1
|
Jang J, Kim Y, Song T, Park S, Kim HJ, Koh JH, Cho Y, Park SY, Sadayappan S, Kwak HB, Wolfe RR, Kim IY, Choi CS. Free essential amino acid feeding improves endurance during resistance training via DRP1-dependent mitochondrial remodelling. J Cachexia Sarcopenia Muscle 2024; 15:1651-1663. [PMID: 38881251 PMCID: PMC11446676 DOI: 10.1002/jcsm.13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Loss of muscle strength and endurance with aging or in various conditions negatively affects quality of life. Resistance exercise training (RET) is the most powerful means to improve muscle mass and strength, but it does not generally lead to improvements in endurance capacity. Free essential amino acids (EAAs) act as precursors and stimuli for synthesis of both mitochondrial and myofibrillar proteins that could potentially confer endurance and strength gains. Thus, we hypothesized that daily consumption of a dietary supplement of nine free EAAs with RET improves endurance in addition to the strength gains by RET. METHODS Male C57BL6J mice (9 weeks old) were assigned to control (CON), EAA, RET (ladder climbing, 3 times a week), or combined treatment of EAA and RET (EAA + RET) groups. Physical functions focusing on strength or endurance were assessed before and after the interventions. Several analyses were performed to gain better insight into the mechanisms by which muscle function was improved. We determined cumulative rates of myofibrillar and mitochondrial protein synthesis using 2H2O labelling and mass spectrometry; assessed ex vivo contractile properties and in vitro mitochondrial function, evaluated neuromuscular junction (NMJ) stability, and assessed implicated molecular singling pathways. Furthermore, whole-body and muscle insulin sensitivity along with glucose metabolism, were evaluated using a hyperinsulinaemic-euglycaemic clamp. RESULTS EAA + RET increased muscle mass (10%, P < 0.05) and strength (6%, P < 0.05) more than RET alone, due to an enhanced rate of integrated muscle protein synthesis (19%, P < 0.05) with concomitant activation of Akt1/mTORC1 signalling. Muscle quality (muscle strength normalized to mass) was improved by RET (i.e., RET and EAA + RET) compared with sedentary groups (10%, P < 0.05), which was associated with increased AchR cluster size and MuSK activation (P < 0.05). EAA + RET also increased endurance capacity more than RET alone (26%, P < 0.05) by increasing both mitochondrial protein synthesis (53%, P < 0.05) and DRP1 activation (P < 0.05). Maximal respiratory capacity increased (P < 0.05) through activation of the mTORC1-DRP1 signalling axis. These favourable effects were accompanied by an improvement in basal glucose metabolism (i.e., blood glucose concentrations and endogenous glucose production vs. CON, P < 0.05). CONCLUSIONS Combined treatment with balanced free EAAs and RET may effectively promote endurance capacity as well as muscle strength through increased muscle protein synthesis, improved NMJ stability, and enhanced mitochondrial dynamics via mTORC1-DRP1 axis activation, ultimately leading to improved basal glucose metabolism.
Collapse
Affiliation(s)
- Jiwoong Jang
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon, Korea
| | - Yeongmin Kim
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Center for Cardiovascular Research, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sanghee Park
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Korea
| | - Hee-Joo Kim
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Jin-Ho Koh
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Korea
| | - Yoonil Cho
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Korea
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, Center for Cardiovascular Research, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Korea
- Institute of Sports & Arts Convergence, Inha University, Incheon, Korea
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Korea
| | - Robert R Wolfe
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Il-Young Kim
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|
2
|
Walther J, Haugen T, Solli GS, Tønnessen E, Sandbakk Ø. The Evolvement of Session Design From Junior Age to Senior Peak Performance in World-Class Cross-Country Skiers. Int J Sports Physiol Perform 2024; 19:1097-1106. [PMID: 39168465 DOI: 10.1123/ijspp.2023-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE To compare designs of training sessions applied by world-class cross-country skiers during their most successful junior and senior season. METHODS Retrospective analysis of self-reported training characteristics (ie, training form, intensity, and exercise mode) among 8 male and 7 female world-class cross-country skiers was conducted. RESULTS Total number of sessions (441 [71] vs 519 [34], P < .001, large effect) and mean duration (1.5 [0.1] h vs 1.7 [0.1] h, P < .001, moderate effect) increased from junior to senior age. More double-session days were performed at senior age (124 [50] vs 197 [29] d, P < .001, large). The number (310 [64] vs 393 [64], P < .001, large effect) and duration (1.3 [0.1] h vs 1.5 [0.1] h, P < .001, moderate effect) of low-intensity training sessions increased from junior to senior age. Regarding intensive training, most emphasis was put on high-intensity training sessions lasting 20 to 39 minutes with <5-minute intervals at junior age, while 40 to 59 minutes of moderate-intensity training with 5- to 9-minute intervals was predominant at senior age. More MIXED (combined moderate- and high-intensity) sessions (9 [7] vs 14 [7], P = .023, moderate effect) and longer races (0.5 [0.1] h vs 0.6 [0.1] h, P = 0.29, moderate effect) compensated for fewer high-intensity training sessions at senior age (36 [17] vs 25 [10], P = .027, moderate effect). Duration of strength-training sessions increased significantly (0.6 [0.1] vs 0.8 [0.2] h, P = 0.30, moderate effect), while other training forms remained unchanged. CONCLUSIONS World-class cross-country skiers increased their training volume from junior to senior age primarily by more and longer low-intensity training sessions and more often training twice per day. Concurrently, the most frequent intensive sessions were modified from high- to moderate-intensity training, lasted longer, and contained longer intervals.
Collapse
Affiliation(s)
- Jacob Walther
- Center for Elite Sport Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Norwegian Ski Federation, Oslo, Norway
| | - Thomas Haugen
- School of Health Sciences, Kristiania University College, Oslo, Norway
| | - Guro Strøm Solli
- Center for Elite Sport Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sport Science and Physical Education, Nord University, Bodø, Norway
| | - Espen Tønnessen
- School of Health Sciences, Kristiania University College, Oslo, Norway
| | - Øyvind Sandbakk
- Center for Elite Sport Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- School of Sport Science, UiT the Artic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Cheng Y, Ma J, Bo S. Short- and long-term effects of concurrent aerobic and resistance training on circulating irisin levels in overweight or obese individuals: a systematic review and meta-analysis of randomized controlled trials. PeerJ 2024; 12:e17958. [PMID: 39308824 PMCID: PMC11416761 DOI: 10.7717/peerj.17958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Background Concurrent training (CT) is emerging as a practical and effective approach to enhance body composition, cardiovascular function, and muscle mass, thereby elevating overall individual health. This study aims to systematically investigate the effects of short- and long-term concurrent aerobic and resistance training on circulating irisin levels in overweight or obese individuals. Methodology The electronic databases, including China National Knowledge Infrastructure, PubMed, Embase, Wan Fang Database, and Web of Science, were systematically searched for articles on "concurrent training" and "irisin" published from their inception to 30 November 2023. The pooled effect size was determined using standardized mean difference (SMD) and corresponding 95% confidence intervals (CIs). The study protocol received registration with the International Prospective Register of Systematic Reviews (CRD42023494163). Results All nine studies, encompassing a total of 264 participants, were randomized controlled trials and met the eligibility criteria. Results indicate that short- and long-term concurrent training moderately increased circulating irisin levels compared to the control group (SMD = 0.56, 95% CI [0.33-0.80], p = 0.00; I 2 = 36.6%, heterogeneity p = 0.106). Subgroup analyses revealed that both equal to or less than 10 weeks (SMD = 0.78, 95% CI [0.18-1.37], p = 0.01; I 2 = 62.3%, heterogeneity p = 0.03) and more than 10 weeks (SMD = 0.45, 95% CI [0.14-0.76], p = 0.00; I 2 = 0%, heterogeneity p = 0.54) of concurrent training significantly increased circulating irisin levels in overweight or obese individuals. There were no significant between-group differences (I 2 = 0%, p = 0.34). Additionally, concurrent training significantly increased irisin levels in overweight or obese participants (SMD = 1.06, 95% CI [0.34-1.78], p = 0.00; I 2 = 50.6%, heterogeneity p = 0.13) and in type 2 diabetes patients (SMD = 0.70, 95% CI [0.30-1.10], p = 0.00; I 2 = 0%, heterogeneity p = 0.99). However, no significant effect was observed in patients with metabolic syndrome (SMD = 0.21, 95% CI [-0.25-0.68], p = 0.37; I 2 = 38.7%, heterogeneity p = 0.18). There were significant between-group differences (I 2 = 53.9%, p = 0.11). Lastly, concurrent training significantly increased circulating irisin levels in overweight or obese individuals aged 45-60 years (SMD = 0.56, 95% CI [0.25-0.86], p = 0.00; I 2 = 6.5%, heterogeneity p = 0.38), and a significant increase in irisin levels was observed 12 h post-intervention (SMD = 0.70, 95% CI [0.35-1.05], p = 0.00; I 2 = 0%, heterogeneity p = 0.74). However, none of the above categorical variables showed significant between-group differences. Conclusions Short- and long-term concurrent training can effectively improve circulating irisin levels in overweight or obese individuals. However, the effects of short- and long-term concurrent training should consider the participants' health status, age, and the timing of post-exercise measurements to maximize health benefits.
Collapse
Affiliation(s)
- Yang Cheng
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| | - Jing Ma
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| | - Shumin Bo
- Capital University of Physical Education And Sports, Beijing, Haidian, China
| |
Collapse
|
4
|
Zandavalli LA, Grazioli R, Izquierdo M, Garcia-Tabar I, Veeck F, Setuain I, Ramirez GS, Aroni AL, Pinto RS, Cadore EL. Physical Performance Changes in Season are Associated with GPS Data in Soccer Players. Int J Sports Med 2024. [PMID: 39013545 DOI: 10.1055/a-2367-6289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This study investigated the associations between pre-season and in-season performance with external workload in professional soccer players. Twenty-one players completed hamstring strength, countermovement jump (CMJ), 20-m sprint, and Yo-Yo intermittent recovery tests before (pre-season) and after 8 weeks (in-season). External workload (total distance, high-intensity running distance, number of sprints, and power plays) was quantified during this period, and used to divide the average above and below subgroups outcome by outcome for further analyses. Significance was accepted when P≤0.05. Hamstring strength declined from pre- to in-season [- 6%; p=0.014; effect size (ES): - 0.41], while Yo-Yo performance improved (46%; p=0.001; ES: 1.31). When divided by high-intensity running distance, only the below-average subgroup improved CMJ performance (5%; p=0.030). For minutes played, the above-average subgroup improved Yo-Yo performance (41%; p<0.001), but not the below-average subgroup. Furthermore, playing time correlated with improved Yo-Yo performance (p=0.040; r=0.534). Improved 20-m sprint performance associated with more sprints performed (p=0.045; r=- 0.453). Physical capabilities changed over a competitive season and were related to, and differentiated by, external workload. Because hamstring strength decreased and CMJ only improved in players exposed to less high-intensity external load, practitioners should individualize approaches to counteract these conditions when high external workload is performed over the season.
Collapse
Affiliation(s)
- Laura A Zandavalli
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Grazioli
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Physical Education, São Francisco University, Bragança Paulista, SP, Brazil
- Department of Physiology and Athletic Performance, Guarani Football Club, Campinas, SP, Brazil
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona (Spain)
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Ibai Garcia-Tabar
- Society, Sports and Exercise Research Group (GIKAFIT), Department of Physical Education and Sport, University of Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Bioraba Health Research Institute, Physical Activity, Exercise, and Health Group, Vitoria-Gasteiz, Spain
| | - Filipe Veeck
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Igor Setuain
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona (Spain)
- TDN Orthopedic Surgery and Advanced Rehabilitation Center, Clinical Research Department, Pamplona, Spain
| | - Giovanni S Ramirez
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André L Aroni
- Department of Physical Education, São Francisco University, Bragança Paulista, SP, Brazil
| | - Ronei Silveira Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo L Cadore
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Vikestad V, Dalen T. Effect of Strength and Endurance Training Sequence on Endurance Performance. Sports (Basel) 2024; 12:226. [PMID: 39195602 PMCID: PMC11359207 DOI: 10.3390/sports12080226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
This review investigates the effect of two different concurrent training sequences on endurance performance. The sequences investigated are Endurance-Resistance (ER) and Resistance-Endurance (RE). A literature search is conducted of the SPORTDiscus and Medline databases. The included studies are randomized control trials, which compare the effect of ER and RE on at least one endurance performance variable. A PEDro scale is used to assess the methodological quality of the articles in this review. Of a total of 152 articles identified during the initial screening, 15 studies meet the inclusion criteria. These studies include 426 participants (298 males and 128 females), with 212 of the participants training with ER and 214 with RE. The results are presented as the percentage change of the mean from pre- to post-test. All the studies show an improvement in endurance from pre to post for both interventions, except for the RE group in one study. This review finds small and non-conclusive sequence effects between ER and RE, suggesting that the sequence of concurrent training is not of great importance in relation to endurance performance.
Collapse
Affiliation(s)
| | - Terje Dalen
- Department of Physical Education and Sport Science, Faculty of Teacher Education and Arts, Nord University, 7600 Levanger, Norway;
| |
Collapse
|
6
|
Reljic D, Zieseniss N, Herrmann HJ, Neurath MF, Zopf Y. Protein Supplementation Increases Adaptations to Low-Volume, Intra-Session Concurrent Training in Untrained Healthy Adults: A Double-Blind, Placebo-Controlled, Randomized Trial. Nutrients 2024; 16:2713. [PMID: 39203849 PMCID: PMC11357491 DOI: 10.3390/nu16162713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Combined endurance and resistance training, also known as "concurrent training", is a common practice in exercise routines. While concurrent training offers the benefit of targeting both cardiovascular and muscular fitness, it imposes greater physiological demands on the body compared to performing each modality in isolation. Increased protein consumption has been suggested to support adaptations to concurrent training. However, the impact of protein supplementation on responses to low-volume concurrent training is still unclear. Forty-four untrained, healthy individuals (27 ± 6 years) performed two sessions/week of low-volume high-intensity interval training on cycle ergometers followed by five machine-based resistance training exercises for 8 weeks. Volunteers randomly received (double-blinded) 40 g of whey-based protein (PRO group) or an isocaloric placebo (maltodextrin, PLA group) after each session. Maximal oxygen consumption (VO2max) and overall fitness scores (computed from volunteers' VO2max and one-repetition maximum scores, 1-RM) significantly increased in both groups. The PRO group showed significantly improved 1-RM in all major muscle groups, while the PLA group only improved 1-RM in chest and upper back muscles. Improvements in 1-RM in leg muscles were significantly greater in the PRO group versus the PLA group. In conclusion, our results indicate that adaptations to low-volume concurrent training, particularly leg muscle strength, can be improved with targeted post-exercise protein supplementation in untrained healthy individuals.
Collapse
Affiliation(s)
- Dejan Reljic
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nilas Zieseniss
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans Joachim Herrmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus Friedrich Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yurdagül Zopf
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Bagheri R, Karimi Z, Camera DM, Scott D, Bashirzad MZ, Sadeghi R, Kargarfard M, Dutheil F. Association between changes in lean mass, muscle strength, endurance, and power following resistance or concurrent training with differing high protein diets in resistance-trained young males. Front Nutr 2024; 11:1439037. [PMID: 39206316 PMCID: PMC11349518 DOI: 10.3389/fnut.2024.1439037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background We assessed the relationship of changes in upper and lower body lean mass with muscle strength, endurance and power responses following two high protein diets (1.6 or 3.2 g.kg-1.d-1) during 16 weeks of either concurrent training (CT) or resistance training (RT) in resistance-trained young males. Methods Forty-eight resistance-trained young males (age: 26 ± 6 yr., body mass index: 25.6 ± 2.9 kg.m-2) performed 16 weeks (four sessions·wk.-1) of CT or RT with either 1.6 g.kg-1.d-1 protein (CT + 1.6; n = 12; RT + 1.6; n = 12) or 3.2 g.kg-1.d-1 protein (CT + 3.2; n = 12; RT + 3.2; n = 12). Relationships between upper (left arm + right arm + trunk lean mass) and lower body (left leg + right leg lean mass) lean mass changes with changes in muscle performance were assessed using Pearson's correlation coefficients. Results For upper body, non-significant weak positive relationships were observed between change in upper body lean mass and change in pull-up (r = 0.183, p = 0.234), absolute chest press strength (r = 0.159, p = 0.302), chest press endurance (r = 0.041, p = 0.792), and relative chest press strength (r = 0.097, p = 0.529) while non-significant weak negative relationships were observed for changes in absolute upper body power (r = -0.236, p = 0.123) and relative upper body power (r = -0.203, p = 0.185). For lower body, non-significant weak positive relationships were observed between the change in lower body lean mass with change in vertical jump (r = 0.145, p = 0.346), absolute lower body power (r = 0.109, p = 0.480), absolute leg press strength (r = 0.073, p = 0.638), leg press endurance (r < 0.001, p = 0.998), relative leg press strength (r = 0.089, p = 0.564), and relative lower body power (r = 0.150, p = 0.332). Conclusion Changes in muscle strength, endurance and power adaptation responses following 16 weeks of either CT or RT with different high protein intakes were not associated with changes in lean mass in resistance-trained young males. These findings indicate that muscle hypertrophy has a small, or negligible, contributory role in promoting functional adaptations with RT or CT, at least over a 16-week period.
Collapse
Affiliation(s)
- Reza Bagheri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Zohreh Karimi
- Department of Physical Education and Sport Sciences, Islamic Azad University of Central Tehran Branch, Tehran, Iran
| | - Donny M. Camera
- Department of Health and Biostatistics, Swinburne University, Melbourne, VIC, Australia
| | - David Scott
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | | | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Kargarfard
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Fred Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, Clermont-Ferrand, France
| |
Collapse
|
8
|
Sharp T, Slattery K, Coutts AJ, van Gogh M, Ralph L, Wallace L. Solving the High-Intensity Multimodal Training Prescription Puzzle: A Systematic Mapping Review. SPORTS MEDICINE - OPEN 2024; 10:82. [PMID: 39039351 PMCID: PMC11263329 DOI: 10.1186/s40798-024-00747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND High-Intensity Multimodal Training (HIMT) refers to all styles of high-intensity combined aerobic, resistance and/or bodyweight exercise. Previous heterogeneity in exercise prescription and reporting in HIMT reduces the understanding of which factors should be considered when prescribing HIMT (e.g., exercise volume, intensity, duration). Previous studies have demonstrated positive effects of HIMT on health and performance outcomes. However, methodological disparities limit comparisons between findings. The objective of this systematic mapping review was to examine which prescriptive considerations and health and performance outcomes have been reported on in HIMT. This review also examined the quantity and trends of research conducted on HIMT. METHODS A systematic literature search was conducted using Ovid Medline, SPORTDiscus and Cochrane Library databases and additional sources to identify studies up until February 2023. A total of 37,090 records were retrieved, of which 220 were included for review. 246 individual HIMT protocols were included for categorical analysis against the Consensus on Exercise Reporting Template (CERT) and Applied Research Model for the Sport Sciences (ARMSS). RESULTS A total of 85 unique terms were used to describe HIMT. Included studies most commonly prescribed HIMT using a consistent exercise selection and circuit format. Exercise intensity was inconsistently reported on and a large proportion of studies prescribed 'high-intensity' exercise at a level lower than the American College of Sports Medicine criteria for high-intensity (i.e., < 77% heart rate maximum). Participation location, supervision and participation format were the most commonly reported non-training variables. The most frequently reported outcomes were cardiovascular health, perceptual outcomes, body composition and biochemical outcomes. A large proportion of previous HIMT research was experimental in design. CONCLUSIONS Previous HIMT research demonstrates a lack of standardisation in reporting. Future studies should seek to follow guidelines (i.e., CERT) to improve reporting rigour. Additionally, forthcoming research should attempt to actively involve practitioners in implementation studies to improve ecological validity among interventions. Finally, future outcome measures should be accessible in practice and reflect common training goals of participants. REGISTRATION This review adhered to PRISMA-ScR guidelines. PREREGISTRATION osf.io/yknq4.
Collapse
Affiliation(s)
- Tijana Sharp
- Faculty of Health, School of Sport, Exercise and Rehabilitation, Human Performance Research Centre, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia.
| | - Katie Slattery
- Faculty of Health, School of Sport, Exercise and Rehabilitation, Human Performance Research Centre, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Aaron J Coutts
- Faculty of Health, School of Sport, Exercise and Rehabilitation, Human Performance Research Centre, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Mikah van Gogh
- Australian College of Physical Education, 10 Parkview Dr, Sydney Olympic Park, Sydney, Australia
| | - Lara Ralph
- Faculty of Health, School of Sport, Exercise and Rehabilitation, Human Performance Research Centre, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| | - Lee Wallace
- Faculty of Health, School of Sport, Exercise and Rehabilitation, Human Performance Research Centre, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia
| |
Collapse
|
9
|
Arsoniadis GG, Botonis PG, Bogdanis GC, Terzis G, Toubekis AG. Acute effects of dryland muscular endurance and maximum strength training on sprint swimming performance in young swimmers. J Sports Sci 2024:1-9. [PMID: 38922324 DOI: 10.1080/02640414.2024.2371580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
The study examined acute effects of dryland muscular endurance (ME) and maximum strength (MS) sessions on performance, physiological, and biomechanical variables during a subsequent sprint swimming session. Twenty-seven swimmers (16.5 ± 2.6 yrs) completed three experimental conditions including: i) ME, 55% of 1-repetition maximum, ii) MS, 90% of 1-repetition maximum, and iii) control (CON, no dry-land). Twenty minutes following ME, MS and CON sessions swimmers performed a 10-s tethered swimming sprint, four by 50-m (4 × 50-m), and a 100-m front crawl sprints. Performance time, blood lactate, heart rate (HR), stroke rate (SR), stroke length (SL), stroke index (SI), and stroke efficiency (ηF) were measured during 4 × 50-m and 100-m. Hand grip strength (HG), and shoulder muscles isometric strength (ISO) were measured after each session. Mean 4 × 50-m time increased in ME compared to CON by 1.7 ± 2.7% (p = 0.01), while 100-m time was similar among conditions (p > 0.05). ISO was lower after dry-land training in all conditions (p = 0.01). Tethered force, HG, HR, SR, SL, SI, and ηF were no different between conditions (p > 0.05). Dryland ME session decrease swimming performance; however, ME and MS sessions did not affect technical ability during a subsequent maximum intensity swimming.
Collapse
Affiliation(s)
- Gavriil G Arsoniadis
- Division of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros G Botonis
- Division of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
- School of Physical Education and Sport Science, Division of Biology of Exercise, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory C Bogdanis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Terzis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyris G Toubekis
- Division of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Dos Santos Silva RA, Peres-Ueno MJ, Nicola AC, Santos LFG, Fernandes-Breitenbach F, Rubira RJG, Pereira R, Chaves-Neto AH, Dornelles RCM. The microarchitecture and chemical composition of the femur neck of senescent female rats after different physical training protocols. GeroScience 2024; 46:1927-1946. [PMID: 37776397 PMCID: PMC10828330 DOI: 10.1007/s11357-023-00948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
A sedentary lifestyle, coupled with a decrease in estrogen, impairs bone homeostasis, favoring to the development of osteopenia and osteoporosis, both recognized as risk factors for fractures. Here, we investigated the quality of the femur, particularly the femur neck region, and the ambulation performance of senescent rats subjected to three different physical training protocols during the periestropause period. Forty-eight female rats, 18 months of age, were subjected to a 120-day training period, three times a week. The rats were distributed into four groups: aerobic training (AT), strength training (ST), concurrent training (CT), or no training (NT). After the experimental period, at 21 months of age, ambulation performance and femur were analyzed using microtomography, Raman stereology, densitometry, and mechanical strength tests. The results demonstrated greater remodeling activity and improvement in resistance and bone microarchitecture in the femur neck of senescent female rats after undergoing physical training. Our verified higher intensities of bands related to collagen, phosphate, amide III, and amide I. Furthermore, the analysis of the secondary collagen structures indicated alterations in the collagen network due to the exercise, resulting in increased bone strength. Both AT and strength-based training proved beneficial, with AT showing greater adaptations in bone density and stiffness in the femur, while strength-based training greater adaptations in trabecular and cortical structure. These insights contribute to the understanding of the potential interventions for preventing osteopenia and osteoporosis, which are critical risk factors for fractures.
Collapse
Affiliation(s)
- Rafael Augusto Dos Santos Silva
- Multicentric Graduate Program in Physiological Sciences - SBFis/UNESP, São Paulo State University, Araçatuba, São Paulo, Brazil
- Aging Biology Research Group, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Rodovia Marechal Rondon, km 527, CEP 16018-805, Araçatuba, São Paulo, Brazil
| | - Melise Jacon Peres-Ueno
- Multicentric Graduate Program in Physiological Sciences - SBFis/UNESP, São Paulo State University, Araçatuba, São Paulo, Brazil
- Aging Biology Research Group, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Rodovia Marechal Rondon, km 527, CEP 16018-805, Araçatuba, São Paulo, Brazil
| | - Angela Cristina Nicola
- Multicentric Graduate Program in Physiological Sciences - SBFis/UNESP, São Paulo State University, Araçatuba, São Paulo, Brazil
- Aging Biology Research Group, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Rodovia Marechal Rondon, km 527, CEP 16018-805, Araçatuba, São Paulo, Brazil
| | - Luis Fernando Gadioli Santos
- Multicentric Graduate Program in Physiological Sciences - SBFis/UNESP, São Paulo State University, Araçatuba, São Paulo, Brazil
- Aging Biology Research Group, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Rodovia Marechal Rondon, km 527, CEP 16018-805, Araçatuba, São Paulo, Brazil
| | - Fernanda Fernandes-Breitenbach
- Multicentric Graduate Program in Physiological Sciences - SBFis/UNESP, São Paulo State University, Araçatuba, São Paulo, Brazil
- Aging Biology Research Group, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Rodovia Marechal Rondon, km 527, CEP 16018-805, Araçatuba, São Paulo, Brazil
| | - Rafael Jesus Gonçalves Rubira
- Physics Department, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, Bahia, 45210-506, Brazil
| | - Antônio Hernandes Chaves-Neto
- Multicentric Graduate Program in Physiological Sciences - SBFis/UNESP, São Paulo State University, Araçatuba, São Paulo, Brazil
- Aging Biology Research Group, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Rodovia Marechal Rondon, km 527, CEP 16018-805, Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Multicentric Graduate Program in Physiological Sciences - SBFis/UNESP, São Paulo State University, Araçatuba, São Paulo, Brazil.
- Aging Biology Research Group, Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Rodovia Marechal Rondon, km 527, CEP 16018-805, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
11
|
K. Winther A, Baptista I, Pedersen S, Brito J, B. Randers M, Johansen D, Pettersen SA. An analysis of training load in highly trained female football players. PLoS One 2024; 19:e0299851. [PMID: 38547171 PMCID: PMC10977714 DOI: 10.1371/journal.pone.0299851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/18/2024] [Indexed: 04/02/2024] Open
Abstract
This observational study aimed to analyze external training load in highly trained female football players, comparing starters and non-starters across various cycle lengths and training days. METHOD External training load [duration, total distance [TD], high-speed running distance [HSRD], sprint distance [SpD], and acceleration- and deceleration distance [AccDecdist] from 100 female football players (22.3 ± 3.7 years of age) in the Norwegian premier division were collected over two seasons using STATSports APEX. This resulted in a final dataset totaling 10498 observations after multiple imputation of missing data. Microcycle length was categorized based on the number of days between matches (2 to 7 days apart), while training days were categorized relative to match day (MD, MD+1, MD+2, MD-5, MD-4, MD-3, MD-2, MD-1). Linear mixed modeling was used to assess differences between days, and starters vs. non-starters. RESULTS In longer cycle lengths (5-7 days between matches), the middle of the week (usually MD-4 or MD-3) consistently exhibited the highest external training load (~21-79% of MD TD, MD HSRD, MD SpD, and MD AccDecdist); though, with the exception of duration (~108-120% of MD duration), it remained lower than MD. External training load was lowest on MD+2 and MD-1 (~1-37% of MD TD, MD HSRD, MD SpD, MD AccDecdist, and ~73-88% of MD peak speed). Non-starters displayed higher loads (~137-400% of starter TD, HSRD, SpD, AccDecdist) on MD+2 in cycles with 3 to 7 days between matches, with non-significant differences (~76-116%) on other training days. CONCLUSION Loading patterns resemble a pyramid or skewed pyramid during longer cycle lengths (5-7 days), with higher training loads towards the middle compared to the start and the end of the cycle. Non-starters displayed slightly higher loads on MD+2, with no significant load differentiation from MD-5 onwards.
Collapse
Affiliation(s)
- Andreas K. Winther
- Faculty of Health Sciences, School of Sport Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Ivan Baptista
- Faculty of Science and Technology, Department of Computer Science, UiT the Arctic University of Norway, Tromsø, Norway
- Faculty of Sport, Center for Research, Training, Innovation and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
| | - Sigurd Pedersen
- Faculty of Health Sciences, School of Sport Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - João Brito
- Portugal Football School, Portuguese Football Federation, Lisbon, Portugal
| | - Morten B. Randers
- Faculty of Health Sciences, Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster, University of Southern Denmark, Odense, Denmark
| | - Dag Johansen
- Faculty of Science and Technology, Department of Computer Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Svein Arne Pettersen
- Faculty of Health Sciences, School of Sport Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Mikkonen RS, Ihalainen JK, Hackney AC, Häkkinen K. Perspectives on Concurrent Strength and Endurance Training in Healthy Adult Females: A Systematic Review. Sports Med 2024; 54:673-696. [PMID: 37948036 PMCID: PMC10978686 DOI: 10.1007/s40279-023-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Both strength and endurance training are included in global exercise recommendations and are the main components of training programs for competitive sports. While an abundance of research has been published regarding concurrent strength and endurance training, only a small portion of this research has been conducted in females or has addressed their unique physiological circumstances (e.g., hormonal profiles related to menstrual cycle phase, menstrual dysfunction, and hormonal contraceptive use), which may influence training responses and adaptations. OBJECTIVE The aim was to complete a systematic review of the scientific literature regarding training adaptations following concurrent strength and endurance training in apparently healthy adult females. METHODS A systematic electronic search for articles was performed in July 2021 and again in December 2022 using PubMed and Medline. This review followed, where applicable, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of the included studies was assessed using a modified Downs and Black checklist. Inclusion criteria were (1) fully published peer-reviewed publications; (2) study published in English; (3) participants were healthy normal weight or overweight females of reproductive age (mean age between > 18 and < 50) or presented as a group (n > 5) in studies including both females and males and where female results were reported separately; (4) participants were randomly assigned to intervention groups, when warranted, and the study included measures of maximal strength and endurance performance; and (5) the duration of the intervention was ≥ 8 weeks to ensure a meaningful training duration. RESULTS Fourteen studies met the inclusion criteria (seven combined strength training with running, four with cycling, and three with rowing or cross-country skiing). These studies indicated that concurrent strength and endurance training generally increases parameters associated with strength and endurance performance in female participants, while several other health benefits such as, e.g., improved body composition and blood lipid profile were reported in individual studies. The presence of an "interference effect" in females could not be assessed from the included studies as this was not the focus of any included research and single-mode training groups were not always included alongside concurrent training groups. Importantly, the influence of concurrent training on fast-force production was limited, while the unique circumstances affecting females were not considered/reported in most studies. Overall study quality was low to moderate. CONCLUSION Concurrent strength and endurance training appears to be beneficial in increasing strength and endurance capacity in females; however, multiple research paradigms must be explored to better understand the influence of concurrent training modalities in females. Future research should explore the influence of concurrent strength and endurance training on fast-force production, the possible presence of an "interference effect" in athletic populations, and the influence of unique circumstances, such as hormone profile, on training responses and adaptations.
Collapse
Affiliation(s)
- Ritva S Mikkonen
- Sports Technology Unit, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland.
| | - Johanna K Ihalainen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Anthony C Hackney
- Department of Exercise and Sport Science, and Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keijo Häkkinen
- Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| |
Collapse
|
13
|
Canli U, Aldhahi MI. The physiological and physical benefits of two types of concurrent training: a randomized controlled trial. BMC Sports Sci Med Rehabil 2024; 16:8. [PMID: 38169423 PMCID: PMC10762810 DOI: 10.1186/s13102-023-00798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND It is widely acknowledged that aerobic exercise and strength training are crucial components of most workout programs. However, there is no consensus as to whether the effectiveness of exercises is affected by the sequence in which they are performed. Therefore, the overarching aim of the study was to understand the optimal order of two types of concurrent training program for 13 weeks by comparing the effectiveness of the training on body composition, predicated maximal oxygen uptake (VO2max), dynamic respiratory parameters and muscle strength in healthy middle-aged people. METHODS Thirty-three middle-aged individuals, who were categorized as moderately active based on their responses to International Physical Activity Questionnaires, underwent random allocation. The participants were randomly assigned into two groups: the Strength Training followed by Aerobic Training group (SAG, n = 16) and the Aerobic Training followed by Strength Training group (ASG, n = 17). Body composition, aerobic endurance, respiratory parameters, and upper and lower strength were assessed at baseline and after (post-test) a 13-week intervention. The chi-square test and the independent t-test were used to compare sociodemographic variables between the groups. A 2 × 2 analysis of variance (ANOVA) with repeated measures (group x measurement) was conducted. The study was retrospectively registered on clinicaltrials.gov in May of 2023 (clinicaltials.gov identifier: NCT05862415; in 04/25/2023). RESULTS Findings showed no significant differences between the group in the VO2max, FVC or FEV1 (F = 1.122, 0.028, 0.06, 2.483; p > 0.05, respectively). Intragroup analysis revealed changes in PEF compared to baseline in the ASG (F = 5.895; p < 0.05). Increases were observed in all strength parameters for both training programs. CONCLUSIONS The concurrent training effect on muscle composition, oxygen consumption and muscle strength specifically 1RM, in middle-aged individuals are equivocal, regardless of the exercise order. The results indicate that both exercise sequences can elicit similar benefits in terms of cardiovascular fitness, muscular strength, and endurance. This lack of difference suggests that the order of exercise does not play a significant role in determining the effectiveness of the workout or the subsequent physiological adaptations. CLINICALTIALS. GOV IDENTIFIER NCT05862415. Date of registration: 04/25/2023.
Collapse
Affiliation(s)
- Umut Canli
- Sports Science Faculty, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Monira I Aldhahi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
14
|
Chen Y, Feng X, Huang L, Wang K, Mi J. Comparative efficacy of concurrent training types on lower limb strength and muscular hypertrophy: A systematic review and network meta-analysis. J Exerc Sci Fit 2024; 22:86-96. [PMID: 38187085 PMCID: PMC10767279 DOI: 10.1016/j.jesf.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objective This study aims to compare, through quantitative analysis, the effectiveness of different endurance training types on increasing lower limb strength and muscle cross-sectional area (MCSA) in concurrent training. Methods This systematic literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) [PROSPERO ID: CRD42023396886]. Web of Science, SportDiscuss, Pubmed, Cochrane, and Scopus were systematically searched from their inception date to October 20, 2023. Results A total of 40 studies (841 participants) were included in this meta-analysis. MCSA analysis showed that, compared to resistance training alone, concurrent high-intensity interval running training and resistance training and concurrent moderate-intensity continuous cycling training and resistance training were more effective (SMD = 0.15, 95% CI = -0.46 to 0.76, and SMD = 0.07, 95% CI = -0.24 to 0.38 respectively), while other modalities of concurrent training not. Lower body maximal strength analysis showed that all modalities of concurrent training were inferior to resistance training alone, but concurrent high-intensity interval training and resistance training showed an advantage in four different concurrent training modalities (SMD = -0.08, 95% CI = -0.25 to 0.08). For explosive strength, only concurrent high-intensity interval training and resistance training was superior to resistance training (SMD = 0.06, 95% CI = -0.21 to 0.33). Conclusion Different endurance training types have an impact on the effectiveness of concurrent training, particularly on lower limb strength. Adopting high-intensity interval running as the endurance training type in concurrent training can effectively minimize the adverse effects on lower limb strength and MCSA.
Collapse
Affiliation(s)
- Yonghui Chen
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| | - Xinmiao Feng
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| | - Lanmin Huang
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| | - Keli Wang
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| | - Jing Mi
- School of Competitive Sports, Beijing Sport University, Beijing, PR China
| |
Collapse
|
15
|
Lee MJ, Caruana NJ, Saner NJ, Kuang J, Stokes T, McLeod JC, Oikawa SY, Bishop DJ, Bartlett JD, Phillips SM. Resistance-only and concurrent exercise induce similar myofibrillar protein synthesis rates and associated molecular responses in moderately active men before and after training. FASEB J 2024; 38:e23392. [PMID: 38153675 DOI: 10.1096/fj.202302024r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Aerobic and resistance exercise (RE) induce distinct molecular responses. One hypothesis is that these responses are antagonistic and unfavorable for the anabolic response to RE when concurrent exercise is performed. This thesis may also depend on the participants' training status and concurrent exercise order. We measured free-living myofibrillar protein synthesis (MyoPS) rates and associated molecular responses to resistance-only and concurrent exercise (with different exercise orders), before and after training. Moderately active men completed one of three exercise interventions (matched for age, baseline strength, body composition, and aerobic capacity): resistance-only exercise (RE, n = 8), RE plus high-intensity interval exercise (RE+HIIE, n = 8), or HIIE+RE (n = 9). Participants trained 3 days/week for 10 weeks; concurrent sessions were separated by 3 h. On the first day of Weeks 1 and 10, muscle was sampled immediately before and after, and 3 h after each exercise mode and analyzed for molecular markers of MyoPS and muscle glycogen. Additional muscle, sampled pre- and post-training, was used to determine MyoPS using orally administered deuterium oxide (D2 O). In both weeks, MyoPS rates were comparable between groups. Post-exercise changes in proteins reflective of protein synthesis were also similar between groups, though MuRF1 and MAFbx mRNA exhibited some exercise order-dependent responses. In Week 10, exercise-induced changes in MyoPS and some genes (PGC-1ɑ and MuRF1) were dampened from Week 1. Concurrent exercise (in either order) did not compromise the anabolic response to resistance-only exercise, before or after training. MyoPS rates and some molecular responses to exercise are diminished after training.
Collapse
Affiliation(s)
- Matthew J Lee
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Nikeisha J Caruana
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Saner
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C McLeod
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sara Y Oikawa
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Jonathan D Bartlett
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Hu X, Boisbluche S, Philippe K, Maurelli O, Li S, Xu B, Prioux J. Effects of Tactical Periodization on Workload, Physical Fitness, and Well-Being in Professional Rugby Union Players During a Preseason Period. J Strength Cond Res 2024; 38:105-115. [PMID: 37506365 PMCID: PMC10712997 DOI: 10.1519/jsc.0000000000004607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
ABSTRACT Hu, X, Boisbluche, S, Philippe, K, Maurelli, O, Li, S, Xu, B, and Prioux, J. Effects of tactical periodization on workload, physical fitness, and well-being in professional rugby union players during a preseason period. J Strength Cond Res 38(1): 105-115, 2024-Tactical periodization (TP) emerged approximately 30 years ago and has recently gained considerable attention in rugby union (RU). It aims to develop specific physical fitness components with 3 acquisition days (strength, endurance, and speed). However, no study has investigated the effects of TP on workload, physical fitness, and well-being across an RU preseason. This study aimed to determine how RU players' workload response to TP focusing on positional differences, observe the influence of a TP preseason training program on aerobic fitness and neuromuscular performance between positions, and analyze the variation of well-being reported by forwards and backs from the 3 acquisition days. Thirty-two male players completed a 6-week TP protocol. External and internal workload variables were recorded through global positioning systems and session rating of perceived exertion (s-RPE) separately. Fitness assessments included Bronco and countermovement jump (CMJ) tests. The sum of well-being indices was measured using the Hooper index. Kruskal-Wallis H tests revealed that the highest values of PlayerLoad slow, PlayerLoad slow percentage, and s-RPE were found on endurance day and the lowest on speed day. Mann-Whitney U tests showed that 15 external workload parameters were higher in backs than forwards for each acquisition day. Small improvements were observed on the Bronco test. No differences were observed in CMJ performance during the preseason period and well-being values between acquisition days. This study provides unique insights into external and internal workload variables during each acquisition day. Furthermore, it highlights TP as an efficient theoretical concept to use in an RU context.
Collapse
Affiliation(s)
- Xiaopan Hu
- Sino-French Joint Research Center of Sport Science, College of Physical Education and Health, East China Normal University, Shanghai, China
- Movement, Sport, and Health Sciences Laboratory, Rennes 2 University, Bruz, France
- Department of Sport Sciences and Physical Education, École Normale Supérieure de Rennes, Bruz, France
| | - Simon Boisbluche
- Department of Sport Sciences and Physical Education, École Normale Supérieure de Rennes, Bruz, France
| | - Kilian Philippe
- Department of Sport Sciences and Physical Education, École Normale Supérieure de Rennes, Bruz, France
- Movement, Balance, Performance, and Health Laboratory, University of Pau and Pays de l’Adour, Tarbes, France; and
| | - Olivier Maurelli
- Muscle Dynamics and Metabolism Laboratory, University of Montpellier, Montpellier, France
| | - Shichang Li
- Sino-French Joint Research Center of Sport Science, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Bo Xu
- Sino-French Joint Research Center of Sport Science, College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jacques Prioux
- Sino-French Joint Research Center of Sport Science, College of Physical Education and Health, East China Normal University, Shanghai, China
- Movement, Sport, and Health Sciences Laboratory, Rennes 2 University, Bruz, France
- Department of Sport Sciences and Physical Education, École Normale Supérieure de Rennes, Bruz, France
| |
Collapse
|
17
|
Wang X, Soh KG, Samsudin S, Deng N, Liu X, Zhao Y, Akbar S. Effects of high-intensity functional training on physical fitness and sport-specific performance among the athletes: A systematic review with meta-analysis. PLoS One 2023; 18:e0295531. [PMID: 38064433 PMCID: PMC10707569 DOI: 10.1371/journal.pone.0295531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE This study aims to meta-analyze the impact of high-intensity functional training on athletes' physical fitness and sport-specific performance. METHODS A systematic search was conducted in five well-known academic databases (PubMed, Scopus, Web of Science, EBSCOhost, and the Cochrane Library) up to July 1, 2023. The literature screening criteria included: (1) studies involving healthy athletes, (2) a HIFT program, (3) an assessment of outcomes related to athletes' physical fitness or sport-specific performance, and (4) the inclusion of randomized controlled trials. The Physical Therapy Evidence Database (PEDro) scale was used to evaluate the quality of studies included in the meta-analysis. RESULTS 13 medium- and high-quality studies met the inclusion criteria for the systematic review, involving 478 athletes aged between 10 and 24.5 years. The training showed a small to large effect size (ES = 0.414-3.351; all p < 0.05) in improving upper and lower body muscle strength, power, flexibility, and sport-specific performance. CONCLUSION High-intensity functional training effectively improves athletes' muscle strength, power, flexibility, and sport-specific performance but has no significant impact on endurance and agility. Future research is needed to explore the impact of high-intensity functional training on athletes' speed, balance, and technical and tactical performance parameters.
Collapse
Affiliation(s)
- Xinzhi Wang
- Faculty of Educational Studies, Department of Sports Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kim Geok Soh
- Faculty of Educational Studies, Department of Sports Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Shamsulariffin Samsudin
- Faculty of Educational Studies, Department of Sports Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nuannuan Deng
- Faculty of Educational Studies, Department of Sports Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Xutao Liu
- Faculty of Educational Studies, Department of Sports Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yue Zhao
- Faculty of Educational Studies, Department of Sports Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Saddam Akbar
- Faculty of Educational Studies, Department of Sports Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Jerger S, Jendricke P, Centner C, Bischof K, Kohl J, Keller S, Gollhofer A, König D. Effects of Specific Bioactive Collagen Peptides in Combination with Concurrent Training on Running Performance and Indicators of Endurance Capacity in Men: A Randomized Controlled Trial. SPORTS MEDICINE - OPEN 2023; 9:103. [PMID: 37935999 PMCID: PMC10630299 DOI: 10.1186/s40798-023-00654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND First evidence indicates that the supplementation of specific collagen peptides (SCP) is associated with a significant improvement in running performance in physically active women; however, it is unclear if the same is true in males. The purpose of the present study was to investigate the effects of a concurrent training program including 60 min of continuous moderate intensity running training and 15 min of dynamic resistance training combined with supplementation of SCP on parameters of running performance in moderately trained males. METHODS In a double-blind, placebo-controlled, randomized trial, participants performed a 12 weeks concurrent training and ingested 15 g of SCP [treatment group (TG)] or placebo [control group (CG)] daily. Before and after the intervention, running endurance performance was measured by a 1-h time trial on a running track. Velocity at the lactate threshold (VLT) and at the individual anaerobic threshold (VIAT) were assessed on a treadmill ergometer. Body composition was evaluated by bioelectrical impedance analysis. RESULTS Thirty-two men (28.4 ± 5.2 years) completed the study and were included in the analysis. After 12 weeks, TG had a statistically significant (p ≤ 0.05) higher increase in running distance (1727 ± 705 m) compared to the CG (1018 ± 976 m) in the time trial. VLT increased in the TG by 0.680 ± 1.27 km h-1 and slightly decreased by - 0.135 ± 0.978 km h-1 in the CG, resulting in statistically significant group differences (p ≤ 0.05). A significantly higher improvement in VIAT (p ≤ 0.05) was shown in the TG compared with the CG only (1.660 ± 1.022 km h-1 vs 0.606 ± 0.974 km h-1; p ≤ 0.01). Fat mass decreased (TG - 1.7 ± 1.6 kg; CG - 1.2 ± 2.0 kg) and fat free mass increased (TG 0.2 ± 1.2 kg; CG 0.5 ± 1.3 kg) in both groups with no significant group differences. CONCLUSION In summary, supplementation with 15 g of SCP improved running performance in a 1-h time trial and enhanced indicators of endurance capacity at submaximal exercise intensities such as an increased velocity at the lactate as well as the anaerobic threshold more effectively than CT alone. TRIAL REGISTRATION ETK: 123/17; DRKS-ID: DRKS00015529 (Registered 07 November 2018-Retrospectively registered); https://drks.de/search/de/trial/DRKS00015529.
Collapse
Affiliation(s)
- Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany.
| | - Patrick Jendricke
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
| | - Kevin Bischof
- Department for Nutrition, Exercise and Health, Centre of Sports Science, University of Vienna, Auf Der Schmelz 6, 1150, Vienna, Austria
| | - Jan Kohl
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Simon Keller
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Daniel König
- Department for Nutrition, Exercise and Health, Centre of Sports Science, University of Vienna, Auf Der Schmelz 6, 1150, Vienna, Austria
- Department for Nutrition, Exercise and Health, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| |
Collapse
|
19
|
Loturco I, Grazioli R, Veeck F, Nakamura FY, Inácio M, Schons P, Preissler A, Pinto RS, Pereira LA, McGuigan MR, Cadore EL. Effects of a Short-Term Detraining Period on the Strength Deficit and Functional Performance of Highly Trained Soccer Players. J Strength Cond Res 2023; 37:2058-2063. [PMID: 37015015 DOI: 10.1519/jsc.0000000000004496] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
ABSTRACT Loturco, I, Grazioli, R, Veeck, F, Nakamura, FY, Inácio, M, Schons, P, Preissler, A, Pinto, RS, Pereira, LA, McGuigan, MR, and Cadore, EL. Effects of a short-term detraining period on the strength deficit and functional performance of highly trained soccer players. J Strength Cond Res 37(10): 2058-2063, 2023-The aim of this study was to examine the effects of a 4-week detraining period on the neuromuscular performance of highly trained soccer players. Pre and post detraining, 18 adult soccer players (age: 27 ± 4.9 years; height: 180.2 ± 7.1 cm; body mass [BM]: 78.9 ± 7.6 kg) performed vertical jumps, 20-m linear sprints, curve sprint and change of direction speed tests, and a progressive loading test in the half-squat exercise with loads corresponding to 50, 100, and 150% of the players' BM to assess the peak-force (PF), mean power (MP), and strength-deficit (SDef). Pre and post differences in the variables of interest were analyzed using paired t -tests and effect sizes (ES). No significant changes were detected for vertical jumping height and sprint times. Higher PF at 50 and 100% BM and lower SDef were shown when comparing pre- and postassessments (ES = 0.66, 0.68, 0.55; p = 0.018, 0.016, and 0.046, respectively). The MP at 50 and 100% BM increased significantly after the detraining phase (ES = 0.56, 0.82; p = 0.049 and 0.007, respectively). The results indicate that these athletes were able to maintain and achieve satisfactory levels of performance after a short period of training cessation. Interestingly, some strength- and power-derived parameters improved significantly after short-term detraining, which may have important implications for training programs aimed at maximizing speed and power performance. It is recommended that coaches test their players not only at the beginning but also at the end of the season, to better evaluate variations in performance and thus create more efficient and tailored training strategies.
Collapse
Affiliation(s)
- Irineu Loturco
- NAR-Nucleus of High Performance in Sport, Sao Paulo, Brazil
- Department of Human Movement Sciences, Federal University of São Paulo, São Paulo, Brazil
- University of South Wales, Wales, United Kingdom
| | - Rafael Grazioli
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Filipe Veeck
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabio Y Nakamura
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University Institute of Maia (ISMAI), Maia, Portugal
- Associate Graduate Program in Physical Education, Universidade de Pernambuco (UPE)/Universidade Federal da Paraíba (UFPB), João Pessoa, Brazil
| | - Martinho Inácio
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Schons
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Artur Preissler
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ronei S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas A Pereira
- NAR-Nucleus of High Performance in Sport, Sao Paulo, Brazil
- Department of Human Movement Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Michael R McGuigan
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand; and
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Eduardo L Cadore
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
20
|
Zeng X, Li L, Xia Z, Zou L, Kwok T, Su Y. Transcriptomic Analysis of Human Skeletal Muscle in Response to Aerobic Exercise and Protein Intake. Nutrients 2023; 15:3485. [PMID: 37571423 PMCID: PMC10421363 DOI: 10.3390/nu15153485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to provide a more comprehensive molecular insight into the effects of aerobic exercise (AE), protein intake (PI), and AE combined with PI on human skeletal muscle by comparing their transcriptomic profiles. Fourteen published datasets obtained from the Gene Expression Omnibus (GEO) database were used. The hub genes were identified in response to acute AE (ACTB, IL6), training AE (UBB, COL1A1), PI (EZH2), acute AE combined with PI (DDIT3), and training AE combined with PI (MYC). Both FOS and MYC were upregulated in response to acute AE, and they were, respectively, downregulated by higher PI and a combination of AE and PI. COL1A1 was upregulated by training AE but was downregulated by higher PI. Results from the gene set enrichment analysis (p < 0.05 and FDR < 25%) showed that AE and PI delivered their impacts on human skeletal muscle in analogous pathways, including aerobic respiration, mitochondrial complexes, extracellular matrix (ECM) remodeling, metabolic process, and immune/inflammatory responses, whereas, PI may attenuate the response of immune/inflammation and ECM remodeling which would be promoted by AE, irrespective of its types. Compared to PI alone, acute AE combined with PI would further promote protein turnover and synthesis, but suppress skeletal muscle contraction and movement.
Collapse
Affiliation(s)
- Xueqing Zeng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China (Z.X.)
| | - Linghong Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China (Z.X.)
| | - Zhilin Xia
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China (Z.X.)
| | - Lianhong Zou
- Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People’s Hospital, Changsha 410009, China
| | - Timothy Kwok
- Department of Medicine & Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China (Z.X.)
| |
Collapse
|
21
|
Pérez IMM, Pérez SEM, García RP, Lupgens DDZ, Martínez GB, González CR, Yán NK, Hernández FR. Exercise-based rehabilitation on functionality and quality of life in head and neck cancer survivors. A systematic review and meta-analysis. Sci Rep 2023; 13:8523. [PMID: 37237097 DOI: 10.1038/s41598-023-35503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Head and Neck Cancer (HNC) is a globally rare cancer that includes a variety of tumors affecting the upper aerodigestive tract. It presents with difficulty breathing or swallowing and is mainly treated with radiation therapy, chemotherapy, or surgery for tumors that have spread locally or throughout the body. Alternatively, exercise can be used during cancer treatment to improve function, including pain relief, increase range of motion and muscle strength, and reduce cancer-related fatigue, thereby enhancing quality of life. Although existing evidence suggests the adjunctive use of exercise in other cancer types, no previous studies have examined the effects on HNC survivors. The aim of this meta-analysis was to quantify the effect of exercise-based rehabilitation on functionality and quality of life in HNC survivors who underwent surgery and/or chemoradiotherapy. A systematic review and meta-analysis were carried out following PRISMA statement and registered in PROSPERO (CRD42023390300). The search was performed in MEDLINE (PubMED), Cochrane Library, CINAHL and Web of Science (WOS) databases from inception to 31st December 2022 using the terms "cancer", "head and neck neoplasms", "exercise", "rehabilitation", "complications", "muscle contraction", "muscle stretching exercises" combining with booleans "AND"/"OR". PEDro scale, Cochrane Risk of Bias Tool and GRADE were used to assess methodological quality, risk of bias and grade of recommendation of included studies respectively. 18 studies (n = 1322) were finally included which 1039 (78.6%) were men and 283 (21.4%) were women. In patients who underwent radio-chemotherapy, overall pain [SMD = - 0.62 [- 4.07, 2.83] CI 95%, Z = 0.35, p = 0.72] and OP [SMD = - 0.07 [- 0.62, 0.48] CI 95%, Z = 0.25, p = 0.81] were slightly reduced with exercise in comparison to controls. Besides, lower limb muscle strength [SMD = - 0.10 [- 1.52, 1.32] CI 95%, Z = 0.14, p = 0.89] and fatigue [SMD = - 0.51 [- 0.97, - 0.057] CI 95%, Z = 2.15, p < 0.01] were also improved in those who receive radio-chemoradiation. In HNC survivors treated with neck dissection surgery, exercise was superior to controls in overall pain [SMD = - 1.04 [- 3.31, 1.23] CI 95%, Z = 0.90, p = 0.37] and, in mid-term, on shoulder pain SMD = - 2.81 [- 7.06, 1.43] CI 95%, Z = 1.76, p = 0.08]. No differences in quality of life were found at any of the follow-up periods. There is evidence of fair to good methodological quality, low to moderate risk of bias, and weak recommendations supporting the use of exercise-based rehabilitation to increase functionality. However, no evidence was found in favor of the use of this modality for improving the quality of life of HNC survivors who underwent chemoradiotherapy or surgery.
Collapse
Affiliation(s)
- Isidro Miguel Martín Pérez
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, 38203, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sebastián Eustaquio Martín Pérez
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200, Santa Cruz de Tenerife, Spain.
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, 38203, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300, La Orotava, Santa Cruz de Tenerife, Spain.
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain.
| | - Raquel Pérez García
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200, Santa Cruz de Tenerife, Spain
| | - Diego de Zárate Lupgens
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300, La Orotava, Santa Cruz de Tenerife, Spain
| | - Germán Barrachina Martínez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300, La Orotava, Santa Cruz de Tenerife, Spain
| | - Carolina Rodríguez González
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200, Santa Cruz de Tenerife, Spain
- Hospital Universitario de Canarias, 38320, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Nart Keituqwa Yán
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200, Santa Cruz de Tenerife, Spain
- Hospital Universitario de Canarias, 38320, San Cristóbal de la Laguna, Santa Cruz de Tenerife, Spain
| | - Fidel Rodríguez Hernández
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200, Santa Cruz de Tenerife, Spain
| |
Collapse
|
22
|
Escalante G, Barakat C, Tinsley GM, Schoenfeld BJ. Nutrition, Training, Supplementation, and Performance-Enhancing Drug Practices of Male and Female Physique Athletes Peaking for Competition. J Strength Cond Res 2023:00124278-990000000-00253. [PMID: 37184967 DOI: 10.1519/jsc.0000000000004462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
ABSTRACT Escalante, G, Barakat, C, Tinsley, GM, and Schoenfeld, BJ. Nutrition, training, supplementation, and performance-enhancing drug practices of male and female physique athletes peaking for competition. J Strength Cond Res XX(X): 000-000, 2023-The purpose of this descriptive investigation was threefold: (a) to assess the nutrition, training, supplement, and performance-enhancement drug practices of male and female physique competitors 30 days before competition; (b) to examine the specific water and macronutrient manipulation performed by competitors during the last 3 days before competition; and (c) to assess physiological responses to precontest preparation including body composition, body fluids, resting heart rate, and blood pressure. Competitors reported performing moderately high volume, moderate to high repetition, split-body resistance training programs performed on most days of the week; the programs included the use of a variety of advanced training methods. A majority of competitors included cardio to expedite fat loss, and most reported performing cardio in a fasted state despite a lack of objective evidentiary support for the practice. Competitors substantially restricted calories and consumed protein in amounts well above research-based guidelines (>3 g·kg-1·d-1); carbohydrate and lipid intake were highly variable. Water was substantially reduced in the final 3 days before competition. Competitors used a variety of dietary supplements throughout the study period, many of which are not supported by research. Both male and female competitors reported using performance enhancing drugs (∼48 and ∼38%, respectively) including testosterone derivatives, selective androgen receptor modulators, and human growth hormone. More research is warranted to elucidate safer and more effective peak week practices for physique competitors.
Collapse
Affiliation(s)
- Guillermo Escalante
- Department of Kinesiology, California State University-San Bernardino, San Bernardino, California
| | - Christopher Barakat
- Competitive Breed LLC, Department of Health Sciences and Human Performance, University of Tampa, Tampa, Florida
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas; and
| | | |
Collapse
|
23
|
Motahari Rad M, Bijeh N, Attarzadeh Hosseini SR, Raouf Saeb A. The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch Physiol Biochem 2023; 129:424-433. [PMID: 33044849 DOI: 10.1080/13813455.2020.1829649] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigated the effect of concurrent training (CT) sequences on fibroblast growth factor 21 (FGF21), irisin, myostatin (MSTN), and follistatin (FST) among adults with type 2 diabetes mellitus (T2DM). Fifty-one diabetic men were randomly selected and assigned to concurrent aerobic-resistance (A-R) training and concurrent resistance-aerobic (R-A) training, and non-exercise control (CON) groups. The training protocols consisted of three sessions per week for 12 weeks. The A-R and R-A groups received the same CT protocols and performed with different sequences. The subjects' blood samples were obtained at baseline and 48 hours after the last session of the intervention. The results showed that the concentration of FGF21 did not change significantly after the 12 weeks of CT with different sequences (p > .05, η2 = 0.123), but the serum concentration of irisin (A-R = 2.93 μg.L-1 (95% CI = 1.45-4.42, d = -0.57) and R-A = 3.31 μg.L-1 (95% CI = 1.13-5.49, d = -0.68)) and FST (A-R = 4.96 ng.mL-1 (95% CI = 3.41-6.5, d = -0.39) and R-A = 4.19 ng.mL-1 (95% CI = 2.82-5.56, d = -0.55)) significantly increased while the serum MSTN concentration (A-R = 152.32 ng.L-1 (95% CI = 61.83-242.82, d = 1.31) and R-A = 173 ng.L-1 (95% CI = 35.89-227.5, d = 0.83)) of both A-R and R-A groups mainly decreased (p < .01). There was no significant difference between A-R and R-A groups' irisin, FST, and MSTN concentration (p > .05), though the CT improved the body compositions, strength, and peak oxygen uptake in both groups (p < .01). Regardless of the CT sequences, it was found that CT acted as a therapeutic modality of training for T2DM patients by increasing their irisin and FST and decreasing their MSTN concentrations.
Collapse
Affiliation(s)
- Morteza Motahari Rad
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nahid Bijeh
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
24
|
The Effects of 12 Weeks of Concurrent and Combined Training on Inflammatory Markers, Muscular Performance, and Body Composition in Middle-Aged Overweight and Obese Males. Nutrients 2023; 15:nu15061482. [PMID: 36986212 PMCID: PMC10056532 DOI: 10.3390/nu15061482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Aim: Previous studies have focused on the order of endurance and resistance training when performing concurrent training (CT). However, no study has compared the effects of combined training with CT orders on inflammatory markers, muscular performance, and body composition in overweight and obese males. Therefore, the purpose of the current study was to compare the effects of 12 weeks of CT and combined training on the aforementioned markers in overweight and obese males. Methods: Sixty middle-aged overweight and obese males (age 51 ± 4 years) were randomly assigned into one of four groups: endurance followed by resistance training (ER; n = 15), resistance followed by endurance training (RE; n = 15), combined resistance and endurance training (COM), or control (CON; n = 15). Anthropometric, body composition, inflammatory marker, and muscular performance measurements were collected at baseline and after 12 weeks. Results: FFM remained unchanged in all three intervention groups (p > 0.05). Reductions in FM in the RE group were significantly greater than in CON (p = 0.038). The increases in serum concentrations of adiponectin in the RE group were significantly greater than in all other groups (p < 0.05). Increased serum concentrations of CTRP3 in all intervention groups were significantly greater than the CON group (p < 0.05); moreover, the increases in the RE group were significantly greater than CON (p < 0.001). Regarding CTRP5, the increase in RE was significantly greater than COM (p = 0.014). The RE group experienced significantly greater increases in CTRP9 than all other groups (p < 0.05), and the decreases in serum concentrations of CRP and TNF-α were significantly greater in the RE group compared to CON and ER (p < 0.05). Vo2max in the ER group was significantly greater than COM (p = 0.009), and all interventions resulted in higher gains compared to CON (p < 0.05). The increases in leg press strength, chest press strength, lower-body power, and upper-body power in the RE group were significantly greater than in the COM group (p < 0.05). In addition, the increases in chest press strength in the ER group were significantly greater than COM (p = 0.023). Conclusions: Regardless of training order, CT improved inflammatory markers, body composition, power, and VO2max. Notably, our analysis indicated significantly greater improvements in adiponectin, CTRP5, CTRP9, CRP, and TNF-α levels when RT preceded ET in CT sessions compared to other exercise training sequences. These findings suggested that the order of exercise training may have a significant impact on the effectiveness of CT on inflammatory markers, which has potential implications for exercise prescription and optimization of health-related training outcomes.
Collapse
|
25
|
Green ES, Williams ER, Feito Y, Jenkins NT. Physiological and Anthropometric Differences Among Endurance, Strength, and High-Intensity Functional Training Participants: A Cross-Sectional Study. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:131-142. [PMID: 35302436 DOI: 10.1080/02701367.2021.1947468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/10/2021] [Indexed: 06/14/2023]
Abstract
Purpose: We compared aerobic capacity (V˙O2max), mitochondrial capacity (mV˙O2), anaerobic power, strength, and muscle endurance in healthy, active men from strength (STR), endurance (END) and high-intensity functional training (HIFT) backgrounds. Methods: Twenty-four men (n = 8/group) completed a cycle ergometer test to determine V˙O2max, followed by a 3-min all-out test to determine peak (PP) and end power (EP), and to estimate anaerobic [work done above EP (WEP)] and aerobic work capacity. Strength was determined by knee extensor maximal voluntary contraction at various flexion angles. The endurance index (EI) of the vastus lateralis (VL) was assessed by measuring muscle contraction acceleration during electrical twitch mechanomyography. mV˙O2max of the VL was assessed using near-infrared spectroscopy to estimate muscle oxygen consumption during transient femoral artery occlusions. Results: V˙O2max was significantly different among groups (p < .05). PP was significantly higher in HIFT and STR versus END (p < .05). EP was significantly higher in HIFT and END compared to STR (p < .05). WEP was significantly higher in STR compared to END (p < .05), whereas total work done was significantly higher in HIFT and END compared to STR (p < .05). mV˙O2max and EI were comparable between HIFT and END but significantly lower in STR versus END (p < .05). Torque production was significantly lower in END compared to STR and HIFT at all flexion angles (p < .05), with no difference between STR and HIFT. Conclusion: HIFT participants can exert similar power outputs and absolute strength compared to strength focused participants but exhibit fatigue resistance and mitochondrial capacity comparable to those who train for endurance.
Collapse
|
26
|
Grazioli R, Loturco I, Lopez P, Setuain I, Goulart J, Veeck F, Inácio M, Izquierdo M, Pinto RS, Cadore EL. Effects of Moderate-to-Heavy Sled Training Using Different Magnitudes of Velocity Loss in Professional Soccer Players. J Strength Cond Res 2023; 37:629-635. [PMID: 33009351 DOI: 10.1519/jsc.0000000000003813] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Grazioli, R, Loturco, I, Lopez, P, Setuain, I, Goulart, J, Veeck, F, Inácio, M, Izquierdo, M, Pinto, RS, and Cadore, EL. Effects of moderate-to-heavy sled training using different magnitudes of velocity loss in professional soccer players. J Strength Cond Res 37(3): 629-635, 2023-This study investigated the effects of a 11-week moderate-to-heavy sled training intervention with different magnitudes of velocity loss on sprint and jump performance, mechanical muscle function, and body composition in professional soccer players. Seventeen players (age 25.8 ± 4.3 years; height 180.0 ± 8.6 cm; mass 77.7 ± 9.7 kg) were randomly allocated into 2 groups, based on different magnitudes of velocity loss: 10% of velocity decrease (G10, n = 8) and 20% of velocity decrease (G20, n = 9). The velocity-based sled training consisted of 20-m resisted sprints with a progressive loading increase from 45 to 65% of body-mass throughout the intervention. Pre-intervention and postintervention sprint and jump performance, hamstring and quadriceps peak torque and isometric rate of torque development, and lower-limb lean mass measured by dual X-ray absorptiometry were assessed and compared. Two-way repeated measures analysis of variance revealed a significant time-effect for decreases in 10- and 20-m sprint times ( p = 0.018 and p = 0.033, respectively), but without a time-group interaction. The G10 showed greater beneficial effects than G20 for both 10-m (-5.5 ± 3.3%, magnitude-based inference [MBI]: possibly vs. -1.7 ± 5.9%, MBI: possibly trivial) and 20-m (-2.5 ± 2.1%, MBI: possibly vs. -1.4 ± 3.7%, MBI: likely trivial) sprint times. Moreover, there was a significant time effect for countermovement jump height and quadriceps isometric peak torque, which decreased significantly after training ( p = 0.019 and p = 0.010, respectively), with no within-group effect of time vs. group interaction for these respective outcomes. The novel velocity-based sled model proposed here, especially under lower magnitudes of velocity loss, was able to significantly improve linear sprint performance in professional soccer players.
Collapse
Affiliation(s)
- Rafael Grazioli
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irineu Loturco
- NAR-Nucleus of High Performance in Sport, São Paulo, Brazil.,Department of Human Movement Sciences, Federal University of São Paulo, São Paulo, Brazil.,University of South Wales, Pontypridd, Wales, United Kingdom
| | - Pedro Lopez
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia ; and
| | - Igor Setuain
- Department of Health Sciences, Public University of Navarra, Tudela, Navarra, Spain
| | - Jean Goulart
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Filipe Veeck
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Martinho Inácio
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarra, Tudela, Navarra, Spain
| | - Ronei S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo L Cadore
- Exercise Research Laboratory, School of Physical Education, Physiotherapy, and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
27
|
Monserdà-Vilaró A, Balsalobre-Fernández C, Hoffman JR, Alix-Fages C, Jiménez SL. Effects of Concurrent Resistance and Endurance Training Using Continuous or Intermittent Protocols on Muscle Hypertrophy: Systematic Review With Meta-Analysis. J Strength Cond Res 2023; 37:688-709. [PMID: 36508686 DOI: 10.1519/jsc.0000000000004304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Monserdà-Vilaró, A, Balsalobre-Fernández, C, Hoffman, JR, Alix-Fages, C, and Jiménez, SL. Effects of concurrent resistance and endurance training using continuous or intermittent protocols on muscle hypertrophy: Systematic review with meta-analysis. J Strength Cond Res 37(3): 688-709, 2023-The purpose of this systematic review with meta-analysis was to explore the effects of concurrent resistance and endurance training (CT) incorporating continuous or intermittent endurance training (ET) on whole-muscle and type I and II muscle fiber hypertrophy compared with resistance training (RT) alone. Randomized and nonrandomized studies reporting changes in cross-sectional area at muscle fiber and whole-muscle levels after RT compared with CT were included. Searches for such studies were performed in Web of Science, PubMed, Scopus, SPORTDiscus, and CINAHL electronic databases. The data reported in the included studies were pooled in a random-effects meta-analysis of standardized mean differences (SMDs). Twenty-five studies were included. At the whole-muscle level, there were no significant differences for any comparison (SMD < 0.03). By contrast, RT induced greater type I and type II muscle fiber hypertrophy than CT when high-intensity interval training (HIIT) was incorporated alone (SMD > 0.33) or combined with continuous ET (SMD > 0.27), but not compared with CT incorporating only continuous ET (SMD < 0.16). The subgroup analyses of this systematic review and meta-analysis showed that RT induces greater muscle fiber hypertrophy than CT when HIIT is included. However, no CT affected whole-muscle hypertrophy compared with RT.
Collapse
Affiliation(s)
| | | | - Jay R Hoffman
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel ; and
| | - Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | - Sergio L Jiménez
- Centre for Sport Studies, Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain
| |
Collapse
|
28
|
Gao J, Yu L. Effects of concurrent training sequence on VO 2max and lower limb strength performance: A systematic review and meta-analysis. Front Physiol 2023; 14:1072679. [PMID: 36776981 PMCID: PMC9908959 DOI: 10.3389/fphys.2023.1072679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
The aim of this study is to compare the effects of concurrent strength and endurance training sequences on VO2max and lower limb strength performance to provide scientific guidance for training practice. We searched PubMed, EBSCO, Web of Science (WOS), Wanfang, and China National Knowledge Infrastructure (CNKI) databases up to December 2022. The included articles were randomized controlled trials that allowed us to compare the strength-endurance (S-E) sequence and endurance-strength (E-S) sequence on VO2max, maximum knee extension strength, maximum knee flexion strength, and lower limb power. The Cochrane bias risk tool was used to evaluate the methodological quality of the included literature, and Stata 12.0 was used for the heterogeneity test, subgroup analysis, draw forest map, sensitivity analysis, and publication bias evaluation. The results have been presented as standardized mean differences (SMDs) between treatments with 95% confidence intervals and calculations performed using random effects models. Significance was accepted when p < 0.05. The studies included 19 randomized controlled trials (285 males and 197 females), 242 subjects in S-E sequence, and 240 subjects in E-S sequence in the analyses. No difference changes between S-E and E-S sequences has been observed on VO2max in the overall analysis (SMD = 0.02, 95% CI: -0.21-0.25, p = 0.859). The S-E sequence shows a greater increase in lower limb strength performance than does the E-S sequence (SMD = 0.19, 95% CI: 0.02-0.37, p = 0.032), which was manifested in the elderly (p = 0.039) and women (p = 0.017); in training periods >8 weeks (p = 0.002) and training frequencies twice a week (p = 0.003); and with maximum knee flexion (p = 0.040) and knee extension strength (p = 0.026), while no difference was found in lower limb power (p = 0.523). In conclusion, the effect of VO2max will not change with different concurrent training sequences. The S-E sequence improves lower limb strength more significantly, mainly in the improvement of knee flexion and knee extension. This advantage is more related to factors such as age, gender, training period, and training frequency.
Collapse
Affiliation(s)
- Jiuxiang Gao
- Laboratory of Exercise Physiology, College of Sports Science, Beijing Sport University, Beijing, China
| | - Liang Yu
- Laboratory of Fitness Training, College of Fitness Training, Beijing Sport University, Beijing, China,*Correspondence: Liang Yu,
| |
Collapse
|
29
|
Markov A, Bussweiler J, Helm N, Arntz F, Steidten T, Krohm L, Sacot A, Baumert P, Puta C, Chaabene H. Acute effects of concurrent muscle power and sport-specific endurance exercises on markers of immunological stress response and measures of muscular fitness in highly trained youth male athletes. Eur J Appl Physiol 2023; 123:1015-1026. [PMID: 36624248 PMCID: PMC9829527 DOI: 10.1007/s00421-022-05126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To examine the acute effects of concurrent muscle power and sport-specific endurance exercises order on immunological stress responses, muscular-fitness, and rating-of-perceived-exertion (RPE) in highly trained youth male judo athletes. METHODS Twenty male participants randomly performed two concurrent training (CT) sessions; power-endurance and endurance-power. Measures of immune response (e.g., white blood cells), muscular-fitness (i.e., counter-movement-jump [CMJ]), RPE, blood-lactate, and -glucose were taken at different time-point (i.e., pre, mid, post, and post6h). RESULTS There were significant time*order interactions for white blood cells, lymphocytes, granulocytes, granulocyte-lymphocyte-ratio, and systemic-inflammation-index. Power-endurance resulted in significantly larger pre-to-post increases in white blood cells and lymphocytes while endurance-power resulted in significantly larger pre-to-post increases in the granulocyte-lymphocyte-ratio and systemic-inflammation-index. Likewise, significantly larger pre-to-post6h white blood cells and granulocytes increases were observed following power-endurance compared to endurance-power. Moreover, there was a significant time*order interaction for blood-glucose and -lactate. Following endurance-power, blood-lactate and -glucose increased from pre-to-mid but not from pre-to-post. Meanwhile, in power-endurance blood-lactate and -glucose increased from pre-to-post but not from pre-to-mid. A significant time*order interaction was observed for CMJ-force with larger pre-to-post decreases in endurance-power compared to power-endurance. Further, CMJ-power showed larger pre-to-mid performance decreases following power-endurance, compared to endurance-power. Regarding RPE, significant time*order interactions were noted with larger pre-to-mid values following endurance-power and larger pre-to-post values following power-endurance. CONCLUSION CT induced acute and delayed order-dependent immune cell count alterations in highly trained youth male judo athletes. In general, power-endurance induced higher acute and delayed immunological stress responses compared to endurance-power. CMJ-force and RPE fluctuated during both CT sessions but went back to baseline 6 h post-exercise.
Collapse
Affiliation(s)
- Adrian Markov
- grid.11348.3f0000 0001 0942 1117Division of Training and Movement Sciences, Research Focus Cognition Sciences, Faculty of Human Sciences, University of Potsdam, Am Neuen Palais 10, Building. 12, 14469 Potsdam, Germany ,Olympic Testing and Training Center Brandenburg, Potsdam, Germany
| | - Jens Bussweiler
- Olympic Testing and Training Center Brandenburg, Potsdam, Germany
| | - Norman Helm
- Olympic Testing and Training Center Brandenburg, Potsdam, Germany
| | - Fabian Arntz
- grid.11348.3f0000 0001 0942 1117Division of Training and Movement Sciences, Research Focus Cognition Sciences, Faculty of Human Sciences, University of Potsdam, Am Neuen Palais 10, Building. 12, 14469 Potsdam, Germany
| | - Thomas Steidten
- grid.9613.d0000 0001 1939 2794Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, 07740 Jena, Germany
| | - Lars Krohm
- grid.11348.3f0000 0001 0942 1117Division of Training and Movement Sciences, Research Focus Cognition Sciences, Faculty of Human Sciences, University of Potsdam, Am Neuen Palais 10, Building. 12, 14469 Potsdam, Germany
| | - Arnau Sacot
- grid.5319.e0000 0001 2179 7512University de Girona, Girona, Spain
| | - Philipp Baumert
- grid.6936.a0000000123222966Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Christian Puta
- grid.9613.d0000 0001 1939 2794Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, 07740 Jena, Germany ,grid.9613.d0000 0001 1939 2794Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Friedrich-Schiller-University Jena, Jena, Germany
| | - Helmi Chaabene
- grid.11348.3f0000 0001 0942 1117Division of Training and Movement Sciences, Research Focus Cognition Sciences, Faculty of Human Sciences, University of Potsdam, Am Neuen Palais 10, Building. 12, 14469 Potsdam, Germany ,grid.442518.e0000 0004 0492 9538High Institute of Sports and Physical Education of Kef, University of Jendouba, 8189 Jendouba, Tunisia
| |
Collapse
|
30
|
The effects of low-volume combined training on health-related physical fitness outcomes in active young adults. A controlled clinical trial. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:74-80. [PMID: 36994175 PMCID: PMC10040378 DOI: 10.1016/j.smhs.2022.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/09/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023] Open
Abstract
The effects of combined training (CT) on improving general health are well known, however, few studies have investigated the effects of low-volume CT. So, the aim of this study is to investigate the effects of 6 weeks of low-volume CT on body composition, handgrip strength (HGS), cardiorespiratory fitness (CRF) and affective response (AR) to exercise. Eighteen healthy, active young adult man (mean ± SD, [20.06 ± 1.66] years; [22.23 ± 2.76] kg/m2) performed either a low-volume CT (EG, n = 9), or maintained a normal life (CG, n = 9). The CT was composed of three resistance exercises followed by a high intensity-interval training (HIIT) on cycle ergometer performed twice a week. The measures of the body composition, HGS, maximal oxygen consumption ( V ˙ O2max) and AR to exercise were taken at baseline and after training for analysis. Furthermore, an ANOVA test of repeated measures and t-test paired samples were used with a p ≤ 0.05. The results showed that EG improved HGS (pre: [45.67 ± 11.84] kg vs. post: [52.44 ± 11.90] kg, p < 0.01) and V ˙ O2max (pre: [41.36 ± 5.16] ml⋅kg-1⋅min-1 vs. post: [44.07 ± 5.98] ml⋅kg-1⋅min-1, p < 0.01). Although, for all measures the body composition had not significant differences between weeks (p > 0.05), nevertheless the feeling scale was positive in all weeks and without significant differences between them (p > 0.05). Lastly, for active young adults, the low-volume CT improved HGS, CRF and had a positive outcome in AR, with less volume and time spent than traditional exercise recommendations.
Collapse
|
31
|
Ji S, Donath L, Wahl P. Effects of Alternating Unilateral vs. Bilateral Resistance Training on Sprint and Endurance Cycling Performance in Trained Endurance Athletes: A 3-Armed, Randomized, Controlled, Pilot Trial. J Strength Cond Res 2022; 36:3280-3289. [PMID: 34319941 DOI: 10.1519/jsc.0000000000004105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Ji, S, Donath, L, and Wahl, P. Effects of alternating unilateral vs. bilateral resistance training on sprint and endurance cycling performance in trained endurance athletes: A 3-armed, randomized, controlled, pilot trial. J Strength Cond Res 36(12): 3280-3289, 2022-Traditional preparatory resistance training for cyclists mainly relies on simultaneous bilateral movement patterns. This lack of movement specificity may impede transfer effects to specific aerobic and anaerobic requirements on the bike. Hence, this study investigated the effects of resistance training in alternating unilateral vs. simultaneous bilateral movement pattern on strength and anaerobic as well as aerobic cycling performance indices. Twenty-four trained triathletes and cyclists (age: 31.1 ± 8.1 years; V̇ o2 max: 57.6 ± 7.1 ml·min -1 ·kg -1 ) were randomly assigned to either an alternating unilateral (AUL), a simultaneous bilateral (BIL) training group or a control group (CON). Ten weeks of resistance training (4 × 4-10 repetition maximum) were completed by both training groups, although CON maintained their usual training regimen without resistance training. Maximal strength was tested during isometric leg extension, leg curl, and leg press in both unilateral and bilateral conditions. To compare the transfer effects of the training groups, determinants of cycling performance and time to exhaustion at 105% of the estimated anaerobic threshold were examined. Maximal leg strength notably increased in both training groups (BIL: ∼28%; AUL: ∼27%; p < 0.01) but not in CON (∼6%; p > 0.54). A significant improvement in cycling time trial performance was also observed in both training groups (AUL: 67%; BIL: 43%; p < 0.05) but not for CON (37%; p = 0.43). Bilateral group exhibited an improved cycling economy at submaximal intensities (∼8%; p < 0.05) but no changes occurred in AUL and CON (∼3%; p > 0.24). While sprint cycling performance decreased in CON (peak power: -6%; acceleration index: -15%; p < 0.05), improvement in favor of AUL was observed for acceleration abilities during maximal sprinting (20%; d = 0.5). Our pilot data underpin the importance of resistance training independent of its specific movement pattern both for improving the endurance cycling performance and maximal leg strength. Further research should corroborate our preliminary findings on whether sprint cycling benefits favorably from AUL resistance training.
Collapse
Affiliation(s)
- Sanghyeon Ji
- The German Research Center for Elite Sport Cologne, German Sport University Cologne, Cologne, Germany.,Department of Preventative and Rehabilitative Sports and Performance Medicine, Institute of Cardiology and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Patrick Wahl
- The German Research Center for Elite Sport Cologne, German Sport University Cologne, Cologne, Germany.,Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany ; and.,Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
32
|
Acute Neuromuscular, Physiological and Performance Responses After Strength Training in Runners: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2022; 8:105. [PMID: 35976540 PMCID: PMC9385928 DOI: 10.1186/s40798-022-00497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Background Strength training (ST) is commonly used to improve muscle strength, power, and neuromuscular adaptations and is recommended combined with runner training. It is possible that the acute effects of the strength training session lead to deleterious effects in the subsequent running. The aim of this systematic review and meta-analysis was to verify the acute effects of ST session on the neuromuscular, physiological and performance variables of runners.
Methods Studies evaluating running performance after resistance exercise in runners in the PubMed and Scopus databases were selected. From 6532 initial references, 19 were selected for qualitative analysis and 13 for meta-analysis. The variables of peak torque (PT), creatine kinase (CK), delayed-onset muscle soreness (DOMS), rating of perceived exertion (RPE), countermovement jump (CMJ), ventilation (VE), oxygen consumption (VO2), lactate (La) and heart rate (HR) were evaluated.
Results The methodological quality of the included studies was considered reasonable; the meta-analysis indicated that the variables PT (p = 0.003), DOMS (p < 0.0001), CK (p < 0.0001), RPE (p < 0.0001) had a deleterious effect for the experimental group; for CMJ, VE, VO2, La, FC there was no difference. By qualitative synthesis, running performance showed a reduction in speed for the experimental group in two studies and in all that assessed time to exhaustion.
Conclusion The evidence indicated that acute strength training was associated with a decrease in PT, increases in DOMS, CK, RPE and had a low impact on the acute responses of CMJ, VE, VO2, La, HR and submaximal running sessions.
Collapse
|
33
|
Suzuki K, Hekmatikar AHA, Jalalian S, Abbasi S, Ahmadi E, Kazemi A, Ruhee RT, Khoramipour K. The Potential of Exerkines in Women's COVID-19: A New Idea for a Better and More Accurate Understanding of the Mechanisms behind Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315645. [PMID: 36497720 PMCID: PMC9737724 DOI: 10.3390/ijerph192315645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The benefits of physical exercise are well-known, but there are still many questions regarding COVID-19. Chow et al.'s 2022 study, titled Exerkines and Disease, showed that a special focus on exerkines can help to better understand the underlying mechanisms of physical exercise and disease. Exerkines are a group of promising molecules that may underlie the beneficial effects of physical exercise in diseases. The idea of exerkines is to understand the effects of physical exercise on diseases better. Exerkines have a high potential for the treatment of diseases and, considering that, there is still no study of the importance of exerkines on the most dangerous disease in the world in recent years, COVID-19. This raises the fundamental question of whether exerkines have the potential to manage COVID-19. Most of the studies focused on the general changes in physical exercise in patients with COVID-19, both during the illness and after discharge from the hospital, and did not investigate the basic differences. A unique look at the management of COVID-19 by exerkines, especially in obese and overweight women who experience high severity of COVID-19 and whose recovery period is long after discharge from the hospital, can help to understand the basic mechanisms. In this review, we explore the potential of exerkines in COVID-19 by practicing physical exercise to provide compelling practice recommendations with new insights.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Amir Hossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 10600, Iran
| | - Shadi Jalalian
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran 10600, Iran
| | - Shaghayegh Abbasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran 10600, Iran
| | - Elmira Ahmadi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 10600, Iran
| | - Abdolreza Kazemi
- Department of Sports Science, Faculty of Literature and Humanities, Vali-e-Asr University, Rafsanjan 7718897111, Iran
| | | | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| |
Collapse
|
34
|
Kang J, Ye Z, Yin X, Zhou C, Gong B. Effects of Concurrent Strength and HIIT-Based Endurance Training on Physical Fitness in Trained Team Sports Players: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14800. [PMID: 36429528 PMCID: PMC9690105 DOI: 10.3390/ijerph192214800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Concurrent strength and HIIT-based endurance training (CT) has merit in time-saving in team sports. However, the effect of CT on physical fitness remained equivocal. This meta-analysis aimed to determine whether CT would produce an interference effect on the development of physical fitness when compared to strength training (ST) or HIIT-based endurance training (HET) alone in trained team sports players. METHODS A total of 2478 studies from three databases were screened. 52 full texts were reviewed. Seven studies were finally included and then subgroups were used for quantitative analysis. RESULTS Compared to ST alone, CT had a significant effect on the development of maximal lower-body strength in trained team sports players (MD 4.20 kg, 95% CI 0.71-7.68, p = 0.02, I2 = 20%), but there was no significant difference between the groups on training adaptation in lower-body power (SMD 0.08, 95% CI -0.23-0.39, p = 0.62, I2 = 26%). Furthermore, a sub-group analysis based on the internal organization order of CT revealed that there was no statistically significant subgroup effect between CT and ST alone in all parameters. CONCLUSIONS Well-designed CT regimens did not interfere with the development of physical fitness of trained team sports players.
Collapse
Affiliation(s)
- Jian Kang
- School of Elite Sport, Shanghai University of Sport, Shanghai 200438, China
| | - Zhijing Ye
- School of Elite Sport, Shanghai University of Sport, Shanghai 200438, China
- Shanghai Shenhua FC, No. 2600 Hu Nan Road, Pudong District, Shanghai 201315, China
| | - Xinxing Yin
- School of Marxism Studies, Xi’an Jiaotong University, Xi’an 710049, China
| | - Changjing Zhou
- School of Elite Sport, Shanghai University of Sport, Shanghai 200438, China
| | - Bo Gong
- School of Elite Sport, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
35
|
Casanova-Lizón A, Manresa-Rocamora A, Flatt AA, Sarabia JM, Moya-Ramón M. Does Exercise Training Improve Cardiac-Parasympathetic Nervous System Activity in Sedentary People? A Systematic Review with Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13899. [PMID: 36360777 PMCID: PMC9656115 DOI: 10.3390/ijerph192113899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 05/13/2023]
Abstract
The aim of this study was to investigate the training-induced effect on cardiac parasympathetic nervous system (PNS) activity, assessed by resting heart rate variability (HRV) and post-exercise heart rate recovery (HRR), in sedentary healthy people. Electronic searches were carried out in PubMed, Embase, and Web of Science. Random-effects models of between-group standardised mean difference (SMD) were estimated. Heterogeneity analyses were performed by means of the chi-square test and I2 index. Subgroup analyses and meta-regressions were performed to investigate the influence of potential moderator variables on the training-induced effect. The results showed a small increase in RMSSD (SMD+ = 0.57 [95% confidence interval (CI) = 0.23, 0.91]) and high frequency (HF) (SMD+ = 0.21 [95% CI = 0.01, 0.42]) in favour of the intervention group. Heterogeneity tests reached statistical significance for RMSSD and HF (p ≤ 0.001), and the inconsistency was moderate (I2 = 68% and 60%, respectively). We found higher training-induced effects on HF in studies that performed a shorter intervention or lower number of exercise sessions (p ≤ 0.001). Data were insufficient to investigate the effect of exercise training on HRR. Exercise training increases cardiac PNS modulation in sedentary people, while its effect on PNS tone requires future study.
Collapse
Affiliation(s)
- Antonio Casanova-Lizón
- Department of Sport Sciences, Sports Research Centre, Miguel Hernández University of Elche, 03202 Alicante, Spain
| | - Agustín Manresa-Rocamora
- Department of Sport Sciences, Sports Research Centre, Miguel Hernández University of Elche, 03202 Alicante, Spain
- Department of Sport Sciences, Alicante Institute for Health and Biomedical Research (ISABIAL), Miguel Hernandez University, 03010 Alicante, Spain
| | - Andrew A. Flatt
- Department of Health Sciences and Kinesiology, Georgia Southern University—Armstrong Campus, Savannah, GA 31419, USA
| | - José Manuel Sarabia
- Department of Sport Sciences, Sports Research Centre, Miguel Hernández University of Elche, 03202 Alicante, Spain
- Department of Sport Sciences, Alicante Institute for Health and Biomedical Research (ISABIAL), Miguel Hernandez University, 03010 Alicante, Spain
| | - Manuel Moya-Ramón
- Department of Sport Sciences, Sports Research Centre, Miguel Hernández University of Elche, 03202 Alicante, Spain
- Department of Sport Sciences, Alicante Institute for Health and Biomedical Research (ISABIAL), Miguel Hernandez University, 03010 Alicante, Spain
| |
Collapse
|
36
|
Barrea L, Salzano C, Pugliese G, Laudisio D, Frias-Toral E, Savastano S, Colao A, Muscogiuri G. The challenge of weight loss maintenance in obesity: a review of the evidence on the best strategies available. Int J Food Sci Nutr 2022; 73:1030-1046. [PMID: 36245260 DOI: 10.1080/09637486.2022.2130186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Long-term weight loss maintenance represents a big challenge for the management of obesity. This narrative review aims to provide an overview of the main endocrine mechanisms involved in weight regain in subjects with obesity and to review the current evidence on the best lifestyle approaches, including diet and physical activity. Weight regain after weight loss occurs in about 50% of subjects with obesity in the absence of lifestyle changes. The primary endocrine mechanism responsible for weight regain involves the brain-gut axis, which encourages food intake and thus weight regain through the secretion and action of several gastrointestinal hormones, such as ghrelin, leptin and cholecystokinin. Several evidence reported changes of secretion of these hormones during weight loss and weight loss maintenance programs. Endurance training is the most effective physical activity to lose and keep weight loss; the association of endurance with resistance training is recommended for remodelling body shape.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Ciro Salzano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Gabriella Pugliese
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy
| | - Daniela Laudisio
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy
| | - Evelyn Frias-Toral
- Clinical Research Associate Professor for Palliative Care Residency from Universidad Católica Santiago de Guayaquil, Guayaquil, Ecuador
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Diabetologia e Andrologia, Federico II University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| |
Collapse
|
37
|
Lazarczuk SL, Maniar N, Opar DA, Duhig SJ, Shield A, Barrett RS, Bourne MN. Mechanical, Material and Morphological Adaptations of Healthy Lower Limb Tendons to Mechanical Loading: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:2405-2429. [PMID: 35657492 PMCID: PMC9474511 DOI: 10.1007/s40279-022-01695-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exposure to increased mechanical loading during physical training can lead to increased tendon stiffness. However, the loading regimen that maximises tendon adaptation and the extent to which adaptation is driven by changes in tendon material properties or tendon geometry is not fully understood. OBJECTIVE To determine (1) the effect of mechanical loading on tendon stiffness, modulus and cross-sectional area (CSA); (2) whether adaptations in stiffness are driven primarily by changes in CSA or modulus; (3) the effect of training type and associated loading parameters (relative intensity; localised strain, load duration, load volume and contraction mode) on stiffness, modulus or CSA; and (4) whether the magnitude of adaptation in tendon properties differs between age groups. METHODS Five databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE) were searched for studies detailing load-induced adaptations in tendon morphological, material or mechanical properties. Standardised mean differences (SMDs) with 95% confidence intervals (CIs) were calculated and data were pooled using a random effects model to estimate variance. Meta regression was used to examine the moderating effects of changes in tendon CSA and modulus on tendon stiffness. RESULTS Sixty-one articles met the inclusion criteria. The total number of participants in the included studies was 763. The Achilles tendon (33 studies) and the patella tendon (24 studies) were the most commonly studied regions. Resistance training was the main type of intervention (49 studies). Mechanical loading produced moderate increases in stiffness (standardised mean difference (SMD) 0.74; 95% confidence interval (CI) 0.62-0.86), large increases in modulus (SMD 0.82; 95% CI 0.58-1.07), and small increases in CSA (SMD 0.22; 95% CI 0.12-0.33). Meta-regression revealed that the main moderator of increased stiffness was modulus. Resistance training interventions induced greater increases in modulus than other training types (SMD 0.90; 95% CI 0.65-1.15) and higher strain resistance training protocols induced greater increases in modulus (SMD 0.82; 95% CI 0.44-1.20; p = 0.009) and stiffness (SMD 1.04; 95% CI 0.65-1.43; p = 0.007) than low-strain protocols. The magnitude of stiffness and modulus differences were greater in adult participants. CONCLUSIONS Mechanical loading leads to positive adaptation in lower limb tendon stiffness, modulus and CSA. Studies to date indicate that the main mechanism of increased tendon stiffness due to physical training is increased tendon modulus, and that resistance training performed at high compared to low localised tendon strains is associated with the greatest positive tendon adaptation. PROSPERO registration no.: CRD42019141299.
Collapse
Affiliation(s)
- Stephanie L Lazarczuk
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia.
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Nirav Maniar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
| | - Steven J Duhig
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Anthony Shield
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rod S Barrett
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Matthew N Bourne
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
38
|
Lundberg TR, Feuerbacher JF, Sünkeler M, Schumann M. The Effects of Concurrent Aerobic and Strength Training on Muscle Fiber Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med 2022. [DOI: 10.1007/s40279-022-01688-x p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Background
Whole muscle hypertrophy does not appear to be negatively affected by concurrent aerobic and strength training compared to strength training alone. However, there are contradictions in the literature regarding the effects of concurrent training on hypertrophy at the myofiber level.
Objective
The current study aimed to systematically examine the extent to which concurrent aerobic and strength training, compared with strength training alone, influences type I and type II muscle fiber size adaptations. We also conducted subgroup analyses to examine the effects of the type of aerobic training, training modality, exercise order, training frequency, age, and training status.
Design
A systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [PROSPERO: CRD42020203777]. The registered protocol was modified to include only muscle fiber hypertrophy as an outcome.
Data Sources
PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically searched on 12 August, 2020, and updated on 15 March, 2021.
Eligibility Criteria
Population: healthy adults of any sex and age; intervention: supervised, concurrent aerobic and strength training of at least 4 weeks; comparison: identical strength training prescription, with no aerobic training; and outcome: muscle fiber hypertrophy.
Results
A total of 15 studies were included. The estimated standardized mean difference based on the random-effects model was − 0.23 (95% confidence interval [CI] − 0.46 to − 0.00, p = 0.050) for overall muscle fiber hypertrophy. The standardized mean differences were − 0.34 (95% CI − 0.72 to 0.04, p = 0.078) and − 0.13 (95% CI − 0.39 to 0.12, p = 0.315) for type I and type II fiber hypertrophy, respectively. A negative effect of concurrent training was observed for type I fibers when aerobic training was performed by running but not cycling (standardized mean difference − 0.81, 95% CI − 1.26 to − 0.36). None of the other subgroup analyses (i.e., based on concurrent training frequency, training status, training modality, and training order of same-session training) revealed any differences between groups.
Conclusions
In contrast to previous findings on whole muscle hypertrophy, the present results suggest that concurrent aerobic and strength training may have a small negative effect on fiber hypertrophy compared with strength training alone. Preliminary evidence suggests that this interference effect may be more pronounced when aerobic training is performed by running compared with cycling, at least for type I fibers.
Collapse
|
39
|
Prieto-González P, Sedlacek J. Effects of Running-Specific Strength Training, Endurance Training, and Concurrent Training on Recreational Endurance Athletes' Performance and Selected Anthropometric Parameters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10773. [PMID: 36078489 PMCID: PMC9518107 DOI: 10.3390/ijerph191710773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The present study aimed to verify the effects of running-specific strength training alone, endurance training alone, and concurrent training on recreational endurance athletes' performance and selected anthropometric parameters. METHOD Thirty male recreational endurance runners were randomly assigned using a blocking technique to either a running-specific strength training group (RSSTG), an endurance training group (ETG), or a concurrent training group (CTG). RSSTG performed three strength-training sessions per week orientated to running, ETG underwent three endurance sessions per week, and CTG underwent a 3-day-per-week concurrent training program performed on non-consecutive days, alternating the strength and endurance training sessions applied to RSSTG and ETG. The training protocol lasted 12 weeks and was designed using the ATR (Accumulation, Transmutation, Realization) block periodization system. The following assessments were conducted before and after the training protocol: body mass (BM), body mass index (BMI), body fat percentage (BFP), lean mass (LM), countermovement jump (CMJ), 1RM (one-repetition maximum) squat, running economy at 12 and 14 km/h (RE12 and RE14), maximum oxygen consumption (VO2max), and anaerobic threshold (AnT). RESULTS RSSTG significantly improved the results in CMJ, 1RM squat, RE12, and RE14. ETG significantly improved in RE12, RE14, VO2max, and AnT. Finally, CTG, obtained significant improvements in BFP, LM, CMJ, 1RM squat, RE12, RE14, VO2max, and AnT. RSSTG obtained improvements significantly higher than ETG in CMJ, 1RM squat, and RE14. ETG results were significantly better than those attained by RSSTG in AnT. Moreover, CTG marks were significantly higher than those obtained by ETG in CMJ and RE14. CONCLUSION Performing a 12-week concurrent training program integrated into the ATR periodization system effectively improves body composition and performance variables that can be obtained with exclusive running-specific strength and endurance training in recreational runners aged 30 to 40. Running-specific strength training enhances maximum and explosive strength and RE, whereas exclusive endurance training improves VO2max, AnT, and RE. Performing concurrent training on non-consecutive days effectively prevents the strength and endurance adaptations attained with single-mode exercise from being attenuated. The ATR periodization system is useful in improving recreational endurance athletes' performance parameters, especially when performing concurrent training programs.
Collapse
Affiliation(s)
- Pablo Prieto-González
- Health and Physical Education Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Jaromir Sedlacek
- Department of Sport Kinanthropology, Faculty of Sports, University of Prešov, 080 01 Prešov, Slovakia
| |
Collapse
|
40
|
Jang J, Koh JH, Kim Y, Kim HJ, Park S, Chang Y, Jung J, Wolfe RR, Kim IY. Balanced Free Essential Amino Acids and Resistance Exercise Training Synergistically Improve Dexamethasone-Induced Impairments in Muscle Strength, Endurance, and Insulin Sensitivity in Mice. Int J Mol Sci 2022; 23:ijms23179735. [PMID: 36077132 PMCID: PMC9456044 DOI: 10.3390/ijms23179735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous study shows that an essential amino acid (EAA)-enriched diet attenuates dexamethasone (DEX)-induced declines in muscle mass and strength, as well as insulin sensitivity, but does not affect endurance. In the present study, we hypothesized that the beneficial effects will be synergized by adding resistance exercise training (RET) to EAA, and diet-free EAA would improve endurance. To test hypotheses, mice were randomized into the following four groups: control, EAA, RET, and EAA+RET. All mice except the control were subjected to DEX treatment. We evaluated the cumulative rate of myofibrillar protein synthesis (MPS) using 2H2O labeling and mass spectrometry. Neuromuscular junction (NMJ) stability, mitochondrial contents, and molecular signaling were demonstrated in skeletal muscle. Insulin sensitivity and glucose metabolism using 13C6-glucose tracing during oral glucose tolerance tests were analyzed. We found that EAA and RET synergistically improve muscle mass and/or strength, and endurance capacity, as well as insulin sensitivity, and glucose metabolism in DEX-treated muscle. These improvements are accomplished, in part, through improvements in myofibrillar protein synthesis, NMJ, fiber type preservation, and/or mitochondrial biogenesis. In conclusion, free EAA supplementation, particularly when combined with RET, can serve as an effective means that counteracts the adverse effects on muscle of DEX that are found frequently in clinical settings.
Collapse
Affiliation(s)
- Jiwoong Jang
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
| | - Jin-Ho Koh
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Hee-Joo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Sanghee Park
- Department of Internal Medicine, Gil Medical Center, Gachon University, Incheon 21565, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
| | - Yewon Chang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Jiyeon Jung
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Robert R. Wolfe
- Department of Geriatrics, Center for Translational Research in Aging and Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Il-Young Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-899-6685
| |
Collapse
|
41
|
Lee E, Kolunsarka IA, Kostensalo J, Ahtiainen JP, Haapala EA, Willeit P, Kunutsor SK, Laukkanen JA. The effects of regular sauna bathing in conjunction with exercise on cardiovascular function: A multi-arm randomized controlled trial. Am J Physiol Regul Integr Comp Physiol 2022; 323:R289-R299. [PMID: 35785965 PMCID: PMC9394774 DOI: 10.1152/ajpregu.00076.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regular exercise and sauna bathing have each been shown to improve cardiovascular function in clinical populations. However, experimental data on the cardiovascular adaptations to regular exercise in conjunction with sauna bathing in the general population is lacking. Therefore, we compared the effects of exercise and sauna bathing, to regular exercise using a multi-arm randomized controlled trial. Participants (n = 47) aged 49 ± 9 years with low physical activity levels, and at least one traditional CVD risk factor were randomly assigned (1:1:1) to guideline-based regular exercise and 15-minute post-exercise sauna (EXS), guideline-based regular exercise (EXE), or control (CON), for eight weeks. The primary outcomes were blood pressure (BP) and cardiorespiratory fitness (CRF). Secondary outcomes included fat mass, total cholesterol levels, and arterial stiffness. EXE had a greater change in CRF (+6.2 ml/kg/min; 95% CI, +4.2. to +8.3 ml/kg/min) and fat mass, but no differences in BP when compared to CON. EXS displayed greater change in CRF (+2.7 ml/kg/min; 95% CI, +0.2. to +5.3 ml/kg/min), lower systolic BP (-8.0 mmHg; 95% CI, -14.6 to -1.4 mmHg) and lower total cholesterol levels compared to EXE. Regular exercise improved CRF and body composition in sedentary adults with CVD risk factors. However, when combined with exercise, sauna bathing demonstrated a substantially supplementary effect on CRF, systolic BP, and total cholesterol levels. Sauna bathing is a valuable lifestyle tool that complements exercise for improving CRF, and decreasing systolic BP. Future research should focus on the duration, and frequency of exposure to ascertain the dose-response relationship.
Collapse
Affiliation(s)
- Earric Lee
- Faculty of Sports and Health Sciences, grid.9681.6University of Jyväskylä, Jyväskylä, Finland
| | - Iiris A Kolunsarka
- Faculty of Sports and Health Sciences, grid.9681.6University of Jyväskylä, Jyväskylä, Finland
| | - Joel Kostensalo
- grid.22642.30Natural Resources Institute Finland, Joensuu, Finland
| | - Juha P Ahtiainen
- Department of Biology of Physical Activity, grid.9681.6University of Jyväskylä, Jyväskylä, Finland
| | - Eero A Haapala
- Faculty of Sport and Health Sciences, grid.9681.6University of Jyväskylä, Jyväskylä, Finland
| | - Peter Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Setor K Kunutsor
- Translational Health Sciences, grid.5337.2University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
42
|
Deely C, Tallent J, Bennett R, Woodhead A, Goodall S, Thomas K, Howatson G. Etiology and Recovery of Neuromuscular Function Following Academy Soccer Training. Front Physiol 2022; 13:911009. [PMID: 35770192 PMCID: PMC9235147 DOI: 10.3389/fphys.2022.911009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
Aim: To profile the etiology and recovery time-course of neuromuscular function in response to a mixed-content, standard training week in professional academy soccer players. We concurrently examined physical performance, cognitive function, and perceptual measures of mood and wellness states to identify a range of simple tests applied practitioners could use in the field as surrogate measures of neuromuscular function. Methods: Sixteen professional academy soccer players completed a range of neuromuscular, physical, perceptual, mood, and cognitive function tests at baseline and after a strenuous training day (pitch and gym), with retest at 24, 48, and 72 h, and further pitch and gym sessions after 48 h post-baseline. Maximal voluntary contraction force (MVC) and twitch responses to electrical stimulation (femoral nerve) during isometric knee-extensor contractions and at rest were measured to assess central nervous system (voluntary activation, VA) and muscle contractile (potentiated twitch force, Qtw,pot) function. Results: Strenuous training elicited decrements in MVC force post-session (−11%, p = 0.001) that remained unresolved at 72 h (−6%, p = 0.03). Voluntary activation (motor nerve stimulation) was reduced immediately post-training only (−4%, p = 0.03). No change in muscle contractile function (Qtw,pot) was observed post-training, though was reduced at 24 h (−13%, p = 0.01), and had not fully recovered 72 h after (−9%, p = 0.03). Perceptions of wellness were impaired post-training, and recovered by 24 h (sleepiness, energy) and 48 h (fatigue, muscle soreness, readiness to train). Countermovement jump performance declined at 24 h, while RSI (Reactive Strength Index) decrements persisted at 48 h. No changes were evident in adductor squeeze, mood, or cognitive function. Conclusion: Elite youth soccer training elicits substantial decrements in neuromuscular function, which are still present 72 h post-strenuous exercise. Though central processes contribute to post-exercise neuromuscular alterations, the magnitude and prolonged presence of impairments in contractile function indicates it is the restitution of muscular function (peripheral mechanisms) that explains recovery from strenuous training in academy soccer players.
Collapse
Affiliation(s)
- Ciaran Deely
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Queen Park Rangers Football Club, Crane Lodge Road, London, United Kingdom
| | - Jamie Tallent
- School of Sport, Rehabilitation, and Exercise Sciences, University of Essex, Colchester, United Kingdom
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC, Australia
| | - Ross Bennett
- Queen Park Rangers Football Club, Crane Lodge Road, London, United Kingdom
| | - Alex Woodhead
- Centre for Applied Performance Sciences, Faculty of Sport, Allied Health and Performance Sciences, St. Mary’s University, Twickenham, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Water Research Group, Faculty of Natural and Agricultural Sciences, North West University, Potchefstroom, South Africa
- *Correspondence: Glyn Howatson,
| |
Collapse
|
43
|
Exercise Counteracts the Deleterious Effects of Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14102512. [PMID: 35626116 PMCID: PMC9139714 DOI: 10.3390/cancers14102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review provides an overview of the effects of exercise training on the major mechanisms related to cancer cachexia (CC). The review also discusses how cancer comorbidities can influence the ability of patients/animals with cancer to perform exercise training and what precautions should be taken when they exercise. The contribution of other factors, such as exercise modality and biological sex, to exercise effectiveness in ameliorating CC are also elaborated in the final sections. We provide meticulous evidence for how advantageous exercise training can be in patients/animals with CC at molecular and cellular levels. Finally, we emphasise what factors should be considered to optimise and personalise an exercise training program in CC. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterised by unintentional loss of body weight and muscle mass in patients with cancer. The major hallmarks associated with CC development and progression include imbalanced protein turnover, inflammatory signalling, mitochondrial dysfunction and satellite cell dysregulation. So far, there is no effective treatment to counteract muscle wasting in patients with CC. Exercise training has been proposed as a potential therapeutic approach for CC. This review provides an overview of the effects of exercise training in CC-related mechanisms as well as how factors such as cancer comorbidities, exercise modality and biological sex can influence exercise effectiveness in CC. Evidence in mice and humans suggests exercise training combats all of the hallmarks of CC. Several exercise modalities induce beneficial adaptations in patients/animals with CC, but concurrent resistance and endurance training is considered the optimal type of exercise. In the case of cancer patients presenting comorbidities, exercise training should be performed only under specific guidelines and precautions to avoid adverse effects. Observational comparison of studies in CC using different biological sex shows exercise-induced adaptations are similar between male and female patients/animals with cancer, but further studies are needed to confirm this.
Collapse
|
44
|
Mathieu B, Robineau J, Piscione J, Babault N. Concurrent Training Programming: The Acute Effects of Sprint Interval Exercise on the Subsequent Strength Training. Sports (Basel) 2022; 10:sports10050075. [PMID: 35622484 PMCID: PMC9145373 DOI: 10.3390/sports10050075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/27/2023] Open
Abstract
Exercise modality has been proposed to reduce the interferences between aerobic and resistance sessions during concurrent training. The aim of the study was to examine the acute effects of cycling or running sprint interval exercise on subsequent resistance training sessions. Twenty-five competitive male rugby union players were recruited. Players were tested during three conditions: CONTROL (resistance training session only), CYCLE and RUN (corresponding to a concurrent training scheme with cycling or running sprint interval exercise conducted on the morning, followed by a resistance training session). Four hours rest was proposed between the aerobic and resistance training session. Muscle performance (bar velocity during bench press and box squat, counter movement jump height) and subjective ratings (rate of perceived exertion, wellbeing) were assessed during and after aerobic or resistance training sessions. No significant difference was observed for muscle performance (vertical jump height and bar velocity). However, significant higher perceived exertion and low-value scaled subjective wellbeing were observed in RUN (7.7 ± 1.1 and 17.9 ± 4.1, respectively) as compared with the two other conditions (6.7 ± 1.5 and 21.1 ± 3.6 for CONTROL and 7.4 ± 1.1 and 20.1 ± 3.9 for CYCLE). It was concluded that the exercise modality (running or cycling) during the aerobic exercise using a sprint interval exercise did not impact the quality of the resistance session. However, subjective ratings were affected the following days. Cycling exercises might be more adequate when performing a sprint interval training session during concurrent training programs.
Collapse
Affiliation(s)
- Bertrand Mathieu
- French Rugby Union Federation, 3-5 rue Jean de Montaigu, 91463 Marcoussis, France; (B.M.); (J.R.); (J.P.)
- Center for Performance Expertise, CAPS, U1093 INSERM, Faculty of Sport Sciences, University of Bourgogne-Franche-Comté, 3 Allée des Stades Universitaires, BP 27877, 21078 Dijon, France
| | - Julien Robineau
- French Rugby Union Federation, 3-5 rue Jean de Montaigu, 91463 Marcoussis, France; (B.M.); (J.R.); (J.P.)
| | - Julien Piscione
- French Rugby Union Federation, 3-5 rue Jean de Montaigu, 91463 Marcoussis, France; (B.M.); (J.R.); (J.P.)
| | - Nicolas Babault
- Center for Performance Expertise, CAPS, U1093 INSERM, Faculty of Sport Sciences, University of Bourgogne-Franche-Comté, 3 Allée des Stades Universitaires, BP 27877, 21078 Dijon, France
- Correspondence: ; Tel.: +33-380396743
| |
Collapse
|
45
|
Lundberg TR, Feuerbacher JF, Sünkeler M, Schumann M. The Effects of Concurrent Aerobic and Strength Training on Muscle Fiber Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:2391-2403. [PMID: 35476184 PMCID: PMC9474354 DOI: 10.1007/s40279-022-01688-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Background Whole muscle hypertrophy does not appear to be negatively affected by concurrent aerobic and strength training compared to strength training alone. However, there are contradictions in the literature regarding the effects of concurrent training on hypertrophy at the myofiber level. Objective The current study aimed to systematically examine the extent to which concurrent aerobic and strength training, compared with strength training alone, influences type I and type II muscle fiber size adaptations. We also conducted subgroup analyses to examine the effects of the type of aerobic training, training modality, exercise order, training frequency, age, and training status. Design A systematic literature search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [PROSPERO: CRD42020203777]. The registered protocol was modified to include only muscle fiber hypertrophy as an outcome. Data Sources PubMed/MEDLINE, ISI Web of Science, Embase, CINAHL, SPORTDiscus, and Scopus were systematically searched on 12 August, 2020, and updated on 15 March, 2021. Eligibility Criteria Population: healthy adults of any sex and age; intervention: supervised, concurrent aerobic and strength training of at least 4 weeks; comparison: identical strength training prescription, with no aerobic training; and outcome: muscle fiber hypertrophy. Results A total of 15 studies were included. The estimated standardized mean difference based on the random-effects model was − 0.23 (95% confidence interval [CI] − 0.46 to − 0.00, p = 0.050) for overall muscle fiber hypertrophy. The standardized mean differences were − 0.34 (95% CI − 0.72 to 0.04, p = 0.078) and − 0.13 (95% CI − 0.39 to 0.12, p = 0.315) for type I and type II fiber hypertrophy, respectively. A negative effect of concurrent training was observed for type I fibers when aerobic training was performed by running but not cycling (standardized mean difference − 0.81, 95% CI − 1.26 to − 0.36). None of the other subgroup analyses (i.e., based on concurrent training frequency, training status, training modality, and training order of same-session training) revealed any differences between groups. Conclusions In contrast to previous findings on whole muscle hypertrophy, the present results suggest that concurrent aerobic and strength training may have a small negative effect on fiber hypertrophy compared with strength training alone. Preliminary evidence suggests that this interference effect may be more pronounced when aerobic training is performed by running compared with cycling, at least for type I fibers. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01688-x.
Collapse
Affiliation(s)
- Tommy R Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Joshua F Feuerbacher
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Marvin Sünkeler
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Moritz Schumann
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| |
Collapse
|
46
|
Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, Morencos E. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 2022; 122:1811-1830. [PMID: 35428907 PMCID: PMC9012664 DOI: 10.1007/s00421-022-04945-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
Abstract
The impact of genetics on physiology and sports performance is one of the most debated research aspects in sports sciences. Nearly 200 genetic polymorphisms have been found to influence sports performance traits, and over 20 polymorphisms may condition the status of the elite athlete. However, with the current evidence, it is certainly too early a stage to determine how to use genotyping as a tool for predicting exercise/sports performance or improving current methods of training. Research on this topic presents methodological limitations such as the lack of measurement of valid exercise performance phenotypes that make the study results difficult to interpret. Additionally, many studies present an insufficient cohort of athletes, or their classification as elite is dubious, which may introduce expectancy effects. Finally, the assessment of a progressively higher number of polymorphisms in the studies and the introduction of new analysis tools, such as the total genotype score (TGS) and genome-wide association studies (GWAS), have produced a considerable advance in the power of the analyses and a change from the study of single variants to determine pathways and systems associated with performance. The purpose of the present study was to comprehensively review evidence on the impact of genetics on endurance- and power-based exercise performance to clearly determine the potential utility of genotyping for detecting sports talent, enhancing training, or preventing exercise-related injuries, and to present an overview of recent research that has attempted to correct the methodological issues found in previous investigations.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28933, Madrid, Spain
| | - Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alejandro Muñoz
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | | - Esther Morencos
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
47
|
Tomazin K, Strojnik V, Feriche B, Garcia Ramos A, Štrumbelj B, Stirn I. Neuromuscular Adaptations in Elite Swimmers During Concurrent Strength and Endurance Training at Low and Moderate Altitudes. J Strength Cond Res 2022; 36:1111-1119. [PMID: 32235239 DOI: 10.1519/jsc.0000000000003566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Tomazin, K, Strojnik, V, Feriche, B, Garcia Ramos, A, Štrumbelj, B, and Stirn, I. Neuromuscular adaptations in elite swimmers during concurrent strength and endurance training at low and moderate altitudes. J Strength Cond Res 36(4): 1111-1119, 2022-This study evaluated neuromuscular adaptations in elite swimmers during concurrent strength and endurance training (SET) at low (295 m) and moderate (2,320 m) altitudes. Sixteen elite swimmers took part in a 3-week SET during a general preparation phase. All neuromuscular tests were performed a week before and after a SET. In posttraining, maximal knee isometric torque (TMVC) and soleus H-reflex remained statistically unchanged for sea-level (SL) and for altitude (AL) training. Rate of torque development (RTD) decreased post-SL (-14.5%; p < 0.01) but not post-AL (-4.7%; p > 0.05) training. Vastus lateralis electromyographic (EMG) activity during RTD decreased post-SL (-17.0%; P = 0.05) but not post-AL (4.8%; p > 0.05) training. Quadriceps twitch torque (TTW) significantly increased post-AL (12.1%; p < 0.01) but not post-SL (-1.0%; p > 0.05; training × altitude: F1,15 = 12.4; p < 0.01) training. Quadriceps twitch contraction time and M-wave amplitude remained statistically unchanged post-SL and post-AL training. After SL training, increment in TMVC was accompanied with increment in vastus lateralis EMG (R = 0.76; p < 0.01) and TTW (R = 0.48; p < 0.06). Posttraining in AL, increment in TMVC was accompanied with increment in TTW (R = 0.54; p < 0.05). Strength and endurance training at altitude seems to prompt adaptations in twitch contractile properties. In contrast, SET performed at SL may hamper the magnitude of neural adaptations to strength training, particularly during rapid voluntary contractions. In conclusion, SET at AL might benefit muscular adaptations in swimmers compared with training at SL.
Collapse
Affiliation(s)
- Katja Tomazin
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and
| | - Vojko Strojnik
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and
| | - Belen Feriche
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Amador Garcia Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Boro Štrumbelj
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and
| | - Igor Stirn
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and
| |
Collapse
|
48
|
Anderson L, Drust B, Close GL, Morton JP. Physical loading in professional soccer players: Implications for contemporary guidelines to encompass carbohydrate periodization. J Sports Sci 2022; 40:1000-1019. [DOI: 10.1080/02640414.2022.2044135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liam Anderson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Barry Drust
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool John Moores University, Liverpool, L3 6AF, UK
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool John Moores University, Liverpool, L3 6AF, UK
| |
Collapse
|
49
|
Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med 2022; 52:441-461. [PMID: 34822138 DOI: 10.1007/s40279-021-01585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
Concurrent training incorporates dual exercise modalities, typically resistance and aerobic-based exercise, either in a single session or as part of a periodized training program, that can promote muscle strength, mass, power/force and aerobic capacity adaptations for the purposes of sports performance or general health/wellbeing. Despite multiple health and exercise performance-related benefits, diminished muscle hypertrophy, strength and power have been reported with concurrent training compared to resistance training in isolation. Dietary protein is well-established to facilitate skeletal muscle growth, repair and regeneration during recovery from exercise. The degree to which increased protein intake can amplify adaptation responses with resistance exercise, and to a lesser extent aerobic exercise, has been highly studied. In contrast, much less focus has been directed toward the capacity for protein to enhance anabolic and metabolic responses with divergent contractile stimuli inherent to concurrent training and potentially negate interference in muscle strength, power and hypertrophy. This review consolidates available literature investigating increased protein intake on rates of muscle protein synthesis, hypertrophy, strength and force/power adaptations following acute and chronic concurrent training. Acute concurrent exercise studies provide evidence for the significant stimulation of myofibrillar protein synthesis with protein compared to placebo ingestion. High protein intake can also augment increases in lean mass with chronic concurrent training, although these increases do not appear to translate into further improvements in strength adaptations. Similarly, the available evidence indicates protein intake twice the recommended intake and beyond does not rescue decrements in selective aspects of muscle force and power production with concurrent training.
Collapse
|
50
|
Acute and Long-Term Effects of Concurrent Resistance and Swimming Training on Swimming Performance. Sports (Basel) 2022; 10:sports10030029. [PMID: 35324638 PMCID: PMC8953612 DOI: 10.3390/sports10030029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Dry-land resistance exercise (RT) is routinely applied concurrent to swimming (SWIM) training sessions in a year-round training plan. To date, the impact of the acute effect of RT on SWIM or SWIM on RT performance and the long-term RT-SWIM or SWIM-RT training outcome has received limited attention. The existing studies indicate that acute RT or SWIM training may temporarily decrease subsequent muscle function. Concurrent application of RT-SWIM or SWIM-RT may induce similar physiological alterations. Such alterations are dependent on the recovery duration between sessions. Considering the long-term effects of RT-SWIM, the limited existing data present improvements in front crawl swimming performance, dry-land upper and lower body maximum strength, and peak power in swim turn. Accordingly, SWIM-RT training order induces swimming performance improvements in front crawl and increments in maximum dry-land upper and lower body strength. Concurrent application of RT-SWIM or SWIM-RT training applied within a training day leads in similar performance gains after six to twelve weeks of training. The current review suggests that recovery duration between RT and SWIM is a predisposing factor that may determine the training outcome. Competitive swimmers may benefit after concurrent application with both training order scenarios during a training cycle.
Collapse
|