1
|
Shukla P, Sharma N, Shaia JK, Cohen DA, Singh RP, Talcott KE. The Risk of Optic Neuritis following mRNA Coronavirus Disease 2019 Vaccination Compared to Coronavirus Disease 2019 Infection and Other Vaccinations. Ophthalmology 2024; 131:1076-1082. [PMID: 38408705 DOI: 10.1016/j.ophtha.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
PURPOSE To determine the risk of optic neuritis (ON) after mRNA Coronavirus Disease 2019 (COVID-19) vaccine administration. DESIGN U.S. National aggregate database retrospective cohort study. PARTICIPANTS Patients were placed into cohorts based on mRNA COVID-19 vaccination status (no vaccine and positive history of COVID-19 infection, 1 vaccine, or 2 vaccines received) from December 2020 to June 2022. Two control cohorts were created with patients vaccinated against influenza or tetanus, diphtheria, and pertussis (Tdap) from June 2018 to December 2019. Patients with any history of ON or significant risk factors for ON development including infectious, inflammatory, and neoplastic diseases were excluded. METHODS A large deidentified database was queried for the Common Procedural Technology codes for immunization encounters specific to first dose and second dose of mRNA COVID-19 vaccine, influenza, or Tdap. Cohorts were 1:1 propensity score matched on age, sex, race, and ethnicity. The risk of ON development after vaccination was calculated and compared for all 5 cohorts with 95% confidence intervals (CIs) reported. MAIN OUTCOME MEASURES Risk ratio (RR) of ON 21 days after vaccination (or COVID-19 infection) and incidence of ON per 100 000 individuals. RESULTS After matching, the first dose COVID-19 and influenza vaccine cohorts (n = 1 678 598, mean age [standard deviation] at vaccination of 45.5 [23.3] years and 43.2 [25.5] years, 55% female) the RR of developing ON was 0.44 (95% CI, 0.28-0.80). The first dose of COVID-19 and Tdap vaccinations (n = 797 538, mean age 38.9 [20.0] years, 54.2% female) cohort had 10 and 16 patients develop ON (RR, 0.63; 95% CI, 0.28-1.38). Comparison of COVID-19-vaccinated patients (n = 3 698 848, 48.2 [21.5] years, 54.7% female) to unvaccinated and COVID-19-infected patients (n = 3 698 848, 49.6 [22.0] years, 55.2% female) showed 49 and 506 patients developing ON, respectively (RR, 0.09; 95% CI, 0.07-0.12). The incidence per 100 000 for ON was 1 in the first dose COVID-19 vaccine cohort, 2 in the influenza cohort, and 2 in the Tdap cohort, and 14 in the COVID-19-infected and unvaccinated cohorts. CONCLUSIONS Risk of ON after mRNA COVID-19 vaccination is rare and comparable to Tdap vaccination, decreased compared with influenza vaccination, and decreased compared with COVID-19 infection in the absence of vaccination. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Priya Shukla
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Neha Sharma
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jacqueline K Shaia
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Devon A Cohen
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Rishi P Singh
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Cleveland Clinic Martin Hospitals, Cleveland Clinic Florida, Stuart, Florida
| | - Katherine E Talcott
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
2
|
Antunes ASLM, Reis-de-Oliveira G, Martins-de-Souza D. Molecular overlaps of neurological manifestations of COVID-19 and schizophrenia from a proteomic perspective. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01842-8. [PMID: 39028452 DOI: 10.1007/s00406-024-01842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
COVID-19, a complex multisystem disorder affecting the central nervous system, can also have psychiatric sequelae. In addition, clinical evidence indicates that a diagnosis of a schizophrenia spectrum disorder is a risk factor for mortality in patients with COVID-19. In this study, we aimed to explore brain-specific molecular aspects of COVID-19 by using a proteomic approach. We analyzed the brain proteome of fatal COVID-19 cases and compared it with differentially regulated proteins found in postmortem schizophrenia brains. The COVID-19 proteomic dataset revealed a strong enrichment of proteins expressed by glial and neuronal cells and processes related to diseases with a psychiatric and neurodegenerative component. Specifically, the COVID-19 brain proteome enriches processes that are hallmark features of schizophrenia. Furthermore, we identified shared and distinct molecular pathways affected in both conditions. We found that brain ageing processes are likely present in both COVID-19 and schizophrenia, albeit possibly driven by distinct processes. In addition, alterations in brain cell metabolism were observed, with schizophrenia primarily impacting amino acid metabolism and COVID-19 predominantly affecting carbohydrate metabolism. The enrichment of metabolic pathways associated with astrocytic components in both conditions suggests the involvement of this cell type in the pathogenesis. Both COVID-19 and schizophrenia influenced neurotransmitter systems, but with distinct impacts. Future studies exploring the underlying mechanisms linking brain ageing and metabolic dysregulation may provide valuable insights into the complex pathophysiology of these conditions and the increased vulnerability of schizophrenia patients to severe outcomes.
Collapse
Affiliation(s)
- André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | | | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, University of Campinas, Campinas, Brazil.
- D'or Institute for Research and Education, São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), Estate University of Campinas, Campinas, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
| |
Collapse
|
3
|
Oliveira KB, de Souza FMA, de Sá LBM, Pacheco ALD, Prado MR, de Sousa Rodrigues CF, Bassi ÊJ, Santana-Melo I, Silva-Júnior A, Sabino-Silva R, Shetty AK, de Castro OW. Potential Mechanisms Underlying COVID-19-Mediated Central and Peripheral Demyelination: Roles of the RAAS and ADAM-17. Mol Neurobiol 2024:10.1007/s12035-024-04329-8. [PMID: 38965171 DOI: 10.1007/s12035-024-04329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Demyelination is among the most conspicuous neurological sequelae of SARS-CoV-2 infection (COVID-19) in both the central (CNS) and peripheral (PNS) nervous systems. Several hypotheses have been proposed to explain the mechanisms underlying demyelination in COVID-19. However, none have considered the SARS-CoV-2's effects on the renin-angiotensin-aldosterone system (RAAS). Therefore, our objective in this review is to evaluate how RAAS imbalance, caused by direct and indirect effects of SARS-CoV-2 infection, could contribute to myelin loss in the PNS and CNS. In the PNS, we propose that demyelination transpires from two significant changes induced by SARS-CoV-2 infection, which include upregulation of ADAM-17 and induction of lymphopenia. Whereas, in the CNS, demyelination could result from RAAS imbalance triggering two alterations: (1) a decrease in angiotensin type II receptor (AT2R) activity, responsible for restraining defense cells' action on myelin; (2) upregulation of ADAM-17 activity, leading to impaired maturation of oligodendrocytes and myelin formation. Thus, we hypothesize that increased ADAM-17 activity and decreased AT2R activity play roles in SARS-CoV-2 infection-mediated demyelination in the CNS.
Collapse
Affiliation(s)
- Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Fernanda Maria Araujo de Souza
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Letícia Barros Maurício de Sá
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Mariana Reis Prado
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Célio Fernando de Sousa Rodrigues
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Ênio José Bassi
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Igor Santana-Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Abelardo Silva-Júnior
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX, USA.
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, 77843, USA.
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP, 57072-970, Brazil.
| |
Collapse
|
4
|
Nouraeinejad A. The bidirectional links between coronavirus disease 2019 and Alzheimer's disease. Int J Neurosci 2024:1-15. [PMID: 38451045 DOI: 10.1080/00207454.2024.2327403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Coronavirus disease 2019 (COVID-19) can be a critical disease, particularly in the elderly and those with comorbidities. Patients with Alzheimer's disease are more vulnerable to COVID-19 consequences. The latest results have indicated some common risk factors for both diseases. An understanding of the pathological link between COVID-19 and Alzheimer's disease will help develop timely strategies to treat both diseases. This review explores the bidirectional links between COVID-19 and Alzheimer's disease.
Collapse
Affiliation(s)
- Ali Nouraeinejad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| |
Collapse
|
5
|
Ayyubova G, Gychka SG, Nikolaienko SI, Alghenaim FA, Teramoto T, Shults NV, Suzuki YJ. The Role of Furin in the Pathogenesis of COVID-19-Associated Neurological Disorders. Life (Basel) 2024; 14:279. [PMID: 38398788 PMCID: PMC10890058 DOI: 10.3390/life14020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Neurological disorders have been reported in a large number of coronavirus disease 2019 (COVID-19) patients, suggesting that this disease may have long-term adverse neurological consequences. COVID-19 occurs from infection by a positive-sense single-stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The membrane fusion protein of SARS-CoV-2, the spike protein, binds to its human host receptor, angiotensin-converting enzyme 2 (ACE2), to initiate membrane fusion between the virus and host cell. The spike protein of SARS-CoV-2 contains the furin protease recognition site and its cleavage enhances the infectivity of this virus. The binding of SARS-CoV-2 to the ACE2 receptor has been shown to downregulate ACE2, thereby increasing the levels of pathogenic angiotensin II (Ang II). The furin protease cleaves between the S1 subunit of the spike protein with the binding domain toward ACE2 and the S2 subunit with the transmembrane domain that anchors to the viral membrane, and this activity releases the S1 subunit into the blood circulation. The released S1 subunit of the spike protein also binds to and downregulates ACE2, in turn increasing the level of Ang II. Considering that a viral particle contains many spike protein molecules, furin-dependent cleavage would release many free S1 protein molecules, each of which can downregulate ACE2, while infection with a viral particle only affects one ACE2 molecule. Therefore, the furin-dependent release of S1 protein would dramatically amplify the ability to downregulate ACE2 and produce Ang II. We hypothesize that this amplification mechanism that the virus possesses, but not the infection per se, is the major driving force behind COVID-19-associated neurological disorders.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku AZ1022, Azerbaijan
| | - Sergiy G Gychka
- Department of Pathological Anatomy, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Sofia I Nikolaienko
- Department of Pathological Anatomy, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Fada A Alghenaim
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Nataliia V Shults
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
6
|
Jensen MA, Dafoe ML, Wilhelmy J, Cervantes L, Okumu AN, Kipp L, Nemat-Gorgani M, Davis RW. Catalytic Antibodies May Contribute to Demyelination in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biochemistry 2024; 63:9-18. [PMID: 38011893 PMCID: PMC10765373 DOI: 10.1021/acs.biochem.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Here we report preliminary data demonstrating that some patients with myalgic encephalomyelitis/chronic fatiguesyndrome (ME/CFS) may have catalytic autoantibodies that cause the breakdown of myelin basic protein (MBP). We propose that these MBP-degradative antibodies are important to the pathophysiology of ME/CFS, particularly in the occurrence of white matter disease/demyelination. This is supported by magnetic resonance imagining studies that show these findings in patients with ME/CFS and could explain symptoms of nerve pain and muscle weakness. In this work, we performed a series of experiments on patient plasma samples where we isolated and characterized substrate-specific antibodies that digest MBP. We also tested glatiramer acetate (copaxone), an FDA approved immunomodulator to treat multiple sclerosis, and found that it inhibits ME/CFS antibody digestion of MBP. Furthermore, we found that aprotinin, which is a specific serine protease inhibitor, specifically prevents breakdown of MBP while the other classes of protease inhibitors had no effect. This coincides with the published literature describing catalytic antibodies as having serine protease-like activity. Postpandemic research has also provided several reports of demyelination in COVID-19. Because COVID-19 has been described as a trigger for ME/CFS, demyelination could play a bigger role in patient symptoms for those recently diagnosed with ME/CFS. Therefore, by studying proteolytic antibodies in ME/CFS, their target substrates, and inhibitors, a new mechanism of action could lead to better treatment and a possible cure for the disease.
Collapse
Affiliation(s)
- Michael Anthony Jensen
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Miranda Lee Dafoe
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Julie Wilhelmy
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Layla Cervantes
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Anna N Okumu
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Lucas Kipp
- Department
of Neurology and Neurological Sciences, Stanford University, Palo Alto, California 94304, United States
| | - Mohsen Nemat-Gorgani
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
| | - Ronald Wayne Davis
- Stanford
Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, California 94304, United States
- Department
of Genetics, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
7
|
Kim DH, Kim DY, Kim KS, Han SH, Go HJ, Kim JH, Lim KB, Lee DH, Lee JB, Park SY, Song CS, Lee SW, Choi YK, Shin YK, Kwon OK, Kim DG, Choi IS. Neurologic Effects of SARS-CoV-2 Transmitted among Dogs. Emerg Infect Dis 2023; 29:2275-2284. [PMID: 37877548 PMCID: PMC10617347 DOI: 10.3201/eid2911.230804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
SARS-CoV-2 induces illness and death in humans by causing systemic infections. Evidence suggests that SARS-CoV-2 can induce brain pathology in humans and other hosts. In this study, we used a canine transmission model to examine histopathologic changes in the brains of dogs infected with SARS-CoV-2. We observed substantial brain pathology in SARS-CoV-2-infected dogs, particularly involving blood-brain barrier damage resembling small vessel disease, including changes in tight junction proteins, reduced laminin levels, and decreased pericyte coverage. Furthermore, we detected phosphorylated tau, a marker of neurodegenerative disease, indicating a potential link between SARS-CoV-2-associated small vessel disease and neurodegeneration. Our findings of degenerative changes in the dog brain during SARS-CoV-2 infection emphasize the potential for transmission to other hosts and induction of similar signs and symptoms. The dynamic brain changes in dogs highlight that even asymptomatic individuals infected with SARS-CoV-2 may develop neuropathologic changes in the brain.
Collapse
|
8
|
Boito D, Eklund A, Tisell A, Levi R, Özarslan E, Blystad I. MRI with generalized diffusion encoding reveals damaged white matter in patients previously hospitalized for COVID-19 and with persisting symptoms at follow-up. Brain Commun 2023; 5:fcad284. [PMID: 37953843 PMCID: PMC10638510 DOI: 10.1093/braincomms/fcad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
There is mounting evidence of the long-term effects of COVID-19 on the central nervous system, with patients experiencing diverse symptoms, often suggesting brain involvement. Conventional brain MRI of these patients shows unspecific patterns, with no clear connection of the symptomatology to brain tissue abnormalities, whereas diffusion tensor studies and volumetric analyses detect measurable changes in the brain after COVID-19. Diffusion MRI exploits the random motion of water molecules to achieve unique sensitivity to structures at the microscopic level, and new sequences employing generalized diffusion encoding provide structural information which are sensitive to intravoxel features. In this observational study, a total of 32 persons were investigated: 16 patients previously hospitalized for COVID-19 with persisting symptoms of post-COVID condition (mean age 60 years: range 41-79, all male) at 7-month follow-up and 16 matched controls, not previously hospitalized for COVID-19, with no post-COVID symptoms (mean age 58 years, range 46-69, 11 males). Standard MRI and generalized diffusion encoding MRI were employed to examine the brain white matter of the subjects. To detect possible group differences, several tissue microstructure descriptors obtainable with the employed diffusion sequence, the fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, microscopic anisotropy, orientational coherence (Cc) and variance in compartment's size (CMD) were analysed using the tract-based spatial statistics framework. The tract-based spatial statistics analysis showed widespread statistically significant differences (P < 0.05, corrected for multiple comparisons using the familywise error rate) in all the considered metrics in the white matter of the patients compared to the controls. Fractional anisotropy, microscopic anisotropy and Cc were lower in the patient group, while axial diffusivity, radial diffusivity, mean diffusivity and CMD were higher. Significant changes in fractional anisotropy, microscopic anisotropy and CMD affected approximately half of the analysed white matter voxels located across all brain lobes, while changes in Cc were mainly found in the occipital parts of the brain. Given the predominant alteration in microscopic anisotropy compared to Cc, the observed changes in diffusion anisotropy are mostly due to loss of local anisotropy, possibly connected to axonal damage, rather than white matter fibre coherence disruption. The increase in radial diffusivity is indicative of demyelination, while the changes in mean diffusivity and CMD are compatible with vasogenic oedema. In summary, these widespread alterations of white matter microstructure are indicative of vasogenic oedema, demyelination and axonal damage. These changes might be a contributing factor to the diversity of central nervous system symptoms that many patients experience after COVID-19.
Collapse
Affiliation(s)
- Deneb Boito
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Division of Statistics and Machine learning, Department of Computer and Information Science, Linköping University, S-58183 Linköping, Sweden
| | - Anders Tisell
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Radiation Physics, Linköping University, S-58185 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
| | - Richard Levi
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Rehabilitation Medicine in Linköping, Linköping University, S-58185 Linköping, Sweden
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Ida Blystad
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Radiology in Linköping, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
9
|
Shabani Z, Liu J, Su H. Vascular Dysfunctions Contribute to the Long-Term Cognitive Deficits Following COVID-19. BIOLOGY 2023; 12:1106. [PMID: 37626992 PMCID: PMC10451811 DOI: 10.3390/biology12081106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus and a member of the corona virus family, primarily affecting the upper respiratory system and the lungs. Like many other respiratory viruses, SARS-CoV-2 can spread to other organ systems. Apart from causing diarrhea, another very common but debilitating complication caused by SARS-CoV-2 is neurological symptoms and cognitive difficulties, which occur in up to two thirds of hospitalized COVID-19 patients and range from shortness of concentration and overall declined cognitive speed to executive or memory function impairment. Neuro-cognitive dysfunction and "brain fog" are frequently present in COVID-19 cases, which can last several months after the infection, leading to disruption of daily life. Cumulative evidence suggests that SARS-CoV-2 affects vasculature in the extra-pulmonary systems directly or indirectly, leading to impairment of endothelial function and even multi-organ damage. The post COVID-19 long-lasting neurocognitive impairments have not been studied fully and their underlying mechanism remains elusive. In this review, we summarize the current understanding of the effects of COVID-19 on vascular dysfunction and how vascular dysfunction leads to cognitive impairment in patients.
Collapse
Affiliation(s)
- Zahra Shabani
- Center for Cerebrovascular Research, University of California (San Francisco), San Francisco, CA 94131, USA;
- Department of Anesthesia and Perioperative Care, University of California (San Francisco), San Francisco, CA 94131, USA
| | - Jialing Liu
- Department of Neurosurgery, University of California (San Francisco), San Francisco, CA 94131, USA;
| | - Hua Su
- Center for Cerebrovascular Research, University of California (San Francisco), San Francisco, CA 94131, USA;
- Department of Anesthesia and Perioperative Care, University of California (San Francisco), San Francisco, CA 94131, USA
| |
Collapse
|
10
|
Forero K, Buqaileh R, Sunderman C, AbouAlaiwi W. COVID-19 and Neurological Manifestations. Brain Sci 2023; 13:1137. [PMID: 37626493 PMCID: PMC10452375 DOI: 10.3390/brainsci13081137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a newly emerged coronavirus, has sparked a global pandemic with its airborne transmission and ability to infect with asymptomatic patients. The pathophysiology is thought to relate to the binding of angiotensin converting enzyme 2 (ACE2) receptors in the body. These receptors are widely expressed in various body organs such as the lungs, the heart, the gastrointestinal tract (GIT), and the brain. This article reviews the current knowledge on the symptoms of coronavirus disease 2019 (COVID-19), highlighting the neurological symptoms that are associated with COVID-19, and discussing the possible mechanisms for SARS-CoV-2 virus infection in the body.
Collapse
Affiliation(s)
| | | | | | - Wissam AbouAlaiwi
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA; (K.F.); (R.B.); (C.S.)
| |
Collapse
|
11
|
Tavazzi E, Pichiecchio A, Colombo E, Rigoni E, Asteggiano C, Vegezzi E, Masi F, Greco G, Bastianello S, Bergamaschi R. The Potential Role of SARS-CoV-2 Infection and Vaccines in Multiple Sclerosis Onset and Reactivation: A Case Series and Literature Review. Viruses 2023; 15:1569. [PMID: 37515255 PMCID: PMC10385211 DOI: 10.3390/v15071569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The recent SARS-CoV-2 pandemic and related vaccines have raised several issues. Among them, the potential role of the viral infection (COVID-19) or anti-SARS-CoV-2 vaccines as causal factors of dysimmune CNS disorders, as well as the safety and efficacy of vaccines in patients affected by such diseases and on immune-active treatments have been analyzed. The aim is to better understand the relationship between SARS-CoV-2 infection/vaccines with dysimmune CNS diseases by describing 12 cases of multiple sclerosis/myelitis onset or reactivation after exposure to SARS-CoV-2 infection/vaccines and reviewing all published case reports or case series in which MS onset or reactivation was temporally associated with either COVID-19 (8 case reports, 3 case series) or anti-SARS-CoV-2 vaccines (13 case reports, 6 case series). All the cases share a temporal association between viral/vaccine exposure and symptoms onset. This finding, together with direct or immune-based mechanisms described both during COVID-19 and MS, claims in favor of a role for SARS-CoV-2 infection/vaccines in unmasking dysimmune CNS disorders. The most common clinical presentations involve the optic nerve, brainstem and spinal cord. The preferential tropism of the virus together with the presence of some host-related genetic/immune factors might predispose to the involvement of specific CNS districts.
Collapse
Affiliation(s)
| | - Anna Pichiecchio
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | | | | | - Carlo Asteggiano
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Francesco Masi
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giacomo Greco
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Stefano Bastianello
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | | |
Collapse
|
12
|
Harel T, Gorman EF, Wallin MT. New onset or relapsing neuromyelitis optica temporally associated with SARS-CoV-2 infection and COVID-19 vaccination: a systematic review. Front Neurol 2023; 14:1099758. [PMID: 37426444 PMCID: PMC10323143 DOI: 10.3389/fneur.2023.1099758] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is a rare chronic neuroinflammatory autoimmune condition. Since the onset of the COVID-19 pandemic, there have been reports of NMOSD clinical manifestations following both SARS-CoV-2 infections and COVID-19 vaccinations. Objective This study aims to systematically review the published literature of NMOSD clinical manifestations associated with SARS-CoV-2 infections and COVID-19 vaccinations. Methods A Boolean search of the medical literature was conducted between December 1, 2019 to September 1, 2022, utilizing Medline, Cochrane Library, Embase, Trip Database, Clinicaltrials.gov, Scopus, and Web of Science databases. Articles were collated and managed on Covidence® software. The authors independently appraised the articles for meeting study criteria and followed PRISMA guidelines. The literature search included all case reports and case series that met study criteria and involved NMOSD following either the SARS-CoV-2 infection or the COVID-19 vaccination. Results A total of 702 articles were imported for screening. After removing 352 duplicates and 313 articles based on exclusion criteria, 34 articles were analyzed. A total of 41 cases were selected, including 15 patients that developed new onset NMOSD following a SARS-CoV-2 infection, 21 patients that developed de novo NMOSD following COVID-19 vaccination, 3 patients with known NMOSD that experienced a relapse following vaccination, and 2 patients with presumed Multiple Sclerosis (MS) that was unmasked as NMOSD post-vaccination. There was a female preponderance of 76% among all NMOSD cases. The median time interval between the initial SARS-CoV-2 infection symptoms and NMOSD symptom onset was 14 days (range 3-120 days) and the median interval between COVID-19 vaccination and onset of NMO symptoms was 10 days (range 1 to 97 days). Transverse myelitis was the most common neurological manifestation in all patient groups (27/41). Management encompassed acute treatments such as high dose intravenous methylprednisolone, plasmapheresis, and intravenous immunoglobulin (IVIG) and maintenance immunotherapies. The majority of patients experienced a favorable outcome with complete or partial recovery, but 3 patients died. Conclusion This systematic review suggests that there is an association between NMOSD and SARS-CoV-2 infections and COVID-19 vaccinations. This association requires further study using quantitative epidemiological assessments in a large population to better quantify the risk.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Veterans Affairs Multiple Sclerosis Center of Excellence (VA MSCoE), Baltimore VA Medical Center, Baltimore, MD, United States
- Department of Neurology, University of Maryland Medical Center, Baltimore, MD, United States
| | - Emily F. Gorman
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD, United States
| | - Mitchell T. Wallin
- Department of Veterans Affairs Multiple Sclerosis Center of Excellence (VA MSCoE), Baltimore VA Medical Center, Baltimore, MD, United States
- Department of Neurology, University of Maryland Medical Center, Baltimore, MD, United States
| |
Collapse
|
13
|
Gottschalk CG, Peterson D, Armstrong J, Knox K, Roy A. Potential molecular mechanisms of chronic fatigue in long haul COVID and other viral diseases. Infect Agent Cancer 2023; 18:7. [PMID: 36750846 PMCID: PMC9902840 DOI: 10.1186/s13027-023-00485-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Historically, COVID-19 emerges as one of the most devastating diseases of humankind, which creates an unmanageable health crisis worldwide. Until now, this disease costs millions of lives and continues to paralyze human civilization's economy and social growth, leaving an enduring damage that will take an exceptionally long time to repair. While a majority of infected patients survive after mild to moderate reactions after two to six weeks, a growing population of patients suffers for months with severe and prolonged symptoms of fatigue, depression, and anxiety. These patients are no less than 10% of total COVID-19 infected individuals with distinctive chronic clinical symptomatology, collectively termed post-acute sequelae of COVID-19 (PASC) or more commonly long-haul COVID. Interestingly, Long-haul COVID and many debilitating viral diseases display a similar range of clinical symptoms of muscle fatigue, dizziness, depression, and chronic inflammation. In our current hypothesis-driven review article, we attempt to discuss the molecular mechanism of muscle fatigue in long-haul COVID, and other viral diseases as caused by HHV6, Powassan, Epstein-Barr virus (EBV), and HIV. We also discuss the pathological resemblance of virus-triggered muscle fatigue with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS).
Collapse
Affiliation(s)
- Carl Gunnar Gottschalk
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Daniel Peterson
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Jan Armstrong
- Simmaron Research INC, 948 Incline Way, Incline Village, NV 89451 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Konstance Knox
- grid.267468.90000 0001 0695 7223Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 USA ,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI 53186 USA
| | - Avik Roy
- Simmaron Research INC, 948 Incline Way, Incline Village, NV, 89451, USA. .,Research and Development Laboratory, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA. .,Coppe Laboratories, W229N1870 Westwood Dr, Waukesha, WI, 53186, USA.
| |
Collapse
|
14
|
Ong IZ, Kolson DL, Schindler MK. Mechanisms, Effects, and Management of Neurological Complications of Post-Acute Sequelae of COVID-19 (NC-PASC). Biomedicines 2023; 11:377. [PMID: 36830913 PMCID: PMC9953707 DOI: 10.3390/biomedicines11020377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
With a growing number of patients entering the recovery phase following infection with SARS-CoV-2, understanding the long-term neurological consequences of the disease is important to their care. The neurological complications of post-acute sequelae of SARS-CoV-2 infection (NC-PASC) represent a myriad of symptoms including headaches, brain fog, numbness/tingling, and other neurological symptoms that many people report long after their acute infection has resolved. Emerging reports are being published concerning COVID-19 and its chronic effects, yet limited knowledge of disease mechanisms has challenged therapeutic efforts. To address these issues, we review broadly the literature spanning 2020-2022 concerning the proposed mechanisms underlying NC-PASC, outline the long-term neurological sequelae associated with COVID-19, and discuss potential clinical interventions.
Collapse
Affiliation(s)
- Ian Z. Ong
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis L. Kolson
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Golzari-Sorkheh M, Weaver DF, Reed MA. COVID-19 as a Risk Factor for Alzheimer's Disease. J Alzheimers Dis 2023; 91:1-23. [PMID: 36314211 DOI: 10.3233/jad-220800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although a primarily respiratory disease, recent reports indicate that it also affects the central nervous system (CNS). Over 25% of COVID-19 patients report neurological symptoms such as memory loss, anosmia, hyposmia, confusion, and headaches. The neurological outcomes may be a result of viral entry into the CNS and/or resulting neuroinflammation, both of which underlie an elevated risk for Alzheimer's disease (AD). Herein, we ask: Is COVID-19 a risk factor for AD? To answer, we identify the literature and review mechanisms by which COVID-19-mediated neuroinflammation can contribute to the development of AD, evaluate the effects of acute versus chronic phases of infection, and lastly, discuss potential therapeutics to address the rising rates of COVID-19 neurological sequelae.
Collapse
Affiliation(s)
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Rinaldi V, Bellucci G, Buscarinu MC, Reniè R, Marrone A, Nasello M, Zancan V, Nistri R, Palumbo R, Salerno A, Salvetti M, Ristori G. CNS inflammatory demyelinating events after COVID-19 vaccines: A case series and systematic review. Front Neurol 2022; 13:1018785. [PMID: 36530641 PMCID: PMC9752005 DOI: 10.3389/fneur.2022.1018785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Vaccinations provided the most effective tool to fight the SARS-CoV-2 pandemic. It is now well established that COVID-19 vaccines are safe for the general population; however, some cases of rare adverse events following immunization have been described, including CNS Inflammatory Demyelinating Events (CIDEs). Although observational studies are showing that these events are rare and vaccines' benefits highly outweigh the risks, collecting and characterizing post-COVID-19 vaccine CIDEs might be relevant to single out potential risk factors and suggest possible underlying mechanisms. METHODS Here we describe six CIDEs, including two acute transverse myelitis (ATM), three multiple sclerosis (MS), and one neuromyelitis optica spectrum disorder (NMOSD), occurring between 8 and 35 days from a COVID-19 vaccine. Moreover, we performed a systematic literature search of post-COVID-19 vaccines CIDEs, including ATM, ADEM, MS, and NMOSD/MOGAD, published worldwide between December 2020 and December 2021, during 1 year of the vaccination campaign. Clinical/MRI and CSF/serum characteristics were extracted from reviewed studies and pooled-analyzed. RESULTS Forty-nine studies were included in the systematic review, reporting a total amount of 85 CIDEs. Considering our additional six cases, 91 CIDEs were summarized, including 24 ATM, 11 ADEM, 47 MS, and nine NMOSD/MOGAD. Overall, CIDEs occurred after both mRNA (n = 46), adenoviral-vectored (n = 37), and inactivated vaccines (n = 8). Adenoviral-vectored vaccines accounted for the majority of ADEM (55%) and NMOSD/MOGAD (56%), while mRNA vaccines were more frequent in MS new diagnoses (87%) and relapses (56%). Age was heterogeneous (19-88) and the female sex was prevalent. Time from vaccine to symptoms onset was notably variable: ADEM and NMOSD/MOGAD had a longer median time of onset (12.5 and 10 days) compared to ATM and MS (6 and 7 days) and further timing differences were observed between events following different vaccine types, with ATM and MS after mRNA-vaccines occurring earlier than those following adenoviral-vectored ones. CONCLUSION Both the prevalence of vaccine types for certain CIDEs and the heterogeneity in time of onset suggest that different mechanisms-with distinct dynamic/kinetic-might underly these events. While epidemiological studies have assessed the safety of COVID-19 vaccines, descriptions and pooled analyses of sporadic cases may still be valuable to gain insights into CIDE's pathophysiology.
Collapse
Affiliation(s)
- Virginia Rinaldi
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Gianmarco Bellucci
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Roberta Reniè
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Antonio Marrone
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Martina Nasello
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Valeria Zancan
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Riccardo Nistri
- Department of Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Palumbo
- Neurology Unit, San Giovanni Addolorata Hospital, Rome, Italy
| | - Antonio Salerno
- Neurology Unit, San Giovanni Addolorata Hospital, Rome, Italy
| | - Marco Salvetti
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Neurology Unit, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
17
|
Feizi P, Sharma K, Pasham SR, Nirwan L, Joseph J, Jaiswal S, Sriwastava S. Central nervous system (CNS) inflammatory demyelinating diseases (IDDs) associated with COVID-19: A case series and review. J Neuroimmunol 2022; 371:577939. [PMID: 35939945 PMCID: PMC9343076 DOI: 10.1016/j.jneuroim.2022.577939] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Over the past two years, SARS-CoV-2 has frequently been documented with various post and para-infectious complications, including cerebrovascular, neuromuscular, and some demyelinating conditions such as acute disseminated encephalomyelitis (ADEM). We report two rare neurological manifestations post-COVID-19 infection; multiple sclerosis (MS) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Further, we reviewed other CNS inflammatory demyelinating diseases (IDDs) associated with SARS-CoV-2, including optic neuritis (ON) and neuromyelitis optica spectrum disorders (NMOSD). METHODS A descriptive analysis and literature search of Google Scholar and PubMed was conducted by two independent reviewers from December 1st, 2019, to March 30th, 2022, and included all the case studies of MS, MOGAD, NMOSD, and ON associated with COVID-19 infection. CASE PRESENTATIONS Case 1 (MS) was a 24-year-old female with paresthesia and bilateral weakness one week after COVID-19 symptom onset who showed demyelinating plaques and 12 isolated oligoclonal bands (OCBs). Case 2 (MOGAD) was a 41-year-old male with encephalomyelitis 16 days after COVID-19, who later developed MOG-antibody-associated optic neuritis. RESULTS Out of 18 cases, NMOSD was the most common post-COVID manifestation (7, 39%), followed by MOGAD (5, 28%), MS (4, 22%), and isolated ON (2, 11%). The median duration between the onset of COVID-19 symptom onset and neurological symptoms was 14 days. 61% of these were male, with a mean age of 35 years. IVMP was the treatment of choice, and nearly all patients made a full recovery, with zero fatalities. CONCLUSIONS Although these neurological sequelae are few, physicians must be cognizant of their underlying pathophysiology and associated clinical and neuro-diagnostic findings when treating COVID-19 patients with atypical presentations.
Collapse
Affiliation(s)
- Parissa Feizi
- Department of Neuroradiology, West Virginia University, Morgantown, WV, USA
| | - Kanika Sharma
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| | - Shreya R Pasham
- Malla Reddy Institute of Medical Sciences (MRIMS), Hyderabad, India
| | - Lalit Nirwan
- Meditrina Institute of Medical Sciences, Nagpur, India
| | - Joe Joseph
- Department of Neuroradiology, West Virginia University, Morgantown, WV, USA
| | - Shruti Jaiswal
- West Virginia Clinical Translational Science, Morgantown, WV, USA
| | - Shitiz Sriwastava
- Department of Neurology, West Virginia University, Morgantown, WV, USA; West Virginia Clinical Translational Science, Morgantown, WV, USA.
| |
Collapse
|
18
|
Role of Demyelination in the Persistence of Neurological and Mental Impairments after COVID-19. Int J Mol Sci 2022; 23:ijms231911291. [PMID: 36232592 PMCID: PMC9569975 DOI: 10.3390/ijms231911291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Long-term neurological and mental complications of COVID-19, the so-called post-COVID syndrome or long COVID, affect the quality of life. The most persistent manifestations of long COVID include fatigue, anosmia/hyposmia, insomnia, depression/anxiety, and memory/attention deficits. The physiological basis of neurological and psychiatric disorders is still poorly understood. This review summarizes the current knowledge of neurological sequelae in post-COVID patients and discusses brain demyelination as a possible mechanism of these complications with a focus on neuroimaging findings. Numerous reviews, experimental and theoretical studies consider brain demyelination as one of the mechanisms of the central neural system impairment. Several factors might cause demyelination, such as inflammation, direct effect of the virus on oligodendrocytes, and cerebrovascular disorders, inducing myelin damage. There is a contradiction between the solid fundamental basis underlying demyelination as the mechanism of the neurological injuries and relatively little published clinical evidence related to demyelination in COVID-19 patients. The reason for this probably lies in the fact that most clinical studies used conventional MRI techniques, which can detect only large, clearly visible demyelinating lesions. A very limited number of studies use specific methods for myelin quantification detected changes in the white matter tracts 3 and 10 months after the acute phase of COVID-19. Future research applying quantitative MRI assessment of myelin in combination with neurological and psychological studies will help in understanding the mechanisms of post-COVID complications associated with demyelination.
Collapse
|
19
|
Behera G, Gera P, Stephen M, Jose A, Thabah MM, Wadwekar V. Bilateral Optic Neuritis and Facial Palsy Following COVID-19 Infection. Cureus 2022; 14:e28735. [PMID: 36072783 PMCID: PMC9440666 DOI: 10.7759/cureus.28735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Cases of optic neuritis have been reported following the novel coronavirus disease 2019 (COVID-19), with most being unilateral and associated with demyelinating illness. We report a case of a 22-year-old woman who presented with sudden onset painless diminution of vision in both eyes six weeks following COVID-19 infection. She also had a history of left lower motor neuron (LMN) facial palsy immediately following COVID-19 disease that recovered fully on steroids. Ocular examination and ancillary and laboratory investigations pointed to bilateral atypical optic neuritis. The patient responded well to the standard optic neuritis treatment protocol. We diagnosed her as a case of left LMN facial palsy and parainfectious bilateral optic neuritis following COVID-19. Parainfectious bilateral optic neuritis and facial nerve palsy associated with COVID-19 can occur following COVID-19 disease. Ours is the first case to report the occurrence of both in a patient.
Collapse
Affiliation(s)
- Geeta Behera
- Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Pratik Gera
- Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Mary Stephen
- Ophthalmology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Augustine Jose
- Internal Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Molly M Thabah
- Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Vaibhav Wadwekar
- Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| |
Collapse
|
20
|
Shiraishi W, Umemura T, Nakayama Y, Yamada Y, Shijo M, Hashimoto T. Case Report: Paraneoplastic Tumefactive Demyelination Associated With Seminoma. Front Neurol 2022; 13:946180. [PMID: 35899265 PMCID: PMC9309514 DOI: 10.3389/fneur.2022.946180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Paraneoplastic tumefactive demyelination (TD) is a rare disorder of the central nervous system that can be challenging to diagnose. Here, we describe a 32-year-old Japanese man with a TD associated with testicular seminoma. He presented with symptoms of right-sided motor and sensory impairment 2 days after vaccination for coronavirus disease 2019 (COVID-19). Brain magnetic resonance imaging (MRI) showed a high-intensity lesion in the left internal capsule. He had a 3-year history of enlargement of the left testicle. Blood examination showed tumor marker elevation and the presence of anti-amphiphysin antibodies. Whole-body computed tomography (CT) revealed mass lesions in the left testicle and enlargement of the retroperitoneal lymph nodes. Radical orchiectomy was performed. As the pathology showed testicular seminoma, chemotherapy was administered. After surgery, his neurological symptoms deteriorated. MRI revealed that the brain lesion had enlarged and progressed to a tumefactive lesion without gadolinium enhancement. The cerebrospinal fluid (CSF) examination was normal without pleocytosis or protein elevation. Steroid pulse therapy was added; however, his symptoms did not improve. A brain stereotactic biopsy was performed and the sample showed demyelinating lesions without malignant cells. As the initial corticosteroid therapy was ineffective, gamma globulin therapy was administered in parallel with chemotherapy, and the clinical symptoms and imaging findings were partially ameliorated. TD seldom appears as a paraneoplastic neurological syndrome. In addition, there are few reports of COVID-19 vaccination-associated demyelinating disease. Clinicians should recognize paraneoplastic TD, and the further accumulation of similar cases is needed.
Collapse
Affiliation(s)
- Wataru Shiraishi
- Department of Neurology, Kokura Memorial Hospital, Kitakyushu, Japan
- Department of Internal Medicine, Shiraishi Internal Medicine Clinic, Nogata, Japan
- *Correspondence: Wataru Shiraishi
| | - Takeru Umemura
- Department of Neurosurgery, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Yuuki Nakayama
- Department of Urology, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Yui Yamada
- Department of Pathology, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Masahiro Shijo
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hashimoto
- Department of Neurology, Kokura Memorial Hospital, Kitakyushu, Japan
| |
Collapse
|
21
|
Singh D, Singh E. An overview of the neurological aspects in COVID-19 infection. J Chem Neuroanat 2022; 122:102101. [PMID: 35430271 PMCID: PMC9008979 DOI: 10.1016/j.jchemneu.2022.102101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/07/2023]
Abstract
The Crown-shaped, severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) triggered the globally fatal illness of Coronavirus disease-2019 (COVID-19). This infection is known to be initially reported in bats and has been causing major respiratory challenges. The primary symptoms of COVID-19 include fever, fatigue and dry cough. As progressed the complications may lead to acute respiratory distress syndrome (ADRS), arrhythmia and shock. This review illustrates the neurological and neuropsychiatric impairments due to COVID-19 infection. The SARS-CoV-2 virus enters via the hematogenous or neural route, spreads to the Central Nervous System (CNS), causing a blood-brain barrier (BBB) dysfunction. Recent scientific articles have reported that SARS-CoV-2 causes several neurological issues such as encephalitis, seizures, acute stroke, delirium, meningoencephalitis and Guillain-Barré Syndrome (GBS). As a long-term effect of this disease certain neuropsychiatric conditions are witnessed such as depression and anxiety. Invasion into followed by degeneration takes place causing an uncontrolled immune response. Transcription factors like NF-κB (nuclear factor kappa light chain enhancer of activated B cells), which modulate genes responsible for inflammatory response gets over expressed. Nrf2 (nuclear factor erythroid 2- related factor 2) counterpoises the inflammation by antioxidant response towards COVID-19 infection. Like every other infection, the severity of this infection leads to deterioration of major organ systems and even leads to death. By the columns of this review, we elaborate on the neurological aspects of this life-threatening infection.
Collapse
Affiliation(s)
- Divyanshi Singh
- KIIT School of Biotechnology, Bhubaneswar, Odisha 751024, India.
| | - Ekta Singh
- Acharya & BM Reddy College of Pharmacy, Soladevanahalli, Bengaluru 560107, India
| |
Collapse
|
22
|
Morena J, Gyang TV. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease and Transverse Myelitis Probably Associated With SARS-CoV-2 mRNA Vaccines: Two Case Reports. Neurohospitalist 2022; 12:536-540. [PMID: 35755241 PMCID: PMC9214935 DOI: 10.1177/19418744221090426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2023] Open
Abstract
Post-vaccination CNS demyelinating syndromes have been reported with a variety of vaccines including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. We report a case of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) probably associated with the mRNA-1273 (by Moderna) SARS-CoV-2 mRNA vaccine, and a case of acute transverse myelitis (ATM) probably associated with the BNT162b2 (by Pfizer-BioNTech) SARS-CoV-2 mRNA vaccine. A 38-year-old man developed left blurry vision, lower extremity weakness/paresthesia, and bowel/bladder dysfunction three days after receiving the Moderna vaccine. He was diagnosed with left optic neuritis and longitudinally extensive transverse myelitis; he tested positive for the myelin oligodendrocyte glycoprotein antibody. A 39-year-old woman presented with progressive lower extremity weakness/numbness 7 days after receiving the Pfizer vaccine. She was diagnosed with ATM. Both patients improved with intravenous corticosteroids. The association between CNS demyelinating syndromes and vaccination has been reported for many years. We describe two cases of acute CNS demyelinating events probably associated with both mRNA variations of the SARS-CoV-2 vaccines. While the risk of CNS demyelinating events is non-negligible, the incidence is very low and the overall benefits of vaccination outweigh the marginal risk. However, providers should be aware of this potential neurological complication of the SARS-CoV-2 mRNA vaccines.
Collapse
|
23
|
Parvez MSA, Ohtsuki G. Acute Cerebellar Inflammation and Related Ataxia: Mechanisms and Pathophysiology. Brain Sci 2022; 12:367. [PMID: 35326323 PMCID: PMC8946185 DOI: 10.3390/brainsci12030367] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
The cerebellum governs motor coordination and motor learning. Infection with external microorganisms, such as viruses, bacteria, and fungi, induces the release and production of inflammatory mediators, which drive acute cerebellar inflammation. The clinical observation of acute cerebellitis is associated with the emergence of cerebellar ataxia. In our animal model of the acute inflammation of the cerebellar cortex, animals did not show any ataxia but hyperexcitability in the cerebellar cortex and depression-like behaviors. In contrast, animal models with neurodegeneration of the cerebellar Purkinje cells and hypoexcitability of the neurons show cerebellar ataxia. The suppression of the Ca2+-activated K+ channels in vivo is associated with a type of ataxia. Therefore, there is a gap in our interpretation between the very early phase of cerebellar inflammation and the emergence of cerebellar ataxia. In this review, we discuss the hypothesized scenario concerning the emergence of cerebellar ataxia. First, compared with genetically induced cerebellar ataxias, we introduce infection and inflammation in the cerebellum via aberrant immunity and glial responses. Especially, we focus on infections with cytomegalovirus, influenza virus, dengue virus, and SARS-CoV-2, potential relevance to mitochondrial DNA, and autoimmunity in infection. Second, we review neurophysiological modulation (intrinsic excitability, excitatory, and inhibitory synaptic transmission) by inflammatory mediators and aberrant immunity. Next, we discuss the cerebellar circuit dysfunction (presumably, via maintaining the homeostatic property). Lastly, we propose the mechanism of the cerebellar ataxia and possible treatments for the ataxia in the cerebellar inflammation.
Collapse
Affiliation(s)
- Md. Sorwer Alam Parvez
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan;
- Department of Genetic Engineering & Biotechnology, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan;
| |
Collapse
|
24
|
|
25
|
Mahboubi Mehrabani M, Karvandi MS, Maafi P, Doroudian M. Neurological complications associated with Covid-19; molecular mechanisms and therapeutic approaches. Rev Med Virol 2022; 32:e2334. [PMID: 35138001 PMCID: PMC9111040 DOI: 10.1002/rmv.2334] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
With the progression of investigations on the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), neurological complications have emerged as a critical aspect of the ongoing coronavirus disease 2019 (Covid‐19) pandemic. Besides the well‐known respiratory symptoms, many neurological manifestations such as anosmia/ageusia, headaches, dizziness, seizures, and strokes have been documented in hospitalised patients. The neurotropism background of coronaviruses has led to speculation that the neurological complications are caused by the direct invasion of SARS‐CoV‐2 into the nervous system. This invasion is proposed to occur through the infection of peripheral nerves or via systemic blood circulation, termed neuronal and haematogenous routes of invasion, respectively. On the other hand, aberrant immune responses and respiratory insufficiency associated with Covid‐19 are suggested to affect the nervous system indirectly. Deleterious roles of cytokine storm and hypoxic conditions in blood‐brain barrier disruption, coagulation abnormalities, and autoimmune neuropathies are well investigated in coronavirus infections, as well as Covid‐19. Here, we review the latest discoveries focussing on possible molecular mechanisms of direct and indirect impacts of SARS‐CoV‐2 on the nervous system and try to elucidate the link between some potential therapeutic strategies and the molecular pathways.
Collapse
Affiliation(s)
- Mohammad Mahboubi Mehrabani
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Sobhan Karvandi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Pedram Maafi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|