1
|
Xia Y, Chen Q, Liu HN, Chi Y, Zhu Y, Shan LS, Dai B, Wu L, Shi X. Synthetic routes and clinical application of new drugs approved by EMA during 2023. Eur J Med Chem 2024; 277:116762. [PMID: 39151275 DOI: 10.1016/j.ejmech.2024.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In 2023, the European Medicines Agency (EMA) granted approval to 77 new molecular entities (NMEs), consisting of 45 new chemical entities (NCEs) and 32 new biological entities (NBEs). These pharmacological agents encompass a broad spectrum of therapeutic domains, including oncology, cardiology, dermatology, diagnostic medicine, endocrinology, gastroenterology and hepatology, metabolic disorders, and neurology. Among the 77 approved pharmaceuticals, three received accelerated review status, and 17 (22 %) were granted orphan drug designation for the treatment of rare diseases. This review provides an overview of the clinical applications and synthetic routes of 42 newly approved NCEs by the EMA in 2023. The objective is to offer a comprehensive understanding of the synthetic approaches used in the development of these drug molecules, thereby inspiring the creation of novel, efficient, and applicable synthetic methodologies.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Chi
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Li-Shen Shan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Lin Wu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xiaobao Shi
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Uno T, Hosomi K, Yokoyama S. Evaluation of tolvaptan-associated hepatic disorder using different national pharmacovigilance databases. Sci Rep 2024; 14:25943. [PMID: 39472632 PMCID: PMC11522566 DOI: 10.1038/s41598-024-77052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Tolvaptan-associated hepatic disorder is a rare, but lethal adverse event; however, the precise risk and time of onset remain unclear. This study aimed to characterize the severity, time‑to‑onset, and outcomes of hepatic disorder based on patient age and sex. Patient data were acquired from the Japanese Adverse Drug Event Report database (JADER) and the JAPIC AERS database, which consists of the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) processed by the Japan Pharmaceutical Information Center. Hepatic disorder was classified as severe or nonsevere. Tolvaptan use was associated with hepatic disorder in analyses using the FAERS [Severe hepatic disorder: reporting odds ratio (ROR) 4.93, 95% confidence interval (CI) 4.33‒5.61; information component (IC) 2.11, 95% CI 1.92‒2.29; nonsevere hepatic disorder: ROR 6.78, 95% CI 6.01‒7.65; IC 2.51, 95% CI 2.33‒2.68] and the JADER (severe hepatic disorder: ROR 4.21, 95% CI 3.57‒4.97; IC 1.86, 95% CI 1.63‒2.10; nonsevere hepatic disorder: ROR 4.27, 95% CI 3.68‒4.95; IC 1.83, 95% CI 1.62‒2.04). A time‑to‑onset analysis revealed that the median onset time was significantly longer in patients aged < 60 years compared with patients aged ≥ 60, regardless of the severity (FAERS: severe hepatic disorder 7 vs. 58 days, p < 0.0001; nonsevere hepatic disorder 8 vs. 52.5 days, p < 0.0001; JADER: severe hepatic disorder 9.5 vs. 32 days, p = 0.0017; nonsevere hepatic disorder 9 vs. 89 days, p < 0.0001). Severe outcomes were observed, regardless of the severity of hepatic disorder. Patients should be monitored for liver function based on age to prevent fatal outcomes.
Collapse
Affiliation(s)
- Takaya Uno
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Kouichi Hosomi
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Satoshi Yokoyama
- Division of Drug Informatics, School of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
3
|
Kędzierska-Kapuza K, Łopuszyńska I, Niewiński G, Franek E, Szczuko M. The Influence of Non-Pharmacological and Pharmacological Interventions on the Course of Autosomal Dominant Polycystic Kidney Disease. Nutrients 2024; 16:3216. [PMID: 39339816 PMCID: PMC11434835 DOI: 10.3390/nu16183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Polycystic kidney disease (PKD) includes autosomal dominant (ADPKD) and autosomal recessive (ARPKD) forms, both of which are primary genetic causes of kidney disease in adults and children. ADPKD is the most common hereditary kidney disease, with a prevalence of 329 cases per million in Europe. This condition accounts for 5-15% of end-stage chronic kidney disease (ESKD) cases, and in developed countries such as Poland, 8-10% of all dialysis patients have ESKD due to ADPKD. The disease is caused by mutations in the PKD1 and PKD2 genes, with PKD1 mutations responsible for 85% of cases, leading to a more aggressive disease course. Recent research suggests that ADPKD involves a metabolic defect contributing to cystic epithelial proliferation and cyst growth. Aim: This review explores the interplay between metabolism, obesity, and ADPKD, discussing dietary and pharmacological strategies that target these metabolic abnormalities to slow disease progression. Conclusion: Metabolic reprogramming therapies, including GLP-1 analogs and dual agonists of GIP/GLP-1 or glucagon/GLP-1 receptors, show promise, though further research is needed to understand their potential in ADPKD treatment fully.
Collapse
Affiliation(s)
- Karolina Kędzierska-Kapuza
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Inga Łopuszyńska
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Grzegorz Niewiński
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Edward Franek
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University, 24 W. Broniewskiego St., 71-460 Szczecin, Poland
| |
Collapse
|
4
|
Nawaz MZ, Khalid HR, Shahbaz S, Al-Ghanim KA, Pugazhendhi A, Zhu D. Discovery of putative inhibitors of human Pkd1 enzyme: Molecular docking, dynamics and simulation, QSAR, and MM/GBSA. ENVIRONMENTAL RESEARCH 2024; 257:119336. [PMID: 38838751 DOI: 10.1016/j.envres.2024.119336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Polycystic kidney disease is the most prevalent hereditary kidney disease globally and is mainly linked to the overexpression of a gene called PKD1. To date, there is no effective treatment available for polycystic kidney disease, and the practicing treatments only provide symptomatic relief. Discovery of the compounds targeting the PKD1 gene by inhibiting its expression under the disease condition could be crucial for effective drug development. In this study, a molecular docking and molecular dynamic simulation, QSAR, and MM/GBSA-based approaches were used to determine the putative inhibitors of the Pkd1 enzyme from a library of 1379 compounds. Initially, fourteen compounds were selected based on their binding affinities with the Pkd1 enzyme using MOE and AutoDock tools. The selected drugs were further investigated to explore their properties as drug candidates and the stability of their complex formation with the Pkd1 enzyme. Based on the physicochemical and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, and toxicity profiling, two compounds including olsalazine and diosmetin were selected for the downstream analysis as they demonstrated the best drug-likeness properties and highest binding affinity with Pkd1 in the docking experiment. Molecular dynamic simulation using Gromacs further confirmed the stability of olsalazine and diosmetin complexes with Pkd1 and establishing interaction through strong bonding with specific residues of protein. High biological activity and binding free energies of two complexes calculated using 3D QSAR and Schrodinger module, respectively further validated our results. Therefore, the molecular docking and dynamics simulation-based in-silico approach used in this study revealed olsalazine and diosmetin as potential drug candidates to combat polycystic kidney disease by targeting Pkd1 enzyme.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hafiz Rameez Khalid
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sabeen Shahbaz
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India.
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Cantarelli L, Gutiérrez Valencia M, Leache Alegria L, Sainz Fernandez LC, Erviti Lopez J, Gutiérrez Nicolas F, Nazco Casariego GJ. Long-term effectiveness and safety of tolvaptan in autosomal dominant polycystic kidney disease. Med Clin (Barc) 2024; 163:1-7. [PMID: 38616432 DOI: 10.1016/j.medcli.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND AND OBJECTIVES Evidence on the long-term use of tolvaptan in autosomal dominant polycystic kidney disease (ADPKD) is limited. The aim was to evaluate the tolvaptan effectiveness and safety in real clinical setting. MATERIAL AND METHODS A single-center observational study (2016-2022) involving ADPKD patients treated with tolvaptan was conducted. Annual change in serum creatinine (sCr) and estimated glomerular filtration rate (eGFR) before and after treatment initiation were evaluated. Change in total kidney volume (TKV), blood pressure (BP) and urinary albuminuria at 12, 24 and 36 months after initiation were also determined. Adverse events (AEs) according to the Common Terminology Criteria for Adverse Events (CTCAE) v5.0 were analyzed. RESULTS A total of 22 patients were included. No significant differences pre- vs post tolvaptan treatment in annual rate of change in eGFR (-3.52ml/min/1.73m2 [-4.98%] vs -3.98ml/min/1.73m2 [-8.48%], p=0.121) and sCr (+0.06mg/dL [4.22%] vs +0.15mg/dL [7.77%], p=0.429) were observed. Tolvaptan improved urinary osmolality at 12 (p=0.019) and 24 months (p=0.008), but not at 36 months (p=0.11). There were no changes in TKV, BP control and urinary albuminuria at 12, 24 or 36 months. A worse response was shown in patients with rapid kidney function decline (p=0.042). A 36.4% of the patients developed grade III/IV AEs. A 22.7% discontinued treatment due to unacceptable toxicity. CONCLUSIONS This study shows a modest benefit of tolvaptan in ADPKD patients, as well as safety concerns.
Collapse
Affiliation(s)
- Lorenzo Cantarelli
- Servicio de Farmacia, Complejo Hospitalario Universitario de Canarias, 38320 Tenerife, Spain.
| | - Marta Gutiérrez Valencia
- Sección de Innovación y Organización, Servicio Navarro de Salud-Osasunbidea, 31003 Pamplona, Spain
| | - Leire Leache Alegria
- Sección de Innovación y Organización, Servicio Navarro de Salud-Osasunbidea, 31003 Pamplona, Spain
| | | | - Juan Erviti Lopez
- Sección de Innovación y Organización, Servicio Navarro de Salud-Osasunbidea, 31003 Pamplona, Spain
| | | | | |
Collapse
|
6
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
7
|
Huang Y, Osouli A, Pham J, Mancino V, O'Grady C, Khan T, Chaudhuri B, Pastor-Soler NM, Hallows KR, Chung EJ. Investigation of Basolateral Targeting Micelles for Drug Delivery Applications in Polycystic Kidney Disease. Biomacromolecules 2024; 25:2749-2761. [PMID: 38652072 DOI: 10.1021/acs.biomac.3c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a complex disorder characterized by uncontrolled renal cyst growth, leading to kidney function decline. The multifaceted nature of ADPKD suggests that single-pathway interventions using individual small molecule drugs may not be optimally effective. As such, a strategy encompassing combination therapy that addresses multiple ADPKD-associated signaling pathways could offer synergistic therapeutic results. However, severe off-targeting side effects of small molecule drugs pose a major hurdle to their clinical transition. To address this, we identified four drug candidates from ADPKD clinical trials, bardoxolone methyl (Bar), octreotide (Oct), salsalate (Sal), and pravastatin (Pra), and incorporated them into peptide amphiphile micelles containing the RGD peptide (GRGDSP), which binds to the basolateral surface of renal tubules via integrin receptors on the extracellular matrix. We hypothesized that encapsulating drug combinations into RGD micelles would enable targeting to the basolateral side of renal tubules, which is the site of disease, via renal secretion, leading to superior therapeutic benefits compared to free drugs. To test this, we first evaluated the synergistic effect of drug combinations using the 20% inhibitory concentration for each drug (IC20) on renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice. Next, we synthesized and characterized the RGD micelles encapsulated with drug combinations and measured their in vitro therapeutic effects via a 3D PKD growth model. Upon both IV and IP injections in vivo, RGD micelles showed a significantly higher accumulation in the kidneys compared to NT micelles, and the renal access of RGD micelles was significantly reduced after the inhibition of renal secretion. Specifically, both Bar+Oct and Bar+Sal in the RGD micelle treatment showed enhanced therapeutic efficacy in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) with a significantly lower KW/BW ratio and cyst index as compared to PBS and free drug-treated controls, while other combinations did not show a significant difference. Hence, we demonstrate that renal targeting through basolateral targeting micelles enhances the therapeutic potential of combination therapy in genetic kidney disease.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ali Osouli
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Colette O'Grady
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Taranatee Khan
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Baishali Chaudhuri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Nuria M Pastor-Soler
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Schueler J, Kuenzel J, Thuesing A, Pion E, Behncke RY, Haegerling R, Fuchs D, Kraus A, Buchholz B, Huang B, Merhof D, Werner JM, Schmidt KM, Hackl C, Aung T, Haerteis S. Ultra high frequency ultrasound enables real-time visualization of blood supply from chorioallantoic membrane to human autosomal dominant polycystic kidney tissue. Sci Rep 2024; 14:10063. [PMID: 38698187 PMCID: PMC11066115 DOI: 10.1038/s41598-024-60783-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Ultra high frequency (UHF) ultrasound enables the visualization of very small structures that cannot be detected by conventional ultrasound. The utilization of UHF imaging as a new imaging technique for the 3D-in-vivo chorioallantoic membrane (CAM) model can facilitate new insights into tissue perfusion and survival. Therefore, human renal cystic tissue was grafted onto the CAM and examined using UHF ultrasound imaging. Due to the unprecedented resolution of UHF ultrasound, it was possible to visualize microvessels, their development, and the formation of anastomoses. This enabled the observation of anastomoses between human and chicken vessels only 12 h after transplantation. These observations were validated by 3D reconstructions from a light sheet microscopy image stack, indocyanine green angiography, and histological analysis. Contrary to the assumption that the nutrient supply of the human cystic tissue and the gas exchange happens through diffusion from CAM vessels, this study shows that the vasculature of the human cystic tissue is directly connected to the blood vessels of the CAM and perfusion is established within a short period. Therefore, this in-vivo model combined with UHF imaging appears to be the ideal platform for studying the effects of intravenously applied therapeutics to inhibit renal cyst growth.
Collapse
Affiliation(s)
- Jan Schueler
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Jonas Kuenzel
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Anna Thuesing
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Rose Yinghan Behncke
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353, Berlin, Germany
| | - Rene Haegerling
- Research Group 'Lymphovascular Medicine and Translational 3D-Histopathology', Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, 13353, Berlin, Germany
- Research Group 'Development and Disease', Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, 10117, Berlin, Germany
| | - Dieter Fuchs
- FUJIFILM VisualSonics, Inc., 1114 AB, Amsterdam, The Netherlands
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Boqiang Huang
- Institute of Image Analysis and Computer Vision, Faculty of Informatics and Data Science, University of Regensburg, 93053, Regensburg, Germany
| | - Dorit Merhof
- Institute of Image Analysis and Computer Vision, Faculty of Informatics and Data Science, University of Regensburg, 93053, Regensburg, Germany
| | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Katharina M Schmidt
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469, Deggendorf, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Huang Y, Wang J, Mancino V, Pham J, O’Grady C, Li H, Jiang K, Chin D, Poon C, Ho PY, Gyarmati G, Peti-Peterdi J, Hallows KR, Chung EJ. Oral delivery of nanomedicine for genetic kidney disease. PNAS NEXUS 2024; 3:pgae187. [PMID: 38807632 PMCID: PMC11131023 DOI: 10.1093/pnasnexus/pgae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Chronic and genetic kidney diseases such as autosomal dominant polycystic kidney disease (ADPKD) have few therapeutic options, and clinical trials testing small molecule drugs have been unfavorable due to low kidney bioavailability and adverse side effects. Although nanoparticles can be designed to deliver drugs directly to the diseased site, there are no kidney-targeted nanomedicines clinically available, and most FDA-approved nanoparticles are administered intravenously which is not ideal for chronic diseases. To meet these challenges of chronic diseases, we developed a biomaterials-based strategy using chitosan particles (CP) for oral delivery of therapeutic, kidney-targeting peptide amphiphile micelles (KMs). We hypothesized that encapsuling KMs into CP would enhance the bioavailability of KMs upon oral administration given the high stability of chitosan in acidic conditions and mucoadhesive properties enabling absorption within the intestines. To test this, we evaluated the mechanism of KM access to the kidneys via intravital imaging and investigated the KM biodistribution in a porcine model. Next, we loaded KMs carrying the ADPKD drug metformin into CP (KM-CP-met) and measured in vitro therapeutic effect. Upon oral administration in vivo, KM-CP-met showed significantly greater bioavailability and accumulation in the kidneys as compared to KM only or free drug. As such, KM-CP-met treatment in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre which develops the disease over 120 days and mimics the slow development of ADPKD) showed enhanced therapeutic efficacy without affecting safety despite repeated treatment. Herein, we demonstrate the potential of KM-CP as a nanomedicine strategy for oral delivery for the long-term treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Colette O’Grady
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kairui Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Deborah Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Pei-Yin Ho
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Roca Oporto F, Andrades Gómez C, Montilla Cosano G, Aguilera AL, Rocha JL. Prospective Study on Individualized Dose Adjustment of Tolvaptan Based on Urinary Osmolality in Patients With ADPKD. Kidney Int Rep 2024; 9:1031-1039. [PMID: 38765583 PMCID: PMC11101827 DOI: 10.1016/j.ekir.2024.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Tolvaptan has been shown to reduce renal volume and delay disease progression in autosomal-dominant polycystic kidney disease (ADPKD). However, no biomarkers are currently available to guide dose adjustment. We aimed to explore the possibility of individualized tolvaptan dose adjustments based on cut-off values for urinary osmolality (OsmU). Methods This prospective cohort study included patients with ADPKD, with rapid disease progression. Tolvaptan treatment was initiated at a dose of 45/15 mg and increased based on OsmU, with a limit set at 200 mOsm/kg. Primary renal events (25% decrease in estimated glomerular filtration rate [eGFR] during treatment), within-patient eGFR slope, and side effects were monitored during the 3-year follow-up. Results Forty patients participated in the study. OsmU remained below 200 mOsm/kg throughout the study period, and most patients required the minimum tolvaptan dose (mean dose, 64 [±10] mg), with a low discontinuation rate (5%). The mean annual decline in eGFR was -3.05 (±2.41) ml/min per 1.73 m2 during tolvaptan treatment, compared to the period preceding treatment, corresponding to a reduction in eGFR decline of more than 50%. Primary renal events occurred in 20% of patients (mean time to onset, 31 months; 95% confidence interval [CI] = 28-34). Conclusion Individualized tolvaptan dose adjustment based on OsmU in patients with ADPKD and rapid disease progression provided benefits in terms of reducing eGFR decline, compared with reference studies, and displayed lower dropout rates and fewer side effects. Further studies are required to confirm optimal strategies for the use of OsmU for tolvaptan dose adjustment in patients with ADPKD.
Collapse
Affiliation(s)
- F.J. Roca Oporto
- Unidad de Gestión Clínica Nefrología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - C. Andrades Gómez
- Unidad de Gestión Clínica Nefrología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - G. Montilla Cosano
- Unidad de Gestión Clínica Nefrología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - A. Luna Aguilera
- Unidad de Gestión Clínica Nefrología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - José L. Rocha
- Unidad de Gestión Clínica Nefrología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
- Nefrología, Departamento Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
11
|
Jaturanratsamee K, Jiwaganont P, Sukumolanan P, Petchdee S. PKD1 gene mutation and ultrasonographic characterization in cats with renal cysts. F1000Res 2024; 12:760. [PMID: 39108347 PMCID: PMC11301141 DOI: 10.12688/f1000research.134906.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background Polycystic kidney disease (PKD) has a complex phenotype partly explained by genetic variants related to this disease. Ultrasonography is a promising approach for defining clinical signs. This study aimed to assess kidney characteristics in cats with Polycystin-1 (PKD1) gene mutations and wild-type cats. Kidney characteristics were identified by ultrasonography. Methods A total of 108 cats of variable breeds aged an average of 37.01±3.50 months were included. Blood examination and biochemical tests were evaluated. For cystic formation, renal ultrasound was performed. The PKD1 gene mutation was identified via polymerase chain reaction (PCR) and DNA sequencing. Matrix correlation and effectiveness of ultrasound for PKD1 mutation detection were determined. Results The results showed that 19.44% of cats had PKD1 mutations, a high prevalence in Persian and Persian-related breed cats. Our results demonstrated the characteristics of kidneys in wild-type cats and cats with gene mutations. Based on ultrasonography results, there was an association between cats with gene mutations and cyst formation. The findings indicated that ultrasound did not detect cysts in cats aged 4-36 months, supporting the evidence that PKD1 gene mutations may not be present. This study found high sensitivity and renal specificity ultrasound for PKD1 heterozygous mutation. Moreover, cystic formation via renal ultrasound showed an increased risk for PKD1 mutation 2,623 times compared to normal kidneys. Conclusions Ultrasonographic examination, coupled with genetic investigations, may help to clarify the phenotypic variability of PKD1. The phenotypic profile of PKD1 will guide therapeutic outcomes and reduce the prevalence of PKD morbidity and mortality in cats.
Collapse
Affiliation(s)
- Kotchapol Jaturanratsamee
- Graduate School, Bio-Veterinary Science Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Bangkok, Thailand
| | - Palin Jiwaganont
- Graduate School, Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Bangkok, Thailand
| | - Pratch Sukumolanan
- Graduate School, Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Bangkok, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Bangkok, Thailand
| |
Collapse
|
12
|
Cheng T, Mariappan A, Langner E, Shim K, Gopalakrishnan J, Mahjoub MR. Inhibiting centrosome clustering reduces cystogenesis and improves kidney function in autosomal dominant polycystic kidney disease. JCI Insight 2024; 9:e172047. [PMID: 38385746 DOI: 10.1172/jci.insight.172047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder accounting for approximately 5% of patients with renal failure, yet therapeutics for the treatment of ADPKD remain limited. ADPKD tissues display abnormalities in the biogenesis of the centrosome, a defect that can cause genome instability, aberrant ciliary signaling, and secretion of pro-inflammatory factors. Cystic cells form excess centrosomes via a process termed centrosome amplification (CA), which causes abnormal multipolar spindle configurations, mitotic catastrophe, and reduced cell viability. However, cells with CA can suppress multipolarity via "centrosome clustering," a key mechanism by which cells circumvent apoptosis. Here, we demonstrate that inhibiting centrosome clustering can counteract the proliferation of renal cystic cells with high incidences of CA. Using ADPKD human cells and mouse models, we show that preventing centrosome clustering with 2 inhibitors, CCB02 and PJ34, blocks cyst initiation and growth in vitro and in vivo. Inhibiting centrosome clustering activates a p53-mediated surveillance mechanism leading to apoptosis, reduced cyst expansion, decreased interstitial fibrosis, and improved kidney function. Transcriptional analysis of kidneys from treated mice identified pro-inflammatory signaling pathways implicated in CA-mediated cystogenesis and fibrosis. Our results demonstrate that centrosome clustering is a cyst-selective target for the improvement of renal morphology and function in ADPKD.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ewa Langner
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyuhwan Shim
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Jena, Germany
| | - Moe R Mahjoub
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Nejabat M, Hadizadeh F, Nejabat M, Rajabi O. Novel hits for autosomal dominated polycystic kidney disease (ADPKD) targeting derived by in silico screening on ZINC-15 natural product database. J Biomol Struct Dyn 2024; 42:885-902. [PMID: 37029756 DOI: 10.1080/07391102.2023.2196700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disorder that leads to growth cysts in the kidney, ultimately resulting in loss of function. Currently, no effective drug therapy can be safely used in the clinic. So, looking for effective therapeutic drugs is urgent for treating ADPKD. Our natural product library was prepared based on the ZINC-15 database. Lipinski's rule of five, drug-likeness, and toxicity screening of the designed library were evaluated. Swiss model online server was used for modeling of GANAB target. Finally, docking-based screening against ADPKD targets was done by MOE 2019 software. The top 14 favorable druglike and non-toxic hits were selected for docking studies. Our results showed that compound-10 (ZINC 6073947) as a sesquiterpene coumarin had more negative binding interaction into the active site of PPARG, OXSR1, GANAB, AVPR2, and PC2 with docking scores of -8.22, -7.52, -6.98, -6.61 and -6.05 kcal/mol, respectively, in comparison to Curcumin, as a natural product that is now in phase 4 clinical trial in ADPKD disease, with an affinity of -8.03, -6.42, -6.82, -5.84 and -5.10 kcal/mol, respectively. Furthermore, seven sesquiterpene coumarins similar to compound 10 were generated and docked. Farnesiferol B (16), compared to compound-10, showed binding affinity of -8.16, -6.4, -7.46, -6.92, and -6.11 kcal/mol against the above targets, respectively. Molecular dynamics, which was done on the compound-10 and 16 (Farnesiferol B) in complex with PPARG, GANAB, and AVPR2, showed more negative binding free-energy than Pioglitazone, Miglitol, and Tolvaptan as FDA-approved drugs for each target, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Nakae A, Ozaki E, Kuriyama N, Tomida S, Koyama T. Copeptin is associated with microalbuminuria and renal function in the general Japanese population. Endocr J 2023; 70:797-804. [PMID: 37286517 DOI: 10.1507/endocrj.ej23-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
An association between copeptin (precursor molecule of arginine vasopressin) and markers for renal function has been reported, but data on the Japanese population has been limited. In this study, we investigated whether elevated copeptin levels are associated with microalbuminuria and renal dysfunction in the general Japanese population. A total of 1,262 participants (842 female and 420 male) were enrolled. Multiple regression analysis was performed to assess the association of copeptin levels (logarithm) with estimated glomerular filtration rate (eGFR) and the urine albumin-to-creatinine ratio (UACR) after adjusting for age, BMI, and lifestyle variables. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression methods in which chronic kidney disease (CKD) was the dependent variable. The copeptin levels differed significantly with sex, but were not found to be related to age or the span of time from preceding meal to blood sampling. In female participants, copeptin level was negatively correlated with eGFR (beta = -0.100, p-value = 0.006) and positively correlated with UACR (beta = 0.099, p-value = 0.003). In male participants, a negative correlation (beta = -0.140, p-value = 0.008) was observed for eGFR. In both females and males, those with high copeptin levels had more than double the ORs of CKD (OR = 2.1-2.9) adjusted for CKD-related factors. The present study found elevated copeptin levels to be associated with renal function loss in the Japanese population and microalbuminuria in female. Moreover, it was evident that high copeptin levels are associated with CKD. These results suggest that copeptin could be considered a marker of renal function.
Collapse
Affiliation(s)
- Aya Nakae
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Satomi Tomida
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Department of Endocrine and Breast Surgery, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
15
|
Stompór T, Adamczak M, Kurnatowska I, Naumnik B, Nowicki M, Tylicki L, Winiarska A, Krajewska M. Pharmacological Nephroprotection in Non-Diabetic Chronic Kidney Disease-Clinical Practice Position Statement of the Polish Society of Nephrology. J Clin Med 2023; 12:5184. [PMID: 37629226 PMCID: PMC10455736 DOI: 10.3390/jcm12165184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic kidney disease (CKD) is a modern epidemic worldwide. Introducing renin-angiotensin system (RAS) inhibitors (i.e., ACEi or ARB) not only as blood-pressure-lowering agents, but also as nephroprotective drugs with antiproteinuric potential was a milestone in the therapy of CKD. For decades, this treatment remained the only proven strategy to slow down CKD progression. This situation changed some years ago primarily due to the introduction of drugs designed to treat diabetes that turned into nephroprotective strategies not only in diabetic kidney disease, but also in CKD unrelated to diabetes. In addition, several drugs emerged that precisely target the pathogenetic mechanisms of particular kidney diseases. Finally, the role of metabolic acidosis in CKD progression (and not only the sequelae of CKD) came to light. In this review, we aim to comprehensively discuss all relevant therapies that slow down the progression of non-diabetic kidney disease, including the lowering of blood pressure, through the nephroprotective effects of ACEi/ARB and spironolactone independent from BP lowering, as well as the role of sodium-glucose co-transporter type 2 inhibitors, acidosis correction and disease-specific treatment strategies. We also briefly address the therapies that attempt to slow down the progression of CKD, which did not confirm this effect. We are convinced that our in-depth review with practical statements on multiple aspects of treatment offered to non-diabetic CKD fills the existing gap in the available literature. We believe that it may help clinicians who take care of CKD patients in their practice. Finally, we propose the strategy that should be implemented in most non-diabetic CKD patients to prevent disease progression.
Collapse
Affiliation(s)
- Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland
| | - Marcin Adamczak
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, 40-027 Katowice, Poland
| | - Ilona Kurnatowska
- Department of Internal Diseases and Transplant Nephrology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Beata Naumnik
- Ist Department of Nephrology and Transplantation with Dialysis Unit, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland
| | - Michał Nowicki
- Department of Nephrology, Hypertension and Kidney Transplantation, Central University Hospital, Medical University of Lodz, 92-213 Lodz, Poland
| | - Leszek Tylicki
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, 80-952 Gdansk, Poland
| | - Agata Winiarska
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
16
|
Capelli I, Lerario S, Aiello V, Provenzano M, Di Costanzo R, Squadrani A, Vella A, Vicennati V, Poli C, La Manna G, Baraldi O. Diet and Physical Activity in Adult Dominant Polycystic Kidney Disease: A Review of the Literature. Nutrients 2023; 15:2621. [PMID: 37299584 PMCID: PMC10255338 DOI: 10.3390/nu15112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autosomal polycystic kidney disease is the most common inherited kidney disease determining 5% of all end-stage kidney disease. The only therapy approved for this condition is Tolvaptan, which, with its aquaretic effect, has a strong effect on patients' daily life. Recently, the literature has been enriched with new works that analyze possible non-pharmacological therapeutic strategies to slow cysts' enlargement and chronic kidney disease progression. Among them, dietary schemes reducing carbohydrate intake and inducing ketoses have been demonstrated to have efficacy in several pre-clinical and clinical studies. A ketogenic diet, calorie restriction, intermittent fasting, and time-restricted feeding can reduce aerobic glycolysis and inhibit the mTOR pathway, producing a reduction in cyst cell proliferation, a reduction in kidney volume, and helping to preserve kidney function. ADPKD's burden of disease has an impact on patients' quality of life, and the possibility to play sports or carry out physical exercise can help people in everyday life. The multisystemic character of the disease, especially cardiovascular involvement, needs to be carefully evaluated to establish the quality and quantity of physical activity that patients can safely carry out.
Collapse
Affiliation(s)
- Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Sarah Lerario
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Valeria Aiello
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Roberta Di Costanzo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Andrea Squadrani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Anna Vella
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Valentina Vicennati
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Carolina Poli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
- Sviluppo Professionale e Implementazione della Ricerca nelle Professioni Sanitarie, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Olga Baraldi
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
| |
Collapse
|
17
|
Patel SJ, Sadowski CK. An update on treatments for autosomal dominant polycystic kidney disease. JAAPA 2023; 36:11-16. [PMID: 37163712 DOI: 10.1097/01.jaa.0000931420.46207.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) is less common than primary hypertension or diabetes but should be considered as a possible cause of end-stage renal disease, especially in young patients without comorbidities. Because of ADPKD's nonspecific symptoms, the diagnosis, treatment, and pertinent patient education may be delayed. This article describes ADPKD and its management, including tolvaptan, a new treatment with the potential to reduce or delay morbidity. However, only a subset of patients qualifies for this expensive treatment.
Collapse
Affiliation(s)
- Suhani Janak Patel
- Suhani Janak Patel , a recent graduate of the PA program at Mercer University in Atlanta, Ga., practices in the ED at South Georgia Medical Center in Valdosta, Ga. Catherine K. Sadowski is a clinical associate professor in the PA program at Mercer University. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | |
Collapse
|
18
|
Shillingford JM, Shayman JA. Functional TFEB activation characterizes multiple models of renal cystic disease and loss of polycystin-1. Am J Physiol Renal Physiol 2023; 324:F404-F422. [PMID: 36794754 PMCID: PMC10069964 DOI: 10.1152/ajprenal.00237.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic kidney disease is a disorder of renal epithelial growth and differentiation. Transcription factor EB (TFEB), a master regulator of lysosome biogenesis and function, was studied for a potential role in this disorder. Nuclear translocation and functional responses to TFEB activation were studied in three murine models of renal cystic disease, including knockouts of folliculin, folliculin interacting proteins 1 and 2, and polycystin-1 (Pkd1) as well as in mouse embryonic fibroblasts lacking Pkd1 and three-dimensional cultures of Madin-Darby canine kidney cells. Nuclear translocation of Tfeb characterized cystic but not noncystic renal tubular epithelia in all three murine models as both an early and sustained response to cyst formation. Epithelia expressed elevated levels of Tfeb-dependent gene products, including cathepsin B and glycoprotein nonmetastatic melanoma protein B. Nuclear Tfeb translocation was observed in mouse embryonic fibroblasts lacking Pkd1 but not wild-type fibroblasts. Pkd1 knockout fibroblasts were characterized by increased Tfeb-dependent transcripts, lysosomal biogenesis and repositioning, and increased autophagy. The growth of Madin-Darby canine kidney cell cysts was markedly increased following exposure to the TFEB agonist compound C1, and nuclear Tfeb translocation was observed in response to both forskolin and compound C1 treatment. Nuclear TFEB also characterized cystic epithelia but not noncystic tubular epithelia in human patients with autosomal dominant polycystic kidney disease. Noncanonical activation of TFEB is characteristic of cystic epithelia in multiple models of renal cystic disease including those associated with loss of Pkd1. Nuclear TFEB translocation is functionally active in these models and may be a component of a general pathway contributing to cystogenesis and growth.NEW & NOTEWORTHY Changes in epithelial cell metabolism are important in renal cyst development. The role of TFEB, a transcriptional regulator of lysosomal function, was explored in several models of renal cystic disease and human ADPKD tissue sections. Nuclear TFEB translocation was uniformly observed in cystic epithelia in each model of renal cystic disease examined. TFEB translocation was functionally active and associated with lysosomal biogenesis and perinuclear repositioning, increased TFEB-associated protein expression, and activation of autophagic flux. Compound C1, a TFEB agonist, promoted cyst growth in 3-D cultures of MDCK cells. Nuclear TFEB translocation is an underappreciated signaling pathway for cystogenesis that may represent a new paradigm for cystic kidney disease.
Collapse
Affiliation(s)
- Jonathan M Shillingford
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, United States
| | - James A Shayman
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
19
|
Zhang J, Chen J, Xu J, Xue C, Mao Z. Plant-derived compounds for treating autosomal dominant polycystic kidney disease. FRONTIERS IN NEPHROLOGY 2023; 3:1071441. [PMID: 37675342 PMCID: PMC10479581 DOI: 10.3389/fneph.2023.1071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 09/08/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic hereditary kidney disease, is the fourth leading cause of end-stage kidney disease worldwide. In recent years, significant progress has been made in delaying ADPKD progression with different kinds of chemical drugs, such as tolvaptan, rapamycin, and somatostatin. Meanwhile, numerous plant-derived compounds have been investigated for their beneficial effects on slowing ADPKD progression. Among them, saikosaponin-d, Ganoderma triterpenes, curcumin, ginkgolide B, steviol, resveratrol, Sparganum stoloniferum Buch.-Ham, Cordyceps sinensis, triptolide, quercitrin, naringin, cardamonin, gambogic acid, and olive leaf extract have been found to retard renal cyst development by inhibiting cell proliferation or promoting cell apoptosis in renal cyst-lining epithelial cells. Metformin, a synthesized compound derived from French lilac or goat's rue (Galega officinalis), has been proven to retard the progression of ADPKD. This review focuses on the roles and mechanisms of plant-derived compounds in treating ADPKD, which may constitute promising new therapeutics in the future.
Collapse
Affiliation(s)
- Jieting Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiaxin Chen
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing Xu
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng Xue
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
20
|
Hallows KR, Li H, Saitta B, Sepehr S, Huang P, Pham J, Wang J, Mancino V, Chung EJ, Pinkosky SL, Pastor-Soler NM. Beneficial effects of bempedoic acid treatment in polycystic kidney disease cells and mice. Front Mol Biosci 2022; 9:1001941. [PMID: 36504724 PMCID: PMC9730828 DOI: 10.3389/fmolb.2022.1001941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
ADPKD has few therapeutic options. Tolvaptan slows disease but has side effects limiting its tolerability. Bempedoic acid (BA), an ATP citrate-lyase (ACLY) inhibitor FDA-approved for hypercholesterolemia, catalyzes a key step in fatty acid/sterol synthesis important for cell proliferation. BA is activated by very long-chain acyl-CoA synthetase (FATP2) expressed primarily in kidney and liver. BA also activates AMPK. We hypothesized that BA could be a novel ADPKD therapy by inhibiting cyst growth, proliferation, injury, and metabolic dysregulation via ACLY inhibition and AMPK activation. Pkd1-null kidney cell lines derived from mouse proximal tubule (PT) and collecting duct (IMCD) were grown in 2D or 3D Matrigel cultures and treated ± BA, ± SB-204990 (another ACLY inhibitor) or with Acly shRNA before cyst analysis, immunoblotting or mitochondrial assays using MitoSox and MitoTracker staining. Pkd1 fl/fl ; Pax8-rtTA; Tet-O-Cre C57BL/6J mice were induced with doxycycline injection on postnatal days 10 and 11 (P10-P11) and then treated ± BA (30 mg/kg/d) ± tolvaptan (30-100 mg/kg/d) by gavage from P12-21. Disease severity was determined by % total-kidney-weight-to-bodyweight (%TKW/BW) and BUN levels at euthanasia (P22). Kidney and liver homogenates were immunoblotted for expression of key biomarkers. ACLY expression and activity were upregulated in Pkd1-null PT and IMCD-derived cells vs. controls. Relative to controls, both BA and SB-204990 inhibited cystic growth in Pkd1-null kidney cells, as did Acly knockdown. BA inhibited mitochondrial superoxide production and promoted mitochondrial elongation, suggesting improved mitochondrial function. In ADPKD mice, BA reduced %TKW/BW and BUN to a similar extent as tolvaptan vs. untreated controls. Addition of BA to tolvaptan caused a further reduction in %TKW/BW and BUN vs. tolvaptan alone. BA generally reduced ACLY and stimulated AMPK activity in kidneys and livers vs. controls. BA also inhibited mTOR and ERK signaling and reduced kidney injury markers. In liver, BA treatment, both alone and together with tolvaptan, increased mitochondrial biogenesis while inhibiting apoptosis. We conclude that BA and ACLY inhibition inhibited cyst growth in vitro, and BA decreased ADPKD severity in vivo. Combining BA with tolvaptan further improved various ADPKD disease parameters. Repurposing BA may be a promising new ADPKD therapy, having beneficial effects alone and along with tolvaptan.
Collapse
Affiliation(s)
- Kenneth R. Hallows
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Hui Li
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Biagio Saitta
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Saman Sepehr
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Polly Huang
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jessica Pham
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jonathan Wang
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Valeria Mancino
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Eun Ji Chung
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | | | - Núria M. Pastor-Soler
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States,*Correspondence: Núria M. Pastor-Soler,
| |
Collapse
|
21
|
Zhu Y, Yang S, Lv L, Zhai X, Wu G, Qi X, Dong D, Tao X. Research Progress on the Positive and Negative Regulatory Effects of Rhein on the Kidney: A Review of Its Molecular Targets. Molecules 2022; 27:molecules27196572. [PMID: 36235108 PMCID: PMC9573519 DOI: 10.3390/molecules27196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, both acute kidney injury (AKI) and chronic kidney disease (CKD) are considered to be the leading public health problems with gradually increasing incidence rates around the world. Rhein is a monomeric component of anthraquinone isolated from rhubarb, a traditional Chinese medicine. It has anti-inflammation, anti-oxidation, anti-apoptosis, anti-bacterial and other pharmacological activities, as well as a renal protective effects. Rhein exerts its nephroprotective effects mainly through decreasing hypoglycemic and hypolipidemic, playing anti-inflammatory, antioxidant and anti-fibrotic effects and regulating drug-transporters. However, the latest studies show that rhein also has potential kidney toxicity in case of large dosages and long use times. The present review highlights rhein's molecular targets and its different effects on the kidney based on the available literature and clarifies that rhein regulates the function of the kidney in a positive and negative way. It will be helpful to conduct further studies on how to make full use of rhein in the kidney and to avoid kidney damage so as to make it an effective kidney protection drug.
Collapse
|
22
|
Sundar SV, Zhou JX, Magenheimer BS, Reif GA, Wallace DP, Georg GI, Jakkaraj SR, Tash JS, Yu ASL, Li X, Calvet JP. The lonidamine derivative H2-gamendazole reduces cyst formation in polycystic kidney disease. Am J Physiol Renal Physiol 2022; 323:F492-F506. [PMID: 35979967 PMCID: PMC9529276 DOI: 10.1152/ajprenal.00095.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.
Collapse
Affiliation(s)
- Shirin V Sundar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Julie Xia Zhou
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Brenda S Magenheimer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail A Reif
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Darren P Wallace
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Sudhakar R Jakkaraj
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Tash
- Department of Molecular and Integrated Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaogang Li
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
23
|
Wang W, Silva LM, Wang HH, Kavanaugh MA, Pottorf TS, Allard BA, Jacobs DT, Dong R, Cornelius JT, Chaturvedi A, Swenson-Fields KI, Fields TA, Pritchard MT, Sharma M, Slawson C, Wallace DP, Calvet JP, Tran PV. Ttc21b deficiency attenuates autosomal dominant polycystic kidney disease in a kidney tubular- and maturation-dependent manner. Kidney Int 2022; 102:577-591. [PMID: 35644283 PMCID: PMC9398994 DOI: 10.1016/j.kint.2022.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023]
Abstract
Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked β-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Bailey A Allard
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rouchen Dong
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joseph T Cornelius
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aakriti Chaturvedi
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Katherine I Swenson-Fields
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michele T Pritchard
- Pharmacology, Toxicology and Therapeutics, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Darren P Wallace
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
24
|
Raina R, Houry A, Rath P, Mangat G, Pandher D, Islam M, Khattab AG, Kalout JK, Bagga S. Clinical Utility and Tolerability of Tolvaptan in the Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Drug Healthc Patient Saf 2022; 14:147-159. [PMID: 36105663 PMCID: PMC9467294 DOI: 10.2147/dhps.s338050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
- Department of Nephrology, Akron Children’s Hospital, Akron, OH, USA
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
- Correspondence: Rupesh Raina, Consultant Nephrologist, Adult-Pediatric Kidney Disease/Hypertension, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA, Tel +1 330-543-8950, Fax +1 330-543-3980, Email ;
| | - Ahmad Houry
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Pratik Rath
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Guneive Mangat
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Davinder Pandher
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
- Mount Sinai South Nassau, Oceanside, NY, 11570, USA
| | - Muhammad Islam
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | | | - Joseph K Kalout
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Sumedha Bagga
- Questrom School of Business, Boston University, Boston, MA, USA
| |
Collapse
|
25
|
Hansen JN, Kaiser F, Leyendecker P, Stüven B, Krause J, Derakhshandeh F, Irfan J, Sroka TJ, Preval KM, Desai PB, Kraut M, Theis H, Drews A, De‐Domenico E, Händler K, Pazour GJ, Henderson DJP, Mick DU, Wachten D. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep 2022; 23:e54315. [PMID: 35695071 PMCID: PMC9346484 DOI: 10.15252/embr.202154315] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | - Fabian Kaiser
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | - Birthe Stüven
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | | | | | - Tommy J Sroka
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Kenley M Preval
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Paurav B Desai
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Michael Kraut
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Heidi Theis
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Anna‐Dorothee Drews
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Elena De‐Domenico
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Kristian Händler
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Gregory J Pazour
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | | | - David U Mick
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
26
|
Bichlmayer EM, Mahl L, Hesse L, Pion E, Haller V, Moehwald A, Hackl C, Werner JM, Schlitt HJ, Schwarz S, Kainz P, Brochhausen C, Groeger C, Steger F, Kölbl O, Daniel C, Amann K, Kraus A, Buchholz B, Aung T, Haerteis S. A 3D In Vivo Model for Studying Human Renal Cystic Tissue and Mouse Kidney Slices. Cells 2022; 11:cells11152269. [PMID: 35892566 PMCID: PMC9330914 DOI: 10.3390/cells11152269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background: Autosomal dominant polycystic kidney disease (ADPKD) is a frequent monogenic disorder that leads to progressive renal cyst growth and renal failure. Strategies to inhibit cyst growth in non-human cyst models have often failed in clinical trials. There is a significant need for models that enable studies of human cyst growth and drug trials. (2) Methods: Renal tissue from ADPKD patients who received a nephrectomy as well as adult mouse kidney slices were cultured on a chorioallantoic membrane (CAM) for one week. The cyst volume was monitored by microscopic and CT-based applications. The weight and angiogenesis were quantified. Morphometric and histological analyses were performed after the removal of the tissues from the CAM. (3) Results: The mouse and human renal tissue mostly remained vital for about one week on the CAM. The growth of cystic tissue was evaluated using microscopic and CT-based volume measurements, which correlated with weight and an increase in angiogenesis, and was accompanied by cyst cell proliferation. (4) Conclusions: The CAM model might bridge the gap between animal studies and clinical trials of human cyst growth, and provide a drug-testing platform for the inhibition of cyst enlargement. Real-time analyses of mouse kidney tissue may provide insights into renal physiology and reduce the need for animal experiments.
Collapse
Affiliation(s)
- Eva-Marie Bichlmayer
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.-M.B.); (L.M.); (L.H.); (E.P.); (V.H.); (A.M.); (T.A.)
| | - Lina Mahl
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.-M.B.); (L.M.); (L.H.); (E.P.); (V.H.); (A.M.); (T.A.)
| | - Leo Hesse
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.-M.B.); (L.M.); (L.H.); (E.P.); (V.H.); (A.M.); (T.A.)
| | - Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.-M.B.); (L.M.); (L.H.); (E.P.); (V.H.); (A.M.); (T.A.)
| | - Victoria Haller
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.-M.B.); (L.M.); (L.H.); (E.P.); (V.H.); (A.M.); (T.A.)
| | - Andreas Moehwald
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.-M.B.); (L.M.); (L.H.); (E.P.); (V.H.); (A.M.); (T.A.)
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (C.H.); (J.M.W.); (H.J.S.)
| | - Jens M. Werner
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (C.H.); (J.M.W.); (H.J.S.)
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (C.H.); (J.M.W.); (H.J.S.)
| | | | - Philipp Kainz
- KML Vision GmbH, A-8020 Graz, Austria; (S.S.); (P.K.)
| | | | - Christian Groeger
- Department for Radiotherapy, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (C.G.); (F.S.); (O.K.)
| | - Felix Steger
- Department for Radiotherapy, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (C.G.); (F.S.); (O.K.)
| | - Oliver Kölbl
- Department for Radiotherapy, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (C.G.); (F.S.); (O.K.)
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.D.); (K.A.)
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.D.); (K.A.)
| | - Andre Kraus
- Department of Nephrology and Hypertension, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| | - Björn Buchholz
- Department of Nephrology and Hypertension, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany; (A.K.); (B.B.)
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.-M.B.); (L.M.); (L.H.); (E.P.); (V.H.); (A.M.); (T.A.)
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469 Deggendorf, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.-M.B.); (L.M.); (L.H.); (E.P.); (V.H.); (A.M.); (T.A.)
- Correspondence:
| |
Collapse
|
27
|
Oporto FR, Rocha-Castilla J. Raynaud phenomenon triggered by the vasopressin V2 receptor antagonist tolvaptan in a patient with autosomal dominant polycystic kidney disease and Sjögren syndrome. Clin Kidney J 2021; 15:827-828. [PMID: 35371438 PMCID: PMC8967664 DOI: 10.1093/ckj/sfab260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/14/2022] Open
|
28
|
Liu F, Feng C, Shen H, Fu H, Mao J. Tolvaptan in Pediatric Autosomal Dominant Polycystic Kidney Disease: From Here to Where? KIDNEY DISEASES 2021; 7:343-349. [PMID: 34604341 DOI: 10.1159/000517186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder, accounting for approximately 5% of all ESRD cases worldwide. As a vasopressin receptor 2 antagonist, tolvaptan is the FDA-approved therapeutic agent for ADPKD, which is only made available to a limited number of adult patients; however, its efficacy in pediatric patients has not been reported widely. Summary Tolvaptan was shown to delay ADPKD progression in the Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes (TEMPO) 3:4 study, Replicating Evidence of Preserved Renal Function: an Investigation of Tolvaptan Safety and Efficacy in ADPKD (REPRISE) trial, and other clinical studies. In addition to its effects on aquaretic adverse events and alanine aminotransferase elevation, the effect of tolvaptan on ADPKD is clear, sustained, and cumulative. While ADPKD is a progressive disease, the early intervention has been shown to be important and beneficial in hypotheses as well as in trials. The use of tolvaptan in pediatric ADPKD involves the following challenges: patient assessment, quality of life assessment, cost-effectiveness, safety, and tolerability. The ongoing, phase 3b, 2-part study (ClinicalTrials.gov identifier: NCT02964273) on the evaluation of tolvaptan in pediatric ADPKD (patients aged 12-17 years) may help obtain some insights. Key Messages This review focuses on the rationality of tolvaptan use in pediatric patients with ADPKD, the associated challenges, and the suggested therapeutic approaches.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyue Feng
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijun Shen
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huaidong Fu
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Aiello V, Fusaroli M, Raschi E, Palazzini M, Hu L, Barbuto S, Poluzzi E, Capelli I. Pulmonary Embolism in a Patient With ADPKD Treated With Tolvaptan: From the Clinical Experience to the Analysis of the Food and Drug Administration Adverse Event Reporting System Registry. Kidney Int Rep 2021; 6:2472-2477. [PMID: 34514208 PMCID: PMC8418968 DOI: 10.1016/j.ekir.2021.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Valeria Aiello
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Michele Fusaroli
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Massimiliano Palazzini
- Cardiology Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Lilio Hu
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Elisabetta Poluzzi
- Pharmacology Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Bellos I. Safety Profile of Tolvaptan in the Treatment of Autosomal Dominant Polycystic Kidney Disease. Ther Clin Risk Manag 2021; 17:649-656. [PMID: 34234441 PMCID: PMC8254589 DOI: 10.2147/tcrm.s286952] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant polycystic kidney disease constitutes the most prevalent hereditary kidney disease, associated with high rates of morbidity leading eventually to end-stage renal disease. Tolvaptan is a selective vasopressin antagonist and has emerged as a promising therapeutic option for patients with autosomal dominant polycystic kidney disease. The present review summarized current evidence regarding the safety profile of tolvaptan in patients with the disease. Consistent with its pharmacological action, aquaretic adverse events represent the most common side effects of tolvaptan, consisting of polyuria, pollakiuria and polydipsia. Gradual dose titration based on urinary osmolality, as well as dietary interventions aiming to reduce solute excretion, have been proposed as potential strategies to mitigate polyuria. In addition, tolvaptan administration may be complicated by liver injury, characterized by alanine aminotransferase and bilirubin elevations. Hepatotoxicity has been suggested to be triggered by impaired biliary clearance, activation of innate immunity and increased oxidative stress. Frequent monitoring of liver function tests has been shown to be effective in preventing Hy’s Law and liver failure cases. Uric acid elevation due to reduced renal excretion may lead to hyperuricemia and gout, although no drug discontinuations have been linked to these events. Future studies should confirm the safety profile of tolvaptan in large-scale real-world studies, clarify the pathogenetic pathways leading to hepatotoxicity and define its role in special populations, especially pediatric patients.
Collapse
Affiliation(s)
- Ioannis Bellos
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Morelli MC, Rendina M, La Manna G, Alessandria C, Pasulo L, Lenci I, Bhoori S, Messa P, Biancone L, Gesualdo L, Russo FP, Petta S, Burra P. Position paper on liver and kidney diseases from the Italian Association for the Study of Liver (AISF), in collaboration with the Italian Society of Nephrology (SIN). Dig Liver Dis 2021; 53 Suppl 2:S49-S86. [PMID: 34074490 DOI: 10.1016/j.dld.2021.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Liver and kidney are strictly connected in a reciprocal manner, in both the physiological and pathological condition. The Italian Association for the Study of Liver, in collaboration with the Italian Society of Nephrology, with this position paper aims to provide an up-to-date overview on the principal relationships between these two important organs. A panel of well-recognized international expert hepatologists and nephrologists identified five relevant topics: 1) The diagnosis of kidney damage in patients with chronic liver disease; 2) Acute kidney injury in liver cirrhosis; 3) Association between chronic liver disease and chronic kidney disease; 4) Kidney damage according to different etiology of liver disease; 5) Polycystic kidney and liver disease. The discussion process started with a review of the literature relating to each of the five major topics and clinical questions and related statements were subsequently formulated. The quality of evidence and strength of recommendations were graded according to the GRADE system. The statements presented here highlight the importance of strong collaboration between hepatologists and nephrologists for the management of critically ill patients, such as those with combined liver and kidney impairment.
Collapse
Affiliation(s)
- Maria Cristina Morelli
- Internal Medicine Unit for the treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico di S.Orsola, Bologna, Italy, Via Albertoni 15, 40138, Bologna, Italy
| | - Maria Rendina
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Policlinic Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Carlo Alessandria
- Division of Gastroenterology and Hepatology, Città della Salute e della Scienza Hospital, University of Torino, Corso Bramante 88, 10126, Torino, Italy
| | - Luisa Pasulo
- Gastroenterology and Transplant Hepatology, "Papa Giovanni XXIII" Hospital, Piazza OMS 1, 24127, Bergamo, Italy
| | - Ilaria Lenci
- Department of Internal Medicine, Hepatology Unit, Tor Vergata University, Rome Viale Oxford 81, 00133, Rome, Italy
| | - Sherrie Bhoori
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS, Istituto Nazionale Tumori, Via Giacomo Venezian, 1, 20133, Milan, Italy
| | - Piergiorgio Messa
- Unit of Nephrology, Università degli Studi di Milano, Via Commenda 15, 20122, Milano, Italy; Nephrology, Dialysis and Renal Transplant Unit-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Via Commenda 15, 20122 Milano, Italy
| | - Luigi Biancone
- Division of Nephrology Dialysis and Transplantation, Department of Medical Sciences, Città Della Salute e della Scienza Hospital, University of Turin, Corso Bramante, 88-10126, Turin, Italy
| | - Loreto Gesualdo
- Nephrology Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, Università degli Studi di Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Francesco Paolo Russo
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, PROMISE, University of Palermo, Piazza delle Cliniche, 2 90127, Palermo, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| | | |
Collapse
|
32
|
Nurmonen HJ, Huttunen T, Huttunen J, Kurtelius A, Kotikoski S, Junkkari A, Koivisto T, von Und Zu Fraunberg M, Kämäräinen OP, Lång M, Isoniemi H, Jääskeläinen JE, Lindgren AE. Lack of impact of polycystic kidney disease on the outcome of aneurysmal subarachnoid hemorrhage: a matched case-control study. J Neurosurg 2021; 134:1871-1878. [PMID: 32619983 DOI: 10.3171/2020.4.jns20544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors set out to study whether autosomal dominant polycystic kidney disease (ADPKD), an established risk factor for intracranial aneurysms (IAs), affects the acute course and long-term outcome of aneurysmal subarachnoid hemorrhage (aSAH). METHODS The outcomes of 32 ADPKD patients with aSAH between 1980 and 2015 (median age 43 years; 50% women) were compared with 160 matched (age, sex, and year of aSAH) non-ADPKD aSAH patients in the prospectively collected Kuopio Intracranial Aneurysm Patient and Family Database. RESULTS At 12 months, 75% of the aSAH patients with ADPKD versus 71% of the matched-control aSAH patients without ADPKD had good outcomes (Glasgow Outcome Scale score 4 or 5). There was no significant difference in condition at admission. Hypertension had been diagnosed before aSAH in 69% of the ADPKD patients versus 27% of controls (p < 0.001). Multiple IAs were present in 44% of patients in the ADPKD group versus 25% in the control group (p = 0.03). The most common sites of ruptured IAs were the anterior communicating artery (47% vs 29%, p = 0.05) and the middle cerebral artery bifurcation (28% vs 31%), and the median size was 6.0 mm versus 8.0 mm (p = 0.02). During the median follow-up of 11 years, a second aSAH occurred in 3 of 29 (10%) ADPKD patients and in 4 of 131 (3%) controls (p = 0.11). A fatal second aSAH due to a confirmed de novo aneurysm occurred in 2 (6%) of the ADPKD patients but in none of the controls (p = 0.027). CONCLUSIONS The outcomes of ADPKD patients with aSAH did not differ significantly from those of matched non-ADPKD aSAH patients. ADPKD patients had an increased risk of second aSAH from a de novo aneurysm, warranting long-term angiographic follow-up.
Collapse
Affiliation(s)
- Heidi J Nurmonen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
- 3Kuopio Health Center, Kuopio
| | - Terhi Huttunen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
| | - Jukka Huttunen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
| | - Arttu Kurtelius
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Satu Kotikoski
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Antti Junkkari
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
| | - Timo Koivisto
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Mikael von Und Zu Fraunberg
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Olli-Pekka Kämäräinen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Maarit Lång
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
- 4Neurointensive Care and
| | - Helena Isoniemi
- 6Transplantation and Liver Surgery Clinic, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Juha E Jääskeläinen
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
| | - Antti E Lindgren
- 1Neurosurgery of NeuroCenter, Kuopio University Hospital and University of Eastern Finland, Kuopio
- 2School of Medicine, Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio
- 5Department of Clinical Radiology, Kuopio University Hospital, Kuopio; and
| |
Collapse
|
33
|
Wang W, Pottorf TS, Wang HH, Dong R, Kavanaugh MA, Cornelius JT, Dennis KL, Apte U, Pritchard MT, Sharma M, Tran PV. IFT-A deficiency in juvenile mice impairs biliary development and exacerbates ADPKD liver disease. J Pathol 2021; 254:289-302. [PMID: 33900625 DOI: 10.1002/path.5685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Polycystic liver disease (PLD) is characterized by the growth of numerous biliary cysts and presents in patients with autosomal dominant polycystic kidney disease (ADPKD), causing significant morbidity. Interestingly, deletion of intraflagellar transport-B (IFT-B) complex genes in adult mouse models of ADPKD attenuates the severity of PKD and PLD. Here we examine the role of deletion of an IFT-A gene, Thm1, in PLD of juvenile and adult Pkd2 conditional knockout mice. Perinatal deletion of Thm1 resulted in disorganized and expanded biliary regions, biliary fibrosis, increased serum bile acids, and a shortened primary cilium on cytokeratin 19+ (CK19+) epithelial cells. In contrast, perinatal deletion of Pkd2 caused PLD, with multiple CK19+ epithelial cell-lined cysts, fibrosis, lengthened primary cilia, and increased Notch and ERK signaling. Perinatal deletion of Thm1 in Pkd2 conditional knockout mice increased hepatomegaly, liver necrosis, as well as serum bilirubin and bile acid levels, indicating enhanced liver disease severity. In contrast to effects in the developing liver, deletion of Thm1 alone in adult mice did not cause a biliary phenotype. Combined deletion of Pkd2 and Thm1 caused variable hepatic cystogenesis at 4 months of age, but differences in hepatic cystogenesis between Pkd2- and Pkd2;Thm1 knockout mice were not observed by 6 months of age. Similar to juvenile PLD, Notch and ERK signaling were increased in adult Pkd2 conditional knockout cyst-lining epithelial cells. Taken together, Thm1 is required for biliary tract development, and proper biliary development restricts PLD severity. Unlike IFT-B genes, Thm1 does not markedly attenuate hepatic cystogenesis, suggesting differences in regulation of signaling and cystogenic processes in the liver by IFT-B and -A. Notably, increased Notch signaling in cyst-lining epithelial cells may indicate that aberrant activation of this pathway promotes hepatic cystogenesis, presenting as a novel potential therapeutic target. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ruochen Dong
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joseph T Cornelius
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katie L Dennis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The Liver Center, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, The Liver Center, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
34
|
Philo D. Horseshoe Kidney in Conjunction With Autosomal Dominant Polycystic Kidney Disease: A Case Report. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2021. [DOI: 10.1177/8756479320988290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Horseshoe kidney in the presence of autosomal dominant polycystic kidney disease is a rare occurrence of two relatively common and unrelated renal findings. Visualization of multiple, bilateral cysts along with fusion of the kidneys by a midline isthmus can usually isolate these diagnoses. Accurate sonographic evaluation is essential in determining the degree of disease progression and possible complications associated with these diseases. Sonography is also useful in identifying extrarenal involvement and eliminating differential diagnoses.
Collapse
Affiliation(s)
- Dakota Philo
- Diagnostic Medical Sonography Program, UCHealth University of Colorado Hospital, Aurora, CO, USA
| |
Collapse
|
35
|
O’Hagan S, Kell DB. Structural Similarities between Some Common Fluorophores Used in Biology, Marketed Drugs, Endogenous Metabolites, and Natural Products. Mar Drugs 2020; 18:E582. [PMID: 33238416 PMCID: PMC7700180 DOI: 10.3390/md18110582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
It is known that at least some fluorophores can act as 'surrogate' substrates for solute carriers (SLCs) involved in pharmaceutical drug uptake, and this promiscuity is taken to reflect at least a certain structural similarity. As part of a comprehensive study seeking the 'natural' substrates of 'orphan' transporters that also serve to take up pharmaceutical drugs into cells, we have noted that many drugs bear structural similarities to natural products. A cursory inspection of common fluorophores indicates that they too are surprisingly 'drug-like', and they also enter at least some cells. Some are also known to be substrates of efflux transporters. Consequently, we sought to assess the structural similarity of common fluorophores to marketed drugs, endogenous mammalian metabolites, and natural products. We used a set of some 150 fluorophores along with standard fingerprinting methods and the Tanimoto similarity metric. Results: The great majority of fluorophores tested exhibited significant similarity (Tanimoto similarity > 0.75) to at least one drug, as judged via descriptor properties (especially their aromaticity, for identifiable reasons that we explain), by molecular fingerprints, by visual inspection, and via the "quantitative estimate of drug likeness" technique. It is concluded that this set of fluorophores does overlap with a significant part of both the drug space and natural products space. Consequently, fluorophores do indeed offer a much wider opportunity than had possibly been realised to be used as surrogate uptake molecules in the competitive or trans-stimulation assay of membrane transporter activities.
Collapse
Affiliation(s)
- Steve O’Hagan
- Department of Chemistry, The University of Manchester, Manchester M13 9PT, UK;
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Molecular, Integrative and Systems Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Tripathy N, Wang J, Tung M, Conway C, Chung EJ. Transdermal Delivery of Kidney-Targeting Nanoparticles Using Dissolvable Microneedles. Cell Mol Bioeng 2020; 13:475-486. [PMID: 33184578 PMCID: PMC7596160 DOI: 10.1007/s12195-020-00622-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) affects approximately 13% of the world's population and will lead to dialysis or kidney transplantation. Unfortunately, clinically available drugs for CKD show limited efficacy and toxic extrarenal side effects. Hence, there is a need to develop targeted delivery systems with enhanced kidney specificity that can also be combined with a patient-compliant administration route for such patients that need extended treatment. Towards this goal, kidney-targeted nanoparticles administered through transdermal microneedles (KNP/MN) is explored in this study. METHODS A KNP/MN patch was developed by incorporating folate-conjugated micelle nanoparticles into polyvinyl alcohol MN patches. Rhodamine B (RhB) was encapsulated into KNP as a model drug and evaluated for biocompatibility and binding with human renal epithelial cells. For MN, skin penetration efficiency was assessed using a Parafilm model, and penetration was imaged via scanning electron microscopy. In vivo, KNP/MN patches were applied on the backs of C57BL/6 wild type mice and biodistribution, organ morphology, and kidney function assessed. RESULTS KNP showed high biocompatibility and folate-dependent binding in vitro, validating KNP's targeting to folate receptors in vitro. Upon transdermal administration in vivo, KNP/MN patches dissolved within 30 min. At varying time points up to 48 h post-KNP/MN administration, higher accumulation of KNP was found in kidneys compared with MN that consisted of the non-targeting, control-NP. Histological evaluation demonstrated no signs of tissue damage, and kidney function markers, serum blood urea nitrogen and urine creatinine, were found to be within normal ranges, indicating preservation of kidney health. CONCLUSIONS Our studies show potential of KNP/MN patches as a non-invasive, self-administrable platform to direct therapies to the kidneys.
Collapse
Affiliation(s)
- Nirmalya Tripathy
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Madelynn Tung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Claire Conway
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA USA
- Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA USA
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
37
|
Huang Y, Jiang K, Zhang X, Chung EJ. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng Transl Med 2020; 5:e10173. [PMID: 33005739 PMCID: PMC7510478 DOI: 10.1002/btm2.10173] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) affects 15% of the US adult population. However, most clinically available drugs for CKD show low bioavailability to the kidneys and non-specific uptake by other organs which results in adverse side effects. Hence, a targeted, drug delivery strategy to enhance kidney drug delivery is highly desired. Recently, our group developed small, organic nanoparticles called peptide amphiphile micelles (PAM) functionalized with the zwitterionic peptide ligand, (KKEEE)3K, that passage through the glomerular filtration barrier for kidney accumulation. Despite high bioavailability to the kidneys, these micelles also accumulated in the liver to a similar extent. To further optimize the physicochemical properties and develop design rules for kidney-targeting micelles, we synthesized a library of PAMs of varying size, charge, and peptide repeats. Specifically, variations of the original (KKEEE)3K peptide including (KKEEE)2K, (KKEEE)K, (EEKKK)3E, (EEKKK)2E, (EEKKK)E, KKKKK, and EEEEE were functionalized onto nanoparticles, and peptide surface density and PEG linker molecular weight were altered. After characterization with transmission electron microscopy (TEM) and dynamic light scattering (DLS), nanoparticles were intravenously administered into wildtype mice, and biodistribution was assessed through ex vivo imaging. All micelles localized to the kidneys, but nanoparticles that are positively-charged, close to the renal filtration size cut-off, and consisted of additional zwitterionic peptide sequences generally showed higher renal accumulation. Upon immunohistochemistry, micelles were confirmed to bind to the multiligand receptor, megalin, and histological analyses showed no tissue damage. Our study provides insight into the design of micelle carriers for kidney targeting and their potential for future therapeutic application.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kairui Jiang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xuting Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eun Ji Chung
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Medicine, Division of Nephrology and HypertensionUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, Division of Vascular Surgery and Endovascular TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
38
|
Wang J, Tripathy N, Chung EJ. Targeting and therapeutic peptide-based strategies for polycystic kidney disease. Adv Drug Deliv Rev 2020; 161-162:176-189. [PMID: 32866560 PMCID: PMC7736157 DOI: 10.1016/j.addr.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic kidney disease (PKD) is characterized by progressive cyst growth and is a leading cause of renal failure worldwide. Currently, there are limited therapeutic options available to PKD patients, and only one drug, tolvaptan, has been FDA-approved to slow cyst progression. Similar to other small molecule drugs, however, tolvaptan is costly, only moderately effective, and causes adverse events leading to high patient dropout rates. Peptides may mitigate many drawbacks of small molecule drugs, as they can be highly tissue-specific, biocompatible, and economically scaled-up. Peptides can function as targeting ligands that direct therapies to diseased renal tissue, or be potent as therapeutic agents themselves. This review discusses various aberrant signaling pathways in PKD and renal receptors that can be potential targets of peptide-mediated strategies. Additionally, peptides utilized in other kidney applications, but may prove useful in the context of PKD, are highlighted. Insights into novel peptide-based solutions that have potential to improve clinical management of PKD are provided.
Collapse
Affiliation(s)
- Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Nirmalya Tripathy
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA; Department of Medicine, Division of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, USA; Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
39
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
40
|
Etiology and impact on outcomes of polycystic kidney disease in abdominal aortic aneurysm. Surg Today 2020; 50:1213-1222. [PMID: 32253513 DOI: 10.1007/s00595-020-01997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE We investigated the etiology and impact on outcomes of polycystic kidney disease in patients with abdominal aortic aneurysm. METHODS Eight-hundred patients who underwent open (n = 603) or endovascular aortic repair (n = 197) were divided into three groups: no cyst (n = 204), non-polycystic kidney (n = 503), and polycystic kidney (≥ 5 cysts in the bilateral kidneys, n = 93). The characteristics and outcomes were compared among the groups. RESULTS In the polycystic kidney group, the age was increased and the proportions of patients with male sex, hypertension, and estimated glomerular filtration rate < 30 mL/min/1.73 m2 were greater. The overall hospital mortality rates were similar. The incidence of acute kidney injury after elective open aortic repair was increased in the polycystic kidney group (12%, 17%, and 29%, P = 0.020). In the polycystic kidney group, 80 patients did not have renal enlargement or a family history of renal disease, while 13 (corresponding to 1.6% [13/800] of the overall patients), had renal enlargement, suggesting the possibility of hereditary polycystic kidney disease. CONCLUSIONS In our cohort, 1.6% of the patients with abdominal aortic aneurysm who underwent surgery were at risk of hereditary polycystic kidney disease. Polycystic kidney disease was associated with acute kidney injury after open aortic repair.
Collapse
|
41
|
Ramos AM, Fernández-Fernández B, Pérez-Gómez MV, Carriazo Julio SM, Sanchez-Niño MD, Sanz A, Ruiz-Ortega M, Ortiz A. Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opin Drug Discov 2019; 15:101-115. [PMID: 31736379 DOI: 10.1080/17460441.2020.1690450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Chronic kidney disease (CKD) is characterized by increased risks of progression to end-stage kidney disease requiring dialysis and cardiovascular mortality, predicted to be among the five top causes of death by 2040. Only the design and optimization of novel strategies to develop new drugs to treat CKD will contain this trend. Current therapy for CKD includes nonspecific therapy targeting proteinuria and/or hypertension and cause-specific therapies for diabetic kidney disease, autosomal dominant polycystic kidney disease, glomerulonephritides, Fabry nephropathy, hemolytic uremic syndrome and others.Areas covered: Herein, the authors review the literature on new drugs under development for CKD as well as novel design and development strategies.Expert opinion: New therapies for CKD have become a healthcare priority. Emerging therapies undergoing clinical trials are testing expanded renin-angiotensin system blockade with double angiotensin receptor/endothelin receptor blockers, SGLT2 inhibition, and targeting inflammation, the immune response, fibrosis and the Nrf2 transcription factor. Emerging therapeutic targets include cell senescence, complement activation, Klotho expression preservation and microbiota. Novel approaches include novel model systems that can be personalized (e.g. organoids), unbiased systems biology-based identification of new therapeutic targets, drug databases that speed up drug identification and repurposing, nanomedicines that improve drug delivery and RNA targeting to expand the number of targetable proteins.
Collapse
Affiliation(s)
- Adrián M Ramos
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Vanessa Pérez-Gómez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol María Carriazo Julio
- Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sanz
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Renal and Vascular Pathology and Diabetes, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid and Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Álvarez de Toledo IRSIN C/José Abascal, Madrid, Spain
| |
Collapse
|
42
|
Gan J, Wu Y, Gong X, Ma Y, Yu S, Gao J. Yinang formulation versus placebo granules as a treatment for chronic kidney disease stages III-IV in patients with autosomal dominant polycystic kidney disease: study protocol for a double-blind placebo-controlled randomized clinical trial. Trials 2019; 20:481. [PMID: 31391092 PMCID: PMC6686499 DOI: 10.1186/s13063-019-3563-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common potentially life-threatening inherited kidney diseases. It is the fourth most common cause of end-stage renal disease requiring renal replacement therapy. There are few management options for controlling disease progression. Hence, identification of alternative treatments for patients is important. The Chinese herbal yinang formulation (YNF), which is derived from a Chinese patent medicine, appears to have a satisfactory effect in treating ADPKD. Because a considerable proportion of ADPKD patients presenting with chronic kidney disease (CKD) stages III-IV are diagnosed with the spleen, kidney deficiency, and blood stasis syndrome according to the diagnostic criteria of traditional Chinese medicine (TCM), we hypothesize that YNF may be a complementary drug for ADPKD patients with the corresponding syndrome. Therefore, we have designed a strict clinical trial to evaluate the safety and efficacy of YNF for ADPKD patients with CKD stages III-IV exhibiting the TCM syndrome of spleen, kidney deficiency, and blood stasis. METHODS/DESIGN This is a multi-center prospective double-blind randomized controlled trial. The total target sample size is planned to be 72 participants, with a balanced treatment allocation (1:1). The experimental intervention will be YNF plus conventional therapy and the control intervention will be a placebo plus conventional therapy for 24 weeks. An additional 24 weeks of follow-up will be conducted after treatment completion. The primary outcome will be the estimated glomerular filtration rate (eGFR). Changes in total kidney volume (TKV), serum creatinine (Scr), blood urea nitrogen (BUN), TCM symptoms, and pain will be the secondary outcomes. Adverse events (AEs) will be monitored throughout the trial. DISCUSSION This study will be the first placebo-controlled randomized controlled trial to assess whether YNF plus conventional therapy has a beneficial effect on eGFR, TKV, Scr, and BUN, and whether it can alleviate TCM clinical symptoms, reduce ADPKD-related pain, and reduce the frequency of AEs for ADPKD patients with CKD stages III-IV with the spleen, kidney deficiency, and blood stasis syndrome. The results of this trial may provide an evidence-based recommendation for clinicians. TRIAL REGISTRATION Chinese Clinical Trials Register, ChiCTR-INR-16009914 . Registered on 18 November 2016.
Collapse
Affiliation(s)
- Jing Gan
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), No.528 Road ZhangHeng, Shanghai, 201203, China
| | - Yansheng Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), No.528 Road ZhangHeng, Shanghai, 201203, China
| | - Xuezhong Gong
- Department of Nephrology, Shanghai Municipal Hospital Affiliated to Shanghai University of TCM, 274 Zhijiang Middle Road, Shanghai, 200071, China
| | - Yiyi Ma
- Department of Nephrology, Shanghai Changzheng Hospital Affiliated to Second Military Medical University, 415 Fengyang Road, Shanghai, 200433, China
| | - Shengqiang Yu
- Department of Nephrology, Shanghai Changzheng Hospital Affiliated to Second Military Medical University, 415 Fengyang Road, Shanghai, 200433, China.
| | - Jiandong Gao
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
- TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, 528 Zhangheng Road, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine (14DZ2273200), No.528 Road ZhangHeng, Shanghai, 201203, China.
| |
Collapse
|