1
|
Plaza-Florido A, Santos-Lozano A, López-Ortiz S, Gálvez BG, Arenas J, Martín MA, Valenzuela PL, Pinós T, Lucia A, Fiuza-Luces C. Aerobic capacity and muscle proteome: Insights from a mouse model. Exp Physiol 2025; 110:293-306. [PMID: 39572863 DOI: 10.1113/ep092308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025]
Abstract
We explored the association between aerobic capacity (AC) and the skeletal muscle proteome of McArdle (n = 10) and wild-type (n = 8) mice, as models of intrinsically 'low' and 'normal' AC, respectively. AC was determined as total distance achieved in treadmill running until exhaustion. The quadriceps muscle proteome was studied using liquid chromatography with tandem mass spectrometry, with the Search Tool for the Retrieval of Interacting Genes/Proteins database used to generate protein-protein interaction (PPI) networks and enrichment analyses. AC was significantly associated (P-values ranging from 0.0002 to 0.049) with 73 (McArdle) and 61 (wild-type) proteins (r-values from -0.90 to 0.94). These proteins were connected in PPI networks that enriched biological processes involved in skeletal muscle structure/function in both groups (false discovery rate <0.05). In McArdle mice, the proteins associated with AC were involved in skeletal muscle fibre differentiation/development, lipid oxidation, mitochondrial function and calcium homeostasis, whereas in wild-type animals AC-associated proteins were related to cytoskeleton structure (intermediate filaments), cell cycle regulation and endocytic trafficking. Two proteins (WEE2, THYG) were associated with AC (negatively and positively, respectively) in both groups. Only 14 of the 132 proteins (∼11%) associated with AC in McArdle or wild-type mice were also associated with those previously reported to be modified by aerobic training in these mice, providing preliminary evidence for a large divergence in the muscle proteome signature linked to aerobic training or AC, irrespective of AC (intrinsically low or normal) levels. Our findings might help to gain insight into the molecular mechanisms underlying AC at the muscle tissue level.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Pediatric Exercise and Genomics Research Center, Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, California, USA
| | | | | | - Beatriz G Gálvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Joaquín Arenas
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Unit 701, Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel A Martín
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Unit 701, Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Pedro L Valenzuela
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Department of Systems Biology, Universidad de Alcalá, Madrid, Spain
| | - Tomàs Pinós
- Unit 701, Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Carmen Fiuza-Luces
- Physical Activity and HEalth Reseach Group (PAHERG), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Centre of Energy, Environment and Technical Research (CIEMAT), Madrid, Spain
| |
Collapse
|
2
|
Santos-Lozano A, Boraita A, Valenzuela PL, Santalla A, Villarreal-Salazar M, Bustos A, Alejo LB, Barranco-Gil D, Millán-Parlanti D, López-Ortiz S, Peñín-Grandes SA, Orellana JOSN, Fiuza-Luces C, GáLVEZ BG, García-FERNáNDEZ MÁ, Pinós T, Lucia A. Exercise Intolerance in McArdle Disease: A Role for Cardiac Impairment? A Preliminary Study in Humans and Mice. Med Sci Sports Exerc 2024; 56:2241-2255. [PMID: 39160758 DOI: 10.1249/mss.0000000000003529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Whether cardiac impairment can be fully discarded in McArdle disease-the paradigm of "exercise intolerance," caused by inherited deficiency of the skeletal muscle-specific glycogen phosphorylase isoform ("myophosphorylase")-remains to be determined. METHODS Eight patients with McArdle disease and seven age/sex-matched controls performed a 15-min moderate, constant-load cycle-ergometer exercise bout followed by a maximal ramp test. Electrocardiographic and two-dimensional transthoracic (for cardiac dimension's assessment) and speckle tracking (for left ventricular global longitudinal strain (GLS) assessments) echocardiographic evaluations were performed at baseline. Electrocardiographic and GLS assessments were also performed during constant-load exercise and immediately upon maximal exertion. Four human heart biopsies were obtained in individuals without McArdle disease, and in-depth histological/molecular analyses were performed in McArdle and wild-type mouse hearts. RESULTS Exercise intolerance was confirmed in patients ("second wind" during constant-load exercise, -55% peak power output vs controls). As opposed to controls, patients showed a decrease in GLS during constant-load exercise, especially upon second wind occurrence, but with no other between-group difference in cardiac structure/function. Human cardiac biopsies showed that all three glycogen phosphorylase-myophosphorylase, but also liver and especially brain-isoforms are expressed in the normal adult heart, thereby theoretically compensating for eventual myophosphorylase deficiency. No overall histological (including glycogen depots), cytoskeleton, metabolic, or mitochondrial (morphology/network/distribution) differences were found between McArdle and wild-type mouse hearts, except for lower levels of pyruvate kinase M2 and translocase of outer-membrane 20-kDa subunit in the former. CONCLUSIONS This study provides preliminary evidence that cardiac structure and function seem to be preserved in patients with McArdle disease. However, the role for an impaired cardiac contractility associated with the second wind phenomenon should be further explored.
Collapse
Affiliation(s)
| | | | | | | | | | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
| | | | | | | | | | | | - JOSé Naranjo Orellana
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, SPAIN
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid, SPAIN
| | | | | | | | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, SPAIN
| |
Collapse
|
3
|
van Haaren-Pater R, Karazi W, Maas D, Bloemen B, Voet N, van Oorsouw R, Quinlivan R, Bhai S, Wakelin A, Reason S, Groothuis JT, Cup E, Voermans NC. Experiences of living with GSD5 (McArdle) disease: challenges and strategies. A qualitative study in the Netherlands. Disabil Rehabil 2024:1-8. [PMID: 39523819 DOI: 10.1080/09638288.2024.2424439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Glycogen Storage Disease type 5 (GSD5 or McArdle disease) is caused by deficient glycogen phosphorylase enzyme activity in skeletal muscles. Individuals with GSD5 experience symptoms like muscle pain, fatigue, and tachycardia during exertion. Our study aimed to explore the lived experiences of individuals with GSD5, focusing on their daily challenges, the process of being diagnosed, and management strategies. METHODS Participants were invited to share their life experiences through in-depth, semi-structured interviews, and the collected data was analyzed using thematic analysis. RESULTS Using purposeful sampling, 13 individuals with GSD5 were recruited for the study. The analysis identified four key themes: "experiencing incomprehensible difficulties," "diagnosis as an explanation," "finding ways to manage daily challenges," and "listening to your body." These themes reflect diverse experiences of daily functioning, physical challenges faced, the pivotal role of diagnosis in understanding symptoms, and the adoption of management strategies like using the 'second wind' phenomenon. Participants emphasized the importance of support networks and adaptive lifestyle changes in effectively managing their condition. CONCLUSIONS Early diagnosis and tailored management strategies are critical for improving outcomes and quality of life in individuals with GSD5. Timely diagnosis and comprehensive multidisciplinary care are essential for effectively managing the complexities of this rare metabolic disorder.
Collapse
Affiliation(s)
- Ronne van Haaren-Pater
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Walaa Karazi
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daphne Maas
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bart Bloemen
- Department of IQ Health, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicoline Voet
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Rehabilitation center Klimmendaal, Arnhem, the Netherlands
| | - Roel van Oorsouw
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, National Hospital, London, United Kingdom
| | - Salman Bhai
- Department of Neurology, the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Wakelin
- International Association for Muscle, Glycogen Storage Disease c/o Noble Accounting LLC, Torrance, CA, USA
| | - Stacey Reason
- International Association for Muscle, Glycogen Storage Disease c/o Noble Accounting LLC, Torrance, CA, USA
| | - Jan T Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Edith Cup
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Buyle C, Vanclooster P, Platteeuw J, Mortelé P, Linden P, Floré P, Ryckaert T. Exertion induced rhabdomyolysis in both triceps muscles in a 36-year old woman: A case report. Radiol Case Rep 2024; 19:3308-3315. [PMID: 38817640 PMCID: PMC11137360 DOI: 10.1016/j.radcr.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Rhabdomyolysis is a condition, often caused by strenuous exercise, which can lead to acute kidney injury, severe electrolyte imbalances, coagulopathies, compartment syndromes, and even have a fatal outcome in a few cases. Recognition and management of fluid and electrolyte abnormalities is one of the first steps of treatment and key to a good outcome. We report a case of a 36-year old woman who was referred to the ER by her general practitioner with severe muscle tenderness to the upper arms and highly elevated creatine kinase (CK) serum levels. Initial ultrasound imagery showed a patent venous system but demonstrated a moderate edematous infiltration of the muscle bellies of both m. triceps. Additional magnetic resonance imagery showed a hyperintense signal in T2 in both triceps' muscles. Given the clinical presentation, the MRI-findings were consistent with a form of exertion-induced rhabdomyolysis of both triceps' muscles. The patient was admitted for administration of IV-fluids to prevent acute kidney injury. Symptoms resolved in a few days and new magnetic resonance imagery showed a regression of the subcutaneous soft tissue infiltration. The aim of this paper is to raise awareness about this diagnosis. If overlooked, severe complications as mentioned above can occur.
Collapse
Affiliation(s)
- Cindy Buyle
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Pieter Vanclooster
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Joke Platteeuw
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Piet Mortelé
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Patrick Linden
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Pierre Floré
- Department of Physical Therapy and Rehabilitation medicine, AZ Delta Hospital, Torhout/Roeselare, Belgium
| | - Thomas Ryckaert
- Department of Radiology, AZ Delta Hospital, Roeselare, Belgium
| |
Collapse
|
5
|
Stefanik E, Dubińska-Magiera M, Lewandowski D, Daczewska M, Migocka-Patrzałek M. Metabolic aspects of glycogenolysis with special attention to McArdle disease. Mol Genet Metab 2024; 142:108532. [PMID: 39018613 DOI: 10.1016/j.ymgme.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The physiological function of muscle glycogen is to meet the energy demands of muscle contraction. The breakdown of glycogen occurs through two distinct pathways, primarily cytosolic and partially lysosomal. To obtain the necessary energy for their function, skeletal muscles utilise also fatty acids in the β-oxidation. Ketogenesis is an alternative metabolic pathway for fatty acids, which provides an energy source during fasting and starvation. Diseases arising from impaired glycogenolysis lead to muscle weakness and dysfunction. Here, we focused on the lack of muscle glycogen phosphorylase (PYGM), a rate-limiting enzyme for glycogenolysis in skeletal muscles, which leads to McArdle disease. Metabolic myopathies represent a group of genetic disorders characterised by the limited ability of skeletal muscles to generate energy. Here, we discuss the metabolic aspects of glycogenosis with a focus on McArdle disease, offering insights into its pathophysiology. Glycogen accumulation may influence the muscle metabolic dynamics in different ways. We emphasize that a proper treatment approach for such diseases requires addressing three important and interrelated aspects, which include: symptom relief therapy, elimination of the cause of the disease (lack of a functional enzyme) and effective and early diagnosis.
Collapse
Affiliation(s)
- Ewa Stefanik
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| |
Collapse
|
6
|
Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024; 14:575. [PMID: 38785982 PMCID: PMC11117592 DOI: 10.3390/biom14050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| |
Collapse
|
7
|
Valenzuela PL, Santalla A, Alejo LB, Merlo A, Bustos A, Castellote-Bellés L, Ferrer-Costa R, Maffiuletti NA, Barranco-Gil D, Pinós T, Lucia A. Dose-response effect of pre-exercise carbohydrates under muscle glycogen unavailability: Insights from McArdle disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:398-408. [PMID: 38030066 PMCID: PMC11116998 DOI: 10.1016/j.jshs.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND This study aimed to determine the effect of different carbohydrate (CHO) doses on exercise capacity in patients with McArdle disease-the paradigm of "exercise intolerance", characterized by complete muscle glycogen unavailability-and to determine whether higher exogenous glucose levels affect metabolic responses at the McArdle muscle cell (in vitro) level. METHODS Patients with McArdle disease (n = 8) and healthy controls (n = 9) underwent a 12-min submaximal cycling constant-load bout followed by a maximal ramp test 15 min after ingesting a non-caloric placebo. In a randomized, double-blinded, cross-over design, patients repeated the tests after consuming either 75 g or 150 g of CHO (glucose:fructose = 2:1). Cardiorespiratory, biochemical, perceptual, and electromyographic (EMG) variables were assessed. Additionally, glucose uptake and lactate appearance were studied in vitro in wild-type and McArdle mouse myotubes cultured with increasing glucose concentrations (0.35, 1.00, 4.50, and 10.00 g/L). RESULTS Compared with controls, patients showed the "classical" second-wind phenomenon (after prior disproportionate tachycardia, myalgia, and excess electromyographic activity during submaximal exercise, all p < 0.05) and an impaired endurance exercise capacity (-51% ventilatory threshold and -55% peak power output, both p < 0.001). Regardless of the CHO dose (p < 0.05 for both doses compared with the placebo), CHO intake increased blood glucose and lactate levels, decreased fat oxidation rates, and attenuated the second wind in the patients. However, only the higher dose increased ventilatory threshold (+27%, p = 0.010) and peak power output (+18%, p = 0.007). In vitro analyses revealed no differences in lactate levels across glucose concentrations in wild-type myotubes, whereas a dose-response effect was observed in McArdle myotubes. CONCLUSION CHO intake exerts beneficial effects on exercise capacity in McArdle disease, a condition associated with total muscle glycogen unavailability. Some of these benefits are dose dependent.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Department of Systems Biology, University of Alcalá, Madrid 28871, Spain.
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla 41013, Spain; EVOPRED Research Group, Universidad Europea de Canarias, Tenerife 38300, Spain
| | - Lidia B Alejo
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Andrea Merlo
- Gait & Motion Analysis Laboratory, Sol et Salus Hospital, Torre Pedrera di Rimini (RN) 47922, Italy
| | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Laura Castellote-Bellés
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| | - Roser Ferrer-Costa
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain
| | | | - David Barranco-Gil
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| | - Tomás Pinós
- Biomedical Research Networking Center on Rare Disorders (CIBERER), Barcelona 08035, Spain; Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.
| | - Alejandro Lucia
- Physical Activity and Health Research Group ("PaHerg"), Research Institute of Hospital "12 de Octubre" ("imas12"), Madrid 28041, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| |
Collapse
|
8
|
Ducrocq GP, Anselmi L, Ruiz-Velasco V, Kaufman MP. Lactate and hydrogen ions play a predominant role in evoking the exercise pressor reflex during ischaemic contractions but not during freely perfused contractions. J Physiol 2024:10.1113/JP286488. [PMID: 38685758 PMCID: PMC11518877 DOI: 10.1113/jp286488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
We investigated the role played by lactate and hydrogen in evoking the exercise pressor reflex (EPR) in decerebrated rats whose hindlimb muscles were either freely perfused or ischaemic. Production of lactate and hydrogen by the contracting hindlimb muscles was manipulated by knocking out the myophosphorylase gene (pygm). In knockout rats (pygm-/-; n = 13) or wild-type rats (pygm+/+; n = 13), the EPR was evoked by isometrically contracting the triceps surae muscles. Blood pressure, tension, blood flow, renal sympathetic nerve activity and blood lactate concentrations were measured. Intramuscular metabolites and pH changes induced by the contractions were quantified by 31P-magnetic resonance spectroscopy (n = 5). In a subset of pygm-/- rats (n = 5), contractions were evoked with prior infusion of lactate (pH 6.0) in an attempt to restore the effect of lactate and hydrogen ions. Contraction of freely perfused muscles increased blood lactate and decreased muscle pH in pygm+/+ rats only. Despite these differences, the reflex pressor and sympathetic responses to freely perfused contraction did not differ between groups (P = 0.992). During ischaemia, contraction increased muscle lactate and hydrogen ion production in pygm+/+ rats (P < 0.0134), whereas it had no effect in pygm-/- rats (P > 0.783). Likewise, ischaemia exaggerated the reflex pressor, and sympathetic responses to contraction in pygm+/+ but not in pygm-/- rats. This exaggeration was restored when a solution of lactate (pH 6.0) was infused prior to the contraction in pygm-/- rats. We conclude that lactate and hydrogen accumulation in contracting myocytes play a key role in evoking the metabolic component of the EPR during ischaemic but not during freely perfused contractions. KEY POINTS: Conflicting results exist about the role played by lactate and hydrogen ions in evoking the exercise pressor reflex. Using CRISP-Cas9, we rendered the myophosphorylase gene non-functional to block the production of lactate and hydrogen ions. The exercise pressor reflex was evoked in decerebrated rats by statically contracting the triceps surae muscles with or without muscle ischaemia. Static contraction elevated the concentration of lactate and hydrogen ions in pygm+/+ but not in pygm-/- rats. Despite these differences, the exercise pressor reflex was not different between groups. Acute muscle ischaemia exaggerated the concentration of lactate and hydrogen ions in pygm+/+ but not in pygm-/- rats. Likewise, acute muscle ischaemia exaggerated the exercise pressor reflex in pygm+/+ but not in pygm-/- rats. We conclude that lactate and hydrogen play a key role in evoking the exercise pressor reflex during ischaemic but not during freely perfused contractions.
Collapse
Affiliation(s)
- Guillaume P. Ducrocq
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
- Mitochondrial, Oxidative Stress and Muscular Protection Laboratory (UR3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Laura Anselmi
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Victor Ruiz-Velasco
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA USA
| | - Marc P. Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
Valenzuela PL, Santalla A, Alejo LB, Bustos A, Ozcoidi LM, Castellote-Bellés L, Ferrer-Costa R, Villarreal-Salazar M, Morán M, Barranco-Gil D, Pinós T, Lucia A. Acute ketone supplementation in the absence of muscle glycogen utilization: Insights from McArdle disease. Clin Nutr 2024; 43:692-700. [PMID: 38320460 DOI: 10.1016/j.clnu.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND & AIMS Ketone supplementation is gaining popularity. Yet, its effects on exercise performance when muscle glycogen cannot be used remain to be determined. McArdle disease can provide insight into this question, as these patients are unable to obtain energy from muscle glycogen, presenting a severely impaired physical capacity. We therefore aimed to assess the effects of acute ketone supplementation in the absence of muscle glycogen utilization (McArdle disease). METHODS In a randomized cross-over design, patients with an inherited block in muscle glycogen breakdown (i.e., McArdle disease, n = 8) and healthy controls (n = 7) underwent a submaximal (constant-load) test that was followed by a maximal ramp test, after the ingestion of a placebo or an exogenous ketone ester supplement (30 g of D-beta hydroxybutyrate/D 1,3 butanediol monoester). Patients were also assessed after carbohydrate (75 g) ingestion, which is currently considered best clinical practice in McArdle disease. RESULTS Ketone supplementation induced ketosis in all participants (blood [ketones] = 3.7 ± 0.9 mM) and modified some gas-exchange responses (notably increasing respiratory exchange ratio, especially in patients). Patients showed an impaired exercise capacity (-65 % peak power output (PPO) compared to controls, p < 0.001) and ketone supplementation resulted in a further impairment (-11.6 % vs. placebo, p = 0.001), with no effects in controls (p = 0.268). In patients, carbohydrate supplementation resulted in a higher PPO compared to ketones (+21.5 %, p = 0.001) and a similar response was observed vs. placebo (+12.6 %, p = 0.057). CONCLUSIONS In individuals who cannot utilize muscle glycogen but have a preserved ability to oxidize blood-borne glucose and fat (McArdle disease), acute ketone supplementation impairs exercise capacity, whereas carbohydrate ingestion exerts the opposite, beneficial effect.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of Hospital '12 de Octubre' ('imas12'), Madrid, Spain; Department of Systems Biology, University of Alcalá, Madrid, Spain.
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain; EVOPRED Research Group, Universidad Europea de Canarias, Tenerife, Spain
| | - Lidia B Alejo
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of Hospital '12 de Octubre' ('imas12'), Madrid, Spain; Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Asunción Bustos
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Laureano M Ozcoidi
- Hospital Reina Sofía de Tudela, Servicio Navarro de Salud, Navarra, Spain
| | - Laura Castellote-Bellés
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Roser Ferrer-Costa
- Department of Clinical Biochemistry, Laboratoris Clínics, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - María Morán
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain; Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain.
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Cerrada V, García-Consuegra I, Arenas J, Gallardo ME. Creation of an iPSC-Based Skeletal Muscle Model of McArdle Disease Harbouring the Mutation c.2392T>C (p.Trp798Arg) in the PYGM Gene. Biomedicines 2023; 11:2434. [PMID: 37760875 PMCID: PMC10525199 DOI: 10.3390/biomedicines11092434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
McArdle disease is a rare autosomal recessive condition caused by mutations in the PYGM gene. This gene encodes the skeletal muscle isoform of glycogen phosphorylase or myophosphorylase. Patients with McArdle disease have an inability to obtain energy from their muscle glycogen stores, which manifests as a marked exercise intolerance. Nowadays, there is no cure for this disorder and recommendations are intended to prevent and mitigate symptoms. There is great heterogeneity among the pathogenic variants found in the PYGM gene, and there is no obvious correlation between genotypes and phenotypes. Here, we present the generation of the first human iPSC-based skeletal muscle model harbouring the second most frequent mutation in PYGM in the Spanish population: NM_005609.4: c.2392T>C (p.Trp798Arg). To this end, iPSCs derived from a McArdle patient and a healthy control were both successfully differentiated into skeletal muscle cells using a small molecule-based protocol. The created McArdle skeletal muscle model was validated by confirming distinctive biochemical aspects of the disease such as the absence of myophosphorylase, the most typical biochemical feature of these patients. This model will be very valuable for use in future high-throughput pharmacological screenings.
Collapse
Affiliation(s)
- Victoria Cerrada
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Inés García-Consuegra
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - M. Esther Gallardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
11
|
Reason SL, Voermans N, Lucia A, Vissing J, Quinlivan R, Bhai S, Wakelin A. Development of Continuum of Care for McArdle disease: A practical tool for clinicians and patients. Neuromuscul Disord 2023; 33:575-579. [PMID: 37354872 DOI: 10.1016/j.nmd.2023.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/26/2023]
Abstract
McArdle disease (glycogen storage disease type V; GSDV) is a rare genetic disease caused by the inability to break down glycogen in skeletal muscle due to a deficiency in myophosphorylase. Glycolysis is only partially blocked in GSDV, as muscle fibres can take up circulating glucose and convert it to glucose-6-phosphate downstream of the metabolic block. Because skeletal muscle predominantly relies on anaerobic energy during the first few minutes of transition from rest to activity, and throughout more intense activities, individuals with GSDV experience muscle fatigue/pain, tachypnea, and tachycardia during these activities. If warning signs are not heeded, a muscle contracture may rapidly occur, and if significant, may lead to acute rhabdomyolysis. Without a cure or treatment, individuals with GSDV must be consistent in employing proper management techniques; however, this can be challenging due to the nuances inherent in this metabolic myopathy. The International Association for Muscle Glycogen Storage Disease collaborated with an international team of five expert clinicians to identify areas of learning to achieve an optimal state. A Continuum of Care model was developed that outlines five pivotal steps (diagnosis; understanding; acceptance; learning and exercise) to streamline assessments and more succinctly assist clinicians in determining patient-specific learning needs. This model serves as a translational tool to help optimize care for this patient population.
Collapse
Affiliation(s)
- S L Reason
- International Association for Muscle Glycogen Storage Disease, CA, USA.
| | - N Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - A Lucia
- Center for Research in Sport and Physical Activity, European University of Madrid, Spain
| | - J Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen, Denmark
| | - R Quinlivan
- MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | - S Bhai
- Department of Neurology at UT Southwestern Medical Centre, USA
| | - A Wakelin
- International Association for Muscle Glycogen Storage Disease, CA, USA
| |
Collapse
|
12
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Detecting impaired muscle relaxation in myopathies with the use of motor cortical stimulation. Neuromuscul Disord 2023; 33:396-404. [PMID: 37030055 DOI: 10.1016/j.nmd.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Impaired muscle relaxation is a notable feature in specific myopathies. Transcranial magnetic stimulation (TMS) of the motor cortex can induce muscle relaxation by abruptly halting corticospinal drive. Our aim was to quantify muscle relaxation using TMS in different myopathies with symptoms of muscle stiffness, contractures/cramps, and myalgia and explore the technique's diagnostic potential. In men, normalized peak relaxation rate was lower in Brody disease (n = 4) (-3.5 ± 1.3 s-1), nemaline myopathy type 6 (NEM6; n = 5) (-7.5 ± 1.0 s-1), and myotonic dystrophy type 2 (DM2; n = 5) (-10.2 ± 2.0 s-1) compared to healthy (n = 14) (-13.7 ± 2.1 s-1; all P ≤ 0.01) and symptomatic controls (n = 9) (-13.7 ± 1.6 s-1; all P ≤ 0.02). In women, NEM6 (n = 5) (-5.7 ± 2.1 s-1) and McArdle patients (n = 4) (-6.6 ± 1.4 s-1) had lower relaxation rate compared to healthy (n = 10) (-11.7 ± 1.6 s-1; both P ≤ 0.002) and symptomatic controls (n = 8) (-11.3 ± 1.8 s-1; both P ≤ 0.008). TMS-induced muscle relaxation achieved a high level of diagnostic accuracy (area under the curve = 0.94 (M) and 0.92 (F)) to differentiate symptomatic controls from myopathy patients. Muscle relaxation assessed using TMS has the potential to serve as a diagnostic tool, an in-vivo functional test to confirm the pathogenicity of unknown variants, an outcome measure in clinical trials, and monitor disease progression.
Collapse
|
14
|
Rodriguez-Lopez C, Santalla A, Valenzuela PL, Real-Martínez A, Villarreal-Salazar M, Rodriguez-Gomez I, Pinós T, Ara I, Lucia A. Muscle glycogen unavailability and fat oxidation rate during exercise: Insights from McArdle disease. J Physiol 2023; 601:551-566. [PMID: 36370371 PMCID: PMC10099855 DOI: 10.1113/jp283743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Carbohydrate availability affects fat metabolism during exercise; however, the effects of complete muscle glycogen unavailability on maximal fat oxidation (MFO) rate remain unknown. Our purpose was to examine the MFO rate in patients with McArdle disease, comprising an inherited condition caused by complete blockade of muscle glycogen metabolism, compared to healthy controls. Nine patients (three women, aged 36 ± 12 years) and 12 healthy controls (four women, aged 40 ± 13 years) were studied. Several molecular markers of lipid transport/metabolism were also determined in skeletal muscle (gastrocnemius) and white adipose tissue of McArdle (Pygm p.50R*/p.50R*) and wild-type male mice. Peak oxygen uptake ( V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ ), MFO rate, the exercise intensity eliciting MFO rate (FATmax) and the MFO rate-associated workload were determined by indirect calorimetry during an incremental cycle-ergometer test. Despite having a much lower V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ (24.7 ± 4 vs. 42.5 ± 11.4 mL kg-1 min-1 , respectively; P < 0.0001), patients showed considerably higher values for the MFO rate (0.53 ± 0.12 vs. 0.33 ± 0.10 g min-1 , P = 0.001), and for the FATmax (94.4 ± 7.2 vs. 41.3 ± 9.1 % of V ̇ O 2 peak ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{peak}}}}$ , P < 0.0001) and MFO rate-associated workload (1.33 ± 0.35 vs. 0.81 ± 0.54 W kg-1 , P = 0.020) than controls. No between-group differences were found overall in molecular markers of lipid transport/metabolism in mice. In summary, patients with McArdle disease show an exceptionally high MFO rate, which they attained at near-maximal exercise capacity. Pending more mechanistic explanations, these findings support the influence of glycogen availability on MFO rate and suggest that these patients develop a unique fat oxidation capacity, possibly as an adaptation to compensate for the inherited blockade in glycogen metabolism, and point to MFO rate as a potential limiting factor of exercise tolerance in this disease. KEY POINTS: Physically active McArdle patients show an exceptional fat oxidation capacity. Maximal fat oxidation rate occurs near-maximal exercise capacity in these patients. McArdle patients' exercise tolerance might rely on maximal fat oxidation rate capacity. Hyperpnoea might cloud substrate oxidation measurements in some patients. An animal model revealed overall no higher molecular markers of lipid transport/metabolism.
Collapse
Affiliation(s)
- Carlos Rodriguez-Lopez
- Department of Geriatrics, Hospital General Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Alfredo Santalla
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Seville, Spain.,EVOPRED Research Group, Universidad Europea de Canarias, Tenerife, Spain
| | - Pedro L Valenzuela
- Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Irene Rodriguez-Gomez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER for rare disease (CIBERER), Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain.,CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.,Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Muacevic A, Adler JR, Duarte G, Victoria Guerrero M, Rodriguez Guerra MA. Severe Liver Injury Secondary to COVID-19-Induced Rhabdomyolysis in McArdle Disease. Cureus 2023; 15:e34160. [PMID: 36843821 PMCID: PMC9949753 DOI: 10.7759/cureus.34160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Severe liver injury is an uncommon condition caused by non-traumatic rhabdomyolysis. This rare correlation is more commonly seen in the aspartate aminotransferase (AST) than in the alanine transaminase (ALT) level elevation. We report a case of a 27-year-old male with a history of McArdle disease who presented with generalized muscle aches associated with dark urine. His workup showed SARS-CoV-2 positive, severe rhabdomyolysis (creatinine kinase [CK] > 40000 U/L) and acute kidney injury (AKI) followed by severe liver injury (AST/ALT: 2122/383 U/L). He was started on aggressive intravenous hydration. After multiple boluses, he became overloaded, fluids were re-adjusted and continued, his renal function, CK, and liver enzymes improved, and the patient was discharged; during his visit at the post-discharge, the patient was asymptomatic and no clinical or laboratory abnormalities were found. The glycogen storage diseases are challenging, but prompt and accurate assessment is determinant in recognizing potential life-threatening complications of SARS-CoV-2. The failure to identify complicated rhabdomyolysis could lead to the patient's rapid deterioration, ending in multiorgan failure.
Collapse
|
16
|
Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology. Int J Mol Sci 2022; 23:ijms232213964. [PMID: 36430443 PMCID: PMC9692531 DOI: 10.3390/ijms232213964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
McArdle disease is a rare autosomal recessive disorder caused by mutations in the PYGM gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the PYGM gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of PYGM expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.
Collapse
|
17
|
Santalla A, Valenzuela PL, Rodriguez-Lopez C, Rodríguez-Gómez I, Nogales-Gadea G, Pinós T, Arenas J, Martín MA, Santos-Lozano A, Morán M, Fiuza-Luces C, Ara I, Lucia A. Long-Term Exercise Intervention in Patients with McArdle Disease: Clinical and Aerobic Fitness Benefits. Med Sci Sports Exerc 2022; 54:1231-1241. [PMID: 35320153 DOI: 10.1249/mss.0000000000002915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The long-term effects of exercise in patients with McArdle disease-the paradigm of "exercise intolerance"-are unknown. This is an important question because the severity of the disease frequently increases with time. PURPOSE This study aimed to study the effects of a long-term exercise intervention on clinical and fitness-related outcomes in McArdle patients. METHODS Seventeen patients (exercise group: n = 10, 6 male, 38 ± 18 yr; control: n = 7, 4 male, 38 ± 18 yr) participated in a 2-yr unsupervised intervention including moderate-intensity aerobic (cycle-ergometer exercise for 1 h) and resistance (high load-low repetition circuit) training on 5 and 2-3 d·wk -1 , respectively. Patients were assessed at baseline and postintervention. Besides safety, outcomes included clinical severity (e.g., exercise intolerance features) on a 0-3 scale (primary outcome), and aerobic fitness, gross muscle efficiency, and body composition (total/regional fat, muscle, and bone mass; secondary outcomes). RESULTS The exercise program was safe and resulted in a reduction of 1 point (-1.0; 95% confidence interval, -1.6 to -0.5; P = 0.025) in clinical severity versus the control group, with 60% of participants in the exercise group becoming virtually asymptomatic and with no functional limitation in daily life activities. Compared with controls, the intervention induced significant and large benefits (all P < 0.05) in the workload eliciting the ventilatory threshold (both in absolute (watts, +37%) and relative units (watts per kilogram of total body mass or of lower-limb muscle mass, +44%)), peak oxygen uptake (in milliliters per kilogram per minute, +28%), and peak workload (in absolute (+27%) and relative units (+33%)). However, no significant changes were found for muscle efficiency or for any measure of body composition. CONCLUSIONS A 2-yr unsupervised intervention including aerobic and resistance exercise is safe and induces major benefits in the clinical course and aerobic fitness of patients with McArdle disease.
Collapse
Affiliation(s)
| | | | | | | | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, SPAIN
| | | | | | | | | | | | - Carmen Fiuza-Luces
- Instituto de Investigación Sanitaria Hospital "12 de Octubre" ("imas12"), Madrid, SPAIN
| | | | | |
Collapse
|
18
|
García-Consuegra I, Asensio-Peña S, Garrido-Moraga R, Pinós T, Domínguez-González C, Santalla A, Nogales-Gadea G, Serrano-Lorenzo P, Andreu AL, Arenas J, Zugaza JL, Lucia A, Martín MA. Identification of Potential Muscle Biomarkers in McArdle Disease: Insights from Muscle Proteome Analysis. Int J Mol Sci 2022; 23:4650. [PMID: 35563042 PMCID: PMC9100117 DOI: 10.3390/ijms23094650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Glycogen storage disease type V (GSDV, McArdle disease) is a rare genetic myopathy caused by deficiency of the muscle isoform of glycogen phosphorylase (PYGM). This results in a block in the use of muscle glycogen as an energetic substrate, with subsequent exercise intolerance. The pathobiology of GSDV is still not fully understood, especially with regard to some features such as persistent muscle damage (i.e., even without prior exercise). We aimed at identifying potential muscle protein biomarkers of GSDV by analyzing the muscle proteome and the molecular networks associated with muscle dysfunction in these patients. Muscle biopsies from eight patients and eight healthy controls showing none of the features of McArdle disease, such as frequent contractures and persistent muscle damage, were studied by quantitative protein expression using isobaric tags for relative and absolute quantitation (iTRAQ) followed by artificial neuronal networks (ANNs) and topology analysis. Protein candidate validation was performed by Western blot. Several proteins predominantly involved in the process of muscle contraction and/or calcium homeostasis, such as myosin, sarcoplasmic/endoplasmic reticulum calcium ATPase 1, tropomyosin alpha-1 chain, troponin isoforms, and alpha-actinin-3, showed significantly lower expression levels in the muscle of GSDV patients. These proteins could be potential biomarkers of the persistent muscle damage in the absence of prior exertion reported in GSDV patients. Further studies are needed to elucidate the molecular mechanisms by which PYGM controls the expression of these proteins.
Collapse
Affiliation(s)
- Inés García-Consuegra
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Sara Asensio-Peña
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
| | - Rocío Garrido-Moraga
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
| | - Tomàs Pinós
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Cristina Domínguez-González
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Alfredo Santalla
- Department of Computer and Sport Sciences, Universidad Pablo de Olavide, 41013 Sevilla, Spain;
| | - Gisela Nogales-Gadea
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Barcelona, Spain;
| | - Pablo Serrano-Lorenzo
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1019 Amsterdam, The Netherlands;
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| | - José L. Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, and Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Alejandro Lucia
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Miguel A. Martín
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain; (I.G.-C.); (S.A.-P.); (R.G.-M.); (C.D.-G.); (P.S.-L.); (J.A.); (A.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| |
Collapse
|
19
|
Preclinical Research in McArdle Disease: A Review of Research Models and Therapeutic Strategies. Genes (Basel) 2021; 13:genes13010074. [PMID: 35052414 PMCID: PMC8774685 DOI: 10.3390/genes13010074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
McArdle disease is an autosomal recessive disorder of muscle glycogen metabolism caused by pathogenic mutations in the PYGM gene, which encodes the skeletal muscle-specific isoform of glycogen phosphorylase. Clinical symptoms are mainly characterized by transient acute “crises” of early fatigue, myalgia and contractures, which can be accompanied by rhabdomyolysis. Owing to the difficulty of performing mechanistic studies in patients that often rely on invasive techniques, preclinical models have been used for decades, thereby contributing to gain insight into the pathophysiology and pathobiology of human diseases. In the present work, we describe the existing in vitro and in vivo preclinical models for McArdle disease and review the insights these models have provided. In addition, despite presenting some differences with the typical patient’s phenotype, these models allow for a deep study of the different features of the disease while representing a necessary preclinical step to assess the efficacy and safety of possible treatments before they are tested in patients.
Collapse
|
20
|
Lucia A, Martinuzzi A, Nogales-Gadea G, Quinlivan R, Reason S. Clinical practice guidelines for glycogen storage disease V & VII (McArdle disease and Tarui disease) from an international study group. Neuromuscul Disord 2021; 31:1296-1310. [PMID: 34848128 DOI: 10.1016/j.nmd.2021.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Alejandro Lucia
- Faculty of Sports Sciences, Universidad Europea de Madrid, Spain; Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES) and Research Institute of the Hospital 12 de Octubre ('imas12', PaHerg group), Madrid, Spain
| | | | - Gisela Nogales-Gadea
- Institut d'Investigació Germans Trias i Pujol, Camí de les Escoles, Barcelona, Spain
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | - Stacey Reason
- International Association for Muscle Glycogen Storage Disease, California, USA.
| | | |
Collapse
|
21
|
Salazar-Martínez E, Santalla A, Valenzuela PL, Nogales-Gadea G, Pinós T, Morán M, Santos-Lozano A, Fiuza-Luces C, Lucia A. The Second Wind in McArdle Patients: Fitness Matters. Front Physiol 2021; 12:744632. [PMID: 34721068 PMCID: PMC8555491 DOI: 10.3389/fphys.2021.744632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background: The “second wind” (SW) phenomenon—commonly referring to both an initial period of marked intolerance to dynamic exercise (e.g., brisk walking) that is not followed by perceived improvement and disappearance of previous tachycardia (i.e., the actual “SW”) until 6–10 min has elapsed—is an almost unique feature of McArdle disease that limits adherence to an active lifestyle. In this regard, an increase in the workload eliciting the SW could potentially translate into an improved patients’ exercise tolerance in daily life. We aimed to determine whether aerobic fitness and physical activity (PA) levels are correlated with the minimum workload eliciting the SW in McArdle patients—as well as with the corresponding heart rate value. We also compared the SW variables and aerobic fitness indicators in inactive vs. active patients. Methods: Fifty-four McArdle patients (24 women, mean ± SD age 33 ± 12 years) performed 12-min constant-load and maximum ramp-like cycle-ergometer tests for SW detection and aerobic fitness [peak oxygen uptake (VO2peak) and workload and ventilatory threshold] determination, respectively. They were categorized as physically active/inactive during the prior 6 months (active = reporting ≥150 min/week or ≥75 min/week in moderate or vigorous-intensity aerobic PA, respectively) and were also asked on their self-report of the SW. Results: Both peak and submaximal indicators of aerobic fitness obtained in the ramp tests were significantly correlated with the workload of the SW test, with a particularly strong correlation for the VO2peak and peak workload attained by the patients (both Pearson’s coefficients > 0.70). Twenty (seven women) and 24 patients (18 women) were categorized as physically active and inactive, respectively. Not only the aerobic fitness level [∼18–19% higher values of VO2peak (ml⋅kg–1⋅min–1)] but also the workload of the SW tests was significantly higher in active than in inactive patients. All the inactive patients reported that they experienced the SW during walking/brisk walking in daily life, whereas active patients only reported experiencing this phenomenon during more strenuous activities (very brisk walking/jogging and bicycling). Conclusion: A higher aerobic fitness and an active lifestyle are associated with a higher workload eliciting the so-called SW phenomenon in patients with McArdle disease, which has a positive impact on their exercise tolerance during daily living.
Collapse
Affiliation(s)
| | - Alfredo Santalla
- Department of Sports and Computing, Pablo de Olavide University, Seville, Spain.,EVOPRED Research Group, Universidad Europea de Canarias, Tenerife, Spain
| | | | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pinós
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Morán
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain.,Physical Activity and Health Research Group, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Carmen Fiuza-Luces
- Physical Activity and Health Research Group, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Physical Activity and Health Research Group, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| |
Collapse
|
22
|
Negro M, Cerullo G, Parimbelli M, Ravazzani A, Feletti F, Berardinelli A, Cena H, D'Antona G. Exercise, Nutrition, and Supplements in the Muscle Carnitine Palmitoyl-Transferase II Deficiency: New Theoretical Bases for Potential Applications. Front Physiol 2021; 12:704290. [PMID: 34408664 PMCID: PMC8365340 DOI: 10.3389/fphys.2021.704290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Carnitine palmitoyltransferase II (CPTII) deficiency is the most frequent inherited disorder regarding muscle fatty acid metabolism, resulting in a reduced mitochondrial long-chain fatty acid oxidation during endurance exercise. This condition leads to a clinical syndrome characterized by muscle fatigue and/or muscle pain with a variable annual frequency of severe rhabdomyolytic episodes. While since the CPTII deficiency discovery remarkable scientific advancements have been reached in genetic analysis, pathophysiology and diagnoses, the same cannot be said for the methods of treatments. The current recommendations remain those of following a carbohydrates-rich diet with a limited fats intake and reducing, even excluding, physical activity, without, however, taking into account the long-term consequences of this approach. Suggestions to use carnitine and medium chain triglycerides remain controversial; conversely, other potential dietary supplements able to sustain muscle metabolism and recovery from exercise have never been taken into consideration. The aim of this review is to clarify biochemical mechanisms related to nutrition and physiological aspects of muscle metabolism related to exercise in order to propose new theoretical bases of treatment which, if properly tested and validated by future trials, could be applied to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Mauro Parimbelli
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Alberto Ravazzani
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Fausto Feletti
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | | | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale nelle Attivitá Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy.,Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Godbe K, Malaty G, Wenzel A, Nazeer S, Grider DJ, Kinsey A. McArdle Disease vs. Stiff-Person Syndrome: A Case Report Highlighting the Similarities Between Two Rare and Distinct Disorders. Front Neurol 2020; 11:529985. [PMID: 33240189 PMCID: PMC7683573 DOI: 10.3389/fneur.2020.529985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022] Open
Abstract
McArdle disease is a rare autosomal recessive disorder of muscle glycogen metabolism that presents with pain and fatigue during exercise. Stiff-Person Syndrome is an autoimmune-related neurologic process characterized by fluctuating muscle rigidity and spasm. Reported is a 41-year-old male who presented to the emergency department due to sudden-onset weakness and chest pain while moving his refrigerator at home. Cardiac workup was non-contributory, but a creatine kinase level > 6,000 warranted a muscle biopsy. The biopsy pathology report was misinterpreted to be diagnostic for McArdle disease given the clinical presentation. After 4 years of treatment without symptomatic improvement, a gradual transition of symptoms from pain alone to pain with stiffness was noted. A positive glutamic acid decarboxylase antibody test resulted in a change of diagnosis to Stiff-Person Syndrome. This is the first known case that highlights the similarities between these two rare and distinct disease processes, highlighting the necessity for thorough history taking, maintenance of a broad differential diagnosis, and knowledge of how best to interpret complex pathology reports.
Collapse
Affiliation(s)
- Kerilyn Godbe
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Giovanni Malaty
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Alyssa Wenzel
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Sahana Nazeer
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Douglas J Grider
- Department of Basic Science, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Adrienne Kinsey
- Department of Family Medicine, Carilion Clinic, Roanoke, VA, United States
| |
Collapse
|
24
|
Rodríguez-Gómez I, Santalla A, Diez-Bermejo J, Munguía-Izquierdo D, Alegre LM, Nogales-Gadea G, Arenas J, Martín MA, Lucia A, Ara I. Sex Differences and the Influence of an Active Lifestyle on Adiposity in Patients with McArdle Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124334. [PMID: 32560448 PMCID: PMC7344565 DOI: 10.3390/ijerph17124334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/30/2022]
Abstract
McArdle disease (glycogenosis-V) is associated with exercise intolerance, however, how it affects an important marker of cardiometabolic health as it is adiposity remains unknown. We evaluated the association between physical activity (PA) and adiposity in patients with McArdle disease. We assessed 199 adults of both sexes (51 McArdle patients (36 ± 11 years) and 148 healthy controls (35 ± 10 years)). Body fat (BF) was determined using dual-energy X-ray absorptiometry (DXA) method and each patient’s PA was assessed with the International PA Questionnaire (IPAQ). Although body mass index values did not differ between patients and controls, McArdle patients had significantly higher values of BF in all body regions (p < 0.05) and higher risk of suffering obesity (odds ratio (OR): 2.54, 95% confidence interval (95% CI): 1.32–4.88). Male patients had higher BF and obesity risk (OR: 3.69, 95% CI: 1.46−9.34) than their sex-matched controls, but no differences were found within the female sex (p < 0.05). In turn, active female patients had lower trunk BF than their inactive peers (p < 0.05). Males with McArdle seem to have adiposity problems and a higher risk of developing obesity than people without the condition, while female patients show similar or even better levels in the trunk region with an active lifestyle. Therefore, special attention should be given to decrease adiposity and reduce obesity risk in males with McArdle disease.
Collapse
Affiliation(s)
- Irene Rodríguez-Gómez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; (I.R.-G.); (L.M.A.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
| | - Alfredo Santalla
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Jorge Diez-Bermejo
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain; (J.D.-B.); (J.A.); (M.A.M.)
| | - Diego Munguía-Izquierdo
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Luis M. Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; (I.R.-G.); (L.M.A.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol I Campus Can Ruti, Universitat Autònoma de Barcelona, 08041 Badalona, Spain;
- CIBER of Rare Disorders (CIBERER), 28029 Madrid, Spain
| | - Joaquín Arenas
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain; (J.D.-B.); (J.A.); (M.A.M.)
- CIBER of Rare Disorders (CIBERER), 28029 Madrid, Spain
| | - Miguel A. Martín
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain; (J.D.-B.); (J.A.); (M.A.M.)
- CIBER of Rare Disorders (CIBERER), 28029 Madrid, Spain
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
- School of Research and Doctorate Studies, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; (I.R.-G.); (L.M.A.)
- CIBER of Frailty and Healthy Aging (CIBERFES), 28029 Madrid, Spain; (A.S.); (D.M.-I.); (A.L.)
- Correspondence: ; Tel.: +34-925-268-800 (ext. 5543)
| |
Collapse
|
25
|
Jensen R, Nielsen J, Ørtenblad N. Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle. J Physiol 2020; 598:789-803. [PMID: 31823376 DOI: 10.1113/jp278543] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Muscle glycogen content is associated with muscle function, but the physiological link between the two is poorly understood. This study investigated the effects of inhibiting glycogenolysis, while maintaining high overall energy status, on different aspects of muscle function. We demonstrate here that Na+ ,K+ -ATPase activity depends on glycogenolytically derived ATP regardless of high global ATP, with a decrease in activity leading to reduced force production and accelerated fatigue development. The results support the concept of compartmentalized energy transfer with glycogen metabolism playing a crucial role in intramuscular ATP resynthesis and ion regulation. This study gives specific insights into muscular function and may help towards a better understanding of glycogen storage diseases and muscle fatigue. ABSTRACT Skeletal muscle glycogen content is associated with muscle function and fatigability. However, little is known about the physiological link between glycogen content and muscle function. Here we aimed to investigate the importance of glycogenolytically derived ATP per se on muscle force and action potential (AP) repriming period, i.e. the time before a second AP can be produced (indicative of Na+ ,K+ -ATPase activity). Single fibres from rat extensor digitorum longus muscles were isolated and mechanically skinned in order to investigate force production and the AP repriming period while global ATP and PCr concentrations were kept high. The importance of glycogenolytically derived ATP was studied by inhibition of glycogen phosphorylase (1,4-dideoxy-1,4-imino-d-arabinitol (DAB; 2 mm) or CP-316,819 (CP; 10 µm)) or glycogen removal (amyloglucosidase, 20 U ml-1 ). Tetanic force decreased by (mean (SD)) 21 (15)% (P < 0.001) and 76 (28)% (DAB) or 94 (6)% (CP, P < 0.001) in well-polarized and partially depolarized fibres, respectively. In depolarized fibres, twitch force decreased by 16 (10)% and 55 (26)% with DAB and CP, respectively, with no effect in well-polarized fibres (84 (10)%, P = 0.14). There was no effect of glycogen phosphorylase inhibition on repriming period in well-polarized fibres (median (25th, 75th percentile): 5 (4, 5) vs. 4 (4, 5) ms, P = 0.26), while the repriming period was prolonged from 6 (5, 7) to 8 (7, 10) ms (P = 0.01) in partially depolarized fibres. In line with this, glycogen removal increased repriming period from 5 (5, 6) to 6 (5, 7) ms (P = 0.003) in depolarized fibres. Together, these data strongly indicate that blocking glycogenolysis attenuates Na+ ,K+ -ATPase activity, which in turn increases the repriming period and reduces force, demonstrating a functional link between glycogenolytically derived ATP and force production.
Collapse
Affiliation(s)
- Rasmus Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
26
|
McArdle Disease: New Insights into Its Underlying Molecular Mechanisms. Int J Mol Sci 2019; 20:ijms20235919. [PMID: 31775340 PMCID: PMC6929006 DOI: 10.3390/ijms20235919] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
McArdle disease, also known as glycogen storage disease type V (GSDV), is characterized by exercise intolerance, the second wind phenomenon, and high serum creatine kinase activity. Here, we recapitulate PYGM mutations in the population responsible for this disease. Traditionally, McArdle disease has been considered a metabolic myopathy caused by the lack of expression of the muscle isoform of the glycogen phosphorylase (PYGM). However, recent findings challenge this view, since it has been shown that PYGM is present in other tissues than the skeletal muscle. We review the latest studies about the molecular mechanism involved in glycogen phosphorylase activity regulation. Further, we summarize the expression and functional significance of PYGM in other tissues than skeletal muscle both in health and McArdle disease. Furthermore, we examine the different animal models that have served as the knowledge base for better understanding of McArdle disease. Finally, we give an overview of the latest state-of-the-art clinical trials currently being carried out and present an updated view of the current therapies.
Collapse
|
27
|
Rodríguez-Gómez I, Santalla A, Díez-Bermejo J, Munguía-Izquierdo D, Alegre LM, Nogales-Gadea G, Arenas J, Martín MA, Lucía A, Ara I. Non-osteogenic muscle hypertrophy in children with McArdle disease. J Inherit Metab Dis 2018; 41:1037-1042. [PMID: 29594644 DOI: 10.1007/s10545-018-0170-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION McArdle disease is an inborn disorder of muscle glycogen metabolism that produces exercise intolerance, and has been recently associated with low values of lean mass (LM) and bone mineral content (BMC) and density (BMD) in affected adults. Here we aimed to study whether this bone health problem begins in childhood. METHODS Forty children and adolescents were evaluated: 10 McArdle disease and 30 control children (mean age of both groups, 13 ± 2y). Body composition was evaluated by dual-energy X-ray absorptiometry and creatine kinase (CK) levels were determined in the patients as an estimate of muscle damage. RESULTS Legs bone mass was significantly lower in patients than in controls (-36% for BMC and -22% for BMD). Moreover, patients had significantly higher LM values in the legs than controls, whereas no difference was found for fat mass. CK levels were positively associated with LM in McArdle patients. A correlation was found between LM and BMD variables in the control group but not in McArdle patients. CONCLUSION We have identified a 'non-osteogenic muscle hypertrophy' in children with McArdle disease. This phenomenon warrants special attention since low osteogenesis at an early age predicts a high risk for osteoporosis later in life.
Collapse
Affiliation(s)
- I Rodríguez-Gómez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda Carlos III s/n, 45071, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - A Santalla
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain
| | - J Díez-Bermejo
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - D Munguía-Izquierdo
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Sport and Computer Science, Section of Physical Education and Sports, Faculty of Sport, Universidad Pablo de Olavide, Sevilla, Spain
| | - L M Alegre
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda Carlos III s/n, 45071, Toledo, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| | - G Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Rare Disorders (CIBERER), Madrid, Spain
| | - J Arenas
- Research Institute Hospital 12 de Octubre, Madrid, Spain
- CIBER Rare Disorders (CIBERER), Madrid, Spain
| | - M A Martín
- Research Institute Hospital 12 de Octubre, Madrid, Spain
- CIBER Rare Disorders (CIBERER), Madrid, Spain
| | - A Lucía
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- School of Research and Doctorate Studies, Universidad Europea de Madrid, Madrid, Spain
| | - I Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Avda Carlos III s/n, 45071, Toledo, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
| |
Collapse
|
28
|
Resistance Exercise Training in McArdle Disease: Myth or Reality? Case Rep Neurol Med 2018; 2018:9658251. [PMID: 30363996 PMCID: PMC6186374 DOI: 10.1155/2018/9658251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/27/2018] [Indexed: 01/28/2023] Open
Abstract
McArdle disease is a metabolic myopathy mainly characterised by symptom onset during physical activities or isometric muscle contraction. Resistance (also termed strength) training is a type of physical exercise focusing on the use of resistance (e.g., lifting weights) to induce muscular contraction, which builds muscle mass and strength. Historically people with McArdle disease were advised to avoid resistance exercises and any other form of physical activity involving high mechanical loads such as prolonged isometric contraction. Paradoxically, a clinical trial exploring the benefits of strength training in this patient population was published. The theory supporting strength training relied on the use of the ATP molecule and the creatine phosphate (ATP-phosphocreatine system) as energy sources for skeletal muscles. Here, we report two patients with McArdle disease who performed weight training at local gyms. A single set of repetitions lasted for maximum 10 seconds with minimum of 30 seconds of rest period in between sets of exercises. Benefits of this type of training included improvement in quality of life and amelioration of McArdle disease symptoms. We provide further safety evidence of this type of exercise in people with McArdle disease. We emphasise the importance of using a specific protocol developed for people affected by this condition.
Collapse
|
29
|
Fiuza-Luces C, Santos-Lozano A, Llavero F, Campo R, Nogales-Gadea G, Díez-Bermejo J, Baladrón C, González-Murillo Á, Arenas J, Martín MA, Andreu AL, Pinós T, Gálvez BG, López JA, Vázquez J, Zugaza JL, Lucia A. Muscle molecular adaptations to endurance exercise training are conditioned by glycogen availability: a proteomics-based analysis in the McArdle mouse model. J Physiol 2018; 596:1035-1061. [PMID: 29315579 DOI: 10.1113/jp275292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Although they are unable to utilize muscle glycogen, McArdle mice adapt favourably to an individualized moderate-intensity endurance exercise training regime. Yet, they fail to reach the performance capacity of healthy mice with normal glycogen availability. There is a remarkable difference in the protein networks involved in muscle tissue adaptations to endurance exercise training in mice with and without glycogen availability. Indeed, endurance exercise training promoted the expression of only three proteins common to both McArdle and wild-type mice: LIMCH1, PARP1 and TIGD4. In turn, trained McArdle mice presented strong expression of mitogen-activated protein kinase 12 (MAPK12). ABSTRACT McArdle's disease is an inborn disorder of skeletal muscle glycogen metabolism that results in blockade of glycogen breakdown due to mutations in the myophosphorylase gene. We recently developed a mouse model carrying the homozygous p.R50X common human mutation (McArdle mouse), facilitating the study of how glycogen availability affects muscle molecular adaptations to endurance exercise training. Using quantitative differential analysis by liquid chromatography with tandem mass spectrometry, we analysed the quadriceps muscle proteome of 16-week-old McArdle (n = 5) and wild-type (WT) (n = 4) mice previously subjected to 8 weeks' moderate-intensity treadmill training or to an equivalent control (no training) period. Protein networks enriched within the differentially expressed proteins with training in WT and McArdle mice were assessed by hypergeometric enrichment analysis. Whereas endurance exercise training improved the estimated maximal aerobic capacity of both WT and McArdle mice as compared with controls, it was ∼50% lower than normal in McArdle mice before and after training. We found a remarkable difference in the protein networks involved in muscle tissue adaptations induced by endurance exercise training with and without glycogen availability, and training induced the expression of only three proteins common to McArdle and WT mice: LIM and calponin homology domains-containing protein 1 (LIMCH1), poly (ADP-ribose) polymerase 1 (PARP1 - although the training effect was more marked in McArdle mice), and tigger transposable element derived 4 (TIGD4). Trained McArdle mice presented strong expression of mitogen-activated protein kinase 12 (MAPK12). Through an in-depth proteomic analysis, we provide mechanistic insight into how glycogen availability affects muscle protein signalling adaptations to endurance exercise training.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory and 'MITOLAB-CM', Research Institute of Hospital '12 de Octubre' ('i+12'), Madrid, Spain
| | - Alejandro Santos-Lozano
- Research Institute of the Hospital 12 de Octubre ('i+12'), Madrid, Spain.,i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain
| | | | - Rocío Campo
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gisela Nogales-Gadea
- Research group in Neuromuscular and Neuropediatric Diseases, Neurosciences Department, Germans Trias i Pujol Research Institute and Campus Can Ruti, Autonomous University of Barcelona, Badalona, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Spain
| | | | - Carlos Baladrón
- i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain
| | - África González-Murillo
- Fundación para la Investigación Biomédica, Hospital Universitario Niño Jesús and Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory and 'MITOLAB-CM', Research Institute of Hospital '12 de Octubre' ('i+12'), Madrid, Spain
| | - Miguel A Martín
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Spain
| | - Antoni L Andreu
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Spain.,Neuromuscular and Mitochondrial Pathology Department, Vall d'Hebron University Hospital, Research Institute (VHIR) Autonomous University of Barcelona, Barcelona, Spain
| | - Tomàs Pinós
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Spain.,Neuromuscular and Mitochondrial Pathology Department, Vall d'Hebron University Hospital, Research Institute (VHIR) Autonomous University of Barcelona, Barcelona, Spain
| | - Beatriz G Gálvez
- Research Institute of the Hospital 12 de Octubre ('i+12'), Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | - Juan A López
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro Integrado de Investigación Biomédica en Red en enfermedades cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Centro Integrado de Investigación Biomédica en Red en enfermedades cardiovasculares (CIBERCV), Madrid, Spain
| | - José L Zugaza
- Achucarro - Basque Center for Neuroscience, Bilbao, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('i+12'), Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Fiuza-Luces C, Nogales-Gadea G, García-Consuegra I, Pareja-Galeano H, Rufián-Vázquez L, Pérez LM, Andreu AL, Arenas J, Martín MA, Pinós T, Lucia A, Morán M. Muscle Signaling in Exercise Intolerance: Insights from the McArdle Mouse Model. Med Sci Sports Exerc 2017; 48:1448-58. [PMID: 27031745 DOI: 10.1249/mss.0000000000000931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION We recently generated a knock-in mouse model (PYGM p.R50X/p.R50X) of the McArdle disease (myophosphorylase deficiency). One mechanistic approach to unveil the molecular alterations caused by myophosphorylase deficiency, which is arguably the paradigm of "exercise intolerance," is to compare the skeletal muscle tissue of McArdle, heterozygous, and healthy (wild-type [wt]) mice. METHODS We analyzed in quadriceps muscle of p.R50X/p.R50X (n = 4), p.R50X/wt (n = 6), and wt/wt mice (n = 5) (all male, 8 wk old) molecular markers of energy-sensing pathways, oxidative phosphorylation and autophagy/proteasome systems, oxidative damage, and sarcoplasmic reticulum Ca handling. RESULTS We found a significant group effect for total adenosine monophosphate-(AMP)-activated protein kinase (tAMPK) and ratio of phosphorylated (pAMPK)/tAMPK (P = 0.012 and 0.033), with higher mean values in p.R50X/p.R50X mice versus the other two groups. The absence of a massive accumulation of ubiquitinated proteins, autophagosomes, or lysosomes in p.R50X/p.R50X mice suggested no major alterations in autophagy/proteasome systems. Citrate synthase activity was lower in p.R50X/p.R50X mice versus the other two groups (P = 0.036), but no statistical effect existed for respiratory chain complexes. We found higher levels of 4-hydroxy-2-nonenal-modified proteins in p.R50X/p.R50X and p.R50X/wt mice compared with the wt/wt group (P = 0.011). Sarco(endo)plasmic reticulum ATPase 1 levels detected at 110 kDa tended to be higher in p.R50X/p.R50X and p.R50X/wt mice compared with wt/wt animals (P = 0.076), but their enzyme activity was normal. We also found an accumulation of phosphorylated sarco(endo)plasmic reticulum ATPase 1 in p.R50X/p.R50X animals. CONCLUSION Myophosphorylase deficiency causes alterations in sensory energetic pathways together with some evidence of oxidative damage and alterations in Ca handling but with no major alterations in oxidative phosphorylation capacity or autophagy/ubiquitination pathways, which suggests that the muscle tissue of patients is likely to adapt overall favorably to exercise training interventions.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- 1Mitochondrial and Neuromuscular Diseases Laboratory and "MITOLAB-CM," Research Institute of Hospital "12 de Octubre" ("i + 12"), Madrid, SPAIN; 2Neuromuscular and Neuropediatric Research Group, Neurosciences Department, Germans Trias i Pujol Research Institute and Campus Can Ruti, Autonomous University of Barcelona, Badalona, SPAIN; 3Department of Research and Doctorate Studies, European University, Madrid, SPAIN; 4Neuromuscular and Mitochondrial Pathology Department, Vall d'Hebron University Hospital, Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, SPAIN; and 5Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, SPAIN
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nogales-Gadea G, Santalla A, Arenas J, Martín MA, Morán M, Lucia A. Low versus high carbohydrates in the diet of the world-class athlete: insights from McArdle's disease. J Physiol 2017; 595:2991-2992. [PMID: 28452139 DOI: 10.1113/jp274060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Gisela Nogales-Gadea
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Alfredo Santalla
- Universidad Pablo de Olavide, Sevilla, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Joaquín Arenas
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel A Martín
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Morán
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alejandro Lucia
- Universidad Pablo de Olavide, Sevilla, Spain.,Universidad Europea, Madrid, Spain
| |
Collapse
|
32
|
Mesquita Amaral VF, Sá Martins AA. Quando a preguiça é sinônimo de doença - um caso de doença de McArdle. REVISTA BRASILEIRA DE MEDICINA DE FAMÍLIA E COMUNIDADE 2016. [DOI: 10.5712/rbmfc11(38)1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A doença de McArdle é uma doença rara, autossômica recessiva, manifestando-se com intolerância ao exercício, mialgias e crises de mioglobinúria por rabdomiólise. Pode complicar-se com insuficiência renal e isquemia muscular associada a anestésicos inalados e relaxantes musculares. Relata-se um caso clínico de um homem de 38 anos que apresentava queixas repetidas de cansaço, palpitações e “sensação de que o músculo bloqueava e encolhia” (sic) durante o exercício, obrigando-o a parar para recuperar. Este quadro estava presente desde a adolescência e cessava com redução do exercício. Foi avaliado, apresentando uma CPK de 554mcg/L, sem outras alterações, pelo que foi referenciado pela médica de família para consulta em Neurologia. Nesta foi solicitada uma biópsia muscular, que revelou doença de McArdle. O médico de família deve ser capaz gerir os casos que se apresentam inespecificamente, valorizando queixas específicas e persistentes no tempo, estando alerta para as situações que possam sugerir uma doença incomum.
Collapse
|
33
|
Taking advantage of an old concept, "illegitimate transcription", for a proposed novel method of genetic diagnosis of McArdle disease. Genet Med 2016; 18:1128-1135. [PMID: 26913921 DOI: 10.1038/gim.2015.219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
PURPOSE McArdle disease is a metabolic disorder caused by pathogenic mutations in the PYGM gene. Timely diagnosis can sometimes be difficult with direct genomic analysis, which requires additional studies of cDNA from muscle transcripts. Although the "nonsense-mediated mRNA decay" (NMD) eliminates tissue-specific aberrant transcripts, there is some residual transcription of tissue-specific genes in virtually all cells, such as peripheral blood mononuclear cells (PBMCs). METHODS We studied a subset of the main types of PYGM mutations (deletions, missense, nonsense, silent, or splicing mutations) in cDNA from easily accessible cells (PBMCs) in 12 McArdle patients. RESULTS Analysis of cDNA from PBMCs allowed detection of all mutations. Importantly, the effects of mutations with unknown pathogenicity (silent and splicing mutations) were characterized in PBMCs. Because the NMD mechanism does not seem to operate in nonspecific cells, PBMCs were more suitable than muscle biopsies for detecting the pathogenicity of some PYGM mutations, notably the silent mutation c.645G>A (p.K215=), whose effect in the splicing of intron 6 was unnoticed in previous muscle transcriptomic studies. CONCLUSION We propose considering the use of PBMCs for detecting mutations that are thought to cause McArdle disease, particularly for studying their actual pathogenicity.Genet Med 18 11, 1128-1135.
Collapse
|
34
|
Nogales-Gadea G, Godfrey R, Santalla A, Coll-Cantí J, Pintos-Morell G, Pinós T, Arenas J, Martín MA, Lucia A. Genes and exercise intolerance: insights from McArdle disease. Physiol Genomics 2016; 48:93-100. [DOI: 10.1152/physiolgenomics.00076.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
McArdle disease (glycogen storage disease type V) is caused by inherited deficiency of a key enzyme in muscle metabolism, the skeletal muscle-specific isoform of glycogen phosphorylase, “myophosphorylase,” which is encoded by the PYGM gene. Here we review the main pathophysiological, genotypic, and phenotypic features of McArdle disease and their interactions. To date, moderate-intensity exercise (together with pre-exercise carbohydrate ingestion) is the only treatment option that has proven useful for these patients. Furthermore, regular physical activity attenuates the clinical severity of McArdle disease. This is quite remarkable for a monogenic disorder that consistently leads to the same metabolic defect at the muscle tissue level, that is, complete inability to use muscle glycogen stores. Further knowledge of this disorder would help patients and enhance understanding of exercise metabolism as well as exercise genomics. Indeed, McArdle disease is a paradigm of human exercise intolerance and PYGM genotyping should be included in the genetic analyses that might be applied in the coming personalized exercise medicine as well as in future research on genetics and exercise-related phenotypes.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Richard Godfrey
- Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom
| | - Alfredo Santalla
- Universidad Pablo de Olavide, Seville, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Jaume Coll-Cantí
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- Servicio de Neurología, Unidad Neuromuscular, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Guillem Pintos-Morell
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- Servicio de Pediatría, Unidad de Enfermedades Minoritarias, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Tomàs Pinós
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
| | - Miguel Angel Martín
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
| | - Alejandro Lucia
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
- Universidad Europea, Madrid, Spain
| |
Collapse
|
35
|
Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A. Rodent models for resolving extremes of exercise and health. Physiol Genomics 2015; 48:82-92. [PMID: 26395598 DOI: 10.1152/physiolgenomics.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia;
| | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and
| | - Alejandro Lucia
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and Instituto de Investigación Hospital 12 de Octubre (i+12) and Universidad Europea, Madrid, Spain
| |
Collapse
|
36
|
Quinlivan R, Lucia A, Scalco RS, Santalla A, Pattni J, Godfrey R, Marti R. Report on the EUROMAC McArdle Exercise Testing Workshop, Madrid, Spain, 11–12 July 2014. Neuromuscul Disord 2015; 25:739-45. [DOI: 10.1016/j.nmd.2015.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
|
37
|
Nogales-Gadea G, Brull A, Santalla A, Andreu AL, Arenas J, Martín MA, Lucia A, de Luna N, Pinós T. McArdle Disease: Update of Reported Mutations and Polymorphisms in the PYGM Gene. Hum Mutat 2015; 36:669-78. [PMID: 25914343 DOI: 10.1002/humu.22806] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
McArdle disease is an autosomal-recessive disorder caused by inherited deficiency of the muscle isoform of glycogen phosphorylase (or "myophosphorylase"), which catalyzes the first step of glycogen catabolism, releasing glucose-1-phosphate from glycogen deposits. As a result, muscle metabolism is impaired, leading to different degrees of exercise intolerance. Patients range from asymptomatic to severely affected, including in some cases, limitations in activities of daily living. The PYGM gene codifies myophosphoylase and to date 147 pathogenic mutations and 39 polymorphisms have been reported. Exon 1 and 17 are mutational hot-spots in PYGM and 50% of the described mutations are missense. However, c.148C>T (commonly known as p.R50X) is the most frequent mutation in the majority of the studied populations. No genotype-phenotype correlation has been reported and no mutations have been described in the myophosphorylase domains affecting the phosphorylated Ser-15, the 280's loop, the pyridoxal 5'-phosphate, and the nucleoside inhibitor binding sites. A newly generated knock-in mouse model is now available, which renders the main clinical and molecular features of the disease. Well-established methods for diagnosing patients in laboratories around the world will shorten the frequent ∼20-year period stretching from first symptoms appearance to the genetic diagnosis.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol I Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Astrid Brull
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfredo Santalla
- Universidad Pablo de Olavide, Sevilla, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Antoni L Andreu
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquin Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel A Martín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alejandro Lucia
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Universidad Europea, Madrid, Spain
| | - Noemi de Luna
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Tomàs Pinós
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
38
|
Brull A, de Luna N, Blanco-Grau A, Lucia A, Martin MA, Arenas J, Martí R, Andreu AL, Pinós T. Phenotype consequences of myophosphorylase dysfunction: insights from the McArdle mouse model. J Physiol 2015; 593:2693-706. [PMID: 25873271 DOI: 10.1113/jp270085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/10/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This is the first study to analyse the effect of muscle glycogen phosphorylase depletion in metabolically different muscle types. In McArdle mice, muscle glycogen phosphorylase is absent in both oxidative and glycolytic muscles. In McArdle mice, the glycogen debranching enzyme (catabolic) is increased in oxidative muscles, whereas the glycogen branching enzyme (anabolic) is increased in glycolytic muscles. In McArdle mice, total glycogen synthase is decreased in both oxidative and glycolytic muscles, whereas the phosphorylated inactive form of the enzyme is increased in both oxidative and glycolytic enzymes. In McArdle mice, glycogen content is higher in glycolytic muscles than in oxidative muscles. Additionally, in all muscles analysed, the glycogen content is higher in males than in females. The maximal endurance capacity of the McArdle mice is significantly lower compared to heterozygous and wild-type mice. ABSTRACT McArdle disease, caused by inherited deficiency of the enzyme muscle glycogen phosphorylase (GP-MM), is arguably the paradigm of exercise intolerance. The recent knock-in (p.R50X/p.R50X) mouse disease model allows an investigation of the phenotypic consequences of muscle glycogen unavailability and the physiopathology of exercise intolerance. We analysed, in 2-month-old mice [wild-type (wt/wt), heterozygous (p.R50X/wt) and p.R50X/p.R50X)], maximal endurance exercise capacity and the molecular consequences of an absence of GP-MM in the main glycogen metabolism regulatory enzymes: glycogen synthase, glycogen branching enzyme and glycogen debranching enzyme, as well as glycogen content in slow-twitch (soleus), intermediate (gastrocnemius) and glycolytic/fast-twitch (extensor digitorum longus; EDL) muscles. Compared with wt/wt, exercise capacity (measured in a treadmill test) was impaired in p.R50X/p.R50X (∼48%) and p.R50X/wt mice (∼18%). p.R50X/p.R50X mice showed an absence of GP-MM in the three muscles. GP-MM was reduced in p.R50X/wt mice, especially in the soleus, suggesting that the function of 'slow-twitch' muscles is less dependent on glycogen catabolism. p.R50X/p.R50X mice showed increased glycogen debranching enzyme in the soleus, increased glycogen branching enzyme in the gastrocnemius and EDL, as well as reduced levels of mucle glycogen synthase protein in the three muscles (mean ∼70%), reflecting a protective mechanism for preventing deleterious glycogen accumulation. Additionally, glycogen content was highest in the EDL of p.R50X/p.R50X mice. Amongst other findings, the present study shows that the expression of the main muscle glycogen regulatory enzymes differs depending on the muscle phenotype (slow- vs. fast-twitch) and that even partial GP-MM deficiency affects maximal endurance capacity. Our knock-in model might help to provide insights into the importance of glycogen on muscle function.
Collapse
Affiliation(s)
- Astrid Brull
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Noemí de Luna
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Albert Blanco-Grau
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Lucia
- Universidad Europea, Madrid, Spain.,Instituto de Investigación 'i+12', Madrid, Spain
| | | | | | - Ramon Martí
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Antoni L Andreu
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Tomàs Pinós
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| |
Collapse
|
39
|
Santalla A, Munguía-Izquierdo D, Brea-Alejo L, Pagola-Aldazábal I, Díez-Bermejo J, Fleck SJ, Ara I, Lucia A. Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits. Front Aging Neurosci 2014; 6:334. [PMID: 25566067 PMCID: PMC4263173 DOI: 10.3389/fnagi.2014.00334] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022] Open
Abstract
We analyzed the effects of a 4-month resistance (weight lifting) training program followed by a 2-month detraining period in 7 adult McArdle patients (5 female) on: muscle mass (assessed by DXA), strength, serum creatine kinase (CK) activity and clinical severity. Adherence to training was ≥84% in all patients and no major contraindication or side effect was noted during the training or strength assessment sessions. The training program had a significant impact on total and lower extremities’ lean mass (P < 0.05 for the time effect), with mean values increasing with training by +855 g (95% confidence interval (CI): 30, 1679) and +547 g (95%CI: 116, 978), respectively, and significantly decreasing with detraining. Body fat showed no significant changes over the study period. Bench press and half-squat performance, expressed as the highest value of average muscle power (W) or force (N) in the concentric-repetition phase of both tests showed a consistent increase over the 4-month training period, and decreased with detraining. Yet muscle strength and power detraining values were significantly higher than pre-training values, indicating that a training effect was still present after detraining. Importantly, all the participants, with no exception, showed a clear gain in muscle strength after the 4-month training period, e.g., bench press: +52 W (95% CI: 13, 91); half-squat: +173 W (95% CI: 96, 251). No significant time effect (P > 0.05) was noted for baseline or post strength assessment values of serum CK activity, which remained essentially within the range reported in our laboratory for McArdle patients. All the patients changed to a lower severity class with training, such that none of them were in the highest disease severity class (3) after the intervention and, as such, they did not have fixed muscle weakness after training. Clinical improvements were retained, in all but one patient, after detraining, such that after detraining all patients were classed as class 1 for disease severity.
Collapse
Affiliation(s)
- Alfredo Santalla
- Department of Sports Sciences, Universidad Pablo de Olavide Seville, Spain ; Research Institute "i+12", Hospital 12 de Octubre Madrid, Spain
| | | | - Lidia Brea-Alejo
- Research Institute "i+12", Hospital 12 de Octubre Madrid, Spain ; Faculty of Sports Sciences, European University Madrid, Spain
| | - Itziar Pagola-Aldazábal
- Research Institute "i+12", Hospital 12 de Octubre Madrid, Spain ; Faculty of Sports Sciences, European University Madrid, Spain
| | - Jorge Díez-Bermejo
- Research Institute "i+12", Hospital 12 de Octubre Madrid, Spain ; Faculty of Sports Sciences, European University Madrid, Spain
| | - Steven J Fleck
- Department of Kinesiology, University of Wisconsin-Eau Claire Eau Claire, WI, USA
| | - Ignacio Ara
- GENUD Toledo Research Group, University of Castilla-La Mancha Toledo, Spain
| | - Alejandro Lucia
- Research Institute "i+12", Hospital 12 de Octubre Madrid, Spain ; School of Doctorate Studies and Research, Laboratory P-102, European University Madrid, Spain
| |
Collapse
|