatty acid release of infant formulas with different fat sources and human milk using an in vitro infant digestion model. The results suggested that the particle size in infant formula increased rapidly during gastric digestion and decreased significantly after intestinal digestion, whereas the particle size in human milk increased slowly during gastric digestion but increased rapidly during intestinal digestion (p < 0.05). Despite having a larger droplet size, human milk demonstrated a very high lipolysis rate due to the presence of MFGM. In terms of the distribution of fatty acids in digestion products, the proportion of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) in vegetable oil-based infant formulas was close to that of human milk. The amount of SFAs in milk fat-based infant formulas was significantly higher than that in human milk, and the content of MUFAs in all infant formulas was significantly lower than that in human milk (p < 0.05). After digestion, the most abundant fatty acid released by human milk was C18:2n6c, while the fatty acids released by infant formulas were SFAs, such as C14:0, C16:0, and C18:0.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
| | - Shuang Lin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
| | - Shuaiyi Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
| | - Yue Sun
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
| | - Xiaodong Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
| | - Shuyan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang District, Harbin 150030, China
| |
Collapse
|
31
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
32
|
Reyes SM, Patra B, Elliott MJ. The Impact of Homogenization on Donor Human Milk and Human Milk-Based Fortifiers and Implications for Preterm Infant Health. Curr Dev Nutr 2022; 6:nzab147. [PMID: 35059551 PMCID: PMC8764228 DOI: 10.1093/cdn/nzab147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
An exclusive human milk diet (EHMD) has been shown to reduce health complications of prematurity in infants born weighing ≤1250 g compared with cow milk-based diets. Accordingly, the number of available human milk (HM)-based nutritional products continues to increase. Newly available products, and those reportedly soon to enter the market, include homogenized donor HM and homogenized HM-based fortifiers. Existing literature demonstrating the benefits of an EHMD, however, is limited to non-homogenized HM-based products. Herein, we summarize existing evidence on the impact of homogenization on HM, with a particular focus on changes to the macromolecular structure of the milk fat globule and the subsequent impact on digestion kinetics. We use these published data to create a conceptual framework for the potential implications of homogenized HM-based nutritional products on preterm infant health. Importantly, we underscore that the safety and efficacy of homogenized HM-based products warrant investigation.
Collapse
Affiliation(s)
| | | | - Melinda J Elliott
- Prolacta Bioscience®, Duarte, CA, USA
- Pediatrix Medical Group of Maryland, Rockville, MD, USA
| |
Collapse
|
33
|
Brożek O, Kiełczewska K, Bohdziewicz K. Characterisation of Selected Emulsion Phase Parameters in Milk, Cream and Buttermilk. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/144223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Lisboa PC, Miranda RA, Souza LL, Moura EG. Can breastfeeding affect the rest of our life? Neuropharmacology 2021; 200:108821. [PMID: 34610290 DOI: 10.1016/j.neuropharm.2021.108821] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022]
Abstract
The breastfeeding period is one of the most important critical windows in our development, since milk, our first food after birth, contains several compounds, such as macronutrients, micronutrients, antibodies, growth factors and hormones that benefit human health. Indeed, nutritional, and environmental alterations during lactation, change the composition of breast milk and induce alterations in the child's development, such as obesity, leading to the metabolic dysfunctions, cardiovascular diseases and neurobehavioral disorders. This review is based on experimental animal models, most of them in rodents, and summarizes the impact of an adequate breast milk supply in view of the developmental origins of health and disease (DOHaD) concept, which has been proposed by researchers in the areas of epidemiology and basic science from around the world. Here, experimental advances in understanding the programming during breastfeeding were compiled with the purpose of generating knowledge about the genesis of chronic noncommunicable diseases and to guide the development of public policies to deal with and prevent the problems arising from this phenomenon. This review article is part of the special issue on "Cross talk between periphery and brain".
Collapse
Affiliation(s)
- Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana L Souza
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Feng R, Barjon S, van den Berg FW, Lillevang SK, Ahrné L. Effect of residence time in the cooker-stretcher on mozzarella cheese composition, structure and functionality. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Oxidative Quality of Dairy Powders: Influencing Factors and Analysis. Foods 2021; 10:foods10102315. [PMID: 34681366 PMCID: PMC8534860 DOI: 10.3390/foods10102315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Lipid oxidation (LO) is a primary cause of quality deterioration in fat-containing dairy powders and is often used as an estimation of a products shelf-life and consumer acceptability. The LO process produces numerous volatile organic compounds (VOC) including aldehydes, ketones and alcohols, which are known to contribute to the development of off-flavours in dairy powders. The main factors influencing the oxidative state of dairy powders and the various analytical techniques used to detect VOC as indicators of LO in dairy powders are outlined. As the ability to identify and quantify specific VOC associated with LO improves this review highlights how these techniques can be used in conjunction with olfactory and sensory analysis to better understand product specific LO processes with the aim of maximizing shelf-life without compromising quality.
Collapse
|
37
|
Thum C, Roy NC, Everett DW, McNabb WC. Variation in milk fat globule size and composition: A source of bioactives for human health. Crit Rev Food Sci Nutr 2021; 63:87-113. [PMID: 34190660 DOI: 10.1080/10408398.2021.1944049] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Milk fat globules (MFGs) are secreted from the mammalian gland and are composed of a triacylglycerol core surrounded by a triple membrane structure, the milk fat globule membrane (MFGM). The MFGM contains complex lipids and proteins reported to have nutritional, immunological, neurological and digestive functions. Human and ruminant milk are shown to share a similar MFG structure but with different size, profile and abundance of protein and polar lipids. This review summarizes the reported data on human, bovine, caprine and ovine MFG composition and concentration of bioactive components in different MFG-size fractions. A comprehensive understanding of compositional variations between milk from different species and MFG size fractions may help promote various milk sources as targeted supplements to improve human development and health. MFG size and MFGM composition are species-specific and affected by lactation, diet and breed (or maternal origin). Purification and enrichment methods for some bioactive proteins and lipids present in the MFGM have yet to be established or are not scaled sufficiently to be used to supplement human diets. To overcome this problem, MFG size selection through fractionation or herd selection may provide a convenient way to pre-enrich the MFG fraction with specific protein and lipid components to fulfill human dietary and health requirements.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Nicole C Roy
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David W Everett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Palmerston North, New Zealand
| | - Warren C McNabb
- Riddet Institute, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Investigation of alterations in phospholipids during the production chain of infant formulas via HILIC-QTOF-MS and multivariate data analysis. Food Chem 2021; 364:130414. [PMID: 34175632 DOI: 10.1016/j.foodchem.2021.130414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/20/2022]
Abstract
Phospholipids play a key role in infant nutrition and cognitive function. In this study, hydrophilic interaction liquid chromatography coupled to quadrupole time-of-flight mass spectrometry method was firstly developed to analyze the composition of phospholipids. Then we characterized and quantified phospholipids extracted from raw, pasteurized, homogenized, and spray-dried milk to investigate the effect of the technological process on the composition of the phospholipids. Results indicate that the composition of the phospholipids underwent minor changes after pasteurization, while the concentration of phospholipids was significantly affected by the spray-drying process, especially phosphatidylethanolamine and phosphatidylinositol. Multivariate data analysis further verified the results and indicated that phospholipids containing polyunsaturated fatty acids had undergone significant changes during the production chain, especially in spray-drying. This work reveals the changes of phospholipids composition during the production chain of infant formulas and serve as a reference for the subsequent optimization of infant formulas to meet nutritional need of infants.
Collapse
|
39
|
Meng F, Uniacke-Lowe T, Ryan AC, Kelly AL. The composition and physico-chemical properties of human milk: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Zhang Q, Ye L, Xin F, Zhou J, Cao B, Dong Y, Qian L. Milk Fat Globule Membrane Supplementation During Suckling Ameliorates Maternal High Fat Diet-Induced Hepatic Steatosis in Adult Male Offspring of Mice. J Nutr 2021; 151:1487-1496. [PMID: 33693864 DOI: 10.1093/jn/nxab026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exposure to a maternal high-fat diet (HFD) predisposes offspring to nonalcoholic fatty liver disease. OBJECTIVES The aim of this study was to explore whether milk fat globule membrane (MFGM) supplementation during suckling exerts a long-term protective effect on hepatic lipid metabolism in adult offspring exposed to maternal HFD. METHODS We fed 5-week-old female C57BL/6J mice either a HFD (60% kcal fat) or control diet (CD; 16.7% kcal fat) for 3 weeks before mating, as well as throughout gestation and lactation. After delivery, male offspring from HFD dams were supplemented with 1 g/(kg body weight·day) MFGM (HFD + MFGM group) or the same volume of vehicle (HFD group) during suckling. Male offspring from CD dams were also supplemented with vehicle during suckling (CD group). All offspring were weaned onto CD for 8 weeks. Histopathology, metabolic parameters, lipogenic level, oxidative stress, and mitochondria function in the liver were analyzed. A 1-way ANOVA and a Kruskal-Wallis test were used for multi-group comparisons. RESULTS As compared to the CD group, the HFD group had more lipid droplets in livers, and exhibited ∼100% higher serum triglycerides, ∼38% higher hepatic triglycerides, ∼75% higher serum aspartate aminotransferase, and ∼130% higher fasting blood glucose (P < 0.05). The changes of these metabolic parameters were normalized in the HFD + MFGM group. Phosphorylated mammalian targets of rapamycin and AKT were downregulated, but phosphorylated adenosine monophosphate-activated protein kinase was upregulated in the HFD + MFGM group as compared to the HFD group (P < 0.05). As compared to the CD group, the HFD group showed an ∼80% higher malondialdehyde level, and ∼20% lower superoxide dismutase activity (P < 0.05), which were normalized in the HFD + MFGM group. Additionally, mitochondria function was also impaired in the HFD group and normalized in the HFD + MFGM group. CONCLUSIONS MFGM supplementation during suckling ameliorates maternal HFD-induced hepatic steatosis in mice via suppressing de novo lipogenesis, reinforcing antioxidant defenses and improving mitochondrial function.
Collapse
Affiliation(s)
- Qianren Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lin Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Fengzhi Xin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Baige Cao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yan Dong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
41
|
Prediction of dairy powder functionality attributes using diffuse reflectance in the visible and near infrared (Vis-NIR) region. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.104981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
McClements DJ, Grossmann L. The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Compr Rev Food Sci Food Saf 2021; 20:4049-4100. [PMID: 34056859 DOI: 10.1111/1541-4337.12771] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Consumers are increasingly demanding foods that are more ethical, sustainable and nutritious to improve the health of themselves and the planet. The food industry is currently undergoing a revolution, as both small and large companies pivot toward the creation of a new generation of plant-based products to meet this consumer demand. In particular, there is an emphasis on the production of plant-based foods that mimic those that omnivores are familiar with, such as meat, fish, egg, milk, and their products. The main challenge in this area is to simulate the desirable appearance, texture, flavor, mouthfeel, and functionality of these products using ingredients that are isolated entirely from botanical sources, such as proteins, carbohydrates, and lipids. The molecular, chemical, and physical properties of plant-derived ingredients are usually very different from those of animal-derived ones. It is therefore critical to understand the fundamental properties of plant-derived ingredients and how they can be assembled into structures resembling those found in animal products. This review article provides an overview of the current status of the scientific understanding of plant-based foods and highlights areas where further research is required. In particular, it focuses on the chemical, physical, and functional properties of plant-derived ingredients; the processing operations that can be used to convert these ingredients into food products; and, the science behind the formulation of vegan meat, fish, eggs, and milk alternatives.
Collapse
Affiliation(s)
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
43
|
van Niekerk JK, Fischer-Tlustos AJ, Wilms JN, Hare KS, Welboren AC, Lopez AJ, Yohe TT, Cangiano LR, Leal LN, Steele MA. ADSA Foundation Scholar Award: New frontiers in calf and heifer nutrition-From conception to puberty. J Dairy Sci 2021; 104:8341-8362. [PMID: 34053756 DOI: 10.3168/jds.2020-20004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022]
Abstract
Dairy calf nutrition is traditionally one of the most overlooked aspects of dairy management, despite its large effect on the efficiency and profitability of dairy operations. Unfortunately, among all animals on the dairy farm, calves suffer from the highest rates of morbidity and mortality. These challenges have catalyzed calf nutrition research over the past decade to mitigate high incidences of disease and death, and improve animal health, growth, welfare, and industry sustainability. However, major knowledge gaps remain in several crucial stages of development. The purpose of this review is to summarize the key concepts of nutritional physiology and programming from conception to puberty and their subsequent effects on development of the calf, and ultimately, future performance. During fetal development, developmental plasticity is highest. At this time, maternal energy and protein consumption can influence fetal development, likely playing a critical role in calf and heifer development and, importantly, future production. After birth, the calf's first meal of colostrum is crucial for the transfer of immunoglobulin to support calf health and survival. However, colostrum also contains numerous bioactive proteins, lipids, and carbohydrates that may play key roles in calf growth and health. Extending the delivery of these bioactive compounds to the calf through a gradual transition from colostrum to milk (i.e., extended colostrum or transition milk feeding) may confer benefits in the first days and weeks of life to prepare the calf for the preweaning period. Similarly, optimal nutrition during the preweaning period is vital. Preweaning calves are highly susceptible to health challenges, and improved calf growth and health can positively influence future milk production. Throughout the world, the majority of dairy calves rely on milk replacer to supply adequate nutrition. Recent research has started to re-evaluate traditional formulations of milk replacers, which can differ significantly in composition compared with whole milk. Transitioning from a milk-based diet to solid feed is critical in the development of mature ruminants. Delaying weaning age and providing long and gradual step-down protocols have become common to avoid production and health challenges. Yet, determining how to appropriately balance the amount of energy and protein supplied in both liquid and solid feeds based on preweaning milk allowances, and further acknowledging their interactions, shows great promise in improving growth and health during weaning. After weaning and during the onset of puberty, heifers are traditionally offered high-forage diets. However, recent work suggests that an early switch to a high-forage diet will depress intake and development during the time when solid feed efficiency is greatest. It has become increasingly clear that there are great opportunities to advance our knowledge of calf nutrition; yet, a more concentrated and rigorous approach to research that encompasses the long-term consequences of nutritional regimens at each stage of life is required to ensure the sustainability and efficiency of the global dairy industry.
Collapse
Affiliation(s)
- J K van Niekerk
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A J Fischer-Tlustos
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - J N Wilms
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2; Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - K S Hare
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A C Welboren
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A J Lopez
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - T T Yohe
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - L R Cangiano
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - L N Leal
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2.
| |
Collapse
|
44
|
Heerup C, Ebbesen MF, Geng X, Madsen SF, Berthelsen R, Müllertz A. Effects of recombinant human gastric lipase and pancreatin during in vitro pediatric gastro-intestinal digestion. Food Funct 2021; 12:2938-2949. [PMID: 33710204 DOI: 10.1039/d0fo02976a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of the study was to implement a gastric digestion step using recombinant human gastric lipase (rHGL) in an in vitro pediatric gastro-intestinal digestion model to achieve a physiologically relevant gastric contribution to total gastro-intestinal lipid digestion. A commercial infant formula (NAN Comfort stage 1 (NAN1)) with 3.4% lipid and an in-lab prepared oil-in-water emulsion, emulsified with soy phosphatidylcholine (SPCemul), with 3.5% lipid (oil-blend containing Akonino NS, MEG-3 and ARASCO oils) were subjected to in vitro gastro-intestinal digestion. To achieve a physiologically relevant level of gastric digestion, 50 min of in vitro gastric digestion, using either 0, 3.75 or 7.5 TBU mL-1 rHGL, was followed by 90 min of in vitro intestinal digestion, using either 0 or 26.5 TBU mL-1 pancreatic triglyceride lipase (PTL) from porcine pancreatin. The digestion of the substrates was assessed using titration-based quantification supported by HPLC-ELSD analysis. In vitro gastric digestion of NAN1 and SPCemul with either 3.75 or 7.5 TBU mL-1 rHGL contributed with 10-27% of the total gastro-intestinal digestion, corresponding to the reported contribution in human infants. At the end of the gastro-intestinal digestion (t = 140 min), the combined lipolytic effect of rHGL and PTL was additive during digestion of SPCemul, but not for the digestion of NAN1, as all lipase activity combinations resulted in a similar degree of NAN1 digestion. The effect of gastric digestion with rHGL on total digestion therefore appeared to be substrate dependent. To conclude, a gastric digestion step using rHGL resulting in physiologically relevant gastric contribution to the observed gastro-intestinal digestion was successfully implemented into an in vitro pediatric gastro-intestinal digestion model.
Collapse
Affiliation(s)
- Christine Heerup
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
45
|
Wang L, Zhu C. Evidence from Neonatal Piglets Shows How Infant Formula and Other Mammalian Milk Shape Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1831-1841. [PMID: 33538162 DOI: 10.1021/acs.jafc.0c06587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We tested the hypothesis that the consumption of different milk lipids is one of the factors affecting metabolic response to lipid in the early life of infants. Neonatal piglets, as animal models, were stratified by the feeding mode (formula-fed, bovine-, caprine-, and human milk-fed). Lipidomic profiles of plasma and liver samples were detected using liquid chromatography-mass spectrometry (LC-MS). The results indicate that 31, 54, and 28 differential lipid species could be used as potential biomarkers for bovine milk, caprine milk, and infant formula-fed samples, respectively, and the main lipid classes screened in plasma were SM, PC, and PE, including PC(14:1/P-20:0) as the isoform of PC(34:1), which regulates the lipid metabolism gene peroxisome proliferator-activated receptor α, PPAR-α. SM(d15:1/22:0) was the common potential biomarker screened from all of the groups. The amounts of biomarkers screened from the caprine milk-fed liver samples were the highest, which had a significant effect on the distribution of SM, PI, and PA. Infant formula, bovine-, and caprine milk-fed samples had an obvious effect on the metabolism of glycerophospholipid and glycerol ester, especially TG (16:0/18:0/18:2).
Collapse
Affiliation(s)
- Lina Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
46
|
Lipid Composition, Digestion, and Absorption Differences among Neonatal Feeding Strategies: Potential Implications for Intestinal Inflammation in Preterm Infants. Nutrients 2021; 13:nu13020550. [PMID: 33567518 PMCID: PMC7914900 DOI: 10.3390/nu13020550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of morbidity and mortality in the neonatal population. Formula feeding is among the many risk factors for developing the condition, a practice often required in the cohort most often afflicted with NEC, preterm infants. While the virtues of many bioactive components of breast milk have been extolled, the ability to digest and assimilate the nutritional components of breast milk is often overlooked. The structure of formula differs from that of breast milk, both in lipid composition and chemical configuration. In addition, formula lacks a critical digestive enzyme produced by the mammary gland, bile salt-stimulated lipase (BSSL). The gastrointestinal system of premature infants is often incapable of secreting sufficient pancreatic enzymes for fat digestion, and pasteurization of donor milk (DM) has been shown to inactivate BSSL, among other important compounds. Incompletely digested lipids may oxidize and accumulate in the distal gut. These lipid fragments are thought to induce intestinal inflammation in the neonate, potentially hastening the development of diseases such as NEC. In this review, differences in breast milk, pasteurized DM, and formula lipids are highlighted, with a focus on the ability of those lipids to be digested and subsequently absorbed by neonates, especially those born prematurely and at risk for NEC.
Collapse
|
47
|
Kiełczewska K, Ambroziak K, Krzykowska D, Aljewicz M. The effect of high-pressure homogenisation on the size of milk fat globules and MFGM composition in sweet buttermilk and milk. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Lund P, Nielsen SB, Nielsen CF, Ray CA, Lund MN. Impact of UHT treatment and storage on liquid infant formula: Complex structural changes uncovered by centrifugal field-flow fractionation with multi-angle light scattering. Food Chem 2021; 348:129145. [PMID: 33524693 DOI: 10.1016/j.foodchem.2021.129145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/20/2020] [Accepted: 01/17/2021] [Indexed: 01/27/2023]
Abstract
Protein modifications in liquid infant formula (IF) have been widely studied, but distinguishing between heat- and storage-induced structural changes remains challenging. A generic liquid IF was subjected to direct or indirect UHT treatment and stored at 40 °C up to 180 days. Colour and pH were monitored and structural changes were characterised by dynamic light scattering, SDS-PAGE and centrifugal field-flow fractionation (FFF) coupled with multi-angle light scattering (MALS) and UV detectors to evaluate whether heat-induced differences would level out during storage. Both direct- and indirect UHT treatment led to structural changes, where the higher heat load of the indirect UHT treatment caused more pronounced changes. Indications were that storage-induced changes in pH, browning and non-reducible cross-links were not dependent on UHT treatment. However, FFF-MALS-UV analysis allowed characterisation of complex aggregates, where structural changes continued to be most pronounced in indirect UHT treated samples, and different storage-induced aggregation behaviour was observed.
Collapse
Affiliation(s)
- Pernille Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Søren Bang Nielsen
- Arla Foods Ingredients Group P/S - Discover R&D, Department of Technology and Functionality, Sønderupvej 26, 6920 Videbæk, Denmark
| | - Christian Fiil Nielsen
- Arla Foods Ingredients Group P/S - Milk Powder Innovation, Sønderhøj 10, 8260 Viby J, Denmark
| | - Colin A Ray
- Arla Foods Ingredients Group P/S - Discover R&D, Department of Technology and Functionality, Sønderupvej 26, 6920 Videbæk, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
49
|
Janahar JJ, Marciniak A, Balasubramaniam VM, Jimenez-Flores R, Ting E. Effects of pressure, shear, temperature, and their interactions on selected milk quality attributes. J Dairy Sci 2020; 104:1531-1547. [PMID: 33309347 DOI: 10.3168/jds.2020-19081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/09/2020] [Indexed: 01/23/2023]
Abstract
The effects of pressure, temperature, shear, and their interactions on selected quality attributes and stability of milk during ultra-shear technology (UST) were investigated. The UST experiments include pressure (400 MPa) treatment of the milk sample preconditioned at 2 different initial temperatures (25°C and 15°C) and subsequently depressurizing it via a shear valve at 2 flow rates (low: 0.15-0.36 g/s; high: 1.11-1.22 g/s). Raw milk, high-pressure processed (HPP; 400 MPa, ~40°C for 0 and 3 min) and thermal treated (72°C for 15 s) milk samples served as the controls. The effect of different process parameters on milk quality attributes were evaluated using particle size, zeta potential, viscosity, pH, creaming, lipase activity, and protein profile. The HPP treatment did not cause apparent particle size reduction but increased the sample viscosity up to 3.08 mPa·s compared with 2.68 mPa·s for raw milk. Moreover, it produced varied effects on creaming and lipase activity depending on hold time. Thermal treatment induced slight reduction in particle size and creaming as compared with raw milk. The UST treatment at 35°C reduced the effective diameter of sample particles from 3,511.76 nm (raw milk) to 291.45 nm. This treatment also showed minimum relative lipase activity (29.93%) and kept milk stable by preventing creaming. The differential effects of pressure, shear, temperature, and their interactions were evident, which would be useful information for equipment developers and food processors interested in developing improved food processes for dairy beverages.
Collapse
Affiliation(s)
- Jerish Joyner Janahar
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Alice Marciniak
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - V M Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, Columbus 43210; Department of Food Agricultural and Biological Engineering, The Ohio State University, Columbus 43210.
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Edmund Ting
- Pressure BioSciences Inc., South Easton, MA 02375
| |
Collapse
|
50
|
Clulow AJ, Binte Abu Bakar SY, Salim M, Nowell CJ, Hawley A, Boyd BJ. Emulsions containing optimum cow milk fat and canola oil mixtures replicate the lipid self-assembly of human breast milk during digestion. J Colloid Interface Sci 2020; 588:680-691. [PMID: 33309144 DOI: 10.1016/j.jcis.2020.11.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS The digestion of different milks and milk substitutes leads to the formation of a variety of self-assembled lipid structures, with the structuring of human milk being paramount for infant nutrition. It was hypothesised that mixing cow milk fat rich in medium/long-chain lipids with canola oil rich in long-chain unsaturated lipids would replicate the structuring of human milk by balancing lipid chain lengths and saturation levels. EXPERIMENTS Emulsions of cow milk fat/canola oil mixtures were prepared in two ways - by pre-mixing ghee and canola oil before dispersing them and by dispersing canola oil directly into commercial cow milk. Small angle X-ray scattering combined with titration of the fatty acids produced during digestion allowed for the correlation of dynamic lipid self-assembly with the extent of lipid digestion. Laser light scattering was used to show that the particle sizes in the digesting mixtures were similar and coherent anti-Stokes Raman spectroscopy (CARS) microscopy was used to confirm the mixing of canola oil into cow milk fat globules. FINDINGS As the amount of long-chain unsaturated canola oil lipids in the mixtures increased, the lipid self-assembly tended towards colloidal structures of greater interfacial curvature. When the ratio of cow milk fat to canola oil lipids was 1:1 (w/w), the digesting lipids assembled themselves into the same liquid crystalline structures as human breast milk. This observation was independent of the method used to mix the lipids, with CARS microscopy indicating uniform mixing of the canola oil into cow milk upon ultrasonication.
Collapse
Affiliation(s)
- Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | - Syaza Y Binte Abu Bakar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC 3169, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|