1
|
Zhang W, Zhang J, Wang Z, Li T, Liu C, Kang X, Cui X, Yang J, Qu H, Duanmu J, Peng Y, Wang K, Jin L, Xie P, Zheng W, Shang H, Liu Y, Tian Z, Liu Z, Jin Y, Li Y, Li N, Zhuo X, Wu Y, Shi X, Ma R, Sun Y, Zhang K, Fang X, Hu X, Dong E, Zhang S, Zhang Y. Extracellular RIPK3 Acts as a Damage-Associated Molecular Pattern to Exaggerate Cardiac Ischemia/Reperfusion Injury. Circulation 2024; 150:1791-1811. [PMID: 39411860 DOI: 10.1161/circulationaha.123.068595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/05/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease. Currently, there is no effective therapy for reducing cardiac I/R injury. Damage-associated molecular patterns are endogenous molecules released after cellular damage to exaggerate tissue inflammation and injury. RIPK3 (receptor-interacting protein kinase 3), a well-established intracellular mediator of cell necroptosis and inflammation, serves as a circulating biomarker of multiple diseases. However, whether extracellular RIPK3 also exerts biological functions in cardiac I/R injury remains totally unknown. METHODS Patients with acute myocardial infarction receiving percutaneous coronary intervention (PCI) were recruited independently in the discovery cohort (103 patients) and validation cohort (334 patients), and major adverse cardiovascular events were recorded. Plasma samples were collected before and after PCI (6 and 24 h) for RIPK3 concentration measurement. Cultured neonatal rat ventricular myocytes, macrophages and endothelial cells, and in vivo mouse models with myocardial injury induced by I/R (or hypoxia/reoxygenation) were used to investigate the role and mechanisms of extracellular RIPK3. Another cohort including patients with acute myocardial infarction receiving PCI and healthy volunteers was recruited to further explore the mechanisms of extracellular RIPK3. RESULTS In the discovery cohort, elevated plasma RIPK3 levels after PCI are associated with poorer short- and long-term outcomes in patients with acute myocardial infarction, as confirmed in the validation cohort. In both cultured cells and in vivo mouse models, recombinant RIPK3 protein exaggerated myocardial I/R (or hypoxia/reoxygenation) injury, which was alleviated by the RIPK3 antibody. Mechanistically, RIPK3 acted as a damage-associated molecular pattern and bound with RAGE (receptor of advanced glycation end-products), subsequently activating CaMKII (Ca2+/calmodulin-dependent kinase II) to elicit the detrimental effects. The positive correlation between plasma RIPK3 concentrations and CaMKII phosphorylation in human peripheral blood mononuclear cells was confirmed. CONCLUSIONS We identified the positive relationship between plasma RIPK3 concentrations and the risk of major adverse cardiovascular events in patients with acute myocardial infarction receiving PCI. As a damage-associated molecular pattern, extracellular RIPK3 plays a causal role in multiple pathological conditions during cardiac I/R injury through RAGE/CaMKII signaling. These findings expand our understanding of the physiological and pathological roles of RIPK3, and also provide a promising therapeutic target for myocardial I/R injury and the associated complications.
Collapse
Affiliation(s)
- Wenjia Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Junxia Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing (J.Z., E.D.)
| | - Zeyuan Wang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Ting Li
- Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, China (T.L., X.Z., Y.W.)
| | - Changyun Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Xuya Kang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Xiaomeng Cui
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Jingli Yang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Huilin Qu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Jiaxin Duanmu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Ying Peng
- Department of General Surgery (Y.P), Peking University Third Hospital, Beijing, China
| | - Kai Wang
- Department of Hysiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive III Medicine (K.W.), Peking University, Beijing, China
| | - Li Jin
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
| | - Peng Xie
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
| | - Wen Zheng
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
| | - Haibao Shang
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Zhuang Tian
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Zhenyu Liu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Ye Jin
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China (Y.J.)
| | - Yingjia Li
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
| | - Nan Li
- Research Center of Clinical Epidemiology (N.L.), Peking University Third Hospital, Beijing, China
| | - Xiaozhen Zhuo
- Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, China (T.L., X.Z., Y.W.)
| | - Yue Wu
- Department of Cardiology, First Affiliated Hospital, Xi'an Jiaotong University, China (T.L., X.Z., Y.W.)
| | - Xiaolu Shi
- State Key Laboratory of Membrane Biology Institute of Molecular Medicine, College of Future Technology (L.J., P.X., W. Zheng, H.S., X.H.), Peking University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences (X.S., R.M.)
| | - Runhao Ma
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Disease, Experimental Research Center, China Academy of Chinese Medical Sciences (X.S., R.M.)
| | - Yueshen Sun
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Kai Zhang
- Department of Anesthesiology and Intensive Care, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (K.Z., X.F.)
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (K.Z., X.F.)
| | - Xiaomin Hu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Erdan Dong
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing (J.Z., E.D.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, China (E.D.)
| | - Shuyang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing (Z.W., Z.T., Z.L., Y.J., Y.S., X.H., S.Z.)
| | - Yan Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center (W. Zhang, J.Z., C.L., X.K., X.C., J.Y, H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z)
- Department of Cardiology and Institute of Vascular Medicine (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D., Y. Liu, Y. Li, E.D., Y.Z.)
- Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling (W. Zhang, J.Z., C.L., X.K., X.C., J.Y., H.Q., J.D, Y. Liu, Y. Li, E.D., Y.Z.)
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, China (Y.Z.)
| |
Collapse
|
2
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2024:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
3
|
Yong J, Toh CH. The convergent model of coagulation. J Thromb Haemost 2024; 22:2140-2146. [PMID: 38815754 DOI: 10.1016/j.jtha.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
It is increasingly apparent that the pathologic interplay between coagulation and innate immunity, ie, immunothrombosis, forms the common basis of many challenges across the boundaries of specialized medicine and cannot be fully explained by the conventional concepts of cascade and cell-based coagulation. To improve our understanding of coagulation, we propose a model of coagulation that converges with inflammation and innate immune activation as a unified response toward vascular injury. Evolutionarily integral to the convergent response are damage-associated molecular patterns, which are released as a consequence of injury. Damage-associated molecular patterns facilitate diverse interactions within and between systems, not only to complement and reinforce cell-based clot formation but also to steer the response toward clot resolution and wound healing. By extending coagulation beyond its current boundaries, the convergent model aims to deliver novel diagnostics and therapeutics for contemporary and unexpected challenges across medicine, as exposed by COVID-19 and vaccine-induced immune thrombotic thrombocytopenia.
Collapse
Affiliation(s)
- Jun Yong
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
4
|
Yamaga S, Aziz M, Murao A, Brenner M, Wang P. DAMPs and radiation injury. Front Immunol 2024; 15:1353990. [PMID: 38333215 PMCID: PMC10850293 DOI: 10.3389/fimmu.2024.1353990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Satoshi Yamaga
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
5
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
6
|
Valentí V, Capdevila L, Ruiz I, Ramos J, Badía J, Blázquez S, Villuendas Ó, Pérez C, Fernández-Sender L, Córdoba M, Alonso-Villaverde C. Variation of Plasma Damage-Associated Molecular Patterns in Patients with Advanced Solid Tumors after Standard of Care Systemic Treatment. Cancer Invest 2023; 41:821-829. [PMID: 37975838 DOI: 10.1080/07357907.2023.2283458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Immunogenic cell death (ICD) is known for releasing damage-associated molecular patterns (DAMPs) from tumor cells. We aimed to find ICD signals by assessing the variation of plasmatic DAMPs (HMGB1, S100A8) before-after standard of care (SoC) systemic treatment in patients with advanced solid tumors. METHODS Patients scheduled to start a new line of systemic treatment were included. Plasmatic concentrations of HMGB1 and S100A8 were measured (ng/mL) before and after three months of treatment. RESULTS Fifty-two patients were included. Forty-four patients (85%) had metastases, and 8 (15%) were treated for stage III tumors. The most frequent tumor sites were colorectal (35%) and lung (25%). Forty-two patients (81%) received this treatment in the first-line setting. Thirty-six patients (69%) were treated chemotherapy (CT) alone, ten (19%) CT plus targeted therapy, two (3.8%) carboplatin-pemetrexed-pembrolizumab, three (5.8%) pembrolizumab alone and one (1.9%) cetuximab alone. Median plasmatic concentration of S100A8 was significantly higher before than after treatment in the whole population (3.78 vs. 2.91 ng/mL; p = 0.011) and more markedly in the subgroups of patients who experienced RECIST-assessed tumor response (5.70 vs. 2.63 ng/mL; p = 0.002). Median plasmatic concentration of HMGB1was not significantly different before and after treatment (10.23 vs. 11.85 ng/mL; p = 0.382) and did not differ depending on tumor response. Median PFS was not significantly different between patients whose plasma HMBG1 concentration decreased or increased (8.0 vs. 10.6 months; p = 0.29) after treatment. Median PFS was significantly longer in those patients in whom the plasma concentration of S100A8 decreased after treatment (12 vs. 4.7 months; p < 0.001). Median OS was not significantly different between patients whose plasma HMBG1 concentration decreased or increased (13.1 vs. 14.7 months; p = 0.46) after treatment. Median OS was significantly longer in those patients in whom the plasma concentration of S100A8 decreased after treatment (16.7 vs. 9.0 months; p < 0.001). CONCLUSIONS Signals of ICD were not observed. S100A8 behaves as an inflammatory marker with decreased concentration after treatment, mostly in RECIST-responders. PFS and OS were significantly prolonged in those patients who experienced a decrease of S100A8 compared with those patients who experienced increase of plasma S100A8 at three months.
Collapse
Affiliation(s)
| | - Laia Capdevila
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | - Isabel Ruiz
- Medical Oncology, Hospital del Vendrell, El Vendrell, Spain
| | - Javier Ramos
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | - Joan Badía
- Medical Oncology, Hospital Santa Tecla, Tarragona, Spain
| | | | | | - Cristina Pérez
- Medical Oncology, Hospital del Vendrell, El Vendrell, Spain
| | | | - Mónica Córdoba
- Internal Medicine, Hospital Santa Tecla, Tarragona, Spain
| | | |
Collapse
|
7
|
Sun Z, Zhou Y, Liu Y, Luo R, Tian C, Chen Q. Transcriptome-Wide Analysis of Neutrophil-Related Circ_22232 in Neuroinflammation from Ischemic Stroke Mice. Brain Sci 2023; 13:1283. [PMID: 37759884 PMCID: PMC10526308 DOI: 10.3390/brainsci13091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic stroke (IS) often leads to high rates of disability and mortality worldwide with secondary damage due to neuroinflammation. Identification of potential therapeutic targets via the novel circular RNAs (circRNAs) would advance the field and provide a better treatment option for neuroinflammation after IS. Gene Ontology Term Enrichment (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to identify differentially expressed genes/miRNAs/circRNAs in the genome-wide RNA-seq profiles of ischemic mice. Meanwhile, relevant circRNAs were screened by differential expression analysis and coexpression RNA regulation network analysis. To explore the function of circ_22232 (Specc1l), we generated circ_22232 knockdown mice and applied middle cerebral artery occlusion (MCAO) to study IS. Cytokine levels were detected by enzyme-linked immunosorbent assay. Morphological changes were observed with immunohistochemical staining and hematoxylin-eosin staining. The circ_22232/miR-847-3p/Bmp1 axis was found to be highly correlated with neutrophil-associated neuroinflammation in cerebral tissue of mice. Immunohistochemical showed a progressive increase in the proportion of neutrophils after IS. In in vivo experiments, the circ_22232 knockdown alleviated cerebral injury by reducing the activation of neutrophils and inflammatory cytokine production. This suggests that circ_22232 is associated with inflammation, which may serve as a potential therapeutic target for IS.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Youdong Zhou
- Department of Neurosurgery, Yichang Center People’s Hospital, Yichang 443003, China; (Y.Z.); (Y.L.); (R.L.)
| | - Yanting Liu
- Department of Neurosurgery, Yichang Center People’s Hospital, Yichang 443003, China; (Y.Z.); (Y.L.); (R.L.)
| | - Ran Luo
- Department of Neurosurgery, Yichang Center People’s Hospital, Yichang 443003, China; (Y.Z.); (Y.L.); (R.L.)
| | - Chunlei Tian
- Department of Neurosurgery, Yichang Center People’s Hospital, Yichang 443003, China; (Y.Z.); (Y.L.); (R.L.)
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| |
Collapse
|
8
|
Garg M, Johri S, Chakraborty K. Immunomodulatory role of mitochondrial DAMPs: a missing link in pathology? FEBS J 2023; 290:4395-4418. [PMID: 35731715 DOI: 10.1111/febs.16563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
In accordance with the endosymbiotic theory, mitochondrial components bear characteristic prokaryotic signatures, which act as immunomodulatory molecules when released into the extramitochondrial compartment. These endogenous immune triggers, called mitochondrial damage-associated molecular patterns (mtDAMPs), have been implicated in the pathogenesis of various diseases, yet their role remains largely unexplored. In this review, we summarise the available literature on mtDAMPs in diseases, with a special focus on respiratory diseases. We highlight the need to bolster mtDAMP research using a multipronged approach, to study their effect on specific cell types, receptors and machinery in pathologies. We emphasise the lacunae in the current understanding of mtDAMPs, particularly in their cellular release and the chemical modifications they undergo. Finally, we conclude by proposing additional effects of mtDAMPs in diseases, specifically their role in modulating the immune system.
Collapse
Affiliation(s)
- Mayank Garg
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saumya Johri
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Krishnendu Chakraborty
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
9
|
Nakata K, Okazaki M, Kawana S, Kubo Y, Shimizu D, Tanaka S, Hashimoto K, Suzawa K, Shien K, Miyoshi K, Yamamoto H, Sugimoto S, Toyooka S. S100A8/A9 as a prognostic biomarker in lung transplantation. Clin Transplant 2023; 37:e15006. [PMID: 37115007 DOI: 10.1111/ctr.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES S100A8/A9 is a damage-associated molecule that augments systemic inflammation. However, its role in the acute phase after lung transplantation (LTx) remains elusive. This study aimed to determine S100A8/A9 levels after lung transplantation (LTx) and evaluate their impact on overall survival (OS) and chronic lung allograft dysfunction (CLAD)-free survival. METHODS Sixty patients were enrolled in this study, and their plasma S100A8/A9 levels were measured on days 0, 1, 2, and 3 after LTx. The association of S100A8/A9 levels with OS and CLAD-free survival was assessed using univariate and multivariate Cox regression analyses. RESULTS S100A8/A9 levels were elevated in a time-dependent manner until 3 days after LTx. Ischemic time was significantly longer in the high S100A8/9 group than in the low S100A8/A9 group (p = .017). Patients with high S100A8/A9 levels (> 2844 ng/mL) had worse prognosis (p = .031) and shorter CLAD-free survival (p = .045) in the Kaplan-Meier survival analysis than those with low levels. Furthermore, multivariate Cox regression analysis showed that high S100A8/A9 levels were a determinant of poor OS (hazard ratio [HR]: 3.7; 95% confidence interval [CI]: 1.2-12; p = .028) and poor CLAD-free survival (HR: 4.1; 95% CI: 1.1-15; p = .03). In patients with a low primary graft dysfunction grade (0-2), a high level of S100A8/A9 was also a poor prognostic factor. CONCLUSIONS Our study provided novel insights into the role of S100A8/A9 as a prognostic biomarker and a potential therapeutic target for LTx.
Collapse
Affiliation(s)
- Kentaro Nakata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shinichi Kawana
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yujiro Kubo
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Dai Shimizu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Organ Transplant Center, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Kohei Hashimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Organ Transplant Center, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Organ Transplant Center, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Organ Transplant Center, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
10
|
Leyfman Y, Emmanuel N, Menon GP, Joshi M, Wilkerson WB, Cappelli J, Erick TK, Park CH, Sharma P. Cancer and COVID-19: unravelling the immunological interplay with a review of promising therapies against severe SARS-CoV-2 for cancer patients. J Hematol Oncol 2023; 16:39. [PMID: 37055774 PMCID: PMC10100631 DOI: 10.1186/s13045-023-01432-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/25/2023] [Indexed: 04/15/2023] Open
Abstract
Cancer patients, due to their immunocompromised status, are at an increased risk for severe SARS-CoV-2 infection. Since severe SARS-CoV-2 infection causes multiple organ damage through IL-6-mediated inflammation while stimulating hypoxia, and malignancy promotes hypoxia-induced cellular metabolic alterations leading to cell death, we propose a mechanistic interplay between both conditions that results in an upregulation of IL-6 secretion resulting in enhanced cytokine production and systemic injury. Hypoxia mediated by both conditions results in cell necrosis, dysregulation of oxidative phosphorylation, and mitochondrial dysfunction. This produces free radicals and cytokines that result in systemic inflammatory injury. Hypoxia also catalyzes the breakdown of COX-1 and 2 resulting in bronchoconstriction and pulmonary edema, which further exacerbates tissue hypoxia. Given this disease model, therapeutic options are currently being studied against severe SARS-COV-2. In this study, we review several promising therapies against severe disease supported by clinical trial evidence-including Allocetra, monoclonal antibodies (Tixagevimab-Cilgavimab), peginterferon lambda, Baricitinib, Remdesivir, Sarilumab, Tocilizumab, Anakinra, Bevacizumab, exosomes, and mesenchymal stem cells. Due to the virus's rapid adaptive evolution and diverse symptomatic manifestation, the use of combination therapies offers a promising approach to decrease systemic injury. By investing in such targeted interventions, cases of severe SARS-CoV-2 should decrease along with its associated long-term sequelae and thereby allow cancer patients to resume their treatments.
Collapse
Affiliation(s)
- Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Rockville Centre, NY, USA
| | - Nancy Emmanuel
- Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| | | | - Muskan Joshi
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | | - Pushpa Sharma
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
11
|
Abstract
ABSTRACT Sepsis is a severe inflammatory disease syndrome caused by the dysregulated host response to infection. Neutrophils act as the first line of defense against pathogens by releasing effector molecules such as reactive oxygen species, myeloperoxidase, and neutrophil extracellular traps. However, uncontrolled activation of neutrophils and extensive release of effector molecules often cause a "friendly fire" to damage organ systems. Although neutrophils are considered a short-lived, terminally differentiated homogeneous population, recent studies have revealed its heterogeneity comprising different subsets or states implicated in sepsis pathophysiology. Besides the well-known N1 and N2 subsets of neutrophils, several new subsets including aged, antigen-presenting, reverse-migrated, intercellular adhesion molecule-1 + , low-density, olfactomedin 4 + , and Siglec-F + neutrophils have been reported. These neutrophils potentially contribute to the pathogenesis of sepsis based on their proinflammatory and immunosuppressive functions. Damage-associated molecular patterns (DAMPs) are endogenous molecules to induce inflammation by stimulating pattern recognition receptors on immune cells. Different kinds of DAMPs have been shown to contribute to sepsis pathophysiology, including extracellular cold-inducible RNA-binding protein, high-mobility group box 1, extracellular histones, and heat shock proteins. In this review, we summarize the different subsets of neutrophils and their association with sepsis and discuss the novel roles of DAMPs on neutrophil heterogeneity.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|
12
|
Resolution Potential of Necrotic Cell Death Pathways. Int J Mol Sci 2022; 24:ijms24010016. [PMID: 36613458 PMCID: PMC9819908 DOI: 10.3390/ijms24010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution. However, more RAMPs are likely to be released during necrotic cell death than during apoptosis, similar to what has been observed for DAMPs. The inflammatory potential of many regulated forms of necrotic cell death modalities, such as pyroptosis, necroptosis, ferroptosis, netosis, and parthanatos, have been widely studied in necroinflammation, but their possible role in resolution is less considered. In this review, we aim to summarize the relationship between necrotic cell death and resolution, as well as present the current available data regarding the involvement of certain forms of regulated necrotic cell death in necroresolution.
Collapse
|
13
|
Lepoittevin M, Giraud S, Kerforne T, Allain G, Thuillier R, Hauet T. How to improve results after DCD (donation after circulation death). Presse Med 2022; 51:104143. [PMID: 36216034 DOI: 10.1016/j.lpm.2022.104143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
The shortage of organs for transplantation has led health professionals to look for alternative sources of donors. One of the avenues concerns donors who have died after circulatory arrest. This is a special situation because the organs from these donors are exposed to warm ischaemia-reperfusion lesions that are unavoidable during the journey of the organs from the donor to the moment of transplantation in the recipient. We will address and discuss the key issues from the perspective of team organization, legislation and its evolution, and the ethical framework. In a second part, the avenues to improve the quality of organs will be presented following the itinerary of the organs between the donor and the recipient. The important moments from the point of view of therapeutic strategy will be put into perspective. New connections between key players involved in pathophysiological mechanisms and implications for innate immunity and injury processes are among the avenues to explore. Technological developments to improve the quality of organs from these recipients will be analyzed, such as perfusion techniques with new modalities of temperatures and oxygenation. New molecules are being investigated for their potential role in protecting these organs and an analysis of potential prospects will be proposed. Finally, the important perspectives that seem to be favored will be discussed in order to reposition the use of deceased donors after circulatory arrest. The use of these organs has become a routine procedure and improving their quality and providing the means for their evaluation is absolutely inevitable.
Collapse
Affiliation(s)
- Maryne Lepoittevin
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France
| | - Sébastien Giraud
- Unité UMR U1082, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thomas Kerforne
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Réanimation Chirurgie Cardio-Thoracique et Vasculaire, Coordination des P.M.O., F-86021 Poitiers, France
| | - Géraldine Allain
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; CHU Poitiers, Service de Chirurgie Cardiothoracique et Vasculaire, F-86021 Poitiers, France
| | - Raphaël Thuillier
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Service de Biochimie, Pôle Biospharm, Centre Hospitalier Universitaire, 2 rue de la Milétrie, CS 90577, 86021 Poitiers Cedex, France
| | - Thierry Hauet
- Unité UMR U1082, F-86000 Poitiers, France; Faculté de Médecine et de Pharmacie, Université de Poitiers, F-86000 Poitiers, France; Fédération Hospitalo-Universitaire « Survival Optimization in Organ Transplantation », CHU de Poitiers, 2 rue de la Milétrie - CS 90577, 86021 Poitiers Cedex, France.
| |
Collapse
|
14
|
Cui XY, Stavik B, Thiede B, Sandset PM, Kanse SM. FSAP Protects against Histone-Mediated Increase in Endothelial Permeability In Vitro. Int J Mol Sci 2022; 23:ijms232213706. [PMID: 36430180 PMCID: PMC9690979 DOI: 10.3390/ijms232213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Factor-VII-activating protease (FSAP) is involved in the regulation of hemostasis and inflammation. Extracellular histones play a role in inflammation and the conversion of latent pro-FSAP into active FSAP. FSAP has been shown to regulate endothelial permeability, but the mechanisms are not clear. Here, we have investigated the effects of FSAP on endothelial permeability in vitro. A mixture of histones from calf thymus stimulated permeability, and the wild-type (WT) serine protease domain (SPD) of FSAP blocked this effect. WT-SPD-FSAP did not influence permeability on its own, nor that stimulated by thrombin or vascular endothelial growth factor (VEGF)-A165. Histones induced a large-scale rearrangement of the junction proteins VE-cadherin and zona occludens-1 from a clear junctional distribution to a diffuse pattern. The presence of WT-SPD-FSAP inhibited these changes. Permeability changes by histones were blocked by both TLR-2 and TLR4 blocking antibodies. Histones upregulated the expression of TLR-2, but not TLR-4, in HUVEC cells, and WT-SPD-FSAP abolished the upregulation of TLR-2 expression. An inactive variant, Marburg I (MI)-SPD-FSAP, did not have any of these effects. The inhibition of histone-mediated permeability may be an important function of FSAP with relevance to sepsis, trauma, and stroke and the need to be investigated further in in vivo experiments.
Collapse
Affiliation(s)
- Xue Yan Cui
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| | - Benedicte Stavik
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Bernd Thiede
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, 0424 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sandip M. Kanse
- Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
15
|
Zhang M, Jin X, Gao M, Zhang Y, Tang BZ. A Self-Reporting Fluorescent Salicylaldehyde-Chlorambucil Conjugate as a Type-II ICD Inducer for Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205701. [PMID: 35863361 DOI: 10.1002/adma.202205701] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Immunogenic cell death (ICD) can activate the anticancer immune response and is highly attractive to improve cancer treatment efficacy. ICD is closely related to endoplasmic reticulum (ER) stress, and a series of ICD inducers has recently been reported based on ER-targeted photodynamic/photothermal agents or metal complexes. However, these ER-targeted ICD inducers suffer from complicated synthesis and heavy-metal cytotoxicity. Inspired by the promising clinical potential of small organic molecules, herein, an ER-targeted fluorescent self-reporting ICD inducer, SA-Cbl, is developed by simple conjugation of the chemotherapeutic drug chlorambucil (Cbl) with salicylaldehyde (SA). SA-Cbl can selectively accumulate in the ER to induce rapid ROS generation and an unfolded protein response process, which leads to a fast release of damage-associated molecular patterns and efficient dendritic cells maturation. Meanwhile, the ER-targeted accumulation and ER-stress-inducing process can be in situ monitored based on the turn-on fluorescence of SA-Cbl, which is highly pH- and polarity-sensitive and can selectively interact with ER proteins. Compared with the traditional chemotherapy drug doxorubicin, the superior anticancer immunity effect of SA-Cbl is verified via an in vivo tumor model. This study thus provides a new strategy for developing fluorescent self-reporting ICD inducers by decoration of chemotherapeutic drugs with pH and polarity-sensitive organic fluorophores.
Collapse
Affiliation(s)
- Minjie Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xin Jin
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yunjiao Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
16
|
Danieli MG, Antonelli E, Piga MA, Claudi I, Palmeri D, Tonacci A, Allegra A, Gangemi S. Alarmins in autoimmune diseases. Autoimmun Rev 2022; 21:103142. [PMID: 35853572 DOI: 10.1016/j.autrev.2022.103142] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
Alarmins are endogenous, constitutively expressed, chemotacting and immune activating proteins or peptides released because of non-programmed cell death (i.e. infections, trauma, etc). They are considered endogenous damage-associated molecular patterns (DAMPs), able to induce a sterile inflammation. In the last years, several studies highlighted a possible role of different alarmins in the pathogenesis of various autoimmune and immune-mediated diseases. We reviewed the relevant literature about this topic, for about 160 articles. Particularly, we focused on systemic autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, idiopathic inflammatory myopathies, ANCA-associated vasculitides, Behçet's disease) and cutaneous organ-specific autoimmune diseases (vitiligo, psoriasis, alopecia, pemphigo). Finally, we discussed about future perspectives and potential therapeutic implications of alarmins in autoimmune diseases. In fact, identification of receptors and downstream signal transducers of alarmins may lead to the identification of antagonistic inhibitors and agonists, with the capacity to modulate alarmins-related pathways and potential therapeutic applicability.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Eleonora Antonelli
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Mario Andrea Piga
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
17
|
Toll-like receptors and damage-associated molecular patterns in the pathogenesis of heart transplant rejection. Mol Cell Biochem 2022; 477:2841-2850. [PMID: 35678986 DOI: 10.1007/s11010-022-04491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Significant strides have been made in our understanding of the immune system and its role in cardiac transplant rejection. Despite the growing knowledge of immune responses, the mortality rate following cardiac transplantation remains grim. Related to procedural and pathological complications, toll-like receptor (TLR) and damage-associated molecular pattern (DAMP) signaling is the most direct and earliest interface between tissue integration and the innate immune response. This in turn can activate an adaptive immune response that further damages myocardial tissue. Furthermore, relevant literature on the status of DAMPs in the context of heart-transplantation remains limited, warranting further attention in clinical and translational research. This review aims to critically appraise the perspectives, advances, and challenges on DAMP-mediated innate immune response in the immune-mediated rejection of cardiac transplantation. Detailed analysis of the influence of TLR and DAMP signaling in mounting the immune response against the transplanted heart holds promise for improving outcomes through early detection and prevention of varied forms of organ rejection.
Collapse
|
18
|
Types of necroinflammation, the effect of cell death modalities on sterile inflammation. Cell Death Dis 2022; 13:423. [PMID: 35501340 PMCID: PMC9061831 DOI: 10.1038/s41419-022-04883-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Distinct types of immune responses are activated by infections, which cause the development of type I, II, or III inflammation, regulated by Th1, Th2, Th17 helper T cells and ILC1, ILC2 and ILC3 cells, respectively. While the classification of immune responses to different groups of pathogens is widely accepted, subtypes of the immune response elicited by sterile inflammation have not yet been detailed. Necroinflammation is associated with the release of damage-associated molecular patterns (DAMP) from dying cells. In this review, we present that the distinct molecular mechanisms activated during apoptosis, necroptosis, pyroptosis, and ferroptosis lead to the release of different patterns of DAMPs and their suppressors, SAMPs. We summarize the currently available data on how regulated cell death pathways and released DAMPs and SAMPs direct the differentiation of T helper and ILC cells. Understanding the subtypes of necroinflammation can be crucial in developing strategies for the treatment of sterile inflammatory diseases caused by cell death processes.
Collapse
|
19
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|
20
|
Watanabe M, Toyomura T, Wake H, Nishinaka T, Hatipoglu OF, Takahashi H, Nishibori M, Mori S. Identification of ribosomal protein L9 as a novel regulator of proinflammatory damage-associated molecular pattern molecules. Mol Biol Rep 2022; 49:2831-2838. [DOI: 10.1007/s11033-021-07096-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
|
21
|
Valade G, Libert N, Martinaud C, Vicaut E, Banzet S, Peltzer J. Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Front Immunol 2021; 12:749659. [PMID: 34659252 PMCID: PMC8511792 DOI: 10.3389/fimmu.2021.749659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022] Open
Abstract
Severe trauma is the principal cause of death among young people worldwide. Hemorrhagic shock is the leading cause of death after severe trauma. Traumatic hemorrhagic shock (THS) is a complex phenomenon associating an absolute hypovolemia secondary to a sudden and significant extravascular blood loss, tissue injury, and, eventually, hypoxemia. These phenomena are responsible of secondary injuries such as coagulopathy, endotheliopathy, microcirculation failure, inflammation, and immune activation. Collectively, these dysfunctions lead to secondary organ failures and multi-organ failure (MOF). The development of MOF after severe trauma is one of the leading causes of morbidity and mortality, where immunological dysfunction plays a central role. Damage-associated molecular patterns induce an early and exaggerated activation of innate immunity and a suppression of adaptive immunity. Severe complications are associated with a prolonged and dysregulated immune–inflammatory state. The current challenge in the management of THS patients is preventing organ injury, which currently has no etiological treatment available. Modulating the immune response is a potential therapeutic strategy for preventing the complications of THS. Mesenchymal stromal cells (MSCs) are multipotent cells found in a large number of adult tissues and used in clinical practice as therapeutic agents for immunomodulation and tissue repair. There is growing evidence that their efficiency is mainly attributed to the secretion of a wide range of bioactive molecules and extracellular vesicles (EVs). Indeed, different experimental studies revealed that MSC-derived EVs (MSC-EVs) could modulate local and systemic deleterious immune response. Therefore, these new cell-free therapeutic products, easily stored and available immediately, represent a tremendous opportunity in the emergency context of shock. In this review, the pathophysiological environment of THS and, in particular, the crosstalk between the immune system and organ function are described. The potential therapeutic benefits of MSCs or their EVs in treating THS are discussed based on the current knowledge. Understanding the key mechanisms of immune deregulation leading to organ damage is a crucial element in order to optimize the preparation of EVs and potentiate their therapeutic effect.
Collapse
Affiliation(s)
- Guillaume Valade
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Nicolas Libert
- Service d'Anesthésie-Réanimation, Hôpital d'instruction des armées Percy, Clamart, France
| | - Christophe Martinaud
- Unité de Médicaments de Thérapie Innovante, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université de Paris, UMRS 942 INSERM, Paris, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Inserm UMRS-MD-1197, Clamart, France
| |
Collapse
|
22
|
Maehara N, Taniguchi K, Okuno A, Ando H, Hirota A, Li Z, Wang CT, Arai S, Miyazaki T. AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Rep 2021; 36:109693. [PMID: 34525359 DOI: 10.1016/j.celrep.2021.109693] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023] Open
Abstract
The sterile inflammation caused by damage-associated molecular patterns (DAMPs) worsens the prognosis following primary injury such as ischemic stroke. However, there are no effective treatments to regulate DAMPs. Here, we report that AIM (or CD5L) protein reduces sterile inflammation by attenuating DAMPs and that AIM administration ameliorates the deleterious effects of ischemic stroke. AIM binds to DAMPs via charge-based interactions and disulfide bond formation. This AIM association promotes the phagocytic removal of DAMPs and neutralizes DAMPs by impeding their binding to inflammatory receptors. In experimental stroke, AIM-deficient mice exhibit severe neurological damage and higher mortality with greater levels of DAMPs and associated inflammation in the brain than wild-type mice, in which brain AIM levels increase following stroke onset. Recombinant AIM administration reduces sterile inflammation in the infarcted region, leading to a profound reduction of animal mortality. Our findings provide a basis for the therapies targeting DAMPs to improve ischemic stroke.
Collapse
Affiliation(s)
- Natsumi Maehara
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kaori Taniguchi
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ami Okuno
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideaki Ando
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Aika Hirota
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zhiheng Li
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ching-Ting Wang
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; LEAP, Japan Agency for Medical Research and Development, Tokyo 113-0033, Japan; Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
23
|
Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel) 2021; 10:antiox10091440. [PMID: 34573071 PMCID: PMC8471532 DOI: 10.3390/antiox10091440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Collapse
|
24
|
Silva-Lagos LA, Pillay J, van Meurs M, Smink A, van der Voort PHJ, de Vos P. DAMPening COVID-19 Severity by Attenuating Danger Signals. Front Immunol 2021; 12:720192. [PMID: 34456928 PMCID: PMC8397524 DOI: 10.3389/fimmu.2021.720192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 might lead to multi-organ failure and, in some cases, to death. The COVID-19 severity is associated with a “cytokine storm.” Danger-associated molecular patterns (DAMPs) are proinflammatory molecules that can activate pattern recognition receptors, such as toll-like receptors (TLRs). DAMPs and TLRs have not received much attention in COVID-19 but can explain some of the gender-, weight- and age-dependent effects. In females and males, TLRs are differentially expressed, likely contributing to higher COVID-19 severity in males. DAMPs and cytokines associated with COVID-19 mortality are elevated in obese and elderly individuals, which might explain the higher risk for severer COVID-19 in these groups. Adenosine signaling inhibits the TLR/NF-κB pathway and, through this, decreases inflammation and DAMPs’ effects. As vaccines will not be effective in all susceptible individuals and as new vaccine-resistant SARS-CoV-2 mutants might develop, it remains mandatory to find means to dampen COVID-19 disease severity, especially in high-risk groups. We propose that the regulation of DAMPs via adenosine signaling enhancement might be an effective way to lower the severity of COVID-19 and prevent multiple organ failure in the absence of severe side effects.
Collapse
Affiliation(s)
- Luis A Silva-Lagos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Janesh Pillay
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Alexandra Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Peter H J van der Voort
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| |
Collapse
|
25
|
Poutoglidou F, Saitis A, Kouvelas D. Ibuprofen and COVID-19 disease: separating the myths from facts. Expert Rev Respir Med 2021; 15:979-983. [PMID: 34196258 DOI: 10.1080/17476348.2021.1951239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: The Coronavirus disease 2019 (COVID-19) poses novel challenges in the healthcare systems around the world. Concern about the role of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and, in particular, ibuprofen has led to significant speculation.Areas covered: A literature search was conducted to evaluate ibuprofen's potential benefits and harms in the COVID-19 disease. Angiotensin-Converting Enzyme 2 (ACE-2) is crucial entry receptor for Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) in host cells. We found no scientific evidence linking ibuprofen use and an ACE-2 overexpression. Ibuprofen suppresses the production of various pro-inflammatory cytokines that are implicated in the 'cytokine storm' and subsequent ARDS in COVID-19 disease. Nevertheless, the exact role of ibuprofen in the immune response in COVID-19 disease is still unknown. There are no double-blind, placebo-controlled studies assessing the effect of ibuprofen on COVID-19 disease progression.Expert opinion: The studies that have been performed so far demonstrate no association between ibuprofen use and increased mortality rates or an increased risk for respiratory support. Accordingly, we recommend ibuprofen to be used for managing COVID-19 symptoms.
Collapse
Affiliation(s)
- Frideriki Poutoglidou
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Athanasios Saitis
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Department of Clinical Pharmacology, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki, Greece
| |
Collapse
|
26
|
Land WG. Role of DAMPs in respiratory virus-induced acute respiratory distress syndrome-with a preliminary reference to SARS-CoV-2 pneumonia. Genes Immun 2021; 22:141-160. [PMID: 34140652 PMCID: PMC8210526 DOI: 10.1038/s41435-021-00140-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
When surveying the current literature on COVID-19, the "cytokine storm" is considered to be pathogenetically involved in its severe outcomes such as acute respiratory distress syndrome, systemic inflammatory response syndrome, and eventually multiple organ failure. In this review, the similar role of DAMPs is addressed, that is, of those molecules, which operate upstream of the inflammatory pathway by activating those cells, which ultimately release the cytokines. Given the still limited reports on their role in COVID-19, the emerging topic is extended to respiratory viral infections with focus on influenza. At first, a brief introduction is given on the function of various classes of activating DAMPs and counterbalancing suppressing DAMPs (SAMPs) in initiating controlled inflammation-promoting and inflammation-resolving defense responses upon infectious and sterile insults. It is stressed that the excessive emission of DAMPs upon severe injury uncovers their fateful property in triggering dysregulated life-threatening hyperinflammatory responses. Such a scenario may happen when the viral load is too high, for example, in the respiratory tract, "forcing" many virus-infected host cells to decide to commit "suicidal" regulated cell death (e.g., necroptosis, pyroptosis) associated with release of large amounts of DAMPs: an important topic of this review. Ironically, although the aim of this "suicidal" cell death is to save and restore organismal homeostasis, the intrinsic release of excessive amounts of DAMPs leads to those dysregulated hyperinflammatory responses-as typically involved in the pathogenesis of acute respiratory distress syndrome and systemic inflammatory response syndrome in respiratory viral infections. Consequently, as briefly outlined in this review, these molecules can be considered valuable diagnostic and prognostic biomarkers to monitor and evaluate the course of the viral disorder, in particular, to grasp the eventual transition precociously from a controlled defense response as observed in mild/moderate cases to a dysregulated life-threatening hyperinflammatory response as seen, for example, in severe/fatal COVID-19. Moreover, the pathogenetic involvement of these molecules qualifies them as relevant future therapeutic targets to prevent severe/ fatal outcomes. Finally, a theory is presented proposing that the superimposition of coronavirus-induced DAMPs with non-virus-induced DAMPs from other origins such as air pollution or high age may contribute to severe and fatal courses of coronavirus pneumonia.
Collapse
Affiliation(s)
- Walter Gottlieb Land
- German Academy for Transplantation Medicine, Munich, Germany.
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
27
|
Chen Y, Zhang W, Bao H, He W, Chen L. High Mobility Group Box 1 Contributes to the Acute Rejection of Liver Allografts by Activating Dendritic Cells. Front Immunol 2021; 12:679398. [PMID: 34177922 PMCID: PMC8222728 DOI: 10.3389/fimmu.2021.679398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Acute rejection induced by the recognition of donor alloantigens by recipient T cells leads to graft failure in liver transplant recipients. The role of high mobility group box 1 (HMGB1), an inflammatory mediator, in the acute allograft rejection of liver transplants is unknown. Here, rat orthotopic liver transplantation was successfully established to analyze the expression pattern of HMGB1 in liver allografts and its potential role in promoting the maturation of dendritic cells (DCs) to promote T cell proliferation and differentiation. Five and 10 days after transplantation, allografts showed a marked upregulation of HMGB1 expression accompanied by elevated levels of serum transaminase and CD3+ and CD86+ inflammatory cell infiltration. Furthermore, in vitro experiments showed HMGB1 increased the expressions of co-stimulatory molecules (CD80, CD83, and MHC class II) on bone marrow-derived DCs. HMGB1-pulsed DCs induced naive CD4+ T cells to differentiate to Th1 and Th17 subsets secreting IFN-γ and IL-17, respectively. Further in vivo experiments confirmed the administration of glycyrrhizic acid, a natural HMGB1 inhibitor, during donor liver preservation had therapeutic effects by reducing inflammation and hepatocyte damage reflected by a decline in serum transaminase and prolonged allograft survival time. These results suggest the involvement of HMBG1 in acute liver allograft rejection and that it might be a candidate therapeutic target to avoid acute rejection after liver transplantation.
Collapse
Affiliation(s)
- Yi Chen
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Wenmin Zhang
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Hui Bao
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Wubing He
- Department of Emergency, Fujian Provincial Hospital; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.,Institute of Oncology, Fujian Medical University, Fuzhou, China.,Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021; 11:700. [PMID: 34066746 PMCID: PMC8150999 DOI: 10.3390/biom11050700] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Skin wounds greatly affect the global healthcare system, creating a substantial burden on the economy and society. Moreover, the situation is exacerbated by low healing rates, which in fact are overestimated in reports. Cutaneous wounds are generally classified into acute and chronic. The immune response plays an important role during acute wound healing. The activation of immune cells and factors initiate the inflammatory process, facilitate wound cleansing and promote subsequent tissue healing. However, dysregulation of the immune system during the wound healing process leads to persistent inflammation and delayed healing, which ultimately result in chronic wounds. The microenvironment of a chronic wound is characterized by high quantities of pro-inflammatory macrophages, overexpression of inflammatory mediators such as TNF-α and IL-1β, increased activity of matrix metalloproteinases and abundance of reactive oxygen species. Moreover, chronic wounds are frequently complicated by bacterial biofilms, which perpetuate the inflammatory phase. Continuous inflammation and microbial biofilms make it very difficult for the chronic wounds to heal. In this review, we discuss the role of innate and adaptive immunity in the pathogenesis of acute and chronic wounds. Furthermore, we review the latest immunomodulatory therapeutic strategies, including modifying macrophage phenotype, regulating miRNA expression and targeting pro- and anti-inflammatory factors to improve wound healing.
Collapse
Affiliation(s)
- Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Kuat Kassymbek
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| | - Shiro Jimi
- Central Lab for Pathology and Morphology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.R.); (Y.K.); (Z.Z.); (K.K.)
| |
Collapse
|
29
|
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules which foment inflammation and are associated with disorders in sepsis and cancer. Thus, therapeutically targeting DAMPs has potential to provide novel and effective treatments. When establishing anti-DAMP strategies, it is important not only to focus on the DAMPs as inflammatory mediators but also to take into account the underlying mechanisms of their release from cells and tissues. DAMPs can be released passively by membrane rupture due to necrosis/necroptosis, although the mechanisms of release appear to differ between the DAMPs. Other types of cell death, such as apoptosis, pyroptosis, ferroptosis and NETosis, can also contribute to DAMP release. In addition, some DAMPs can be exported actively from live cells by exocytosis of secretory lysosomes or exosomes, ectosomes, and activation of cell membrane channel pores. Here we review the shared and DAMP-specific mechanisms reported in the literature for high mobility group box 1, ATP, extracellular cold-inducible RNA-binding protein, histones, heat shock proteins, extracellular RNAs and cell-free DNA.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Haichao Wang
- Center for Biomedical Science, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
30
|
Cools F, Delputte P, Cos P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol Rev 2021; 45:6064299. [PMID: 33399826 PMCID: PMC8371276 DOI: 10.1093/femsre/fuaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022] Open
Abstract
This review provides an overview of the most important novel treatment strategies against Streptococcus pneumoniae infections published over the past 10 years. The pneumococcus causes the majority of community-acquired bacterial pneumonia cases, and it is one of the prime pathogens in bacterial meningitis. Over the last 10 years, extensive research has been conducted to prevent severe pneumococcal infections, with a major focus on (i) boosting the host immune system and (ii) discovering novel antibacterials. Boosting the immune system can be done in two ways, either by actively modulating host immunity, mostly through administration of selective antibodies, or by interfering with pneumococcal virulence factors, thereby supporting the host immune system to effectively overcome an infection. While several of such experimental therapies are promising, few have evolved to clinical trials. The discovery of novel antibacterials is hampered by the high research and development costs versus the relatively low revenues for the pharmaceutical industry. Nevertheless, novel enzymatic assays and target-based drug design, allow the identification of targets and the development of novel molecules to effectively treat this life-threatening pathogen.
Collapse
Affiliation(s)
- F Cools
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Delputte
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - P Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
31
|
Pontiggia D, Benedetti M, Costantini S, De Lorenzo G, Cervone F. Dampening the DAMPs: How Plants Maintain the Homeostasis of Cell Wall Molecular Patterns and Avoid Hyper-Immunity. FRONTIERS IN PLANT SCIENCE 2020; 11:613259. [PMID: 33391327 PMCID: PMC7773757 DOI: 10.3389/fpls.2020.613259] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Several oligosaccharide fragments derived from plant cell walls activate plant immunity and behave as typical damage-associated molecular patterns (DAMPs). Some of them also behave as negative regulators of growth and development, and due to their antithetic effect on immunity and growth, their concentrations, activity, time of formation, and localization is critical for the so-called "growth-defense trade-off." Moreover, like in animals, over accumulation of DAMPs in plants provokes deleterious physiological effects and may cause hyper-immunity if the cellular mechanisms controlling their homeostasis fail. Recently, a mechanism has been discovered that controls the activity of two well-known plant DAMPs, oligogalacturonides (OGs), released upon hydrolysis of homogalacturonan (HG), and cellodextrins (CDs), products of cellulose breakdown. The potential homeostatic mechanism involves specific oxidases belonging to the family of berberine bridge enzyme-like (BBE-like) proteins. Oxidation of OGs and CDs not only inactivates their DAMP activity, but also makes them a significantly less desirable food source for microbial pathogens. The evidence that oxidation and inactivation of OGs and CDs may be a general strategy of plants for controlling the homeostasis of DAMPs is discussed. The possibility exists of discovering additional oxidative and/or inactivating enzymes targeting other DAMP molecules both in the plant and in animal kingdoms.
Collapse
Affiliation(s)
- Daniela Pontiggia
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Rome, Italy
| | - Manuel Benedetti
- Dipartimento di Medicina Clinica, Sanità Pubblica e Scienze della Vita e dell’Ambiente, Università degli Studi dell’Aquila, L’Aquila, Italy
| | - Sara Costantini
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Rome, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie “Charles Darwin,” Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
32
|
Abstract
Many research teams all over the world focus their research on the SARS-CoV-2, the new coronavirus that causes the so-called COVID-19 disease. Most of the studies identify the main protease or 3C-like protease (Mpro/3CLpro) as a valid target for large-spectrum inhibitors. Also, the interaction of the human receptor angiotensin-converting enzyme 2 (ACE2) with the viral surface glycoprotein (S) is studied in depth. Structural studies tried to identify the residues responsible for enhancement/weaken virus-ACE2 interactions or the cross-reactivity of the neutralizing antibodies. Although the understanding of the immune system and the hyper-inflammatory process in COVID-19 are crucial for managing the immediate and the long-term consequences of the disease, not many X-ray/NMR/cryo-EM crystals are available. In addition to 3CLpro, the crystal structures of other nonstructural proteins offer valuable information for elucidating some aspects of the SARS-CoV-2 infection. Thus, the structural analysis of the SARS-CoV-2 is currently mainly focused on three directions-finding Mpro/3CLpro inhibitors, the virus-host cell invasion, and the virus-neutralizing antibody interaction.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur, 400349, Cluj-Napoca, Romania.
- Department of Microbiology, County Emergency Clinical Hospital, 400006, Cluj-Napoca, Romania.
| |
Collapse
|
33
|
Kassem DH, Kamal MM. Mesenchymal Stem Cells and Their Extracellular Vesicles: A Potential Game Changer for the COVID-19 Crisis. Front Cell Dev Biol 2020; 8:587866. [PMID: 33102489 PMCID: PMC7554315 DOI: 10.3389/fcell.2020.587866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) is a global public health crisis. The high infectivity of the disease even from non-symptomatic infected patients, together with the lack of a definitive cure or preventive measures are all responsible for disease outbreak. The severity of COVID-19 seems to be mostly dependent on the patients' own immune response. The over-activation of the immune system in an attempt to kill the virus, can cause a "cytokine storm" which in turn can induce acute respiratory distress syndrome (ARDS), as well as multi-organ damage, and ultimately may lead to death. Thus, harnessing the immunomodulatory properties of mesenchymal stem cells (MSCs) to ameliorate that cytokine-storm can indeed provide a golden key for the treatment of COVID-19 patients, especially severe cases. In fact, MSCs transplantation can improve the overall outcome of COVID-19 patients via multiple mechanisms; first through their immunomodulatory effects which will help to regulate the infected patient inflammatory response, second via promoting tissue-repair and regeneration, and third through their antifibrotic effects. All these mechanisms will interplay and intervene together to enhance lung-repair and protect various organs from any damage resulting from exaggerated immune-response. A therapeutic modality which provides all these mechanisms undoubtedly hold a strong potential to help COVID-19 patients even those with the worst condition to hopefully survive and recover.
Collapse
Affiliation(s)
- Dina H. Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M. Kamal
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
34
|
Role of DAMPs and of Leukocytes Infiltration in Ischemic Stroke: Insights from Animal Models and Translation to the Human Disease. Cell Mol Neurobiol 2020; 42:545-556. [DOI: 10.1007/s10571-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
|
35
|
Abstract
The world is currently embroiled in a pandemic of coronavirus disease 2019 (COVID-19), a respiratory illness caused by the novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The severity of COVID-19 disease ranges from asymptomatic to fatal acute respiratory distress syndrome. In few patients, the disease undergoes phenotypic differentiation between 7 and 14 days of acute illness, either resulting in full recovery or symptom escalation. However, the mechanism of such variation is not clear, but the facts suggest that patient's immune status, comorbidities, and the systemic effects of the viral infection (potentially depending on the SARS-CoV-2 strain involved) play a key role. Subsequently, patients with the most severe symptoms tend to have poor outcomes, manifest severe hypoxia, and possess elevated levels of pro-inflammatory cytokines (including IL-1β, IL-6, IFN-γ, and TNF-α) along with elevated levels of the anti-inflammatory cytokine IL-10, marked lymphopenia, and elevated neutrophil-to-lymphocyte ratios. Based on the available evidence, we propose a mechanism wherein SARS-CoV-2 infection induces direct organ damage while also fueling an IL-6-mediated cytokine release syndrome (CRS) and hypoxia, resulting in escalating systemic inflammation, multi-organ damage, and end-organ failure. Elevated IL-6 and hypoxia together predisposes patients to pulmonary hypertension, and the presence of asymptomatic hypoxia in COVID-19 further compounds this problem. Due to the similar downstream mediators, we discuss the potential synergistic effects and systemic ramifications of SARS-CoV-2 and influenza virus during co-infection, a phenomenon we have termed "COVI-Flu." Additionally, the differences between CRS and cytokine storm are highlighted. Finally, novel management approaches, clinical trials, and therapeutic strategies toward both SARS-CoV-2 and COVI-Flu infection are discussed, highlighting host response optimization and systemic inflammation reduction.
Collapse
|