1
|
Khalil R, Al-Mahzoum K, Barakat M, Sallam M. An Increase in the Prevalence of Clinically Relevant Resistance-Associated Substitutions in Four Direct-Acting Antiviral Regimens: A Study Using GenBank HCV Sequences. Pathogens 2024; 13:674. [PMID: 39204274 PMCID: PMC11356961 DOI: 10.3390/pathogens13080674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Direct-acting antivirals (DAAs) revolutionized the therapeutics of chronic hepatitis C. The emergence and transmission of HCV variants with resistance-associated substitutions (RASs) can undermine HCV treatment. This study aimed to assess the prevalence and temporal trends of RASs in HCV, with a particular focus on clinically relevant RASs (cr-RASs). Near-complete HCV GenBank sequences archived in the Los Alamos HCV Database were analyzed. The study period was divided into two phases: before 2011 and from 2011 onward. Identification of RASs across three DAA classes (NS3, NS5A, and NS5B inhibitors) was based on the 2020 EASL guidelines. The AASLD-IDSA recommendations were used to identify cr-RASs for three HCV genotypes/subtypes (1a, 1b, and 3) and four DAA regimens: ledipasvir/sofosbuvir; elbasvir/grazoprevir; sofosbuvir/velpatasvir; and glecaprevir/pibrentasvir. The final HCV dataset comprised 3443 sequences, and the prevalence of RASs was 50.4%, 60.2%, and 25.3% in NS3, NS5A, and NS5B, respectively. In subtype 1a, resistance to ledipasvir/sofosbuvir was 32.8%, while resistance to elbasvir/grazoprevir was 33.0%. For genotype 3, resistance to sofosbuvir/velpatasvir and glecaprevir/pibrentasvir was 4.2% and 24.9%, respectively. A significant increase in cr-RASs was observed across the two study phases as follows: for ledipasvir/sofosbuvir in subtype 1a, cr-RASs increased from 30.2% to 35.8% (p = 0.019); for elbasvir/grazoprevir in subtype 1a, cr-RASs increased from 30.4% to 36.1% (p = 0.018); In subtype 1b, neither ledipasvir/sofosbuvir nor elbasvir/grazoprevir showed any cr-RASs in the first phase, but both were present at a prevalence of 6.5% in the second phase (p < 0.001); for sofosbuvir/velpatasvir in genotype 3, cr-RASs increased from 0.9% to 5.2% (p = 0.006); and for glecaprevir/pibrentasvir, cr-RASs increased from 12.0% to 29.1% (p < 0.001). The rising prevalence of HCV RASs and cr-RASs was discernible. This highlights the necessity for ongoing surveillance and adaptation of novel therapeutics to manage HCV resistance effectively. Updating the clinical guidelines and treatment regimens is recommended to counteract the evolving HCV resistance to DAAs.
Collapse
Affiliation(s)
- Roaa Khalil
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Kholoud Al-Mahzoum
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Muna Barakat
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| |
Collapse
|
2
|
Santos APDT, Silva VCM, Mendes-Corrêa MC, Lemos MF, Malta FDM, Santana RAF, Dastoli GTF, Castro VFDD, Pinho JRR, Moreira RC. Characterization of primary direct-acting antiviral (DAA) drugs resistance mutations in NS5A/NS5B regions of hepatitis C virus with genotype 1a and 1b from patients with chronic hepatitis. Rev Inst Med Trop Sao Paulo 2022; 64:e61. [PMID: 36197422 PMCID: PMC9528309 DOI: 10.1590/s1678-9946202264061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | - João Renato Rebello Pinho
- Universidade de São Paulo, Brazil; Universidade de São Paulo, Brazil; Hospital Israelita Albert Einstein, Brazil
| | | |
Collapse
|
3
|
Abdallah M, Hamed MM, Frakolaki E, Katsamakas S, Vassilaki N, Bartenschlager R, Zoidis G, Hirsch AKH, Abdel-Halim M, Abadi AH. Redesigning of the cap conformation and symmetry of the diphenylethyne core to yield highly potent pan-genotypic NS5A inhibitors with high potency and high resistance barrier. Eur J Med Chem 2021; 229:114034. [PMID: 34959173 DOI: 10.1016/j.ejmech.2021.114034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Herein, we report the discovery of several NS5A inhibitors with potency against HCV genotype 1b in the picomolar range. Compounds (15, 33) were of extremely high potency against HCV genotype 1b (EC50 ≈ 1 pM), improved activity against genotype 3a (GT 3a) and good metabolic stability. We studied the impact of changing the cap conformation relative to the diphenylethyne core and/or compound symmetry on both potency and metabolic stability. The analogs obtained exhibited improved potency against HCV genotypes 1a, 1b, 3a and 4a compared to the clinically approved candidate daclatasvir with EC50 values in the low picomolar range and SI50s > 7 orders of magnitude. Compound 15, a symmetrically m-, m'-substituted diphenyl ethyne analog, was 150-fold more potent than daclatasvir against GT 3a, while compound 33, an asymmetrically m-, p-substituted diphenyl ethyne analog, was 35-fold more potent than daclatasvir against GT 3a. In addition, compound 15 exhibited a higher resistance barrier than daclatasvir against genotype 1b.
Collapse
Affiliation(s)
- Mennatallah Abdallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany
| | - Efseveia Frakolaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521, Athens, Greece
| | - Sotirios Katsamakas
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Vas. Sofias Avenue, 11521, Athens, Greece
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, Germany
| | - Grigoris Zoidis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, Saarbrücken, 66123, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
4
|
Akiyama MJ, Riback L, Reeves JD, Lie YS, Agyemang L, Norton BL, Arnsten JH, Litwin AH. Hepatitis C Resistance-Associated Substitutions Among People Who Inject Drugs Treated With Direct-Acting Antiviral-Containing Regimens. Open Forum Infect Dis 2021; 8:ofab474. [PMID: 34692891 PMCID: PMC8530260 DOI: 10.1093/ofid/ofab474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/17/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Resistance-associated substitutions (RASs) to HCV direct-acting antivirals (DAAs) can contribute to virologic failure and limit retreatment options. People who inject drugs (PWID) are at highest risk for transmission of resistant virus. We report on RASs at baseline and after virologic failure in DAA-naive and protease inhibitor-experienced PWID. METHODS We sequenced the NS3/4A, NS5A, and NS5B regions from 150 PWID with genotype 1 (GT1) viruses; 128 (85.3%) GT1a, 22 (14.7%) GT1b. RESULTS Among the 139 (92.7%) DAA-naive PWID, 85 of 139 (61.2%) had baseline RASs-67 of 139 (48.2%) in NS3 (predominantly Q80K/L); 25 of 139 (18.0%) in NS5A; and 8 of 139 (5.8%) in NS5B. Of the 11 protease inhibitor-experienced participants, 9 had baseline NS3 RASs (V36L N = 1, Q80K N = 9) and 4 had baseline NS5A RASs (M28V N = 2, H58P N = 1, A92T N = 1). Among the 11 participants who had posttreatment samples with detectable virus (7 treatment failures, 1 late relapse, 3 reinfections), 1 sofosbuvir/ledipasvir failure had a baseline H58P. Two sofosbuvir/ledipasvir-treated participants developed new NS5A mutations (Q30H, Y93H, L31M/V). Otherwise, no RASs were detected. CONCLUSIONS Our results demonstrate RAS prevalence among DAA-naive PWID is comparable to that in the general population. Only 2 of 150 (1.3%) in our longitudinal cohort developed treatment-emergent RASs. Concern for transmission of resistant virus may therefore be minimal.
Collapse
Affiliation(s)
- Matthew J Akiyama
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NEW YORK, USA
| | - Lindsey Riback
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NEW YORK, USA
| | | | - Yolanda S Lie
- Monogram Biosciences, LabCorp, South San Francisco, California, USA
| | - Linda Agyemang
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NEW YORK, USA
| | - Brianna L Norton
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NEW YORK, USA
| | - Julia H Arnsten
- Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NEW YORK, USA
| | - Alain H Litwin
- Prisma Health, Greenville, South Carolina, USA
- University of South Carolina School of Medicine, Greenville, South Carolina, USA
- Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
5
|
Jia Y, Yue W, Gao Q, Tao R, Zhang Y, Fu X, Liu Y, Liu L, Feng Y, Xia X. Characterization of a Novel Hepatitis C Subtype, 6xj, and Its Consequences for Direct-Acting Antiviral Treatment in Yunnan, China. Microbiol Spectr 2021; 9:e0029721. [PMID: 34479413 PMCID: PMC8552672 DOI: 10.1128/spectrum.00297-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) has a high rate of genetic variability, with eight genotypes and 91 subtypes. The genetic diversity of HCV genotype 6 (HCV-6) is the highest with 31 subtypes, and this genotype is prevalent in Southeast Asia. In this study, we investigated 160 individuals with chronic hepatitis C in Yunnan Province, China. Using reverse transcription (RT)-PCR and Sanger sequencing, 147 cases were successfully amplified and genotyped as 3b (4.9%), 3a (19.73%), 6n (12.24%), 1b (7.48%), 2a (6.12%), 6a (2.04%), 1a (0.68%), 6v (0.68%), and 6xa (0.68%), with eight sequences remaining unclassified. Subsequently, the eight nearly full-length genomes were successfully amplified and analyzed. The eight complete coding sequences formed a phylogenetic group that was distinct from the previously assigned HCV-6 subtypes and clustered with two previously unnamed HCV-6 sequences. Furthermore, Simplot analysis showed no recombination and the p-distance was more than 15% in comparison to the 6a to 6xi subtypes. Taken together, we identified a new HCV-6 subtype, 6xj, which originated approximately in 1775 according to Bayesian analyses. Moreover, all eight individuals received follow-up assessments at 44 weeks from the beginning of their 12-week treatments of sofosbuvir/velpatasvir (after-treatment week 32). One case relapsed at after-treatment week 32. Next-generation sequencing (NGS) was conducted and showed that the treatment failure case had two suspected antiviral resistance mutations, NS5A V28M (a change of V to M at position 28) and NS5B A442V, compared with the baseline. Overall, this newly identified 6xj subtype further confirmed the high diversity of the HCV-6 genotype. The newly identified resistance-associated amino acid substitutions may help inform future clinical treatments. IMPORTANCE This study investigated the genetic diversity of hepatitis C virus (HCV), particularly in relation to genotype 6, which is prevalent in Yunnan, China, and is often difficult to treat successfully. We identified a new HCV-6 subtype, 6xj, which is an ancient strain. Moreover, all eight individuals with the novel subtype received follow-up assessments at 44 weeks from the beginning of their treatments. One case relapsed after 8 months of withdrawal. NGS was conducted and showed that the isolate from the treatment failure case had two suspected antiviral resistance mutations, NS5A V28M and NS5B A442V, compared with the baseline. Overall, this newly identified 6xj subtype further confirmed the high diversity of the HCV-6 genotype. The newly identified resistance-associated amino acid substitutions may help inform future clinical treatments. We believe that our study makes a significant contribution to the literature based on the results described above.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei Yue
- Department of Infectious Diseases and Liver Diseases, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Qinghua Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rui Tao
- Department of Infectious Diseases and Liver Diseases, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yaxiang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyang Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
6
|
Liu Z, Mao X, Wu J, Yu K, Yang Q, Suo C, Lu M, Jin L, Zhang T, Chen X. World-wide Prevalence of Substitutions in HCV Genome Associated With Resistance to Direct-Acting Antiviral Agents. Clin Gastroenterol Hepatol 2021; 19:1906-1914.e25. [PMID: 31683059 DOI: 10.1016/j.cgh.2019.10.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The efficacy of direct-acting antiviral agents against hepatitis C virus (HCV) infection can be compromised by substitutions in the HCV genome that occur before treatment (resistance-associated substitutions [RASs]). We performed a meta-analysis to determine the prevalence of RASs and their effects. METHODS We searched publication databases for studies of HCV RNA substitutions that mediate resistance to direct-acting antiviral agents. Findings from 50 studies of the prevalence of RAS in HCV, from 32 countries, were used in a meta-analysis. We retrieved the HCV RNA sequence from the Los Alamos HCV sequence database to estimate the prevalence of the RASs. The degree of resistance to treatment conferred by each RAS was determined based on fold-change in the 50% effective concentration of the drugs. RESULTS Our final analysis included data from 49,744 patients with HCV infection and 12,612 HCV sequences. We estimated the prevalence of 56 RASs that encoded amino acids and 114 specific RASs. The average prevalence of RASs was highest in HCV genotype (GT) 6, followed by HCV GT1a, GT2, GT1b, GT3, and GT4. The highest prevalence of RASs observed encoded Q80K in NS3 to NS4A of HCV GT1a, Y93T in NS5A of GT1a, and C316N in NS5B of GT1b. The greatest number of RASs were observed at D168 in NS3 to NS4A, at Y93 in NS5A, and at C316 in NS5B. The prevalence of RASs and mutation burdens were high in Japan, the United States, Germany, Thailand, and the United Kingdom; low in Russia, Brazil, Egypt, and India; and intermediate in China, Canada, Australia, Spain, and France. CONCLUSIONS In a meta-analysis, we found evidence for 114 RASs in HCV of different genotypes. Patients with HCV infection should be tested for RASs before treatment is selected, especially in regions with a high prevalence of RASs.
Collapse
Affiliation(s)
- Zhenqiu Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xianhua Mao
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Jiaqi Wu
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Shanghai, China
| | - Qin Yang
- State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Suo
- Department of Epidemiology, School of Public Health, Shanghai, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Beijing, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China; Human Phenome Institute, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Shanghai, China; Key Laboratory of Public Health Safety, Fudan University, Ministry of Education, Beijing, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China; Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Onorato L, Pisaturo M, Starace M, Minichini C, Di Fraia A, Astorri R, Coppola N. Virological Factors Associated with Failure to the Latest Generation of Direct Acting Agents (DAA) and Re-Treatment Strategy: A Narrative Review. Viruses 2021; 13:432. [PMID: 33800289 PMCID: PMC8000640 DOI: 10.3390/v13030432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
The availability of all oral direct acting antiviral agents (DAAs) has revolutionized the management of HCV infections in recent years, allowing to achieve a sustained virological response (SVR) in more than 95% of cases, irrespective of hepatitis C Virus (HCV) genotype or staging of liver disease. Although rare, the failure to the latest-generation regimens (grazoprevir/elbasvir, sofosbuvir/velpatasvir, pibrentasvir/glecaprevir) represents a serious clinical problem, since the data available in the literature on the virological characteristics and management of these patients are few. The aim of the present narrative review was to provide an overview of the impact of baseline RASs in patients treated with the latest-generation DAAs and to analyze the efficacy of the available retreatment strategies in those who have failed these regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania L. Vanvitelli, 80138 Naples, Italy; (L.O.); (M.P.); (M.S.); (C.M.); (A.D.F.); (R.A.)
| |
Collapse
|
8
|
de Torres Santos AP, Martins Silva VC, Mendes-Corrêa MC, Lemos MF, de Mello Malta F, Santana RAF, Dastoli GTF, de Castro VFD, Pinho JRR, Moreira RC. Prevalence and Pattern of Resistance in NS5A/NS5B in Hepatitis C Chronic Patients Genotype 3 Examined at a Public Health Laboratory in the State of São Paulo, Brazil. Infect Drug Resist 2021; 14:723-730. [PMID: 33658809 PMCID: PMC7917774 DOI: 10.2147/idr.s247071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/12/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Globally, it is estimated that 71 million people are chronically infected with hepatitis C, and 10-20% of these will develop cirrhosis and hepatocellular carcinoma. The development of new direct-acting antiviral (DAA) drugs has contributed to sustained virological response (SVR), eliminating the infection and achieving cure of chronic hepatitis C. However, treated patients can develop HCV resistance to DAAs, which can contribute to the failure of treatment. Here, we aimed to evaluate the prevalence and specific pattern of NS5A and NS5B resistance-associated substitutions (RAS) in samples from patients chronically infected with HCV genotype 3a at a public health laboratory, Instituto Adolfo Lutz, São Paulo, Brazil. Patients and Methods Serum samples from the enrolled individuals were submitted to "in-house" polymerase chain reaction amplification of NS5A and NS5B non-structural protein genes, which were then sequenced by Sanger method. Results A total of 170 and 190 samples were amplified and analyzed for NS5A and NS5B, respectively. For NS5A, 20 (12.0%) samples showed some important RAS; 16 (9.0%) showed some type of substitution and 134 (79.0%) showed no polymorphism. No sample showed any RAS for NS5B. Conclusion This study found important RAS in samples from naïve chronic HCV patients in some areas from São Paulo. The most prevalent were A62S, A30K, and Y93H, which could indicate an increase in resistance to some DAAs used in HCV treatment.
Collapse
Affiliation(s)
- Ana Paula de Torres Santos
- Laboratory of Viral Hepatitis, Virology Center, Instituto Adolfo Lutz, São Paulo, SP, Brazil.,Divisão de Laboratório Central, Laboratório de Imunologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Maria Cássia Mendes-Corrêa
- LIM-52-Institute of Tropical Medicine, Department of Infectious Diseases, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Fernanda de Mello Malta
- Laboratory of Tropical Gastroenterology and Hepatology "João de Queiroz and Castorina Bettencourt Alves"‑LIM 07‑Institute of Tropical Medicine Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - João Renato Rebello Pinho
- Divisão de Laboratório Central, Laboratório de Imunologia, Faculdade de Medicina, Hospital das Clínicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Laboratory of Tropical Gastroenterology and Hepatology "João de Queiroz and Castorina Bettencourt Alves"‑LIM 07‑Institute of Tropical Medicine Department of Gastroenterology, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.,Albert Einstein Medicina Diagnóstica, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Regina Célia Moreira
- Laboratory of Viral Hepatitis, Virology Center, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Peng P, Xu Y, Fried MW, Di Bisceglie AM, Fan X. Genome-wide capture sequencing to detect hepatitis C virus at the end of antiviral therapy. BMC Infect Dis 2020; 20:632. [PMID: 32847527 PMCID: PMC7448998 DOI: 10.1186/s12879-020-05355-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background Viral relapse is a major concern in hepatitis C virus (HCV) antiviral therapy. Currently, there are no satisfactory methods to predict viral relapse, especially in the era of direct acting antivirals in which the virus often quickly becomes undetectable using PCR-based approaches that focus on a small viral region. Next-generation sequencing (NGS) provides an alternative option for viral detection in a genome-wide manner. However, owing to the overwhelming dominance of human genetic content in clinical specimens, direct detection of HCV by NGS has a low sensitivity and hence viral enrichment is required. Methods Based on template-dependent multiple displacement amplification (tdMDA), an improved method for whole genome amplification (Wang et al., 2017. Biotechniques 63, 21–27), we evaluated two strategies to enhance the sensitivity of NGS-based HCV detection: duplex-specific nuclease (DSN)-mediated depletion of human sequences and HCV probe-based capture sequencing. Results In DSN-mediated depletion, human sequences were significantly reduced in the two HCV serum samples tested, 65.3% → 55.6% → 33.7% (#4727) and 68.6% → 56% → 21% (#4970), respectively for no normalization, self- and driver-applied normalization. However, this approach was associated with a loss of HCV sequences perhaps due to its micro-homology with the human genome. In capture sequencing, HCV-mapped sequencing reads occupied 96.8% (#4727) and 22.14% (#4970) in NGS data, equivalent to 1936x and 7380x enrichment, respectively. Capture sequencing was then applied to ten serum samples collected at the end of HCV antiviral therapy. Interestingly, the number of HCV-mapped reads was significantly higher in relapsed patients (n = 5) than those from patients with sustained virological response (SVR) (n = 5), 102.4 ± 72.3 vs. 2.6 ± 0.55, p = 0.014. Conclusions Our data provides concept evidence for a highly sensitive HCV detection by capture sequencing. The abundance difference of HCV sequencing reads at the end of HCV antiviral therapy could be applied to predict treatment outcomes.
Collapse
Affiliation(s)
- Peng Peng
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.,Wuhan Pulmonary Hospital, Wuhan, 430030, Hubei, China
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Michael W Fried
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Adrian M Di Bisceglie
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA. .,Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
10
|
Tran AN, Lim JK. Hepatitis C: How Good Are Real-Life Data and Do Generics Work. Gastroenterol Clin North Am 2020; 49:279-299. [PMID: 32389363 DOI: 10.1016/j.gtc.2020.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Chronic hepatitis C virus infection remains a national and global public health burden and is associated with significant morbidity and mortality. Oral direct-acting antiviral combination regimens have excellent tolerability and efficacy with rates exceeding 90%. Sustained virologic response is associated with significant improvements in clinical outcomes. However, translation of sustained virologic response rates from trials to community settings has been poor with interferon-based regimens. We review and summarize key datasets from major real-world observational cohort studies. We review preliminary data from oral generic direct-acting antiviral formulations. Future real-world studies are needed to further clarify optimal treatment strategies for difficult-to-treat populations.
Collapse
Affiliation(s)
- Ashley N Tran
- Section of Digestive Diseases, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph K Lim
- Section of Digestive Diseases, Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA; Yale Viral Hepatitis Program, Yale University School of Medicine, 333 Cedar Street, LMP 1080, New Haven, CT 06520-8019, USA.
| |
Collapse
|
11
|
Matthew AN, Zephyr J, Nageswara Rao D, Henes M, Kamran W, Kosovrasti K, Hedger AK, Lockbaum GJ, Timm J, Ali A, Kurt Yilmaz N, Schiffer CA. Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors. mBio 2020; 11:e00172-20. [PMID: 32234812 PMCID: PMC7157764 DOI: 10.1128/mbio.00172-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles.IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.
Collapse
Affiliation(s)
- Ashley N Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wasih Kamran
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Adam K Hedger
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gordon J Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Timm J, Kosovrasti K, Henes M, Leidner F, Hou S, Ali A, Kurt-Yilmaz N, Schiffer CA. Molecular and Structural Mechanism of Pan-Genotypic HCV NS3/4A Protease Inhibition by Glecaprevir. ACS Chem Biol 2020; 15:342-352. [PMID: 31868341 PMCID: PMC7747061 DOI: 10.1021/acschembio.9b00675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus, causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well-known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes 1a, 3a, 4a, and 5a in complex with GLE. Comparison with the highly similar grazoprevir indicated the mechanism of GLE's drastic improvement in potency. We found that, while GLE is highly potent against wild-type NS3/4A of all genotypes, specific resistance-associated substitutions (RASs) confer orders of magnitude loss in inhibition. Our crystal structures reveal molecular mechanisms behind pan-genotypic activity of GLE, including potency loss due to RASs at D168. Our structures permit for the first time analysis of changes due to polymorphisms among genotypes, providing insights into design principles that can aid future drug development and potentially can be extended to other proteins.
Collapse
Affiliation(s)
- Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nese Kurt-Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
13
|
Hayes CN, Imamura M, Chayama K. Management of HCV patients in cases of direct-acting antiviral failure. Expert Rev Gastroenterol Hepatol 2019; 13:839-848. [PMID: 31392907 DOI: 10.1080/17474124.2019.1651642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Over 70 million people are infected with hepatitis C virus (HCV), increasing the risk of cirrhosis and hepatocellular carcinoma. Areas covered: Since the approval of the first interferon-free direct-acting antiviral (DAA) therapy in 2011, a number of DAAs have been approved, and HCV is now considered curable. Until recently, however, there were no clear guidelines on how to re-treat patients who fail DAA therapy. Current protease inhibitors (PIs) are generally unaffected by earlier resistance-associated variants (RAVs), but many NS5A inhibitors continue to have overlapping resistance profiles, and NS5A RAVs can persist even in the absence of DAAs. Expert opinion: Fortunately, RAVs affecting NS5B polymerase inhibitors are rare, making sofosbuvir a safe choice as the backbone of re-treatment therapies. Recent re-treatment guidelines that take into account genotype, fibrosis, treatment history, and RAV suggest that >90% of patients with prior treatment failures can be successfully re-treated with sofosbuvir/velpatasvir, sofosbuvir/velpatasvir/voxilaprevir or glecaprevir/pibrentasvir.
Collapse
Affiliation(s)
- C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan.,Liver Research Project Center, Hiroshima University , Hiroshima , Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan.,Liver Research Project Center, Hiroshima University , Hiroshima , Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima , Japan.,Liver Research Project Center, Hiroshima University , Hiroshima , Japan
| |
Collapse
|
14
|
Inglis SK, Beer LJ, Byrne C, Malaguti A, Robinson E, Sharkey C, Gillings K, Stephens B, Dillon JF. Randomised controlled trial conducted in injecting equipment provision sites to compare the effectiveness of different hepatitis C treatment regimens in people who inject drugs: A Direct obserVed therApy versus fortNightly CollEction study for HCV treatment-ADVANCE HCV protocol study. BMJ Open 2019; 9:e029516. [PMID: 31399460 PMCID: PMC6701606 DOI: 10.1136/bmjopen-2019-029516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Hepatitis C is a blood-borne virus (HCV) that can seriously damage the liver and is spread mainly through blood-to-blood contact with an infected person. Over 85% of individuals who have HCV in Scotland became infected following injecting drug use. Since people who inject drugs (PWID) are the main source of new infections, theoretical modelling has suggested that treatment of HCV infection in PWID may effectively reduce HCV prevalence and accomplish elimination. This protocol describes a clinical trial delivering HCV treatment within injecting equipment provision sites (IEPS) in Tayside, Scotland. METHODS AND ANALYSIS PWID attending IEPS are tested for HCV and, if they are chronically infected with HCV and eligible, invited to receive treatment within the IEPS. They are randomised to one of three treatment regimens; daily observed treatment, treatment dispensed every 2 weeks and treatment dispensed every 2 weeks together with an adherence psychological intervention (administered before treatment begins). The primary outcome is comparison of the rate of successful treatment (SVR12) in each treatment group. Secondary analyses include assessment of adherence, reinfection rates, viral resistance to treatment and interaction of the treatment with illicit drugs. ETHICS AND DISSEMINATION The ADVANCE (A Direct obserVed therApy versus fortNightly CollEction) HCV trial was given favourable opinion by East of Scotland Research Ethics Committee (LR/17/ES/0089) prior to commencement. TRIAL REGISTRATION NUMBERS European Clinical Trials Database (EudraCT) (2017-001039-38) and ClinicalTrials.gov (NCT03236506).
Collapse
Affiliation(s)
- Sarah K Inglis
- Tayside Clinical Trials Unit, University of Dundee, Dundee, UK
| | - Lewis Jz Beer
- Tayside Clinical Trials Unit, University of Dundee, Dundee, UK
| | | | - Amy Malaguti
- School of Social Sciences (Psychology), University of Dundee, Dundee, UK
| | - Emma Robinson
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- Specialist liver service, NHS Tayside, Dundee, UK
| | | | | | | | - John F Dillon
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- Specialist liver service, NHS Tayside, Dundee, UK
| |
Collapse
|
15
|
Strauss E. CHRONIC HEPATITIS C IS STILL A PROBLEM FOR THE PUBLIC HEALTH CARE SYSTEM IN BRAZIL. ARQUIVOS DE GASTROENTEROLOGIA 2019; 55:321-323. [PMID: 30785512 DOI: 10.1590/s0004-2803.201800000-90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Edna Strauss
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo, SP, Brasil
| |
Collapse
|