1
|
Singpanna K, Jiratananan P, Paiboonwasin S, Petcharawuttikrai N, Chaksmithanont P, Pornpitchanarong C, Patrojanasophon P. Alpha-Tocopherol-Infused Flexible Liposomal Nanocomposite Pressure-Sensitive Adhesive: Enhancing Skin Permeation of Retinaldehyde. Polymers (Basel) 2024; 16:2930. [PMID: 39458757 PMCID: PMC11511287 DOI: 10.3390/polym16202930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Retinaldehyde (RAL), or retinal, is a vitamin A derivative that is widely used for several skin conditions. However, it is light sensitive and has low water solubility, limiting its efficiency in transdermal delivery. This study developed a novel delivery system for retinal (RAL) using flexible liposomes (FLPs) infused with α-tocopherol succinate (α-TS) to improve stability, and enhance skin permeability. The RAL-FLPs were embedded in pressure-sensitive adhesive (PSA) hydrogels, creating a delivery platform that supports prolonged skin residence and efficient permeation of RAL. The stability and skin permeation as well as human skin irritation and adhesion capabilities were assessed to determine the formulation's safety and efficacy. Our findings suggested that the addition of α-TS could improve liposomal stability and RAL chemical stability. Moreover, the skin permeation and fluorescence microscopic-based studies suggested that the addition of α-TS could enhance skin permeability of RAL through hair follicles. The RAL-FLP was embedded in PSA hydrogels fabricated from 25% GantrezTM S-97 (GT) and 1% hyaluronic acid (Hya) with aluminum as a crosslinker. The PSA hydrogel exhibited desirable peeling and tacking strengths. The developed hydrogels also demonstrated greater skin deposition of RAL compared with its aqueous formulation. Additionally, the RAL-FLP-embedded PSA hydrogels showed no skin irritation and maintained better adhesion for up to 24 h compared to commercial patches. Hence, the developed hydrogels could serve as a beneficial platform for delivering RAL in treating skin conditions.
Collapse
Affiliation(s)
- Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Puchapong Jiratananan
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Santipharp Paiboonwasin
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nawinda Petcharawuttikrai
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prin Chaksmithanont
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
- Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
2
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
3
|
Chen C, Ke Y. Picosecond Alexandrite Laser With Diffractive Lens Array Combined With Long-Pulse Alexandrite Laser for the Treatment of Facial Photoaging in Chinese Women: A Retrospective Study. Skin Res Technol 2024; 30:e70091. [PMID: 39362837 PMCID: PMC11449675 DOI: 10.1111/srt.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND OBJECTIVES Facial photoaging is a type of facial skin aging induced mainly by exogenous factors (ultraviolet radiation) and often manifests itself in the form of hyperpigmentation, telangiectasia, roughness, increase in fine lines/wrinkles, and enlarged pores. Recently, picosecond lasers have become an emerging option for the treatment of facial photoaging, and long-pulse alexandrite lasers (LPAL) have demonstrated promising potential in the treatment of photoaging-related symptoms. This study aimed to evaluate the efficacy and safety of picosecond alexandrite laser (PSAL) with diffractive lens array (DLA) combined with LPAL for facial photoaging. METHODS This is a retrospective study of 20 Chinese female patients with facial photoaging who received PSAL with DLA combined with LPAL during a 1-year period. All patients were treated every 4 weeks for a total of three treatments. Objective indicators of facial photoaging and patient satisfaction were evaluated before each treatment, and pain scores and adverse effects were recorded after each treatment. RESULTS Compared with baseline, patients showed significant differences in all facial photoaging indices (p < 0.01). After receiving three treatments, there was a 20.1% decrease in the pigmentation index, a 23.9% decrease in the erythema index, a 34.5% decrease in the texture index, a 28.4% decrease in the fine lines index, a 56% decrease in the pore index, a 9.3% elevation and a 17.1% decrease in elasticity R2 and F4, respectively, and a 55% decrease in sebum content. The mean satisfaction score for the three treatments was 4.67 (3.33, 5.00), and the mean visual analogue scale (VAS) pain score was 7.00. No serious adverse effects such as post-inflammatory hyperpigmentation (PIH), hypopigmentation, or blistering were observed at the treatment site during the treatment period. CONCLUSION PSAL with DLA combined with LPAL for the treatment of facial photoaging with significant efficacy, high patient satisfaction, and minimal adverse effects.
Collapse
Affiliation(s)
- Changhan Chen
- Department of CosmetologyWenzhou Hospital of Integrated Traditional Chinese and Western MedicineAffiliated Zhejiang Chinese Medical UniversityWenzhouZhejiangChina
| | - Youhui Ke
- Department of CosmetologyWenzhou Hospital of Integrated Traditional Chinese and Western MedicineAffiliated Zhejiang Chinese Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
4
|
Mambwe B, Mellody KT, Kiss O, O'Connor C, Bell M, Watson REB, Langton AK. Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action. Int J Cosmet Sci 2024. [PMID: 39128883 DOI: 10.1111/ics.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
The inevitable attrition of skin due to ultraviolet radiation, termed photoaging, can be partially restored by treatment with retinoid compounds. Photoaged skin in lightly pigmented individuals, clinically presents with the appearance of wrinkles, increased laxity, and hyper- and hypopigmentation. Underlying these visible signs of ageing are histological features such as epidermal thinning, dermal-epidermal junction flattening, solar elastosis and loss of the dermal fibrillin microfibrillar network, fibrillar collagen and glycosaminoglycans. Retinoid compounds are comprised of three main generations with the first generation (all-trans retinoic acid, retinol, retinaldehyde and retinyl esters) primarily used for the clinical and cosmetic treatment of photoaging, with varying degrees of efficacy, tolerance and stability. All-trans retinoic acid is considered the 'gold standard' for skin rejuvenation; however, it is a prescription-only product largely confined to clinical use. Therefore, retinoid derivatives are readily incorporated into cosmeceutical formulations. The literature reported in this review suggests that retinol, retinyl esters and retinaldehyde that are used in many cosmeceutical products, are efficacious, safe and well-tolerated. Once in the skin, retinoids utilize a complex signalling pathway that promotes remodelling of photoaged epidermis and dermis and leads to the improvement of the cutaneous signs of photoaging.
Collapse
Affiliation(s)
- Bezaleel Mambwe
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kieran T Mellody
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Orsolya Kiss
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Clare O'Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - Mike Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Abigail K Langton
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Shi S, Zhang J, Quan S, Yang Y, Yao L, Xiao J. A highly biocompatible and bioactive transdermal nano collagen for enhanced healing of UV-damaged skin. Int J Biol Macromol 2024; 272:132857. [PMID: 38834124 DOI: 10.1016/j.ijbiomac.2024.132857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin damage caused by excessive UV radiation has gradually become one of the most prevalent skin diseases. Collagen has gradually found applications in the treatment of UV-damaged skin; however, their high molecular weight greatly limits their capacity to permeate the skin barrier and repair the damaged skin. Nano collagen has garnered growing attentions in the mimicking of collagen; while the investigation of its skin permeability and wound-healing capability remains vacancies. Herein, we have for the first time created a highly biocompatible and bioactive transdermal nano collagen demonstrating remarkable transdermal capacity and repair efficacy for UV-damaged skin. The transdermal nano collagen exhibited a stable triple-helix structure, effectively promoting the adhesion and proliferation of fibroblasts. Notably, the transdermal nano collagen displayed exceptional penetration capabilities, permeating fibroblast and healthy skin. Combo evaluations revealed that the transdermal nano collagen contributed to recovering the intensity and TEWL values of UV-damaged skin to normal level. Histological analysis further indicated that transdermal nano collagen significantly accelerated the repair of damaged skin by promoting the collagen regeneration and fibroblasts activation. This highly biocompatible and bioactive transdermal nano collagen provides a novel substituted strategy for the transdermal absorption of collagen, indicating great potential applications in cosmetics and dermatology.
Collapse
Affiliation(s)
- Shuangni Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Yi Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Wang T, Guo L, Wu S, Xu Y, Song J, Yang Y, Zhang H, Li D, Li Y, Jiang X, Gu Z. Polyphenolic Platform Ameliorated Sanshool for Skin Photoprotection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310012. [PMID: 38359060 DOI: 10.1002/advs.202310012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Natural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs). The intracellular evaluation and in vivo animal model are conducted to demonstrate the decreased photodamage score and skin-fold thickness of prepared NPs, which can be attributed to the better biocompatibility, improved free radical scavenging, down-regulated apoptosis ratios, and reduced DNA double-strand breaks compared to naked sanshool. This work proposes a novel strategy to boost the key properties of naturally occurring active molecules with the assistance of natural polyphenol-based platforms.
Collapse
Affiliation(s)
- Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuwei Wu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junmei Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou, 511434, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Qu L, Ma X, Wang F. The roles of gut microbiome and metabolites associated with skin photoaging in mice by intestinal flora sequencing and metabolomics. Life Sci 2024; 341:122487. [PMID: 38316265 DOI: 10.1016/j.lfs.2024.122487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Photoaging of skin, a chronic disease, can produce the appearance changes and cancer lesions of skin. Therefore, it is of great significance to investigate the mechanisms and explore effective methods to treat the disorder. Gut microbiota and intestinal metabolisms have critical roles in a variety of diseases. However, their roles on photoaging of skin were not well tested. In the present work, the results showed that compared with control group, the levels of MDA, SOD and CAT associated with oxidative stress, the levels of COL I, CER, and HA associated with skin function, and the mRNA levels of IL-1β, IL-6, TNF-α associated with inflammation after long-term exposure to ultraviolet radiation in mice were significantly changed. Skin pathological tissue was also seriously damaged. The protein levels of AQP3 and FLG were significantly decreased. Ultraviolet exposure also promoted skin photoaging by activating TNFR1/TRAF2-mediated MAPK pathway, in which the protein levels of P38/P-P38, c-FOS/P-c-FOS, MMP1, TNFR1 and TRAF2 were significantly increased in model mice compared with control group. In fecal microbiota transplantation (FMT) experiment, we found that the intestinal microbiome of control mice alleviated skin photoaging via adjusting the protein levels of P38/P-P38, c-FOS/P-c-FOS, MMP1, TNFR1 and TRAF2. 16S rRNA sequencing found that 1639 intestinal bacteria were found, in which 15 bacteria including norank_f_Ruminococcaceae, Lachnospirac -eae_NK4A136_group, Lachnoclostridium, etc., were significantly different at the genus level. Untargeted GC-TOF/MS and UHPLC-MS/MS metabolomics showed 72 and 188 metabolites including taurine, ornithine, L-arginine, L-histidine, sucrose with significant differences compared with control group. Then, amino acid targeting assay showed 10 amino acids including L-ornithine, L-arginine and L-citrulline with higher levels in control group compared with model group. In addition, we also found that the variation of Lachnoclostridium abundance may regulate L-arginine metabolism to affect skin photoaging. Some intestinal bacteria and metabolites including amino acids may be closely related to skin photoaging, which should provide new methods to treat skin photoaging in the future.
Collapse
Affiliation(s)
- Liping Qu
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Xiao Ma
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Botanee Bio-technology Group Co., Ltd., Kunming 650106, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China.
| |
Collapse
|
8
|
Azulay DR, Bravo BSF, Azulay V, Martins FF, Luiz RR, Cuzzi T, Mandarim CA, Manela-Azulay M. Durability of the improvement of collagen I and collagen III with the use of oral isotretinoin in the treatment of photoaging. Int J Dermatol 2023; 62:1538-1542. [PMID: 37861232 DOI: 10.1111/ijd.16868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Oral isotretinoin (ISO) is the drug of choice for the treatment of severe acne. For photoaging treatment, ISO has been proved to be effective in some controlled and noncontrolled trials and is an alternative to topical retinoic acid (RA) therapy, which causes an expected skin irritation. OBJECTIVE To evaluate and compare the skin remodeling in patients taking ISO 20 mg 3 times a week for 12 weeks and 12 weeks after the end of the treatment to quantify collagen I and collagen III augmentation. MATERIAL AND METHODS Immunohistochemical studies were performed to evaluate the expression of collagen I and collagen III, metalloproteinases (MMPs) -1, -3, -7, -9, -12, and the tissue inhibitor of MMP type-1 (TIMP-1) of the skin of 20 45 to 50-year-old women through morphometry in a semiquantitative method. The inclusion criteria were facial aging 2 and 3 of Glogau's classification, with phototypes between II and V who had not entered menopause. Biopsies of the skin of the left preauricular region were performed at three different times: pre-treatment (T0), end of 12-week treatment (T1), and 12 weeks posttreatment (T2). RESULTS Collagen fibers I and III increased with statistical significance in T1 (50.7%; P = 0.012) but not in T2 (49.7%), which in turn was higher than in T0 (47.2%) for collagen I and T1 (33.3%; P = 0.002) but not in T2 (32.7%), and also was higher than T0 (32.0%) for collagen III. MMP-9 presented a decreased activity with statistical significance in T1 (P = 0.047) and T2 (P = 0.058). MMP-1 showed a reduction in T2 only (P = 0.015). MMPs -3, -7, -12, and TIMP-1 did not present significant modification in their expressions during or after the treatment. CONCLUSIONS Low-dose ISO is effective in remodeling the extracellular matrix (ECM). This study found that the increase of collagen occurs through the augmentation of both collagen I and collagen III fibers. With originality, it was possible to verify the durability of these fibers for at least 12 weeks. This may be related to the decrease in MMP-9 expression verified at the end of the treatment and 12 weeks posttreatment.
Collapse
Affiliation(s)
- David R Azulay
- Institute of Dermatology, Prof. Rubem David Azulay do Hospital Geral da Santa Casa da Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil
- Serviço de Anatomia Patológica do Hospital Clementino Fraga Filho da, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruna S F Bravo
- Institute of Dermatology, Prof. Rubem David Azulay do Hospital Geral da Santa Casa da Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitoria Azulay
- Institute of Dermatology, Prof. Rubem David Azulay do Hospital Geral da Santa Casa da Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiane F Martins
- Laboratório de Morfometria e Morfologia Cardiovascular do Departamento de Anatomia da, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronir R Luiz
- Instituto de Estudos em Saúde Coletiva da UFRJ, Rio de Janeiro, Brazil
| | - Tullia Cuzzi
- Institute of Dermatology, Prof. Rubem David Azulay do Hospital Geral da Santa Casa da Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil
- Serviço de Anatomia Patológica do Hospital Clementino Fraga Filho da, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos A Mandarim
- Laboratório de Morfometria e Morfologia Cardiovascular do Departamento de Anatomia da, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mônica Manela-Azulay
- Institute of Dermatology, Prof. Rubem David Azulay do Hospital Geral da Santa Casa da Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil
- Serviço de Anatomia Patológica do Hospital Clementino Fraga Filho da, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Cai CS, He GJ, Xu FW. Advances in the Applications of Extracellular Vesicle for the Treatment of Skin Photoaging: A Comprehensive Review. Int J Nanomedicine 2023; 18:6411-6423. [PMID: 37954453 PMCID: PMC10638935 DOI: 10.2147/ijn.s433611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Skin photoaging is a complex biological process characterized by the accumulation of oxidative damage and structural changes in the skin, resulting from chronic exposure to ultraviolet (UV) radiation. Despite the growing demand for effective treatments, current therapeutic options for skin photoaging remain limited. However, emerging research has highlighted the potential of extracellular vesicles (EVs), including exosomes, micro-vesicles, apoptotic bodies and liposomes, as promising therapeutic agents in skin rejuvenation. EVs are involved in intercellular communication and can deliver bioactive molecules, including proteins, nucleic acids, and lipids, to recipient cells, thereby influencing various cellular processes. This comprehensive review aims to summarize the current research progress in the application of EVs for the treatment of skin photoaging, including their isolation and characterization methods, roles in skin homeostasis, therapeutic potential and clinical applications for skin photoaging. Additionally, challenges and future directions in EVs-based therapies for skin rejuvenation are discussed.
Collapse
Affiliation(s)
- Chan-Sheng Cai
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Gui-Juan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
| | - Fa-Wei Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People’s Republic of China
| |
Collapse
|
10
|
Quan T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules 2023; 13:1614. [PMID: 38002296 PMCID: PMC10669284 DOI: 10.3390/biom13111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The skin is the most-extensive and -abundant tissue in the human body. Like many organs, as we age, human skin experiences gradual atrophy in both the epidermis and dermis. This can be primarily attributed to the diminishing population of epidermal stem cells and the reduction in collagen, which is the primary structural protein in the human body. The alterations occurring in the epidermis and dermis due to the aging process result in disruptions to the structure and functionality of the skin. This creates a microenvironment conducive to age-related skin conditions such as a compromised skin barrier, slowed wound healing, and the onset of skin cancer. This review emphasizes the recent molecular discoveries related to skin aging and evaluates preventive approaches, such as the use of topical retinoids. Topical retinoids have demonstrated promise in enhancing skin texture, diminishing fine lines, and augmenting the thickness of both the epidermal and dermal layers.
Collapse
Affiliation(s)
- Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Wang Z, Kwong CHT, Zhao H, Ding YF, Gao C, Zhang D, Cheng Q, Wei J, Zhang QW, Wang R. Microalgae Microneedle Supplies Oxygen for Antiphotoaging Treatment. ACS APPLIED BIO MATERIALS 2023; 6:3463-3471. [PMID: 37161309 DOI: 10.1021/acsabm.3c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
UV exposure often triggers photoaging of the skin. Pharmacological treatment suffers from severe side effects as well as poor efficacy because of insufficient skin penetration. Dissolved oxygen has been previously shown to reverse photoaged skin; however, the treatment is often limited by the availability of equipment (e.g., high-pressure oxygen). Poor oxygen diffusion into the skin has also limited its therapeutic efficacy. Herein, we developed a microneedle patch to deliver living microalgae to the deeper layers of the skin for efficient oxygenation and reversal of photoaging. The continuous release of oxygen from microalgae in the skin through photosynthesis reversed the inflammatory microenvironment and reduced reactive oxygen species levels in the photodamaged skin, leading to collagen regeneration and reduced wrinkles. This study provides not only a means for highly efficient skin oxygenation and reversal of photoaging but also an important theoretical basis for the clinical treatment of photoaging.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huichao Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yuan-Fu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Daiyan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
- Macau Society of Supramolecular Chemistry and Biomaterials, Macao SAR 999078, China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
12
|
Zonari A, Brace LE, Al-Katib K, Porto WF, Foyt D, Guiang M, Cruz EAO, Marshall B, Gentz M, Guimarães GR, Franco OL, Oliveira CR, Boroni M, Carvalho JL. Senotherapeutic peptide treatment reduces biological age and senescence burden in human skin models. NPJ AGING 2023; 9:10. [PMID: 37217561 PMCID: PMC10203313 DOI: 10.1038/s41514-023-00109-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Cellular senescence is known to play a role in age-related skin function deterioration which potentially influences longevity. Here, a two-step phenotypic screening was performed to identify senotherapeutic peptides, leading to the identification of Peptide (Pep) 14. Pep 14 effectively decreased human dermal fibroblast senescence burden induced by Hutchinson-Gilford Progeria Syndrome (HGPS), chronological aging, ultraviolet-B radiation (UVB), and etoposide treatment, without inducing significant toxicity. Pep 14 functions via modulation of PP2A, an understudied holoenzyme that promotes genomic stability and is involved in DNA repair and senescence pathways. At the single-cell level, Pep 14 modulates genes that prevent senescence progression by arresting the cell cycle and enhancing DNA repair, which consequently reduce the number of cells progressing to late senescence. When applied on aged ex vivo skin, Pep 14 promoted a healthy skin phenotype with structural and molecular resemblance to young ex vivo skin, decreased the expression of senescence markers, including SASP, and reduced the DNA methylation age. In summary, this work shows the safe reduction of the biological age of ex vivo human skins by a senomorphic peptide.
Collapse
Affiliation(s)
| | | | | | - William F Porto
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Porto Reports, Brasília, 72236-011, DF, Brazil
| | | | | | | | | | | | - Gabriela Rapozo Guimarães
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050, RJ, Brazil
| | - Octavio L Franco
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Centre of Proteomic Analyses and Biochemistry, Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia, 70790-160, DF, Brazil
- S-Inova Biotech, Biotechnology Program, Catholic University Dom Bosco, Campo Grande, 79117-010, MS, Brazil
- Molecular Pathology Program, University of Brasilia, Brasilia, 70.910-900, DF, Brazil
| | | | - Mariana Boroni
- OneSkin, Inc., San Francisco, CA, USA
- Bioinformatics and Computational Biology Lab, Brazilian National Cancer Institute (INCA), Rio de Janeiro, 20231-050, RJ, Brazil
| | - Juliana L Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasília, 70790-160, DF, Brazil
- Interdisciplinary Biosciences Laboratory, Faculty of Medicine, University of Brasília, Brasília, 70.910-900, DF, Brazil
| |
Collapse
|
13
|
Garza LA, Sheu M, Kim N, Tsai J, Alessi Cesar SS, Lee J, Hawkins SS, Chien AL, Kang S. Association of Early Clinical Response to Laser Rejuvenation of Photoaged Skin with Increased Lipid Metabolism and Restoration of Skin Barrier Function. J Invest Dermatol 2023; 143:374-385.e7. [PMID: 36055399 PMCID: PMC9971340 DOI: 10.1016/j.jid.2022.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 10/14/2022]
Abstract
Laser resurfacing treatments for photoaged skin have improved dramatically over the past decades, but few studies have examined the molecular mechanisms underlying differences in clinical response. Seventeen white female participants with moderate-to-severe photoaging received nonablative fractional laser treatment on the face and forearm once monthly for 6 months. Biopsies for microarray analysis were performed at baseline and 7 days after facial treatment and at baseline and 1, 7, 14, and 29 days after forearm treatment in each participant, resulting in 119 total samples. Participants were stratified into fast (n = 11) and slow (n = 6) responders on the basis of the presence of clinical improvement after the first treatment. Microarray analysis revealed the upregulation of genes associated with matrix metalloproteinases, collagen and extracellular components, TGF-β signaling, double-stranded RNA signaling, and retinoic acid synthesis after treatment that did not differ significantly between fast and slow responders. Cluster and enrichment analyses suggested significantly greater activation of lipid metabolism and keratinocyte differentiation in fast responders, who showed greater upregulation of acyltransferases, fatty acid elongases, fatty acid 2-hydroxylase, fatty acid desaturases, and specific keratins that may contribute to epidermal barrier function. These results create, to our knowledge, a previously unreported atlas of molecular changes that correlate with improvements in photoaging after laser therapy.
Collapse
Affiliation(s)
- Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mary Sheu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Noori Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jerry Tsai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabrina S Alessi Cesar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jianming Lee
- Unilever Human Biology Science and Technology, Trumbull, Connecticut, USA
| | - Stacy S Hawkins
- Unilever Human Biology Science and Technology, Trumbull, Connecticut, USA
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
14
|
Alfredo MG, Maribel PM, Eloy PR, Susana GE, Luis LGS, Carmen GM. Depigmenting topical therapy based on a synergistic combination of compounds targeting the key pathways involved in melasma pathophysiology. Exp Dermatol 2023; 32:611-619. [PMID: 36682042 DOI: 10.1111/exd.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/01/2022] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Melasma has a complex pathophysiology with different cell types and signalling pathways involved. Paracrine factors secreted by keratinocytes, fibroblasts and endothelial cells act on melanocytes and stimulate melanogenesis. These paracrine factors are involved in the oxidative stress, inflammatory, vascular and hormonal pathways, among others. Damage of the dermoepidermal barrier also occurs and facilitates melanin deposition in the dermis, also known as dermal or mixed melasma. We used artificial intelligence tools to define the best combination of compounds for skin pigmentation inhibition. Mathematical models suggested the combination of retinol, diosmin and ferulic acid to be the most effective one. In vitro cellular tyrosinase activity assay proved that this combination had a synergistic depigmenting effect. Further assays proved that the combination could inhibit key pathways involved in melasma by downregulating ET-1 and COX-2 gene expression and IBMX-induced dendricity in human melanocytes, and upregulated the gene expression of IL-1b, TIMP3 and several endogenous antioxidant enzymes. The combination also reduced melanin levels in a phototype VI 3D epidermis model. These results indicate that the combination of retinol, diosmin and ferulic acid is an effective synergistic complex for the treatment of melasma by regulating the key molecular pathways involved in skin hyperpigmentation pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | - Luis G S Luis
- Medical Unit, Mesoestetic Pharma Group, Barcelona, Spain
| | | |
Collapse
|
15
|
Calzari P, Vaienti S, Nazzaro G. Uses of Polypodium leucotomos Extract in Oncodermatology. J Clin Med 2023; 12:jcm12020673. [PMID: 36675602 PMCID: PMC9861608 DOI: 10.3390/jcm12020673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
The effects of UV radiation on the skin and its damage mechanisms are well known. New modalities of exogenous photoprotection have been studied. It was demonstrated that Polypodium leucotomos extract acts as an antioxidant, photoprotectant, antimutagenic, anti-inflammatory, and immunoregulator. It is effective when taken orally and/or applied topically to support the prevention of skin cancers. It also has an important role in preventing photoaging. This review aims to report the mechanisms through which Polypodium leucotomos acts and to analyze its uses in oncodermatology with references to in vitro and in vivo studies. Additionally, alternative uses in non-neoplastic diseases, such as pigmentary disorders, photosensitivity, and atopic dermatitis, have been considered.
Collapse
Affiliation(s)
- Paolo Calzari
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Silvia Vaienti
- Section of Dermatology and Venereology, Department of Medicine, University of Verona, 30127 Verona, Italy
| | - Gianluca Nazzaro
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Dermatology Unit, Foundation IRCCS, Ca’ Granda Ospedale Maggiore Policlinico, Via Pace 9, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
16
|
Didona D, Caposiena Caro RD, Sequeira Santos AM, Solimani F, Hertl M. Therapeutic strategies for oral lichen planus: State of the art and new insights. Front Med (Lausanne) 2022; 9:997190. [PMID: 36267615 PMCID: PMC9578567 DOI: 10.3389/fmed.2022.997190] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease of the oral mucosa. Several clinical subtypes of OLP have been reported, including the reticular and erosive one. On the one hand, reticular OLP is usually asymptomatic and is characterized by white streaks surrounded by well-defined erythematous borders. On the other hand, erosive OLP shows ulcerations and erosions surrounded by erythematous mucosa. While reticular OLP is relatively easy to control, erosive OLP is extremely painful and refractory to therapies, limiting the quality of life of the patients. In addition, treating erosive OLP is extremely tricky, and a gold standard treatment has not yet been established. However, several therapeutic approaches have been reported as effective, including systemic corticosteroids, systemic retinoids, and anti-interleukin (IL)-17/anti-IL-23 drugs. Indeed, our group and other several authors reported the effectiveness of anti-IL17, anti-IL12/23, and anti-IL23 agents in refractory OLP, highlighting the urgency of clinical studies on the use of anti-IL agents in OLP patients. In this paper, we reviewed the English- and German-language literature about therapeutic strategies for treating OLP, focusing on new systemic therapies for erosive OLP.
Collapse
Affiliation(s)
- Dario Didona
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany,*Correspondence: Dario Didona
| | | | | | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute of Health at Charité - Universitátsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
17
|
Kouassi MC, Grisel M, Gore E. Multifunctional active ingredient-based delivery systems for skincare formulations: A review. Colloids Surf B Biointerfaces 2022; 217:112676. [DOI: 10.1016/j.colsurfb.2022.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
|
18
|
Choi YJ, Kim JS, Kim WS. Photothermal therapy using gold nanoparticles and a long-pulsed 755-nm alexandrite laser to treat facial photoaging in Asian skin: A prospective clinical trial. Lasers Surg Med 2022; 54:1060-1070. [PMID: 35789098 DOI: 10.1002/lsm.23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Transdermally delivered gold nanoparticles (AuNPs) irradiated with near-infrared laser energy can create a photothermal effect within the sebaceous glands (SGs). Photothermal therapy (PTT) can be used clinically to reverse photoaging in SG-rich areas of the skin. Improvements in wrinkles and enlarged pores in Asian skin were assessed following AuNP-mediated PTT with a long-pulsed 755-nm alexandrite laser. STUDY DESIGN/MATERIALS AND METHODS A single-arm, prospective trial was designed. Twenty Korean patients underwent three gold PTT interventions performed 4 weeks apart at laser hair-removal settings without cooling. At Week 20, changes in the wrinkle index (WI) and pore index (PI), size, and count were calculated using three-dimensional camera analyses. Overall improvements in wrinkles and pores (0-4 scale) were assessed by blinded investigators using standardized photographic comparisons. The subjects scored their satisfaction (0-10 scale) and treatment discomfort (0-10 scale). Safety data were also collected. RESULTS There were significant reductions in the WI (8.3%, p < 0.01), pore size (23.1%, p = 0.035), and PI (19.9%, p = 0.034) in the periorbital areas at week 20 compared with baseline. The mean reductions in the size (22.5%, p = 0.027), count (16.5%, p = 0.048), and index (22.4%, p = 0.023) of the cheek pores were also significant. Investigators reported average scores of 3.2 ± 0.6 for improved wrinkle appearance, and 3.1 ± 0.7 for improvement in visible pores. Participants were moderately satisfied with the overall results (7.6 ± 1.8). Subjects felt moderate discomfort during treatment (4.7 ± 2.6). No serious or persistent adverse events occurred. CONCLUSIONS AuNP-mediated PTT showed noticeable efficacy and tolerability in treating wrinkles and pores in Asian skin over a 12 week-follow-up. Further studies with a longer follow-up are needed to confirm the reduction in SG activity at the parameters used.
Collapse
Affiliation(s)
- Young-Jun Choi
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seop Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Sitohang IBS, Makes WI, Sandora N, Suryanegara J. Topical tretinoin for treating photoaging: A systematic review of randomized controlled trials. Int J Womens Dermatol 2022; 8:e003. [PMID: 35620028 PMCID: PMC9112391 DOI: 10.1097/jw9.0000000000000003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022] Open
Abstract
Aging, an inevitable and continuous process in one's lifetime, has all along been a focus of interest, especially for women, yet photoaging treatment to slow the process remains challenging. Recent studies have demonstrated the potency of topical tretinoin in the treatment of photoaging. Tretinoin, a metabolite of retinoids, shows prominent efficacy to regulate proliferation and differentiation of epidermal cells and induce new collagen formation. Objective This review aims to study the current evidence on topical tretinoin for photoaging treatment. Methods A systematic search of the literature was performed from Medline, Cochrane Central, Embase, and PubMed databases for published articles in the past 20 years. Only randomized controlled trials investigating tretinoin for photoaging treatment were included in our review. Results A total of 180 studies were initially examined, of which 7 randomized controlled trials were included in this review. Four studies included only women as their participants, while the rest demonstrated women as their majority subjects. All studies that indicated topical tretinoin were safe and well tolerated in all patients. Topical tretinoin dosage varied from 0.025% to 5% while duration of treatment ranged from 3 months up to 24 months. With regard to efficacy, all studies consistently reported that topical tretinoin was efficacious in improving clinical appearance of photoaging in terms of wrinkling, mottled hyperpigmentation, sallowness, and lentigines as early as 1 month and lasted after 24 months. Limitations Different tretinoin formulas used, different outcome parameters, and limited recent studies on topical tretinoin cause lack of uniformity in the evidences. Conclusion Topical tretinoin is a safe and effective therapeutic modality for long-term treatment of photoaging. Further research is required to compare dose-ranging topical tretinoin to other agents to provide the best treatment strategy for photoaged skin.
Collapse
Affiliation(s)
- Irma Bernadette S. Sitohang
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Wresti Indriatmi Makes
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Normalina Sandora
- Human Reproduction, Infertility and Family Planning, Indonesia Medical Education and Research Institute, Jakarta, Indonesia
| | - Jose Suryanegara
- Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
20
|
Milosheska D, Roškar R. Use of Retinoids in Topical Antiaging Treatments: A Focused Review of Clinical Evidence for Conventional and Nanoformulations. Adv Ther 2022; 39:5351-5375. [PMID: 36220974 PMCID: PMC9618501 DOI: 10.1007/s12325-022-02319-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 01/30/2023]
Abstract
Nowadays, numerous skincare routines are used to rejuvenate aging skin. Retinoids are one of the most popular ingredients used in antiaging treatments. Among the representatives of retinoids, tretinoin is considered the most effective agent with proven antiaging effects on the skin and can be found in formulations approved as medicines for topical treatment of acne, facial wrinkles, and hyperpigmentation. Other retinoids present in topical medicines are used for various indications, but only tazarotene is also approved as adjunctive agent for treatment of facial fine wrinkling and pigmentation. The most commonly used retinoids such as retinol, retinaldehyde, and retinyl palmitate are contained in cosmeceuticals regulated as cosmetics. Since clinical efficacy studies are not required for marketing cosmetic formulations, there are concerns about the efficacy of these retinoids. From a formulation perspective, retinoids pose a challenge to researchers as a result of their proven instability, low penetration, and potential for skin irritation. Therefore, novel delivery systems based on nanotechnology are being developed to overcome the limitations of conventional formulations and improve user compliance. In this review, the clinical evidence for retinoids in conventional and nanoformulations for topical antiaging treatments was evaluated. In addition, an overview of the comparison clinical trials between tretinoin and other retinoids is presented. In general, there is a lack of evidence from properly designed clinical trials to support the claimed efficacy of the most commonly used retinoids as antiaging agents in cosmeceuticals. Of the other retinoids contained in medicines, tazarotene and adapalene have clinically evaluated antiaging effects compared to tretinoin and may be considered as potential alternatives for antiaging treatments. The promising potential of retinoid nanoformulations requires a more comprehensive evaluation with additional studies to support the preliminary findings.
Collapse
Affiliation(s)
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
21
|
DiNatale L, Idkowiak-Baldys J, Zhuang Y, Gonzalez A, Stephens TJ, Jiang LI, Li W, Basson R, Bayat A. Novel Rotational Combination Regimen of Skin Topicals Improves Facial Photoaging: Efficacy Demonstrated in Double-Blinded Clinical Trials and Laboratory Validation. Front Med (Lausanne) 2021; 8:724344. [PMID: 34604259 PMCID: PMC8484331 DOI: 10.3389/fmed.2021.724344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Topical antiaging products are often a first-line intervention to counter visible signs of facial photoaging, aiming for sustained cosmetic improvement. However, prolonged application of a single active topical compound was observed clinically to lead to a plateau effect in improving facial photoaging. In view of this, we set out to reduce this effect systematically using a multi-tiered approach with laboratory evidence and clinical trials. The objective of the study was to evaluate the effects of active topical ingredients applied either alone, in combination, or in a rotational manner on modulation of facial photoaging. The study methodology included in vitro, organotypic, and ex vivo skin explants; in vivo biopsy study; as well as clinical trials. We demonstrate for the first time that a pair of known antiaging ingredients applied rotationally, on human dermal fibroblasts, maximized pro-collagen I production. Indeed, rotational treatment with retinol and phytol/glycolic acid (PGA) resulted in better efficacy than application of each active ingredient alone as shown by explants and in vivo biopsy study, with penetration of active ingredients confirmed by Raman spectroscopy. Furthermore, two split-face, randomized, double-blinded clinical trials were conducted, one for 12 months to compare treated vs. untreated and the other for 6 months followed by a 2-month regression to compare treated vs. commercially marketed products. In both studies, rotational regimen showed superior results to its matching comparison as assessed by clinical grading and image analysis of crow's feet wrinkles. In conclusion, rotational regimen using retinol and PGA is effective in treating facial photoaging signs with long-lasting benefits.
Collapse
Affiliation(s)
- Lisa DiNatale
- Global Innovation Center, Avon Products Inc., Avon Skin Care Institute, Suffern, NY, United States
| | - Jolanta Idkowiak-Baldys
- Global Innovation Center, Avon Products Inc., Avon Skin Care Institute, Suffern, NY, United States
| | - Young Zhuang
- Global Innovation Center, Avon Products Inc., Avon Skin Care Institute, Suffern, NY, United States
| | - Anthony Gonzalez
- Global Innovation Center, Avon Products Inc., Avon Skin Care Institute, Suffern, NY, United States
| | - Thomas J Stephens
- Thomas J. Stephens & Associates, Inc., Richardson, TX, United States
| | - Lily I Jiang
- Thomas J. Stephens & Associates, Inc., Richardson, TX, United States
| | - Weiping Li
- Centre for Dermatology Research, National Institute for Health Research Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Manchester, United Kingdom
| | - Rubinder Basson
- Centre for Dermatology Research, National Institute for Health Research Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Manchester, United Kingdom
| | - Ardeshir Bayat
- Centre for Dermatology Research, National Institute for Health Research Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Manchester, United Kingdom.,Medical Research Council of South Africa Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Lam S, Hartmann N, Benfeitas R, Zhang C, Arif M, Turkez H, Uhlén M, Englert C, Knight R, Mardinoglu A. Systems Analysis Reveals Ageing-Related Perturbations in Retinoids and Sex Hormones in Alzheimer's and Parkinson's Diseases. Biomedicines 2021; 9:1310. [PMID: 34680427 PMCID: PMC8533098 DOI: 10.3390/biomedicines9101310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's diseases (PD), are complex heterogeneous diseases with highly variable patient responses to treatment. Due to the growing evidence for ageing-related clinical and pathological commonalities between AD and PD, these diseases have recently been studied in tandem. In this study, we analysed transcriptomic data from AD and PD patients, and stratified these patients into three subclasses with distinct gene expression and metabolic profiles. Through integrating transcriptomic data with a genome-scale metabolic model and validating our findings by network exploration and co-analysis using a zebrafish ageing model, we identified retinoids as a key ageing-related feature in all subclasses of AD and PD. We also demonstrated that the dysregulation of androgen metabolism by three different independent mechanisms is a source of heterogeneity in AD and PD. Taken together, our work highlights the need for stratification of AD/PD patients and development of personalised and precision medicine approaches based on the detailed characterisation of these subclasses.
Collapse
Affiliation(s)
- Simon Lam
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| | - Nils Hartmann
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; (N.H.); (C.E.)
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-17121 Stockholm, Sweden;
| | - Cheng Zhang
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-17121 Stockholm, Sweden; (C.Z.); (M.A.); (M.U.)
| | - Muhammad Arif
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-17121 Stockholm, Sweden; (C.Z.); (M.A.); (M.U.)
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-17121 Stockholm, Sweden; (C.Z.); (M.A.); (M.U.)
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany; (N.H.); (C.E.)
- Institute of Biochemistry and Biophysics, Freidrich-Schiller-University Jena, 07745 Jena, Germany
| | - Robert Knight
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| | - Adil Mardinoglu
- Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
- Science for Life Laboratory, KTH—Royal Institute of Technology, SE-17121 Stockholm, Sweden; (C.Z.); (M.A.); (M.U.)
| |
Collapse
|
23
|
Abstract
While the uses of retinoids for cancer treatment continue to evolve, this review focuses on other therapeutic areas in which retinoids [retinol (vitamin A), all-trans retinoic acid (RA), and synthetic retinoic acid receptor (RAR)α-, β-, and γ-selective agonists] are being used and on promising new research that suggests additional uses for retinoids for the treatment of disorders of the kidneys, skeletal muscles, heart, pancreas, liver, nervous system, skin, and other organs. The most mature area, in terms of US Food and Drug Administration-approved, RAR-selective agonists, is for treatment of various skin diseases. Synthetic retinoid agonists have major advantages over endogenous RAR agonists such as RA. Because they act through a specific RAR, side effects may be minimized, and synthetic retinoids often have better pharmaceutical properties than does RA. Based on our increasing knowledge of the multiple roles of retinoids in development, epigenetic regulation, and tissue repair, other exciting therapeutic areas are emerging. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA;
| |
Collapse
|
24
|
You L, Kim MY, Cho JY. Protective Effect of Potentilla glabra in UVB-Induced Photoaging Process. Molecules 2021; 26:5408. [PMID: 34500840 PMCID: PMC8434042 DOI: 10.3390/molecules26175408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Maintaining skin homeostasis is one of the most important factors for skin health. UVB-induced skin photoaging is a difficult problem that has negative impacts on skin homeostasis. So far, a number of compounds have been discovered that improve human skin barrier function and hydration, and are thought to be effective ways to protect skin homeostasis. Potentilla glabra var. mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract (Pg-EE) is a compound that has noteworthy anti-inflammatory properties. However, its skin-protective effects are poorly understood. Therefore, we evaluated the capacity of Pg-EE to strengthen the skin barrier and improve skin hydration. Pg-EE can enhance the expression of filaggrin (FLG), transglutaminase (TGM)-1, hyaluronic acid synthase (HAS)-1, and HAS-2 in human keratinocytes. Moreover, Pg-EE down-regulated the expression of pro-inflammatory cytokines and up-regulated the production of FLG, HAS-1, and HAS-2 suppressed by UVB through inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathways. Given the above, since Pg-EE can improve skin barrier, hydration and reduce the UVB-induced inflammation on skin, it could therefore be a valuable natural ingredient for cosmetics or pharmaceuticals to treat skin disorders.
Collapse
Affiliation(s)
- Long You
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
25
|
Abstract
Retinoids are defined as molecules that bind to and activate retinoic acid receptors to influence the proliferation and differentiation of cells. Topical retinoids have evolved over the past several decades, being used in multiple dermatological conditions. This review aims to differentiate between synthetic and natural retinoids, discuss the pharmacology behind topical retinoids, highlight clinical applications, and categorize all the commercially available agents, including combination products. Understanding retinoid affinities for unique receptor subtypes can impact clinical decisions, resulting in optimizing treatment and enhancing patient adherence.
Collapse
Affiliation(s)
| | | | | | - Parbeer Grewal
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada.,Rejuvenation Dermatology, Edmonton, AB, Canada
| |
Collapse
|
26
|
Lima FA, Vilela RV, Oréfice RL, Silva IR, Reis EC, Carvalho LA, Maria-Engler SS, Ferreira LA, Goulart GA. Nanostructured lipid carriers enhances the safety profile of tretinoin: in vitro and healthy human volunteers' studies. Nanomedicine (Lond) 2021; 16:1391-1409. [PMID: 34085552 DOI: 10.2217/nnm-2021-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To enhance the tretinoin (TRE) safety profile through the encapsulation in nanostructured lipid carriers (NLC). Materials & methods: NLC-TRE was developed using a 23 experimental factorial design, characterized (HPLC, dynamic light scattering, differential scanning calorimetry, x-ray diffraction analysis, transmission electron microscopy, cryo-transmission electron microscopy) and evaluated by in vitro studies and in healthy volunteers. Results: The NLC-TRE presented spherical structures, average particle size of 130 nm, zeta potential of 24 mV and encapsulation efficiency of 98%. The NLC-TRE protected TRE against oxidation (p < 0.0001) and promoted epidermal targeting (p < 0.0001) compared with the marketed product, both 0.05% TRE. The in vitro assay on reconstructed human epidermis and the measurement of transepidermal water loss in healthy volunteers demonstrated an enhanced safety profile in comparison to the marketed product (p < 0.0002). Conclusion: The NLC-TRE enhances the epidermal targeting and safety profile of TRE, representing a potential safer alternative for the topical treatment of skin disorders using TRE.
Collapse
Affiliation(s)
- Flávia A Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Raquel Vr Vilela
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.,Biomedical Laboratory Diagnostics & Department of Microbiology & Molecular Genetics, Michigan State University, 48824 East Lansing, MI, USA
| | - Rodrigo L Oréfice
- Department of Metallurgical & Materials Engineering, School of Engineering, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Izabela R Silva
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Eduardo Co Reis
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Larissa Ac Carvalho
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Silvya S Maria-Engler
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Lucas Am Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Gisele Ac Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
27
|
Cao Z, Jin S, Wang P, He Q, Yang Y, Gao Z, Wang X. Microneedle based adipose derived stem cells-derived extracellular vesicles therapy ameliorates UV-induced photoaging in SKH-1 mice. J Biomed Mater Res A 2021; 109:1849-1857. [PMID: 34060700 DOI: 10.1002/jbm.a.37177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles from adipose derived stem cells (ADSCs-EVs) have shown immunomodulation and anti-photoaging effects; however, the skin barrier prevents their absorption via skin. Meanwhile, microneedle (MN) is a widely used and minimally invasive tool for dermal delivery of drugs, it also has neocollagenesis effect by creating tiny injuries and initiating wound healing process. To investigate the effect of MN combined with ADSCs-EVs on skin aging, photoaging in SKH-1 mice was induced by chronic exposure to ultraviolet radiation. Then the mice were treated following a split-dorsal scheme, in which one side had MN alone or MN + EVs treatment and the other side was left untreated. For the side treated with MN alone or MN + EVs, the epidermal thickness was decreased and the skin barrier function was enhanced compared with the untreated side. However, MN + EVs group showed the least wrinkles, the highest collagen density and the most organized collagen fibers among the three groups. The level of CD11b + cell infiltration was lower in MN + EVs group than that in the MN group at 3 day after the treatment. These results indicated that MN treatment alone could improve epidermal structure and function of photoaging skin, and a combination with ADSCs-EVs would accelerate the restoration of inflammation caused by MN and improve the content of collagen. In all, this study indicated that a combination of MN and topical applied ADSCs-EVs was a feasible and safe strategy to ameliorate photoaging, providing a new avenue for safe administration of EVs.
Collapse
Affiliation(s)
- Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.,Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, Tongji Univeirsity School of Medicine, Shanghai, China, China
| | - Shengkai Jin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.,Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, Tongji Univeirsity School of Medicine, Shanghai, China, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qiumin He
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuling Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhengliang Gao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, Tongji Univeirsity School of Medicine, Shanghai, China, China.,Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
28
|
Abstract
Since the US Food and Drug Administration (FDA) approved tretinoin in 1971, retinoids alone or combined with other agents have become the mainstay of acne treatment. Retinoids act through binding to retinoic acid receptors, altering expression levels of hundreds of cellular proteins affecting multiple pathways involved in acne pathogenesis. Retinoids have evolved from first-generation agents, such as tretinoin, through chemical modifications resulting in a second generation (etretinate and acitretin for psoriasis), a third generation (adapalene and tazarotene) and, most recently, a fourth (trifarotene). For all topical retinoids, local irritation has been associated with poor tolerability and suboptimal adherence. Efforts to improve tolerability have utilized novel delivery systems and/or novel agents. This qualitative literature review summarizes the evolution of the four topical single-agent retinoids available for the treatment of acne in the US today and their various formulations, presenting the rationale behind their development and data from key studies.
Collapse
|
29
|
Jun SH, Kim H, Lee H, Song JE, Park SG, Kang NG. Synthesis of Retinol-Loaded Lipid Nanocarrier via Vacuum Emulsification to Improve Topical Skin Delivery. Polymers (Basel) 2021; 13:826. [PMID: 33800335 PMCID: PMC7962639 DOI: 10.3390/polym13050826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Retinol has been widely used as an anti-wrinkle active ingredient in cosmetic fields. However, the oxidation of retinol by air was one of the critical problems for application in the skincare field. In this study, Retinol-loaded lipid nanocarriers were prepared via the vacuum emulsification method to increase the stability of retinol vulnerable to air and optimized encapsulation conditions and to increase the penetration efficiency into skin. Optimizing the components of lipid nanocarriers, gradients of carbon chain C8-22 using various lipid species which made the amorphous structure and enough spaces to load retinol inside the capsules were estimated from the lower enthalpy change and peak shift in DSC analysis. The vacuum-assisted lipid nanocarriers (VLN) could help suppress oxidation, which could have advantages to increase the thermal stability of retinol. The retinol-loaded VLN (VLN-ROL) had narrow size distribution under 0.3 PDI value, under 200 nm scaled particle size, and fully negative surface charge of about -50 mV for the electrostatic repulsion to avoid aggregation phenomenon among the lipid nanoparticles. It maintained 90% or more retinol concentration after 4 weeks of storage at 25, 40 and 50 °C and kept stable. The VLN-ROL-containing cream showed improved penetration efficiency applied to porcine skins compared to the commercial retinol 10S from BASF. The total amount of retinol into the skin of VLN-ROL (0.1% of retinol) was enhanced by about 2.2-fold (2.86 ± 0.23 μg) higher than that in 0.1% of bare retinol (about 1.29 ± 0.09 μg). In addition, applied on a 3D Human skin model, the epidermal thickness and the relative percentage of dermal collagen area effectively increased compared to the control and retinol, respectively. Additionally, the level of secreted IL-1α was lower and epidermal damage was weaker than commercial product A. This retinol-loaded lipid nanocarrier could be a potentially superior material for cosmetics and biomedical research.
Collapse
Affiliation(s)
- Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Korea; (H.K.); (H.L.); (J.E.S.); (S.G.P.)
| | | | | | | | | | - Nea-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Korea; (H.K.); (H.L.); (J.E.S.); (S.G.P.)
| |
Collapse
|
30
|
Kim J, Kim J, Jongudomsombat T, Kim Bs E, Suk J, Lee D, Lee JH. The efficacy and safety of multilamellar vesicle containing retinaldehyde: A double-blinded, randomized, split-face controlled study. J Cosmet Dermatol 2021; 20:2874-2879. [PMID: 33569865 DOI: 10.1111/jocd.13993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 01/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Retinaldehyde is one of the major members of the retinoid family, which has potential skin rejuvenating effects on photoaged skin and has a good safety profile. AIMS The study aimed to evaluate the efficacy and safety of multilamellar vesicle containing retinaldehyde (MLV-RAL) 0.05% and 0.1% used to treat photoaged skin. PATIENTS AND METHODS A randomized, prospective, investigator-blinded, split-face comparison study was conducted. We enrolled 23 Korean volunteers who applied MLV-RAL 0.05%/0.1% cream on one randomized side of their face and retinol 0.05%/0.1% cream on the opposite side. Wrinkle depth on both crow's feet was assessed by the Antera 3D system. Skin hydration, elasticity, facial curved length, and dermal density were also evaluated. RESULTS After an 8-week application, all objective parameters, including wrinkle depth, were significantly improved in both MLV-RAL 0.05%/0.1% and retinol 0.05%/0.1% treated sides. Compared with the retinol-treated side, MLV-RAL-treated side showed a significant improvement of objective assessments except for dermal density. Additionally, there was no adverse event associated with the use of either MLV-RAL 0.05%/0.1% or retinol 0.05%/0.1% cream. CONCLUSION The application of MLV-RAL 0.05%/0.1% cream improved wrinkle, facial contour, and biophysical parameters associated with skin aging.
Collapse
Affiliation(s)
- Jemin Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jihee Kim
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Korea
| | - Tunyaporn Jongudomsombat
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Eunbin Kim Bs
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jangmi Suk
- Global Medical Research Center, Seoul, Korea
| | - Dongwon Lee
- Department of Dermatology, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Ju Hee Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Abdelaal MR, Soror SH, Elnagar MR, Haffez H. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy. Molecules 2021; 26:506. [PMID: 33477997 PMCID: PMC7835894 DOI: 10.3390/molecules26020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt;
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt; (M.R.A.); (S.H.S.)
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
32
|
Khmaladze I, Leonardi M, Fabre S, Messaraa C, Mavon A. The Skin Interactome: A Holistic "Genome-Microbiome-Exposome" Approach to Understand and Modulate Skin Health and Aging. Clin Cosmet Investig Dermatol 2021; 13:1021-1040. [PMID: 33380819 PMCID: PMC7769076 DOI: 10.2147/ccid.s239367] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Higher demands on skin care cosmetic products for strong performance drive intense research to understand the mechanisms of skin aging and design strategies to improve overall skin health. Today we know that our needs and influencers of skin health and skin aging change throughout our life journey due to both extrinsic factors, such as environmental factors and lifestyle factors, as well as our intrinsic factors. Furthermore, we need to consider our microflora, a collection of micro-organisms such as bacteria, viruses, and fungi, which is a living ecosystem in our gut and on our skin, that can have a major impact on our health. Here, we are viewing a holistic approach to understand the collective effect of the key influencers of skin health and skin aging both reviewing how each of them impact the skin, but more importantly to identify molecular conjunction pathways of these different factors in order to get a better understanding of the integrated “genome-microbiome-exposome” effect. For this purpose and in order to translate molecularly the impact of the key influencers of skin health and skin aging, we built a digital model based on system biology using different bioinformatics tools. This model is considering both the positive and negative impact of our genome (genes, age/gender), exposome: external (sun, pollution, climate) and lifestyle factors (sleep, stress, exercise, nutrition, skin care routine), as well as the role of our skin microbiome, and allowed us in a first application to evaluate the effect of the genome in the synthesis of collagen in the skin and the determination of a suitable target for boosting pro-collagen synthesis. In conclusion, we have, through our digital holistic approach, defined the skin interactome concept, as an advanced tool to better understand the molecular genesis of skin aging and further develop a strategy to balance the influence of the exposome and microbiome to protect, prevent, and delay the appearance of skin aging signs and preserve good skin health condition. In addition, this model will aid in identifying and optimizing skin treatment options based on external triggers, as well as helping to design optimal treatments modulating the intrinsic pathways.
Collapse
Affiliation(s)
- Ia Khmaladze
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Michele Leonardi
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Susanne Fabre
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Cyril Messaraa
- Research and Development, Oriflame Cosmetics Ltd, Bray, Ireland
| | - Alain Mavon
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| |
Collapse
|
33
|
Drug delivery systems integrated with conventional and advanced treatment approaches toward cellulite reduction. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Bjerke DL, Li R, Price JM, Dobson RLM, Rodrigues M, Tey C, Vires L, Adams RL, Sherrill JD, Styczynski PB, Goncalves K, Maltman V, Przyborski S, Oblong JE. The vitamin A ester retinyl propionate has a unique metabolic profile and higher retinoid-related bioactivity over retinol and retinyl palmitate in human skin models. Exp Dermatol 2020; 30:226-236. [PMID: 33098193 DOI: 10.1111/exd.14219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Human skin is exposed daily to environmental stressors, which cause acute damage and inflammation. Over time, this leads to morphological and visual appearance changes associated with premature ageing. Topical vitamin A derivatives such as retinol (ROL), retinyl palmitate (RPalm) and retinyl propionate (RP) have been used to reverse these changes and improve the appearance of skin. This study investigated a stoichiometric comparison of these retinoids using in vitro and ex vivo skin models. Skin biopsies were treated topically to compare skin penetration and metabolism. Treated keratinocytes were evaluated for transcriptomics profiling and hyaluronic acid (HA) synthesis and treated 3D epidermal skin equivalents were stained for epidermal thickness, Ki67 and filaggrin. A retinoic acid receptor-alpha (RARα) reporter cell line was used to compare retinoid activation levels. Results from ex vivo skin found that RP and ROL have higher penetration levels compared with RPalm. RP is metabolized primarily into ROL in the viable epidermis and dermis whereas ROL is esterified into RPalm and metabolized into the inactive retinoid 14-hydroxy-4,14-retro-retinol (14-HRR). RP treatment yielded higher RARα activation and HA synthesis levels than ROL whereas RPalm had a null effect. In keratinocytes, RP and ROL stimulated similar gene expression patterns and pathway theme profiles. In conclusion, RP and ROL show a similar response directionality whereas RPalm response was inconsistent. Additionally, RP has a consistently higher magnitude of response compared with ROL or RPalm.
Collapse
Affiliation(s)
| | - Rui Li
- Department of Biosciences, Procter and Gamble International Operations SA SG Branch, Singapore, Singapore
| | | | | | - MyriamRubecca Rodrigues
- Department of Biosciences, Procter and Gamble International Operations SA SG Branch, Singapore, Singapore
| | - ChingSiang Tey
- Department of Biosciences, Procter and Gamble International Operations SA SG Branch, Singapore, Singapore
| | - Laura Vires
- The Procter and Gamble Company, Cincinnati, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
36
|
Ferreira R, Napoli J, Enver T, Bernardino L, Ferreira L. Advances and challenges in retinoid delivery systems in regenerative and therapeutic medicine. Nat Commun 2020; 11:4265. [PMID: 32848154 PMCID: PMC7450074 DOI: 10.1038/s41467-020-18042-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Retinoids regulate a wide spectrum of cellular functions from the embryo throughout adulthood, including cell differentiation, metabolic regulation, and inflammation. These traits make retinoids very attractive molecules for medical purposes. In light of some of the physicochemical limitations of retinoids, the development of drug delivery systems offers several advantages for clinical translation of retinoid-based therapies, including improved solubilization, prolonged circulation, reduced toxicity, sustained release, and improved efficacy. In this Review, we discuss advances in preclinical and clinical tests regarding retinoid formulations, specifically the ones based in natural retinoids, evaluated in the context of regenerative medicine, brain, cancer, skin, and immune diseases. Advantages and limitations of retinoid formulations, as well as prospects to push the field forward, will be presented.
Collapse
Grants
- MC_U137973817 Medical Research Council
- MR/N000838/1 Medical Research Council
- The authors would like to thank Andreia Vilaça for the illustrations and the financial support of ERA Chair project (ERA@UC, ref:669088) through EU Horizon 2020 program, the POCI-01-0145-FEDER-016390 (acronym: CANCEL STEM) and POCI-01-0145-FEDER-029414 (acronym: LIghtBRARY) projects through Compete 2020 and FCT programs, projects 2IQBIONEURO (reference: 0624_2IQBIONEURO_6_E) and NEUROATLANTIC (reference: EAPA_791/2018) co-funded by INTERREG (Atlantic program or V-A Spain-Portugal) and European fund for Regional Development (FEDER), FCT (Portugal, SFRH/BPD/102103/2014), National Funds by Foundation for Science and Technology (UID/Multi/00709/2013), “Programa Operacional do Centro, Centro 2020” through the funding of the ICON project (Interdisciplinary Challenges On Neurodegeneration; CENTRO-01-0145-FEDER-000013), EXPL/BIM-MED/0822/2013 (LB), (SFRH/BPD/94228/2013, IF/00178/2015) (RF), Cerebrovascular Disease Grant and L’Oréal-UNESCO Portugal for Women in Science for supporting this work. Authors declare there are no conflict of interests.
Collapse
Affiliation(s)
- Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Joseph Napoli
- Nutritional Sciences and Toxicology, University of California, 231 Morgan Hall, MC#3104, Berkeley, CA, 94720, USA
| | - Tariq Enver
- UCL Cancer Institute, University College London, London, UK
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
37
|
Ko HJ, Hong SW, Verma R, Jung J, Lee M, Kim N, Kim D, Surh CD, Kim KS, Rudra D, Im SH. Dietary Glucose Consumption Promotes RALDH Activity in Small Intestinal CD103 +CD11b + Dendritic Cells. Front Immunol 2020; 11:1897. [PMID: 32849649 PMCID: PMC7433714 DOI: 10.3389/fimmu.2020.01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Retinal dehydrogenase (RALDH) enzymatic activities catalyze the conversion of vitamin A to its metabolite Retinoic acid (RA) in intestinal dendritic cells (DCs) and promote immunological tolerance. However, precise understanding of the exogenous factors that act as initial trigger of RALDH activity in these cells is still evolving. By using germ-free (GF) mice raised on an antigen free (AF) elemental diet, we find that certain components in diet are critically required to establish optimal RALDH expression and activity, most prominently in small intestinal CD103+CD11b+ DCs (siLP-DCs) right from the beginning of their lives. Surprisingly, systematic screens using modified diets devoid of individual dietary components indicate that proteins, starch and minerals are dispensable for this activity. On the other hand, in depth comparison between subtle differences in dietary composition among different dietary regimes reveal that adequate glucose concentration in diet is a critical determinant for establishing RALDH activity specifically in siLP-DCs. Consequently, pre-treatment of siLP-DCs, and not mesenteric lymph node derived MLNDCs with glucose, results in significant enhancement in the in vitro generation of induced Regulatory T (iTreg) cells. Our findings reveal previously underappreciated role of dietary glucose concentration in establishing regulatory properties in intestinal DCs, thereby extending a potential therapeutic module against intestinal inflammation.
Collapse
Affiliation(s)
- Hyun-Ja Ko
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea
| | - Ravi Verma
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea.,ImmunoBiome Inc., Pohang-si, South Korea
| | - Jisun Jung
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Minji Lee
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Nahyun Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Daeun Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea.,Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Kwang Soon Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Dipayan Rudra
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea.,ImmunoBiome Inc., Pohang-si, South Korea
| |
Collapse
|
38
|
Rossi AM, Hibler BP, Navarrete-Dechent C, Lacouture ME. Restorative oncodermatology: Diagnosis and management of dermatologic sequelae from cancer therapies. J Am Acad Dermatol 2020; 85:693-707. [PMID: 32781177 DOI: 10.1016/j.jaad.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/13/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022]
Abstract
The long-term survival of patients with cancer has risen dramatically during the last few decades. Despite this remarkable success, the same treatments that have enabled cure or remission often secondarily affect the skin, hair, and nails. Conditions including scarring, striae distensae, persistent alopecia, pigmentary changes, nail alterations, chronic radiation dermatitis, and radiation fibrosis have been associated with anxiety, depression, decreased quality of life, and impaired function. These dermatologic changes are cosmetically disfiguring, may limit activities, and are a visual reminder of past illness. Interventions toward improving these untoward sequelae and restoring the appearance and function of skin and appendages are critical for normalization and may contribute to improved quality of life in cancer survivors. Here, we outline dermatologic sequelae of cancer therapies with a review of medical and procedural treatment strategies to restore dermatologic health in the survivorship population.
Collapse
Affiliation(s)
- Anthony M Rossi
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Dermatology, Weill Cornell Medicine, New York, New York.
| | - Brian P Hibler
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Dermatology, Weill Cornell Medicine, New York, New York
| | - Cristian Navarrete-Dechent
- Department of Dermatology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario E Lacouture
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Dermatology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
39
|
Silva S, Ferreira M, Oliveira AS, Magalhães C, Sousa ME, Pinto M, Sousa Lobo JM, Almeida IF. Evolution of the use of antioxidants in anti-ageing cosmetics. Int J Cosmet Sci 2020; 41:378-386. [PMID: 31220359 DOI: 10.1111/ics.12551] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Skin health and beauty are a cornerstone of general well-being in humans. Anti-ageing cosmetics are used to provide a healthy and youthful appearance. Among the different cosmetic actives, antioxidants are incorporated in anti-ageing products due to their beneficial effects in preventing and minimizing the signs of skin ageing. This work aims to understand how anti-ageing formulations changed in the past 7 years regarding pure antioxidants composition. METHODS Data were collected from anti-ageing formulations commercialized in main stores and pharmacies in the Portuguese market. The study started on 2011 and was updated with products launched or whose composition has been renewed on 2013, 2015 or 2018. RESULTS Ascorbic acid and tocopherol and their derivatives were consistently the most used antioxidants in anti-ageing formulations; followed by niacinamide and retinyl palmitate. Seven ascorbic acid derivatives are currently used in anti-ageing formulations while only three tocopherol derivatives were identified in this study. Several combinations of antioxidants were routinely found, mainly tocopherol (or tocopherol derivatives) with other antioxidants and tocopherol with tocopherol derivatives. We have not identified emerging antioxidants with great impact in anti-ageing formulations even though niacinamide and retinyl palmitate exhibited over 10% more usage in 2018. CONCLUSION This insight is relevant to the cosmetic industry providing a better understanding of the scientific-based formulation of modern cosmetics and supports the need for innovative antioxidants in anti-ageing cosmetics.
Collapse
Affiliation(s)
- S Silva
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - M Ferreira
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - A S Oliveira
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - C Magalhães
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - M E Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n4050-208, Matosinhos, Portugal
| | - M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n4050-208, Matosinhos, Portugal
| | - J M Sousa Lobo
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - I F Almeida
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| |
Collapse
|
40
|
Yamada M, Prow TW. Physical drug delivery enhancement for aged skin, UV damaged skin and skin cancer: Translation and commercialization. Adv Drug Deliv Rev 2020; 153:2-17. [PMID: 32339593 DOI: 10.1016/j.addr.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 01/31/2023]
Abstract
This review analyses physical drug delivery enhancement technologies with a focus on improving UV damaged skin, actinic keratoses and non-melanoma skin cancer treatment. In recent years, physical drug delivery enhancement has been shown to enhance cosmeceutical and skin cancer treatment efficacy, but there are pros and cons to each approach which we discuss in detail. Mechanisms of action, clinical efficacy, experimental design, outcomes in academic publications, clinical trial reports and patents are explored to evaluate each technology with a critical, translation focused lens. We conclude that the commercial success of cosmeceutical applications, e.g. microneedles, will drive further innovation in this arena that will impact how actinic keratoses and non-melanoma skin cancers are clinically managed.
Collapse
|
41
|
Targeting Angiogenesis by Blocking the ATM-SerRS-VEGFA Pathway for UV-Induced Skin Photodamage and Melanoma Growth. Cancers (Basel) 2019; 11:cancers11121847. [PMID: 31766690 PMCID: PMC6966470 DOI: 10.3390/cancers11121847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Retinoic acid (RA) has been widely used to protect skin from photo damage and skin carcinomas caused by solar ultraviolet (UV) irradiation, yet the mechanism remains elusive. Here, we report that all-trans retinoic acid (tRA) can directly induce the expression of a newly identified potent anti-angiogenic factor, seryl tRNA synthetase (SerRS), whose angiostatic role can, however, be inhibited by UV-activated ataxia telangiectasia mutated (ATM) kinase. In both a human epidermal cell line, HaCaT, and a mouse melanoma B16F10 cell line, we found that tRA could activate SerRS transcription through binding with the SerRS promoter. However, UV irradiation induced activation of ATM-phosphorylated SerRS, leading to the inactivation of SerRS as a transcriptional repressor of vascular endothelial growth factor A (VEGFA), which dampened the effect of tRA. When combined with ATM inhibitor KU-55933, tRA showed a greatly enhanced efficiency in inhibiting VEGFA expression and a much better protection of mouse skin from photo damage. Also, we found the combination greatly inhibited tumor angiogenesis and growth in mouse melanoma xenograft in vivo. Taken together, tRA combined with an ATM inhibitor can greatly enhance the anti-angiogenic activity of SerRS under UV irradiation and could be a better strategy in protecting skin from angiogenesis-associated skin damage and melanoma caused by UV radiation.
Collapse
|
42
|
Sass P, Sosnowski P, Podolak-Popinigis J, Górnikiewicz B, Kamińska J, Deptuła M, Nowicka E, Wardowska A, Ruczyński J, Rekowski P, Rogujski P, Filipowicz N, Mieczkowska A, Peszyńska-Sularz G, Janus Ł, Skowron P, Czupryn A, Mucha P, Piotrowski A, Rodziewicz-Motowidło S, Pikuła M, Sachadyn P. Epigenetic inhibitor zebularine activates ear pinna wound closure in the mouse. EBioMedicine 2019; 46:317-329. [PMID: 31303499 PMCID: PMC6710911 DOI: 10.1016/j.ebiom.2019.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most studies on regenerative medicine focus on cell-based therapies and transplantations. Small-molecule therapeutics, though proved effective in different medical conditions, have not been extensively investigated in regenerative research. It is known that healing potential decreases with development and developmental changes are driven by epigenetic mechanisms, which suggests epigenetic repression of regenerative capacity. METHODS We applied zebularine, a nucleoside inhibitor of DNA methyltransferases, to stimulate the regenerative response in a model of ear pinna injury in mice. FINDINGS We observed the regeneration of complex tissue that was manifested as improved ear hole repair in mice that received intraperitoneal injections of zebularine. Six weeks after injury, the mean hole area decreased by 83.2 ± 9.4% in zebularine-treated and by 43.6 ± 15.4% in control mice (p < 10-30). Combined delivery of zebularine and retinoic acid potentiated and accelerated this effect, resulting in complete ear hole closure within three weeks after injury. We found a decrease in DNA methylation and transcriptional activation of neurodevelopmental and pluripotency genes in the regenerating tissues. INTERPRETATION This study is the first to demonstrate an effective induction of complex tissue regeneration in adult mammals using zebularine. We showed that the synergistic action of an epigenetic drug (zebularine) and a transcriptional activator (retinoic acid) could be effectively utilized to induce the regenerative response, thus delineating a novel pharmacological strategy for regeneration. The strategy was effective in the model of ear pinna regeneration in mice, but zebularine acts on different cell types, therefore, a similar approach can be tested in other tissues and organs.
Collapse
Affiliation(s)
- Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | | | - Bartosz Górnikiewicz
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Jarosław Ruczyński
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rekowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rogujski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Natalia Filipowicz
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Alina Mieczkowska
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Academic Laboratory Animal Centre, Research and Services Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
43
|
Suri BK, Schmidtchen A, Verma NK. Carbonic anhydrases in human keratinocytes and their regulation by all‐
trans
retinoic acid and 1α,25‐dihydroxyvitamin D
3. Exp Dermatol 2019; 28:976-980. [DOI: 10.1111/exd.13976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Bani Kaur Suri
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore Singapore
| | - Artur Schmidtchen
- Copenhagen Wound Healing Center Bispebjerg Hospital Department of Biomedical Sciences University of Copenhagen Copenhagen Denmark
- Division of Dermatology and Venereology Department of Clinical Sciences Lund University Lund Sweden
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore Singapore
- Skin Research Institute of Singapore Singapore Singapore
| |
Collapse
|
44
|
Rozanowska M, Edge R, Land EJ, Navaratnam S, Sarna T, Truscott TG. Scavenging of Retinoid Cation Radicals by Urate, Trolox, and α-, β-, γ-, and δ-Tocopherols. Int J Mol Sci 2019; 20:ijms20112799. [PMID: 31181693 PMCID: PMC6600601 DOI: 10.3390/ijms20112799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Retinoids are present in human tissues exposed to light and under increased risk of oxidative stress, such as the retina and skin. Retinoid cation radicals can be formed as a result of the interaction between retinoids and other radicals or photoexcitation with light. It has been shown that such semi-oxidized retinoids can oxidize certain amino acids and proteins, and that α-tocopherol can scavenge the cation radicals of retinol and retinoic acid. The aim of this study was to determine (i) whether β-, γ-, and δ-tocopherols can also scavenge these radicals, and (ii) whether tocopherols can scavenge the cation radicals of another form of vitamin A—retinal. The retinoid cation radicals were generated by the pulse radiolysis of benzene or aqueous solution in the presence of a selected retinoid under oxidizing conditions, and the kinetics of retinoid cation radical decays were measured in the absence and presence of different tocopherols, Trolox or urate. The bimolecular rate constants are the highest for the scavenging of cation radicals of retinal, (7 to 8) × 109 M−1·s−1, followed by retinoic acid, (0.03 to 5.6) × 109 M−1·s−1, and retinol, (0.08 to 1.6) × 108 M−1·s−1. Delta-tocopherol is the least effective scavenger of semi-oxidized retinol and retinoic acid. The hydrophilic analogue of α-tocopherol, Trolox, is substantially less efficient at scavenging retinoid cation radicals than α-tocopherol and urate, but it is more efficient at scavenging the cation radicals of retinoic acid and retinol than δ-tocopherol. The scavenging rate constants indicate that tocopherols can effectively compete with amino acids and proteins for retinoid cation radicals, thereby protecting these important biomolecules from oxidation. Our results provide another mechanism by which tocopherols can diminish the oxidative damage to the skin and retina and thereby protect from skin photosensitivity and the development and/or progression of changes in blinding retinal diseases such as Stargardt’s disease and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Malgorzata Rozanowska
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Wales CF10 3AX, UK.
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales CF24 4HQ, UK.
| | - Ruth Edge
- Dalton Cumbrian Facility, The University of Manchester, Westlakes Science Park, Moor Row, Cumbria CA24 3HA, UK.
| | - Edward J Land
- Free Radical Research Facility, Science and Technology Facilities Council (STFC) Daresbury Laboratory, Warrington WA4 4AD, UK.
| | - Suppiah Navaratnam
- Biomedical Sciences Research Institute, University of Salford, Manchester M5 4WT, UK.
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - T George Truscott
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire ST5 5BG, UK.
| |
Collapse
|
45
|
Chu Z, Zhang X, Li Q, Hu G, Lian CG, Geng S. CDC20 contributes to the development of human cutaneous squamous cell carcinoma through the Wnt/β‑catenin signaling pathway. Int J Oncol 2019; 54:1534-1544. [PMID: 30816486 PMCID: PMC6438437 DOI: 10.3892/ijo.2019.4727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
Cell division cycle 20 (CDC20) is a regulatory molecule and serves critical roles at multiple points of the cell cycle. Recent evidence indicates that CDC20 may serve an oncogenic role in a number of human cancer types. However, the role of CDC20 in primary cutaneous squamous cell carcinoma (cSCC) has not been studied, to the best of our knowledge. The aim of the present study was to investigate whether and how CDC20 is involved in the tumorigenesis of cSCC. The results revealed that CDC20 expression was significantly increased in cSCC tissues and cell lines, and its expression was associated with pathological differentiation. Downregulation of CDC20 inhibited cell proliferation, induced cell cycle arrest, promoted apoptosis and reduced migratory ability through inhibition of the Wnt/β-catenin signaling pathway. Furthermore, all-trans-retinoic acid treatment significantly downregulated CDC20 expression in cSCC. The present results revealed that CDC20 may serve a crucial role in human cSCC, and suggested that CDC20 may be a novel biomarker for the prevention, diagnosis and treatment of cSCC.
Collapse
Affiliation(s)
- Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qingyan Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Christine Guo Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
46
|
Rayner RL, Carville KJ, Leslie GD, Dhaliwal SS. Clinical purpura and elastosis and their correlation with skin tears in an aged population. Arch Dermatol Res 2019; 311:231-247. [PMID: 30783769 DOI: 10.1007/s00403-019-01899-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/20/2023]
Abstract
The previous research reported the results of a prospect cohort study that used logistic regression analysis to construct a risk prediction model for skin tears in individuals aged over 65 years. The model identified three baseline individual characteristics (male gender, history of STs, and history of falls) and two baseline skin manifestations (purpura and elastosis) that predicted the risk of dorsal forearm skin tears. This paper outlines the relationships between baseline skin manifestations and the risk of skin tears. Univariable logistic regression analysis was conducted of all the baseline data collected from the same-study participants to identify variables that significantly predicted purpura and elastosis at baseline. Amongst the 173 participants, 71 (41%) developed one or more skin tears, and in these participants, 52 (73.2%) displayed purpura, 41 (57.8%) had elastosis, and 30 (42.3%) exhibited both manifestations of the dorsal forearm at baseline. Four individual characteristics (age, history of skin tears, history of falls, and antiplatelet therapy) and three skin properties (pH, subepidermal low echogenicity band of the forearms, and skin thickness) were found to predict the risk of purpura. Conversely, three individual variables (age, gender, and smoking), three clinical skin variables (uneven skin pigmentation, cutis rhomboidalis nuchae, and history of actinic keratosis) and one skin property variable (collagen type IV) predicted the risk of skin elastosis. Progressive changes to the skin's structural and mechanical properties from the underlying effects of chronological ageing, and environmental and lifestyle-related influences increased the risk of purpura and elastotic skin manifestations and concomitantly increased risk of skin tears amongst participants.
Collapse
Affiliation(s)
- R L Rayner
- School of Nursing, Midwifery and Paramedicine, Curtin University, Kent St, Bentley, WA, 6102, Australia. .,Silver Chain Group, 6 Sundercombe St, Osborne Park, WA, 6017, Australia. .,School of Nursing, Midwifery and Paramedicine, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| | - K J Carville
- School of Nursing, Midwifery and Paramedicine, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Silver Chain Group, 6 Sundercombe St, Osborne Park, WA, 6017, Australia
| | - G D Leslie
- School of Nursing, Midwifery and Paramedicine, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - S S Dhaliwal
- School of Public Health, Curtin University, Kent St, Bentley, WA, 6102, Australia
| |
Collapse
|
47
|
Costanza G, Doldo E, Ferlosio A, Tarquini C, Passeri D, Cascella R, Bavetta M, Di Stefani A, Bonifati C, Agostinelli S, Centofanti F, Giardina E, Campione E, Bianchi L, Donati P, Morrone A, Orlandi A. Expression and potential role of cellular retinol binding protein I in psoriasis. Oncotarget 2018; 9:36736-36749. [PMID: 30613363 PMCID: PMC6298411 DOI: 10.18632/oncotarget.26314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a diffuse chronic skin disorder characterized from accelerated epidermal turnover and inflammatory cell infiltrate. Retinoids influence keratinocyte proliferation and differentiation as well as inflammatory response. Cellular retinol binding protein (CRBPI) regulates intracellular vitamin A bioavailability and contributes to maintain skin homeostasis. The aim of present study was to investigate the expression of CRBPI and its role in the pathogenesis of skin psoriasis. Immunohistochemistry revealed more diffuse and increased CRBPI expression in all epidermal layers of human psoriatic lesions except in the stratum corneum. An imiquimod-induced psoriatic-like model documented the increase of skin lesional area and severity index score as well as of the severity of microscopic features as parakeratosis, papillomatosis and spongiosis in CRBPI-knockout compared to wild-type mice, associated to the increased keratinocyte CK17 and Ki-67 expression and the reduction of CK1, CRABPII and RXRα. Gene array of imiquimod-induced psoriatic skin documented the greater up-regulation of EGF/PDGF-related genes and down-regulation of EGR1 and pro-inflammatory IL-related genes in CRBPI-knockout compared to wild-type mice. Finally, CRBPI transfection in HaCaT cells increased AKT and NF-κB-related genes and proteins and down-regulated IL-2, IL-6 and IL-8 pro-inflammatory signalling. Although not recognized as a psoriatic susceptibility gene in our cohort of patients, the present data strongly supported the potential role of CRBPI to sustain keratinocyte proliferation and differentiation and to counteract pro-inflammatory genes expression in psoriatic lesions.
Collapse
Affiliation(s)
- Gaetana Costanza
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.,San Gallicano Dermatology Institute, Rome, Italy
| | - Elena Doldo
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Chiara Tarquini
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Daniela Passeri
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Raffaella Cascella
- Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Mauro Bavetta
- Dermatology Unit, Tor Vergata University of Rome, Policlinic of Tor Vergata of Rome, Rome, Italy
| | - Alessandro Di Stefani
- Dermatology Unit, Tor Vergata University of Rome, Policlinic of Tor Vergata of Rome, Rome, Italy
| | | | - Sara Agostinelli
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Federica Centofanti
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Emiliano Giardina
- Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Elena Campione
- Dermatology Unit, Tor Vergata University of Rome, Policlinic of Tor Vergata of Rome, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Tor Vergata University of Rome, Policlinic of Tor Vergata of Rome, Rome, Italy
| | | | - Aldo Morrone
- San Gallicano Dermatology Institute, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Unit, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.,Catholic University "Our Lady of Good Counsel", Tirana, Albania
| |
Collapse
|
48
|
Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. Mediators Inflamm 2018; 2018:3067126. [PMID: 30158832 PMCID: PMC6109577 DOI: 10.1155/2018/3067126] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/16/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Vitamin A metabolite retinoic acid (RA) plays important roles in cell growth, differentiation, organogenesis, and reproduction and a key role in mucosal immune responses. RA promotes dendritic cells to express CD103 and to produce RA, enhances the differentiation of Foxp3+ inducible regulatory T cells, and induces gut-homing specificity in T cells. Although vitamin A is crucial for maintaining homeostasis at the intestinal barrier and equilibrating immunity and tolerance, including gut dysbiosis, retinoids perform a wide variety of functions in many settings, such as the central nervous system, skin aging, allergic airway diseases, cancer prevention and therapy, and metabolic diseases. The mechanism of RA is interesting to explore as both a mucosal adjuvant and a combination therapy with other effective agents. Here, we review the effect of RA on innate and adaptive immunity with a special emphasis on inflammatory status.
Collapse
|
49
|
Kwon HS, Lee JH, Kim GM, Bae JM. Efficacy and safety of retinaldehyde 0.1% and 0.05% creams used to treat photoaged skin: A randomized double-blind controlled trial. J Cosmet Dermatol 2018; 17:471-476. [DOI: 10.1111/jocd.12551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Hyuck Sun Kwon
- Department of Dermatology; St. Vincent's Hospital; College of Medicine; The Catholic University of Korea; Suwon Korea
| | - Ji Hae Lee
- Department of Dermatology; St. Vincent's Hospital; College of Medicine; The Catholic University of Korea; Suwon Korea
| | - Gyong Moon Kim
- Department of Dermatology; St. Vincent's Hospital; College of Medicine; The Catholic University of Korea; Suwon Korea
| | - Jung Min Bae
- Department of Dermatology; St. Vincent's Hospital; College of Medicine; The Catholic University of Korea; Suwon Korea
| |
Collapse
|
50
|
Shields CW, White JP, Osta EG, Patel J, Rajkumar S, Kirby N, Therrien JP, Zauscher S. Encapsulation and controlled release of retinol from silicone particles for topical delivery. J Control Release 2018; 278:37-48. [PMID: 29604311 DOI: 10.1016/j.jconrel.2018.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 01/07/2023]
Abstract
Retinol, a derivative of vitamin A, is a ubiquitous compound used to treat acne, reduce wrinkles and protect against conditions like psoriasis and ichthyosis. While retinol is used as the primary active ingredient (AI) in many skin care formulations, its efficacy is often limited by an extreme sensitivity to degrade and toxicity at high concentrations. While microencapsulation is an appealing method to help overcome these issues, few microencapsulation strategies have made a major translational impact due to challenges with complexity, cost, limited protection of the AI and poor control of the release of the AI. We have developed a class of silicone particles that addresses these challenges for the encapsulation, protection and controlled release of retinol and other hydrophobic compounds. The particles are prepared by the sol-gel polymerization of silane monomers, which enables their rapid and facile synthesis at scale while maintaining a narrow size distribution (i.e., CV < 20%). We show that our particles can: (i) encapsulate retinol with high efficiency (>85%), (ii) protect retinol from degradation (yielding a half-life 9× greater than unencapsulated retinol) and (iii) slowly release retinol over several hours (at rates from 0.14 to 0.67 μg cm-2 s-1/2). To demonstrate that the controlled release of retinol from the particles can reduce irritation, we performed a double blind study on human subjects and found that formulations containing our particles were 12-23% less irritating than identical formulations containing Microsponge® particles (an industry standard by Amcol, Inc.). To show that the silicone particles can elicit a favorable biological response, similar to the Microsponge® particles, we applied both formulations to reconstructed human epidermal tissues and found an upregulation of keratin 19 (K19) and a downregulation of K10, indicating that the reduced irritation observed in the human study was not caused by reduced activity. We also found a decrease in the production of interleukin-1α (IL-1α) compared to formulations containing the Microsponge particles, suggesting lower irritation levels and supporting the findings from the human study. Finally, we show that the silicone particles can encapsulate other AIs, including betamethasone, N, N-diethyl-meta-toluamide (DEET), homosalate and ingenol mebutate, establishing these particles as a true platform technology.
Collapse
Affiliation(s)
- C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - John P White
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Erica G Osta
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; NSF Partnerships for Research and Education in Materials, Texas State University, San Marcos, TX 78666, USA
| | - Jerishma Patel
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Shashank Rajkumar
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Nickolas Kirby
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA
| | | | - Stefan Zauscher
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|