1
|
McCarthy MW. The first five years of SARS-CoV-2: inpatient treatment updates and future directions. Expert Opin Pharmacother 2024; 25:1873-1878. [PMID: 39305134 DOI: 10.1080/14656566.2024.2408375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in adults with pneumonia in Wuhan, China. AREAS COVERED It is now believed that several billion humans have been infected with SARS-CoV-2 and more than ten million have died from coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2. EXPERT OPINION The first five years of the SARS-CoV-2 pandemic have been marked by unfathomable suffering as well as remarkable scientific progress. This manuscript examines what has been learned about the treatment of inpatients with COVID-19 and explores how the therapeutic approach may evolve in the years ahead.
Collapse
|
2
|
Holzknecht J, Marx F. Navigating the fungal battlefield: cysteine-rich antifungal proteins and peptides from Eurotiales. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1451455. [PMID: 39323611 PMCID: PMC11423270 DOI: 10.3389/ffunb.2024.1451455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Fungi are ubiquitous in the environment and play a key role in the decomposition and recycling of nutrients. On the one hand, their special properties are a great asset for the agricultural and industrial sector, as they are used as source of nutrients, producers of enzymes, pigments, flavorings, and biocontrol agents, and in food processing, bio-remediation and plant growth promotion. On the other hand, they pose a serious challenge to our lives and the environment, as they are responsible for fungal infections in plants, animals and humans. Although host immunity opposes invading pathogens, certain factors favor the manifestation of fungal diseases. The prevalence of fungal infections is on the rise, and there is an alarming increase in the resistance of fungal pathogens to approved drugs. The limited number of antimycotics, the obstacles encountered in the development of new drugs due to the poor tolerability of antifungal agents in patients, the limited number of unique antifungal targets, and the low species specificity contribute to the gradual depletion of the antifungal pipeline and newly discovered antifungal drugs are rare. Promising candidates as next-generation therapeutics are antimicrobial proteins and peptides (AMPs) produced by numerous prokaryotic and eukaryotic organisms belonging to all kingdom classes. Importantly, filamentous fungi from the order Eurotiales have been shown to be a rich source of AMPs with specific antifungal activity. A growing number of published studies reflects the efforts made in the search for new antifungal proteins and peptides (AFPs), their efficacy, species specificity and applicability. In this review, we discuss important aspects related to fungi, their impact on our life and issues involved in treating fungal infections in plants, animals and humans. We specifically highlight the potential of AFPs from Eurotiales as promising alternative antifungal therapeutics. This article provides insight into the structural features, mode of action, and progress made toward their potential application in a clinical and agricultural setting. It also identifies the challenges that must be overcome in order to develop AFPs into therapeutics.
Collapse
Affiliation(s)
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Innsbruck Medical University,
Innsbruck, Austria
| |
Collapse
|
3
|
Bays DJ, Jenkins EN, Lyman M, Chiller T, Strong N, Ostrosky-Zeichner L, Hoenigl M, Pappas PG, Thompson III GR. Epidemiology of Invasive Candidiasis. Clin Epidemiol 2024; 16:549-566. [PMID: 39219747 PMCID: PMC11366240 DOI: 10.2147/clep.s459600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
Invasive candidiasis (IC) is an increasingly prevalent, costly, and potentially fatal infection brought on by the opportunistic yeast, Candida. Previously, IC has predominantly been caused by C. albicans which is often drug susceptible. There has been a global trend towards decreasing rates of infection secondary to C. albicans and a rise in non-albicans species with a corresponding increase in drug resistance creating treatment challenges. With advances in management of malignancies, there has also been an increase in the population at risk from IC along with a corresponding increase in incidence of breakthrough IC infections. Additionally, the emergence of C. auris creates many challenges in management and prevention due to drug resistance and the organism's ability to transmit rapidly in the healthcare setting. While the development of novel antifungals is encouraging for future management, understanding the changing epidemiology of IC is a vital step in future management and prevention.
Collapse
Affiliation(s)
- Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Emily N Jenkins
- ASRT, Inc, Atlanta, GA, USA
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meghan Lyman
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Disease Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nora Strong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Clinical and Translational Fungal Working Group, University of California San Diego, La Jolla, CA, USA
| | - Peter G Pappas
- Division of Infectious Diseases, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George R Thompson III
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| |
Collapse
|
4
|
Bhattacharya PK, Chakrabarti A, Sinha S, Pande R, Gupta S, Kumar AKA, Mishra VK, Kumar S, Bhosale S, Reddy PK. ISCCM Position Statement on the Management of Invasive Fungal Infections in the Intensive Care Unit. Indian J Crit Care Med 2024; 28:S20-S41. [PMID: 39234228 PMCID: PMC11369924 DOI: 10.5005/jp-journals-10071-24747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/26/2024] [Indexed: 09/06/2024] Open
Abstract
Rationale Invasive fungal infections (IFI) in the intensive care unit (ICU) are an emerging problem owing to the use of broad-spectrum antibiotics, immunosuppressive agents, and frequency of indwelling catheters. Timely diagnosis which is imperative to improve outcomes can be challenging. This position statement is aimed at understanding risk factors, providing a rational diagnostic approach, and guiding clinicians to optimize antifungal therapy. Objectives To update evidence on epidemiology, risk factors, diagnostic approach, antifungal initiation strategy, therapeutic interventions including site-specific infections and role of therapeutic drug monitoring in IFI in ICU and focus on some practice points relevant to these domains. Methodology A committee comprising critical care specialists across the country was formed and specific aspects of fungal infections and antifungal treatment were assigned to each member. They extensively reviewed the literature including the electronic databases and the international guidelines and cross-references. The information was shared and discussed over several meetings and position statements were framed to ensure their reliability and relevance in critical practice. The draft document was prepared after obtaining inputs and consensus from all the members and was reviewed by an expert in this field. Results The existing evidence on the management of IFI was updated and practice points were prepared under each subheading to enable critical care practitioners to streamline diagnosis and treatment strategies for patients in the ICU with additional detail on site-specific infections therapeutic drug monitoring. Conclusion This position statement attempts to address the management of IFI in immunocompetent and non-neutropenic ICU patients. The practice points should guide in optimization of the management of critically ill patients with suspected or proven fungal infections. How to cite this article Bhattacharya PK, Chakrabarti A, Sinha S, Pande R, Gupta S, Kumar AAK, et al. ISCCM Position Statement on the Management of Invasive Fungal Infections in the Intensive Care Unit. Indian J Crit Care Med 2024;28(S2):S20-S41.
Collapse
Affiliation(s)
- Pradip Kumar Bhattacharya
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Doodhadhari Burfani Hospital, Haridwar, Uttarakhand, India
| | - Saswati Sinha
- Department of Critical Care, Manipal Hospitals, Kolkata, West Bengal, India
| | - Rajesh Pande
- Department of Critical Care, BLK MAX Superspeciality Hospital, Delhi, India
| | - Sachin Gupta
- Department of Critical Care, Narayana Superspeciality Hospital, Gurugram, Haryana, India
| | - AK Ajith Kumar
- Department of Critical Care Medicine, Aster Whitefield Hospital, Bengaluru, Karnataka, India
| | - Vijay Kumar Mishra
- Department of Critical Care, Bhagwan Mahavir Medica Superspecialty Hospital, Ranchi, Jharkhand, India
| | - Sanjeev Kumar
- Department of Anaesthesiology and Critical Care Medicine, Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Shilpushp Bhosale
- Department of Critical Care Medicine, ACTREC, Tata Memorial Centre, HBNI, Mumbai, Maharashtra, India
| | - Pavan Kumar Reddy
- Department of Critical Care Medicine, ARETE Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
6
|
Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, Gogos C, Dimopoulos G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi (Basel) 2024; 10:278. [PMID: 38667949 PMCID: PMC11051097 DOI: 10.3390/jof10040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | | | - Despoina Papageorgiou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | | | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
7
|
Nagarakanti S, Grant L, Orenstein R. Managing Recurrent Vulvovaginal Candidiasis. J Womens Health (Larchmt) 2024; 33:111-112. [PMID: 37792339 DOI: 10.1089/jwh.2023.0556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Affiliation(s)
| | - Leah Grant
- Infectious Diseases, Mayo Clinic, Phoenix, Arizona, USA
| | | |
Collapse
|
8
|
Francis D, Rajiv SV, George M. Ibrexafungerp: A Novel Oral Triterpenoid Antifungal. Indian Dermatol Online J 2024; 15:169-171. [PMID: 38283012 PMCID: PMC10810388 DOI: 10.4103/idoj.idoj_310_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 01/30/2024] Open
Affiliation(s)
- Deepa Francis
- Department of Dermatology, Malabar Medical College Hospital and Research Centre, Kozhikode, Kerala, India
| | - Shwetha V. Rajiv
- Department of Dermatology, Malabar Medical College Hospital and Research Centre, Kozhikode, Kerala, India
| | - Mamatha George
- Department of Dermatology, Malabar Medical College Hospital and Research Centre, Kozhikode, Kerala, India
| |
Collapse
|
9
|
Liu X, Zhang R, Li R, Wu Q, Pan C, Yu X, Liu Y, Wang B, Yu S. Safety, tolerability, and pharmacokinetics of ibrexafungerp in healthy Chinese subjects: a randomized, double-blind, placebo-controlled phase 1 trial. Antimicrob Agents Chemother 2023; 67:e0107523. [PMID: 37971243 PMCID: PMC10720486 DOI: 10.1128/aac.01075-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
Ibrexafungerp (code name in China: HS-10366) is a first-in-class and orally active triterpenoid antifungal agent with broad antifungal activity against Candida spp., Aspergillus spp., and other fungal pathogens. It was approved by the U.S. Food and Drug Administration for the treatment of vulvovaginal candidiasis. The study aimed to evaluate the safety, tolerability, and pharmacokinetic (PK) characteristics of oral ibrexafungerp in healthy Chinese adults. A single-center, randomized, double-blind, placebo-controlled single ascending dose (SAD, n = 42), and multiple ascending dose (MAD, n = 28) study was conducted in healthy Chinese subjects from March to October 2022. There were three cohorts in the SAD stage (300, 600, and 1,500 mg) and two cohorts in the MAD stage [450 mg once daily (QD) for 7 days; a loading dose of 750 mg twice daily (BID) for the first 2 days followed by a maintenance dose of 750 mg QD for consecutive 5 days]. Eligible participants in each cohort were randomly assigned in a 6:1 ratio to receive either ibrexafungerp or placebo orally. The primary objectives were to evaluate the safety and tolerability. The secondary objective was to evaluate PK parameters, including Cmax, AUC, and t1/2. A total of 70 healthy Chinese subjects were enrolled in the study. The mean (SD) age was 29.0 (6.32), and 55.7% were male. All treatment-emergent adverse events (TEAEs) were mild or moderate. There were no serious adverse events, and no subjects were discontinued from the study due to TEAEs. All TEAEs were recovered or resolved. The most common TEAEs were diarrhea, abdominal pain, and nausea. In the SAD stage, Cmax, and AUC increased in an approximately dose-proportional manner in the dose range of 300-1,500 mg. The mean t1/2 was within 18.29-21.30 hours. In the MAD stage, an accumulation of exposure (Cmax and AUC) was observed following multiple doses. This phase 1 study demonstrates a favorable safety, tolerability, and PK profile of ibrexafungerp in healthy Chinese subjects.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Phase 1 clinical Trial Center, Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, China
| | - Rui Zhang
- Phase 1 clinical Trial Center, Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, China
| | - Rong Li
- Phase 1 clinical Trial Center, Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, China
| | - Qiong Wu
- Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang, China
| | - Chao Pan
- Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang, China
| | - Xiangqing Yu
- Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang, China
| | - Yuhui Liu
- Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang, China
| | - Benjie Wang
- Phase 1 clinical Trial Center, Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, China
| | - Shuwen Yu
- Phase 1 clinical Trial Center, Qilu Hospital of Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The increasing incidence of drug-resistant Candida brings a new challenge to the treatment of invasive candidiasis. Although cross-resistance among azoles and echinocandins was generally uncommon, reports of multidrug-resistant (MDR) Candida markedly increased in the last decade. The purpose of this review is to understand mechanisms and risk factors for resistance and how to tackle antifungal resistance. RECENT FINDINGS The paper describes the action of the three main classes of antifungals - azoles, echinocandins and polyenes - and Candida's mechanisms of resistance. The current evolution from cross-resistance to multiresistance among Candida explains the modern glossary - multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) - imported from bacteria. MDR Candida most commonly involves acquired resistance in species with intrinsic resistance, therefore it mostly involves C. glabrata, C. parapsilosis, C. krusei, C guilliermondii or C. auris , which is intrinsically multidrug resistant. Finally, strategies to tackle antifungal resistance became clearer, ideally implemented through antifungal stewardship. SUMMARY Avoiding antifungal's overuse and selecting the best drug, dose and duration, when they are needed, is fundamental. Knowledge of risk factors for resistance, microbiological diagnosis to the species, use of susceptibility test supported by antifungal stewardship programs help attaining effective therapy and sustaining the effectiveness of the current antifungal armamentarium.
Collapse
Affiliation(s)
- José-Artur Paiva
- Intensive Care Medicine Department, Centro Hospitalar Universitário S. João, Porto, Portugal
- Department of Medicine, Faculty of Medicine of University of Porto, Porto, Portugal
- Grupo de Infeção e Sepsis, Porto, Portugal
| | - José Manuel Pereira
- Intensive Care Medicine Department, Centro Hospitalar Universitário S. João, Porto, Portugal
- Department of Medicine, Faculty of Medicine of University of Porto, Porto, Portugal
- Grupo de Infeção e Sepsis, Porto, Portugal
| |
Collapse
|
11
|
Zhao CR, You ZL, Chen DD, Hang J, Wang ZB, Ji M, Wang LX, Zhao P, Qiao J, Yun CH, Bai L. Structure of a fungal 1,3-β-glucan synthase. SCIENCE ADVANCES 2023; 9:eadh7820. [PMID: 37703377 PMCID: PMC10499315 DOI: 10.1126/sciadv.adh7820] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
1,3-β-Glucan serves as the primary component of the fungal cell wall and is produced by 1,3-β-glucan synthase located in the plasma membrane. This synthase is a molecular target for antifungal drugs such as echinocandins and the triterpenoid ibrexafungerp. In this study, we present the cryo-electron microscopy structure of Saccharomyces cerevisiae 1,3-β-glucan synthase (Fks1) at 2.47-Å resolution. The structure reveals a central catalytic region adopting a cellulose synthase fold with a cytosolic conserved GT-A-type glycosyltransferase domain and a closed transmembrane channel responsible for glucan transportation. Two extracellular disulfide bonds are found to be crucial for Fks1 enzymatic activity. Through structural comparative analysis with cellulose synthases and structure-guided mutagenesis studies, we gain previously unknown insights into the molecular mechanisms of fungal 1,3-β-glucan synthase.
Collapse
Affiliation(s)
- Chao-Ran Zhao
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zi-Long You
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dan-Dan Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jing Hang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Zhao-Bin Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Meng Ji
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Le-Xuan Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peng Zhao
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Cai-Hong Yun
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
12
|
Abstract
With over 300 million severe cases and 1.5 million deaths annually, invasive fungal diseases (IFDs) are a major medical burden and source of global morbidity and mortality. The World Health Organization (WHO) recently released the first-ever fungal priority pathogens list including 19 fungal pathogens, considering the perceived public health importance. Most of the pathogenic fungi are opportunistic and cause diseases in patients under immunocompromised conditions such as HIV infection, cancer, chemotherapy, transplantation, and immune suppressive drug therapy. Worryingly, the morbidity and mortality caused by IFDs are continuously on the rise due to the limited available antifungal therapies, the emergence of drug resistance, and the increase of population that is vulnerable to IFDs. Moreover, the COVID-19 pandemic worsened IFDs as a globe health threat as it predisposes the patients to secondary life-threatening fungi. In this mini-review, we provide a perspective on the advances and strategies for combating IFDs with antifungal therapies.
Collapse
Affiliation(s)
- Zhuan Zhang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
13
|
Wang Y, Lin R, Liu M, Wang S, Chen H, Zeng W, Nie X, Wang S. N-Myristoyltransferase, a Potential Antifungal Candidate Drug-Target for Aspergillus flavus. Microbiol Spectr 2023; 11:e0421222. [PMID: 36541770 PMCID: PMC9927591 DOI: 10.1128/spectrum.04212-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
The filamentous fungus Aspergillus flavus causes devastating diseases not only to cash crops but also to humans by secreting a series of secondary metabolites called aflatoxins. In the cotranslational or posttranslational process, N-myristoyltransferase (Nmt) is a crucial enzyme that catalyzes the myristate group from myristoyl-coenzyme A (myristoyl-CoA) to the N terminus or internal glycine residue of a protein by forming a covalent bond. Members of the Nmt family execute a diverse range of biological functions across a broad range of fungi. However, the underlying mechanism of AflNmt action in the A. flavus life cycle is unclear, particularly during the growth, development, and secondary metabolic synthesis stages. In the present study, AlfNmt was found to be essential for the development of spore and sclerotia, based on the regulation of the xylose-inducible promoter. AflNmt, located in the cytoplasm of A. flavus, is also involved in modulating aflatoxin (AFB1) in A. flavus, which has not previously been reported in Aspergillus spp. In addition, we purified, characterized, and crystallized the recombinant AflNmt protein (rAflNmt) from the Escherichia coli expression system. Interestingly, the crystal structure of rAlfNmt is moderately different from the models predicted by AlphaFold2 in the N-terminal region, indicating the limitations of machine-learning prediction. In conclusion, these results provide a molecular basis for the functional role of AflNmt in A. flavus and structural insights concerning protein prediction. IMPORTANCE As an opportunistic pathogen, A. flavus causes crop loss due to fungal growth and mycotoxin contamination. Investigating the role of virulence factors during infection and searching for novel drug targets have been popular scientific topics in the field of fungal control. Nmt has become a potential target in some organisms. However, whether Nmt is involved in the developmental stages of A. flavus and aflatoxin synthesis, and whether AlfNmt is an ideal target for structure-based drug design, remains unclear. This study systematically explored and identified the role of AlfNmt in the development of spore and sclerotia, especially in aflatoxin biosynthesis. Moreover, although there is not much difference between the AflNmt model predicted using the AlphaFold2 technique and the structure determined using the X-ray method, current AI prediction models may not be suitable for structure-based drug development. There is still room for further improvements in protein prediction.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ranxun Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mengxin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyu Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanlin Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinyi Nie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Armstrong‐James D. Antifungal chemotherapies and immunotherapies for the future. Parasite Immunol 2023; 45:e12960. [PMID: 36403106 PMCID: PMC10078527 DOI: 10.1111/pim.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Human fungal pathogens cause a broad plethora of infections, spanning cutaneous dermatophytoses to invasive infections in immunocompromised hosts. As eukaryotic pathogens are capable of morphotype switching, they present unique challenges both for drug development and the immunological response. Whilst current antifungal therapies are limited to the orally available triazoles, intravenous echonocandins and polyenes, and flucytosine and terbinafine, there has been recent significant progress in the antifungal armamentorium with ibrexafungerp, a novel orally available terpanoid that inhibits 1,3-beta-D-glucan-approved by Food and Drug Administration in 2021, and fosmanogepix, an orally available pro-drug of manogepix, which targets glycosylphosphatidylinositol-anchored protein maturation entering Phase 3 studies for candidaemia. A number of further candidates are in development. There has been significant use of existing immunotherapies such as recombinant interferon-γ and G-CSF for fungal disease in immunocompromised patients, and there are emerging opportunities for monoclonal antibodies targeting TH2 inflammation. Omalizumab, an anti-IgE monoclonal antibody in asthma, is now used routinely for the treatment of allergic bronchopulmonary aspergillosis, and further agents targeting IL-4 and IL-5 are being evaluated. In addition, T-cell CAR therapy is showing early promise for fungal disease. Thus, we are likely to see rapid advances to our approach to the management of fungal disease in the near future.
Collapse
Affiliation(s)
- Darius Armstrong‐James
- Department of Infectious DiseasesMedical Research Council Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUK
| |
Collapse
|
15
|
Li XY, Lv JM, Cao ZQ, Wang GQ, Lin FL, Chen GD, Qin SY, Hu D, Gao H, Yao XS. Biosynthetic characterization of the antifungal fernane-type triterpenoid polytolypin for generation of new analogues via combinatorial biosynthesis. Org Biomol Chem 2023; 21:851-857. [PMID: 36602159 DOI: 10.1039/d2ob02158g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fernane-type triterpenoids are a small group of natural products mainly found in plants and fungi with a wide range of biological activities. Polytolypin is a representative fernane-type triterpenoid from fungi and possesses potent antifungal activity. So far, biosynthesis of fungal-derived fernane-type triterpenoids has not been characterized, which hinders the expansion of their structural diversity using biosynthetic approaches. Herein, we identified the biosynthetic gene cluster of polytolypin and elucidated its biosynthetic pathway through heterologous expression in Aspergillus oryzae NSAR1, which involves a new triterpene cyclase for the biosynthesis of the hydrocarbon skeleton motiol, followed by multiple oxidations via three P450 enzymes. Moreover, two new triterpene cyclases for the biosynthesis of two other fernane-type skeletons isomotiol and fernenol were identified from fungi, and were individually co-expressed with the three P450 enzymes involved in polytolypin biosynthesis. These studies led to the generation of 13 fernane-type triterpenoids including eight new compounds, and two of them showed stronger antifungal activity towards Candida albicans FIM709 than polytolypin.
Collapse
Affiliation(s)
- Xin-Yu Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Zhi-Qin Cao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Fu-Long Lin
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Sheng-Ying Qin
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China. .,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China. .,Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| | - Xin-Sheng Yao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China. .,Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
16
|
Angulo DA, Alexander B, Rautemaa-Richardson R, Alastruey-Izquierdo A, Hoenigl M, Ibrahim AS, Ghannoum MA, King TR, Azie NE, Walsh TJ. Ibrexafungerp, a Novel Triterpenoid Antifungal in Development for the Treatment of Mold Infections. J Fungi (Basel) 2022; 8:1121. [PMID: 36354888 PMCID: PMC9695964 DOI: 10.3390/jof8111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022] Open
Abstract
Molds are ubiquitous in the environment, and immunocompromised patients are at substantial risk of morbidity and mortality due to their underlying disease and the resistance of pathogenic molds to currently recommended antifungal therapies. This combination of weakened-host defense, with limited antifungal treatment options, and the opportunism of environmental molds renders patients at risk and especially vulnerable to invasive mold infections such as Aspergillus and members of the Order Mucorales. Currently, available antifungal drugs such as azoles and echinocandins, as well as combinations of the same, offer some degree of efficacy in the prevention and treatment of invasive mold infections, but their use is often limited by drug resistance mechanisms, toxicity, drug-drug interactions, and the relative paucity of oral treatment options. Clearly, there is a need for agents that are of a new class that provides adequate tissue penetration, can be administered orally, and have broad-spectrum efficacy against fungal infections, including those caused by invasive mold organisms. Ibrexafungerp, an orally bioavailable glucan synthase inhibitor, is the first in a new class of triterpenoid antifungals and shares a similar target to the well-established echinocandins. Ibrexafungerp has a very favorable pharmacokinetic profile for the treatment of fungal infections with excellent tissue penetration in organs targeted by molds, such as the lungs, liver, and skin. Ibrexafungerp has demonstrated in vitro activity against Aspergillus spp. as well as efficacy in animal models of invasive aspergillosis and mucormycosis. Furthermore, ibrexafungerp is approved for use in the USA for the treatment of women with vulvovaginal candidiasis. Ibrexafungerp is currently being evaluated in clinical trials as monotherapy or in combination with other antifungals for treating invasive fungal infections caused by yeasts and molds. Thus, ibrexafungerp offers promise as a new addition to the clinician's armamentarium against these difficult-to-treat infections.
Collapse
Affiliation(s)
| | - Barbara Alexander
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, 8036 Graz, Austria
| | - Ashraf S. Ibrahim
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mahmoud A. Ghannoum
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23223, USA
| |
Collapse
|
17
|
Abstract
Purpose of Review Recent Findings Summary
Collapse
|
18
|
Jauregizar N, Quindós G, Gil-Alonso S, Suárez E, Sevillano E, Eraso E. Postantifungal Effect of Antifungal Drugs against Candida: What Do We Know and How Can We Apply This Knowledge in the Clinical Setting? J Fungi (Basel) 2022; 8:jof8070727. [PMID: 35887482 PMCID: PMC9317160 DOI: 10.3390/jof8070727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
The study of the pharmacological properties of an antifungal agent integrates the drug pharmacokinetics, the fungal growth inhibition, the fungicidal effect and the postantifungal activity, laying the basis to guide optimal dosing regimen selection. The current manuscript reviews concepts regarding the postantifungal effect (PAFE) of the main classes of drugs used to treat Candida infections or candidiasis. The existence of PAFE and its magnitude are highly dependent on both the fungal species and the class of the antifungal agent. Therefore, the aim of this article was to compile the information described in the literature concerning the PAFE of polyenes, azoles and echinocandins against the Candida species of medical interest. In addition, the mechanisms involved in these phenomena, methods of study, and finally, the clinical applicability of these studies relating to the design of dosing regimens were reviewed and discussed. Additionally, different factors that could determine the variability in the PAFE were described. Most PAFE studies were conducted in vitro, and a scarcity of PAFE studies in animal models was observed. It can be stated that the echinocandins cause the most prolonged PAFE, followed by polyenes and azoles. In the case of the triazoles, it is worth noting the inconsistency found between in vitro and in vivo studies.
Collapse
Affiliation(s)
- Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
- Correspondence:
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Sandra Gil-Alonso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Elena Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| |
Collapse
|
19
|
Logan A, Wolfe A, Williamson JC. Antifungal Resistance and the Role of New Therapeutic Agents. Curr Infect Dis Rep 2022; 24:105-116. [PMID: 35812838 PMCID: PMC9255453 DOI: 10.1007/s11908-022-00782-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Purpose of Review Advances in health care over time have led to an evolution in the epidemiology of invasive fungal infections. There is an increasing concern for antifungal resistance and emergence of less common fungal species for which optimal therapies are not well defined. The purpose of this review is to describe mechanisms of antifungal resistance and to evaluate the modern role of new and investigational antifungals. Recent Findings Isavuconazole and ibrexafungerp represent the two newest antifungal agents. Evidence from in vivo and in vitro studies has been published recently to help define their place in therapy and potential roles in treating resistant fungi. Isavuconazole is a broad-spectrum triazole antifungal with evidence to support its use in invasive aspergillosis and mucormycosis. Its utility in treating voriconazole-resistant Candida should be confirmed with susceptibility testing if available. Ibrexafungerp is an oral glucan synthase inhibitor with little cross-resistance among currently available antifungals, including echinocandins. It is a promising new agent for invasive candidiasis, including azole-resistant Candida species, and in combination therapy with voriconazole for aspergillosis. Multiple antifungals, some with novel mechanisms, are in development, including rezafungin, oteseconazole, olorofim, fosmanogepix, and opelconazole. Summary Both isavuconazole and ibrexafungerp are welcome additions to the arsenal of antifungals, and the prospect of more antifungal options in the future is encouraging. Such an array of antifungals will be important as antifungal resistance continues to expand alongside evolving medical practices. However, managing resistant fungal infections will grow in complexity as the unique role of each new agent is defined.
Collapse
Affiliation(s)
- Ashley Logan
- Pharmacy Department, Atrium Health Wake Forest Baptist, 1 Medical Center Blvd, Winston-Salem, NC USA
| | - Amanda Wolfe
- Pharmacy Department, Cone Health, Greensboro, NC USA
| | - John C. Williamson
- Pharmacy Department, Atrium Health Wake Forest Baptist, 1 Medical Center Blvd, Winston-Salem, NC USA
- Section On Infectious Diseases, Atrium Health Wake Forest Baptist, 1 Medical Center Blvd, Winston-Salem, NC USA
| |
Collapse
|