1
|
Tobinick E, Ucci D, Bermudo K, Asseraf S. Perispinal etanercept stroke trial design: PESTO and beyond. Expert Opin Biol Ther 2024; 24:1095-1108. [PMID: 39177653 DOI: 10.1080/14712598.2024.2390636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Perispinal etanercept (PSE) is an innovative treatment designed to improve stroke recovery by addressing chronic post-stroke neuroinflammation. Basic science evidence, randomized clinical trial (RCT) evidence and 14 years of favorable clinical experience support the use of PSE to treat chronic stroke. This article provides guidance for the design of future PSE RCTs in accordance with current FDA recommendations. AREAS COVERED Scientific background and essential elements of PSE RCT design. EXPERT OPINION Intimate familiarity with PSE, its novel method of drug delivery, and the characteristics of ideal enriched study populations are necessary for those designing future PSE stroke trials. The design elements needed to enable a PSE RCT to generate valid results include a suitable research question; a homogeneous study population selected using a prospective enrichment strategy; a primary outcome measure responsive to the neurological improvements that result from PSE; trialists with expertise in perispinal delivery; optimal etanercept dosing; and steps taken to minimize the number of placebo responders. RCTs failing to incorporate these elements, such as the PESTO trial, are incapable of reaching reliable conclusions regarding PSE efficacy. SF-36 has not been validated in PSE trials and is unsuitable for use as a primary outcome measure in PSE RCTs.
Collapse
Affiliation(s)
| | - Danielle Ucci
- Institute of Neurological Recovery, Boca Raton, FL, USA
| | | | | |
Collapse
|
2
|
Joseph AM, Karas M, Jara Silva CE, Leyva M, Salam A, Sinha M, Asfaw YA, Fonseca A, Cordova S, Reyes M, Quinonez J, Ruxmohan S. The Potential Role of Etanercept in the Management of Post-stroke Pain: A Literature Review. Cureus 2023; 15:e36185. [PMID: 37065345 PMCID: PMC10103818 DOI: 10.7759/cureus.36185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Strokes are the second leading cause of death and disability worldwide. The brain injury resulting from stroke produces a persistent neuroinflammatory response in the brain, resulting in a spectrum of neurologic dysfunction affecting stroke survivors chronically, also known as post-stroke pain. Excess production of tumor necrosis factor alpha (TNF alpha) in the cerebrospinal fluid (CSF) of stroke survivors has been implicated in post-stroke pain. Therefore, this literature review aims to assess and review the role of perispinal etanercept in the management of post-stroke pain. Several studies have shown statistically significant evidence that etanercept, a TNF alpha inhibitor, can reduce symptoms present in post-stroke syndrome by targeting the excess TNF alpha produced in the CSF. Studies have also shown improvements in not only post-stroke pain but also in traumatic brain injury and dementia. Further research is needed to explore the effects of TNF alpha on stroke prognosis and determine the optimal frequency and duration of etanercept treatment for post-stroke pain.
Collapse
|
3
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
4
|
Clark IA. Background to new treatments for COVID-19, including its chronicity, through altering elements of the cytokine storm. Rev Med Virol 2021; 31:1-13. [PMID: 33580566 PMCID: PMC7883210 DOI: 10.1002/rmv.2210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Anti-tumour necrosis factor (TNF) biologicals, Dexamethasone and rIL-7 are of considerable interest in treating COVID-19 patients who are in danger of, or have become, seriously ill. Yet reducing sepsis mortality by lowering circulating levels of TNF lost favour when positive endpoints in earlier simplistic models could not be reproduced in well-conducted human trials. Newer information with anti-TNF biologicals has encouraged reintroducing this concept for treating COVID-19. Viral models have had encouraging outcomes, as have the effects of anti-TNF biologicals on community-acquired COVID-19 during their long-term use to treat chronic inflammatory states. The positive outcome of a large scale trial of dexamethasone, and its higher potency late in the disease, harmonises well with its capacity to enhance levels of IL-7Rα, the receptor for IL-7, a cytokine that enhances lymphocyte development and is increased during the cytokine storm. Lymphoid germinal centres required for antibody-based immunity can be harmed by TNF, and restored by reducing TNF. Thus the IL-7- enhancing activity of dexamethasone may explain its higher potency when lymphocytes are depleted later in the infection, while employing anti-TNF, for several reasons, is much more logical earlier in the infection. This implies dexamethasone could prove to be synergistic with rIL-7, currently being trialed as a COVID-19 therapeutic. The principles behind these COVID-19 therapies are consistent with the observed chronic hypoxia through reduced mitochondrial function, and also the increased severity of this disease in ApoE4-positive individuals. Many of the debilitating persistent aspects of this disease are predictably susceptible to treatment with perispinal etanercept, since they have cerebral origins.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
5
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
6
|
Clark IA. Randomized controlled trial validating the use of perispinal etanercept to reduce post-stroke disability has wide-ranging implications. Expert Rev Neurother 2020; 20:203-205. [PMID: 32028804 DOI: 10.1080/14737175.2020.1727742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developing effective drug treatments for neurodegenerative disorders has always been hamstrung by the accepted inability of large molecules (roughly those with a molecular weight greater than 600 Daltons) to cross the blood-brain barrier (BBB) in therapeutic quantities when administered systemically. The dogma has been that a simple, noninvasive way to accomplish this goal is not possible with many agents, including biologicals, because they are too large. Various novel technologies to breach the BBB have been attempted, but with little success. A randomized double-blind, placebo-controlled clinical trial (RCT) administering a widely used anti-tumor necrosis factor (TNF) biological, etanercept, given via perispinal injection, which bypasses the BBB, turns this dogma on its head. This new trial holds much promise for stroke survivors, as well as having implications for developing treatments based on other large molecules for this and other brain disorders.
Collapse
Affiliation(s)
- Ian A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
7
|
Subedi L, Lee SE, Madiha S, Gaire BP, Jin M, Yumnam S, Kim SY. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int J Mol Sci 2020; 21:ijms21030764. [PMID: 31991572 PMCID: PMC7037901 DOI: 10.3390/ijms21030764] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear. TNF-α functions through its two main receptors: tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), also known as p55 and p75, respectively. Normally, the functions of soluble TNF-α-induced TNFR1 activation are reported to be pro-inflammatory and apoptotic. While TNF-α mediated TNFR2 activation has a dual role. Several synthetic drugs used as inhibitors of TNF-α for diverse inflammatory diseases possess serious adverse effects, which make patients and researchers turn their focus toward natural medicines, phytochemicals in particular. Phytochemicals targeting TNF-α can significantly improve disease conditions involving TNF-α with fewer side effects. Here, we reviewed known TNF-α inhibitors, as well as lately studied phytochemicals, with a role in inhibiting TNF-α itself, and TNF-α-mediated signaling in inflammatory diseases focusing mainly on CNS disorders.
Collapse
Affiliation(s)
- Lalita Subedi
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Si Eun Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan;
| | - Bhakta Prasad Gaire
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Mirim Jin
- College of Medicine and Department of Health Science and Technology, GAIHST, Gachon University #155, Gaebeol-ro, Yeonsu-gu, Incheon 21999, Korea;
| | - Silvia Yumnam
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| |
Collapse
|
8
|
Ralph SJ, Weissenberger A, Bonev V, King LD, Bonham MD, Ferguson S, Smith AD, Goodman-Jones AA, Espinet AJ. Phase I/II parallel double-blind randomized controlled clinical trial of perispinal etanercept for chronic stroke: improved mobility and pain alleviation. Expert Opin Investig Drugs 2020; 29:311-326. [PMID: 31899977 DOI: 10.1080/13543784.2020.1709822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Previous open-label studies showed that chronic post-stroke pain could be abated by treatment with perispinal etanercept, although these benefits were questioned. A randomized double-blind placebo controlled clinical trial was conducted to test perispinal etanercept for chronic post-stroke pain.Research design and methods: Participants received two treatments, either perispinal etanercept (active) or saline (control). Primary outcomes were the differences in daily pain levels between groups analyzed by SPSS.Results: On the 0-100 points visual analog scale, perispinal etanercept reduced mean levels for worst and average daily pain from baseline after two treatments by 19.5 - 24 points (p < 0.05), and pain alleviation was maintained in the etanercept group, with no significant change in the control group. Thirty percent of etanercept participants had near complete pain abatement after first treatment. Goniometry of the paretic arm showed improved mean shoulder rotation by 55 degrees in active forward flexion for the etanercept group (p = 0.003) only.Conclusions: Perispinal etanercept can provide significant and ongoing benefits for the chronic post-stroke management of pain and greater shoulder flexion by the paretic arm. Effects are rapid and highly significant, supporting direct action on brain function.Trial registration: ACTRN12615001377527 and Universal Trial Number U1111-1174-3242.
Collapse
Affiliation(s)
- Stephen J Ralph
- School of Medical Science, Griffith University, Southport, Australia
| | | | | | - Liam D King
- School of Pharmacy, Griffith University, Southport, Australia
| | - Mikaela D Bonham
- School of Applied Psychology, Griffith University, Southport, Australia
| | - Samantha Ferguson
- School of Allied Health Sciences, Menzies Health Institute, Griffith University, Southport, Australia
| | - Ashley D Smith
- School of Allied Health Sciences, Menzies Health Institute, Griffith University, Southport, Australia.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
9
|
Tobinick E. Immediate Resolution of Hemispatial Neglect and Central Post-Stroke Pain After Perispinal Etanercept: Case Report. Clin Drug Investig 2020; 40:93-97. [PMID: 31642048 PMCID: PMC6962280 DOI: 10.1007/s40261-019-00864-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Edward Tobinick
- Institute of Neurological Recovery, 1877 S. Federal Highway, Suite 110, Boca Raton, FL, 33432, USA.
| |
Collapse
|
10
|
LaMacchia ZM, Spengler RN, Jaffari M, Abidi AH, Ahmed T, Singh N, Tobinick EL, Ignatowski TA. Perispinal injection of a TNF blocker directed to the brain of rats alleviates the sensory and affective components of chronic constriction injury-induced neuropathic pain. Brain Behav Immun 2019; 82:93-105. [PMID: 31376497 DOI: 10.1016/j.bbi.2019.07.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is chronic pain that follows nerve injury, mediated in the brain by elevated levels of the inflammatory protein tumor necrosis factor-alpha (TNF). We have shown that peripheral nerve injury increases TNF in the hippocampus/pain perception region, which regulates neuropathic pain symptoms. In this study we assessed pain sensation and perception subsequent to specific targeting of brain-TNF (via TNF antibody) administered through a novel subcutaneous perispinal route. Neuropathic pain was induced in Sprague-Dawley rats via chronic constriction injury (CCI), and thermal hyperalgesia was monitored for 10 days post-surgery. On day 8 following CCI and sensory pain behavior testing, rats were randomized to receive perispinal injection of TNF antibody or control IgG isotype antibody. Pain perception was assessed using conditioned place preference (CPP) to the analgesic, amitriptyline. CCI-rats receiving the perispinal injection of TNF antibody had significantly decreased CCI-induced thermal hyperalgesia the following day, and did not form an amitriptyline-induced CPP, whereas CCI-rats receiving perispinal IgG antibody experienced pain alleviation only in conjunction with i.p. amitriptyline and did form an amitriptyline-induced CPP. The specific targeting of brain TNF via perispinal delivery alleviates thermal hyperalgesia and positively influences the affective component of pain. PERSPECTIVE: This study presents a novel route of drug administration to target central TNF for treatment of neuropathic pain. Targeting central TNF through perispinal drug delivery could potentially be a more efficient and sustained method to treat patients with neuropathic pain.
Collapse
Affiliation(s)
- Zach M LaMacchia
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | | | - Muhammad Jaffari
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Asif H Abidi
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Tariq Ahmed
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | - Natasha Singh
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA
| | | | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, USA; Program for Neuroscience, University at Buffalo, The State University of New York, USA.
| |
Collapse
|
11
|
Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacol Res 2019; 147:104349. [PMID: 31315064 PMCID: PMC6954670 DOI: 10.1016/j.phrs.2019.104349] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Neuroinflammation underlies the etiology of multiple neurodegenerative diseases and stroke. Our understanding of neuroinflammation has evolved in the last few years and major players have been identified. Microglia, the brain resident macrophages, are considered sentinels at the forefront of the neuroinflammatory response to different brain insults. Interestingly, microglia perform other physiological functions in addition to their role in neuroinflammation. Therefore, an updated approach in which modulation, rather than complete elimination of microglia is necessary. In this review, the emerging roles of microglia and their interaction with different components of the neurovascular unit are discussed. In addition, recent data on sex differences in microglial physiology and in the context of stroke will be presented. Finally, the multiplicity of roles assumed by microglia in the pathophysiology of ischemic stroke, and in the presence of co-morbidities such as hypertension and diabetes are summarized.
Collapse
Affiliation(s)
- Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, United States; Charlie Norwood VA Medical Center Augusta, GA, United States
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, United States; Charlie Norwood VA Medical Center Augusta, GA, United States
| | - Adviye Ergul
- Ralph Johnson VA Medical Center, Medical University of South Carolina, Charleston, SC, United States; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
12
|
Tse BC, Dvoriantchikova G, Tao W, Gallo RA, Lee JY, Pappas S, Brambilla R, Ivanov D, Tse DT, Pelaez D. Tumor Necrosis Factor Inhibition in the Acute Management of Traumatic Optic Neuropathy. Invest Ophthalmol Vis Sci 2019; 59:2905-2912. [PMID: 30025145 PMCID: PMC5989875 DOI: 10.1167/iovs.18-24431] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To determine the effectiveness of etanercept, a tumor necrosis factor (TNF) inhibitor, in conferring neuroprotection to retinal ganglion cells (RGCs) and improving visual outcomes after optic nerve trauma with either optic nerve crush (ONC) or sonication-induced traumatic optic neuropathy (SI-TON) in mice. Methods Mouse optic nerves were unilaterally subjected to ONC (n = 20) or SI-TON (n = 20). TNF expression was evaluated by using immunohistochemistry and quantitative RT-PCR (qRT-PCR) in optic nerves harvested 6 and 24 hours post ONC (n = 10) and SI-TON (n = 10). Mice in each injury group received daily subcutaneous injections of either etanercept (10 mg/kg of body weight; five mice) or vehicle (five mice) for 7 days. Pattern electroretinograms were performed on all mice at 1 and 2 weeks after injury. ONC mice were killed at 2 weeks after injury, while SI-TON mice were euthanized at 4 weeks after injury. Whole retina flat-mounts were used for RGC quantification. Results Immunohistochemistry and qRT-PCR showed upregulation of TNF protein and gene expression within 24 hours after injury. In both models, etanercept use immediately following optic nerve injury led to higher RGC survival when compared to controls, which was comparable between the two models (24.23% in ONC versus 20.42% in SI-TON). In both models, 1 and 2 weeks post injury, mice treated with etanercept had significantly higher a-wave amplitudes than untreated injured controls. Conclusions Treatment with etanercept significantly reduced retinal damage and improved visual function in both animal models of TON. These findings suggest that reducing TNF activity in injured optic nerves constitutes an effective therapeutic approach in an acute setting.
Collapse
Affiliation(s)
- Brian C Tse
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Galina Dvoriantchikova
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Wensi Tao
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Ryan A Gallo
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - John Y Lee
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Steven Pappas
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Roberta Brambilla
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Dmitry Ivanov
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - David T Tse
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States
| | - Daniel Pelaez
- Department of Ophthalmology, Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Miami, Florida, United States.,Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States
| |
Collapse
|
13
|
Wagner AK, Kumar RG. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions. Neuropharmacology 2018; 145:133-144. [PMID: 30222984 DOI: 10.1016/j.neuropharm.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/14/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Most areas of medicine use biomarkers in some capacity to aid in understanding how personal biology informs clinical care. This article draws upon the Rehabilomics research model as a translational framework for programs of precision rehabilitation and intervention research focused on linking personal biology to treatment response using biopsychosocial constructs that broadly represent function and that can be applied to many clinical populations with disability. The summary applies the Rehabilomics research framework to the population with traumatic brain injury (TBI) and emphasizes a broad vision for biomarker inclusion, beyond typical brain-derived biomarkers, to capture and/or reflect important neurological and non-neurological pathology associated with TBI as a chronic condition. Humoral signaling molecules are explored as important signaling and regulatory drivers of these chronic conditions and their impact on function. Importantly, secondary injury cascades involved in the humoral triad are influenced by the systemic response to TBI and the development of non-neurological organ dysfunction (NNOD). Biomarkers have been successfully leveraged in other medical fields to inform pre-randomization patient selection for clinical trials, however, this practice largely has not been utilized in TBI research. As such, the applicability of the Rehabilomics research model to contemporary clinical trials and comparative effectiveness research designs for neurological and rehabilitation populations is emphasized. Potential points of intervention to modify inflammation, hormonal, or neurotrophic support through rehabilitation interventions are discussed. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- A K Wagner
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Neuroscience, University of Pittsburgh, USA; Center for Neuroscience, University of Pittsburgh, USA.
| | - R G Kumar
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, USA; Safar Center for Resuscitation Research, University of Pittsburgh, USA; Department of Epidemiology, University of Pittsburgh, USA
| |
Collapse
|
14
|
Affiliation(s)
- Edward Tobinick
- a Institute of Neurological Recovery , Boca Raton , FL , USA
| |
Collapse
|
15
|
Winklewski PJ, Radkowski M, Demkow U. Neuroinflammatory mechanisms of hypertension: potential therapeutic implications. Curr Opin Nephrol Hypertens 2018; 25:410-6. [PMID: 27490783 DOI: 10.1097/mnh.0000000000000250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Inflammation of forebrain and hindbrain nuclei has recently been highlighted as an emerging factor in the pathogenesis of neurogenic hypertension. The aim of this review is to summarize the state of the art in this field and to discuss recently discovered pathophysiological mechanisms, opening new perspectives for therapeutic application. RECENT FINDINGS Microglia Toll-like receptor 4 causally links angiotensin II (AngII)-mediated microglia cell activation and oxidative stress within the hypothalamic paraventricular nucleus (PVN). Toll-like receptor 4 can also be activated by lipopolysaccharides. PVN infusion of nuclear factor κB inhibitor lowers the blood pressure and ameliorates cardiac hypertrophy. Ang-(1-7) exerts direct effects on microglia, causing a reduction in both baseline and prorenin-induced release of proinflammatory cytokines. A compromised blood-brain barrier (BBB) constitutes a complementary mechanism that exacerbates AngII-driven neurohumoral activation, contributing to the development of hypertension. SUMMARY PVN and BBB seem to be pivotal targets for therapeutic intervention in hypertension. Recent advances in imaging techniques enable visualization of the inflammatory state in microglia and BBB integrity in humans. AngII type I receptor blockers and AngII-converting enzyme inhibitors are the most likely candidates for controlled randomized trials in humans aimed at amelioration of brain inflammation in the forthcoming years.
Collapse
Affiliation(s)
- Pawel J Winklewski
- aInstitute of Human Physiology, Medical University of Gdansk, GdanskbDepartment of Immunopathology of Infectious and Parasitic DiseasescDepartment of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
16
|
Clark IA, Vissel B. The meteorology of cytokine storms, and the clinical usefulness of this knowledge. Semin Immunopathol 2017; 39:505-516. [PMID: 28451786 PMCID: PMC5495849 DOI: 10.1007/s00281-017-0628-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
Abstract
The term cytokine storm has become a popular descriptor of the dramatic harmful consequences of the rapid release of polypeptide mediators, or cytokines, that generate inflammatory responses. This occurs throughout the body in both non-infectious and infectious disease states, including the central nervous system. In infectious disease it has become a useful concept through which to appreciate that most infectious disease is not caused directly by a pathogen, but by an overexuberant innate immune response by the host to its presence. It is less widely known that in addition to these roles in disease pathogenesis these same cytokines are also the basis of innate immunity, and in lower concentrations have many essential physiological roles. Here we update this field, including what can be learned through the history of how these interlinking three aspects of biology and disease came to be appreciated. We argue that understanding cytokine storms in their various degrees of acuteness, severity and persistence is essential in order to grasp the pathophysiology of many diseases, and thus the basis of newer therapeutic approaches to treating them. This particularly applies to the neurodegenerative diseases.
Collapse
Affiliation(s)
- Ian A Clark
- Research School of Biology, Australian National University, Canberra, Australia.
| | - Bryce Vissel
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
17
|
Affiliation(s)
- Ian A Clark
- a Research School of Biology , Australian National University , Canberra , Australia
| |
Collapse
|
18
|
Clark IA. Letter by Clark Regarding Article, "Clinical Outcomes of Transplanted Modified Bone Marrow-Derived Mesenchymal Stem Cells in Stroke: A Phase 1/2a Study". Stroke 2016. [PMID: 27895303 DOI: 10.1161/strokeaha.116.014920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry Research School of Biology Australian National University Canberra, Australia
| |
Collapse
|
19
|
Clark IA, Vissel B. Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 2016; 13:236. [PMID: 27596607 PMCID: PMC5011997 DOI: 10.1186/s12974-016-0708-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023] Open
Abstract
The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also documented in the same group of disease states. However, no agreement exists on overarching mechanism for the harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions. Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases, excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly controlled trials.
Collapse
Affiliation(s)
- Ian A Clark
- Biomedical Sciences and Biochemistry, Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, 0200, Australia.
| | - Bryce Vissel
- Neurodegeneration Research Group, Garvan Institute, 384 Victoria Street, Sydney, New South Wales, 2010, Australia
| |
Collapse
|
20
|
Abstract
Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.
Collapse
Affiliation(s)
- Edward Lewis Tobinick
- Institute of Neurological Recovery, 2300 Glades Road, Suite 305E, Boca Raton, FL, 33431, USA.
| |
Collapse
|
21
|
Dugue R, Barone FC. Ischemic, traumatic and neurodegenerative brain inflammatory changes. FUTURE NEUROLOGY 2016. [DOI: 10.2217/fnl.16.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review serves to link the role of the immune system in the neuropathology of acute ischemic stroke, traumatic brain injury and neurodegenerative disease. The blood–brain barrier delineates the CNS from the peripheral immune system. However, the blood–cerebrospinal fluid barrier acts as a gate between the periphery and the brain, permitting immune activity crosstalk and modulation. In acute ischemic stroke, traumatic brain injury and other neurodegenerative diseases, the blood–brain barrier is compromised and an influx of inflammatory cells and plasma proteins occurs, resulting in edema, demyelination, cell dysfunction and death, and neurobehavioral changes. The role of the complement system, key cytokines, microglia and other neuroglia in brain degenerative pathology will be discussed.
Collapse
Affiliation(s)
- Rachelle Dugue
- Departments of Neurology & Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Frank C Barone
- Departments of Neurology & Physiology & Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
22
|
Therapies negating neuroinflammation after brain trauma. Brain Res 2015; 1640:36-56. [PMID: 26740405 DOI: 10.1016/j.brainres.2015.12.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) elicits a complex secondary injury response, with neuroinflammation as a crucial central component. Long thought to be solely a deleterious factor, the neuroinflammatory response has recently been shown to be far more intricate, with both beneficial and detrimental consequences depending on the timing, magnitude and specific immune composition of the response post-injury. Despite extensive preclinical and clinical research into mechanisms of secondary injury after TBI, no effective neuroprotective therapy has been identified, with potential candidates repeatedly proving disappointing in the clinic. The neuroinflammatory response offers a promising avenue for therapeutic targeting, aiming to quell the deleterious consequences without influencing its function in providing a neurotrophic environment supportive of repair. The present review firstly describes the findings of recent clinical trials that aimed to modulate inflammation as a means of neuroprotection. Secondly, we discuss promising multifunctional and single-target anti-inflammatory candidates either currently in trial, or with ample experimental evidence supporting clinical application. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
23
|
McCaulley ME, Grush KA. Alzheimer's Disease: Exploring the Role of Inflammation and Implications for Treatment. Int J Alzheimers Dis 2015; 2015:515248. [PMID: 26664821 PMCID: PMC4664815 DOI: 10.1155/2015/515248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/21/2015] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by both structural abnormalities and inflammation in the brain. While recent research has chiefly focused on the structural changes involved in AD, understanding the pathophysiology and associated inflammation of the AD brain helps to elucidate potential therapeutic and preventative options. By exploring the data supporting an inflammatory etiology of AD, we present a case for the use of existing evidence-based treatments addressing inflammation as promising options for treating and preventing AD. We present data demonstrating tumor necrosis factor alpha association with the inflammation of AD. We also discuss data supporting TNF alpha associated inflammation in traumatic brain injury, stroke, and spinal disc associated radiculopathy. We augment this previously unarticulated concept of a unifying pathophysiology of central nervous system disease, with reports of benefits of TNF alpha inhibition in many hundreds of patients with those diseases, including AD. We also assess the pathophysiologic and clinical trial evidence supporting the role of other inflammation resolving treatments in AD. In aggregate, the data from the several potentially effective therapeutic and preventative options contained within this report presents a clearer picture of next steps needed in research of treatment alternatives.
Collapse
Affiliation(s)
- Mark E. McCaulley
- Yampa Valley Medical Associates, 940 Central Park Drive, Steamboat Springs, CO 80487, USA
| | - Kira A. Grush
- Yampa Valley Medical Associates, 940 Central Park Drive, Steamboat Springs, CO 80487, USA
| |
Collapse
|
24
|
Roerink ME, Groen RJ, Franssen G, Lemmers-van de Weem B, Boerman OC, van der Meer JW. Central delivery of iodine-125-labeled cetuximab, etanercept and anakinra after perispinal injection in rats: possible implications for treating Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2015; 7:70. [PMID: 26560086 PMCID: PMC4642641 DOI: 10.1186/s13195-015-0149-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Introduction Alzheimer’s disease is a debilitating condition, and the search for an effective treatment is ongoing. Inflammation, in reaction to amyloid deposition, is thought to accelerate cognitive decline. With tumor necrosis factor α being an important proinflammatory cytokine, a recent trial investigated the effect of the tumor necrosis factor α inhibitor etanercept after peripheral administration in patients with Alzheimer’s disease. Although there was no significant effect, others have claimed spectacular effects of etanercept after perispinal injection. In the present study, the central delivery of drugs with a large molecular weight was evaluated after injection in the cervical perispinal region in rats. If successful, this strategy might increase therapeutic options for patients with Alzheimer’s disease. Methods Nine male Sprague–Dawley rats were given injections of iodine-125–labeled cetuximab (146 kDa), etanercept (51 kDa), and anakinra (17 kDa). Each radioiodinated drug was injected in the perispinal region in two rats and into the dorsal tail vein in one rat. Directly after injection, the rats were placed in a head-down position for 3 minutes to direct blood flow into the valveless vertebral venous system. A single-positron emission computed tomography scan was acquired starting 5 minutes after injection, subsequently the rats were euthanized and bio-distribution was determined. Results Intracranial delivery of the radiolabeled drugs could not be visualized in all but one of the rats. Injected drugs accumulated locally in the perispinal region. Conclusions In this study, no evidence could be found for the delivery of drugs to the central nervous system after perispinal injection. Additional research is needed before this treatment can be used in patients with Alzheimer’s disease.
Collapse
Affiliation(s)
- Megan E Roerink
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Rob Jm Groen
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Gerben Franssen
- Department Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | - Otto C Boerman
- Department Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Jos Wm van der Meer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
A Neurologist's Guide to TNF Biology and to the Principles behind the Therapeutic Removal of Excess TNF in Disease. Neural Plast 2015. [PMID: 26221543 PMCID: PMC4510439 DOI: 10.1155/2015/358263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor (TNF) is an ancient and widespread cytokine required in small amounts for much physiological function. Higher concentrations are central to innate immunity, but if unchecked this cytokine orchestrates much chronic and acute disease, both infectious and noninfectious. While being a major proinflammatory cytokine, it also controls homeostasis and plasticity in physiological circumstances. For the last decade or so these principles have been shown to apply to the central nervous system as well as the rest of the body. Nevertheless, whereas this approach has been a major success in treating noncerebral disease, its investigation and potential widespread adoption in chronic neurological conditions has inexplicably stalled since the first open trial almost a decade ago. While neuroscience is closely involved with this approach, clinical neurology appears to be reticent in engaging with what it offers patients. Unfortunately, the basic biology of TNF and its relevance to disease is largely outside the traditions of neurology. The purpose of this review is to facilitate lowering communication barriers between the traditional anatomically based medical specialties through recognition of shared disease mechanisms and thus advance the prospects of a large group of patients with neurodegenerative conditions for whom at present little can be done.
Collapse
|
26
|
Baratz R, Tweedie D, Wang JY, Rubovitch V, Luo W, Hoffer BJ, Greig NH, Pick CG. Transiently lowering tumor necrosis factor-α synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation 2015; 12:45. [PMID: 25879458 PMCID: PMC4352276 DOI: 10.1186/s12974-015-0237-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Background The treatment of traumatic brain injury (TBI) represents an unmet medical need, as no effective pharmacological treatment currently exists. The development of such a treatment requires a fundamental understanding of the pathophysiological mechanisms that underpin the sequelae resulting from TBI, particularly the ensuing neuronal cell death and cognitive impairments. Tumor necrosis factor-alpha (TNF-α) is a cytokine that is a master regulator of systemic and neuroinflammatory processes. TNF-α levels are reported to become rapidly elevated post TBI and, potentially, can lead to secondary neuronal damage. Methods To elucidate the role of TNF-α in TBI, particularly as a drug target, the present study evaluated (i) time-dependent TNF-α levels and (ii) markers of apoptosis and gliosis within the brain and related these to behavioral measures of ‘well being’ and cognition in a mouse closed head 50 g weight drop mild TBI (mTBI) model in the presence and absence of post-treatment with an experimental TNF-α synthesis inhibitor, 3,6′-dithiothalidomide. Results mTBI elevated brain TNF-α levels, which peaked at 12 h post injury and returned to baseline by 18 h. This was accompanied by a neuronal loss and an increase in astrocyte number (evaluated by neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) immunostaining), as well as an elevation in the apoptotic death marker BH3-interacting domain death agonist (BID) at 72 h. Selective impairments in measures of cognition, evaluated by novel object recognition and passive avoidance paradigms - without changes in well being, were evident at 7 days after injury. A single systemic treatment with the TNF-α synthesis inhibitor 3,6′-dithiothalidomide 1 h post injury prevented the mTBI-induced TNF-α elevation and fully ameliorated the neuronal loss (NeuN), elevations in astrocyte number (GFAP) and BID, and cognitive impairments. Cognitive impairments evident at 7 days after injury were prevented by treatment as late as 12 h post mTBI but were not reversed when treatment was delayed until 18 h. Conclusions These results implicate that TNF-α in mTBI induced secondary brain damage and indicate that pharmacologically limiting the generation of TNF-α post mTBI may mitigate such damage, defining a time-dependent window of up to 12 h to achieve this reversal.
Collapse
Affiliation(s)
- Renana Baratz
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - David Tweedie
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Weiming Luo
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
27
|
Ignatowski TA, Spengler RN, Tobinick E. Authors' reply to Whitlock: Perispinal etanercept for post-stroke neurological and cognitive dysfunction: scientific rationale and current evidence. CNS Drugs 2014; 28:1207-13. [PMID: 25373629 PMCID: PMC4246125 DOI: 10.1007/s40263-014-0212-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Tracey A. Ignatowski
- Department of Pathology and Anatomical Sciences and Program for Neuroscience, School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY USA
| | | | - Edward Tobinick
- Institute of Neurological Recovery, 2300 Glades Road Suite 305E, Boca Raton, FL 33431 USA
| |
Collapse
|
28
|
Whitlock DR. Comment on: "Perispinal Etanercept for Post-Stroke Neurological and Cognitive Dysfunction: Scientific Rationale and Current Evidence". CNS Drugs 2014; 28:1205-6. [PMID: 25373628 DOI: 10.1007/s40263-014-0211-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- David R Whitlock
- AOBiome LLC, One Broadway, 14th floor, Cambridge, MA, 02142, USA,
| |
Collapse
|