1
|
Yun J, Youn YC, Kim HR. Association Between Clonal Hematopoiesis of Indeterminate Potential and Brain β-Amyloid Deposition in Korean Patients With Cognitive Impairment. Ann Lab Med 2024; 44:576-580. [PMID: 38802262 PMCID: PMC11375198 DOI: 10.3343/alm.2024.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/12/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Few studies have focused on the association between clonal hematopoiesis of indeterminate potential (CHIP) and β-amyloid (Aβ) deposition in the brain, which causes Alzheimer's disease. We aimed to investigate the potential role of CHIP in brain Aβ deposition in Korean patients. We enrolled 58 Korean patients over 50 yrs of age with cognitive impairment who underwent brain Aβ positron emission tomography. We explored CHIP in their peripheral blood using deep-targeted next-generation sequencing. Irrespective of the presence or absence of brain Aβ deposition, mutations in DNMT3A and the C:G>T:A single-nucleotide variants were identified as the primary characteristics, which reflect aged hematopoiesis in the study population. Multivariate logistic regression revealed that the presence of CHIP was not associated with brain Aβ deposition. As both CHIP and brain Aβ deposition are associated with aging, further research is required to elucidate their possible interplay.
Collapse
Affiliation(s)
- Jiwon Yun
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hye Ryoun Kim
- Department of Laboratory Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Tesse G, Tolomeo A, De Filippis B, Giampietro L. Radiolabeled Probes from Derivatives of Natural Compounds Used in Nuclear Medicine. Molecules 2024; 29:4260. [PMID: 39275108 PMCID: PMC11396893 DOI: 10.3390/molecules29174260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Natural compounds are important precursors for the synthesis of new drugs. The development of novel molecules that are useful for various diseases is the main goal of researchers, especially for the diagnosis and treatment of many diseases. Some pathologies need to be treated with radiopharmaceuticals, and, for this reason, radiopharmaceuticals that use the radiolabeling of natural derivates molecules are arousing more and more interest. Radiopharmaceuticals can be used for both diagnostic and therapeutic purposes depending on the radionuclide. β+- and gamma-emitting radionuclides are used for diagnostic use for PET or SPECT imaging techniques, while α- and β--emitting radionuclides are used for in metabolic radiotherapy. Based on these assumptions, the purpose of this review is to highlight the studies carried out in the last ten years, to search for potentially useful radiopharmaceuticals for nuclear medicine that use molecules of natural origin as lead structures. In this context, the main radiolabeled compounds containing natural products as scaffolds are analyzed, in particular curcumin, stilbene, chalcone, and benzofuran. Studies on structural and chemical modifications are emphasized in order to obtain a collection of potential radiopharmaceuticals that exploit the biological properties of molecules of natural origin. The radionuclides used to label these compounds are 68Ga, 44Sc, 18F, 64Cu, 99mTc, and 125I for diagnostic imaging.
Collapse
Affiliation(s)
- Giuseppe Tesse
- Radiopharma Division, ITEL Telecomunicazioni s.r.l., 70037 Ruvo di Puglia, BA, Italy
| | - Anna Tolomeo
- Radiopharma Division, ITEL Telecomunicazioni s.r.l., 70037 Ruvo di Puglia, BA, Italy
| | - Barbara De Filippis
- Department of Pharmacy, Università degli Studi G. d'Annunzio, 66100 Chieti, CH, Italy
| | - Letizia Giampietro
- Department of Pharmacy, Università degli Studi G. d'Annunzio, 66100 Chieti, CH, Italy
| |
Collapse
|
3
|
Devanarayan V, Doherty T, Charil A, Sachdev P, Ye Y, Murali LK, Llano DA, Zhou J, Reyderman L, Hampel H, Kramer LD, Dhadda S, Irizarry MC. Plasma pTau217 predicts continuous brain amyloid levels in preclinical and early Alzheimer's disease. Alzheimers Dement 2024; 20:5617-5628. [PMID: 38940656 PMCID: PMC11350129 DOI: 10.1002/alz.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND This study investigated the potential of phosphorylated plasma Tau217 ratio (pTau217R) and plasma amyloid beta (Aβ) 42/Aβ40 in predicting brain amyloid levels measured by positron emission tomography (PET) Centiloid (CL) for Alzheimer's disease (AD) staging and screening. METHODS Quantification of plasma pTau217R and Aβ42/Aβ40 employed immunoprecipitation-mass spectrometry. CL prediction models were developed on a cohort of 904 cognitively unimpaired, preclinical and early AD subjects and validated on two independent cohorts. RESULTS Models integrating pTau217R outperformed Aβ42/Aβ40 alone, predicting amyloid levels up to 89.1 CL. High area under the receiver operating characteristic curve (AUROC) values (89.3% to 94.7%) were observed across a broad CL range (15 to 90). Utilizing pTau217R-based models for low amyloid levels reduced PET scans by 70.5% to 78.6%. DISCUSSION pTau217R effectively predicts brain amyloid levels, surpassing cerebrospinal fluid Aβ42/Aβ40's range. Combining it with plasma Aβ42/Aβ40 enhances sensitivity for low amyloid detection, reducing unnecessary PET scans and expanding clinical utility. CLINICALTRIALS GOV IDENTIFIERS NCT02956486 (MissionAD1), NCT03036280 (MissionAD2), NCT04468659 (AHEAD3-45), NCT03887455 (ClarityAD) HIGHLIGHTS: Phosphorylated plasma Tau217 ratio (pTau217R) effectively predicts amyloid-PET Centiloid (CL) across a broad spectrum. Integrating pTau217R with Aβ42/Aβ40 extends the CL prediction upper limit to 89.1 CL. Combined model predicts amyloid status with high accuracy, especially in cognitively unimpaired individuals. This model identifies subjects above or below various CL thresholds with high accuracy. pTau217R-based models significantly reduce PET scans by up to 78.6% for screening out individuals with no/low amyloid.
Collapse
Affiliation(s)
- Viswanath Devanarayan
- Eisai Inc., Clinical Evidence GenerationNutleyNew JerseyUSA
- Department of MathematicsStatistics and Computer ScienceUniversity of Illinois ChicagoChicagoIllinoisUSA
| | | | - Arnaud Charil
- Eisai Inc., Clinical Evidence GenerationNutleyNew JerseyUSA
| | | | - Yuanqing Ye
- Eisai Inc., Clinical Evidence GenerationNutleyNew JerseyUSA
| | | | - Daniel A. Llano
- Carle Illinois College of MedicineUrbanaIllinoisUSA
- Department of Molecular and Integrative PhysiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUrbanaIllinoisUSA
| | - Jin Zhou
- Eisai Inc., Clinical Evidence GenerationNutleyNew JerseyUSA
| | | | - Harald Hampel
- Eisai Inc., Clinical Evidence GenerationNutleyNew JerseyUSA
| | - Lynn D. Kramer
- Eisai Inc., Clinical Evidence GenerationNutleyNew JerseyUSA
| | - Shobha Dhadda
- Eisai Inc., Clinical Evidence GenerationNutleyNew JerseyUSA
| | | |
Collapse
|
4
|
Rodriguez MJ, Mendoza L, Garcia P, Duarte A, Padron D, Marsiske M, Fiala J, Gonzalez J, Duara R. Functional measures and AD biomarkers among Hispanic and White non-Hispanic older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12632. [PMID: 39130803 PMCID: PMC11316142 DOI: 10.1002/dad2.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Poorer baseline functioning is associated with long-term cognitive decline among Hispanic older adults, but little is known about associations of these factors with Alzheimer's disease (AD) neuroimaging biomarkers. METHODS A total of 461 Hispanic and White non-Hispanic (NHW) older adults who are cognitively normal (n = 76), had impaired cognition without mild cognitive impairment (MCI) (n = 41), or carried a diagnosis of MCI (n = 253) or dementia (n = 91) completed neuropsychological and functional assessment, genetic testing, and brain magnetic resonance imaging (MRI). Structural equation modeling (SEM) was used to examine predictive associations between functional and cognitive measures of AD neuroimaging biomarkers. RESULTS MRI volumes significantly predicted functional limitations in both groups. Sex and amyloid load significantly predicted functional limitations among the Hispanic group only. Years of education and MRI regional volume were the strongest predictors of cognition among both groups. DISCUSSION Results indicate that functional performance is associated with early AD biomarkers among Hispanic older adults. Clinical implications are discussed. Highlights The current study addresses health disparities in Alzheimer's disease (AD) and related dementia assessment among Hispanics by identifying measures sensitive to early AD biomarkers.Associations of functional measures with AD genetic and neuroimaging biomarkers revealed that similarities in these associations exist between Hispanic and White non-Hispanic individuals, but biological sex and amyloid load significantly predicted functional limitations among the Hispanic group only.These results have clinical implications for physicians who treat Hispanic AD patients and indicate that when compared to traditional diagnostic assessments, functional assessments may better aid in AD diagnostic precision among Hispanics.
Collapse
Affiliation(s)
- Miriam J. Rodriguez
- Albizu University‐Miami CampusDoralFloridaUSA
- Indiana University‐BloomingtonBloomingtonIndianaUSA
| | | | | | | | - Dilianna Padron
- Albizu University‐Miami CampusDoralFloridaUSA
- Central Virginia VA Healthcare SystemRichmondVirginiaUSA
| | | | | | | | | |
Collapse
|
5
|
Kang SK, Heo M, Chung JY, Kim D, Shin SA, Choi H, Chung A, Ha JM, Kim H, Lee JS. Clinical Performance Evaluation of an Artificial Intelligence-Powered Amyloid Brain PET Quantification Method. Nucl Med Mol Imaging 2024; 58:246-254. [PMID: 38932756 PMCID: PMC11196433 DOI: 10.1007/s13139-024-00861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose This study assesses the clinical performance of BTXBrain-Amyloid, an artificial intelligence-powered software for quantifying amyloid uptake in brain PET images. Methods 150 amyloid brain PET images were visually assessed by experts and categorized as negative and positive. Standardized uptake value ratio (SUVR) was calculated with cerebellum grey matter as the reference region, and receiver operating characteristic (ROC) and precision-recall (PR) analysis for BTXBrain-Amyloid were conducted. For comparison, same image processing and analysis was performed using Statistical Parametric Mapping (SPM) program. In addition, to evaluate the spatial normalization (SN) performance, mutual information (MI) between MRI template and spatially normalized PET images was calculated and SPM group analysis was conducted. Results Both BTXBrain and SPM methods discriminated between negative and positive groups. However, BTXBrain exhibited lower SUVR standard deviation (0.06 and 0.21 for negative and positive, respectively) than SPM method (0.11 and 0.25). In ROC analysis, BTXBrain had an AUC of 0.979, compared to 0.959 for SPM, while PR curves showed an AUC of 0.983 for BTXBrain and 0.949 for SPM. At the optimal cut-off, the sensitivity and specificity were 0.983 and 0.921 for BTXBrain and 0.917 and 0.921 for SPM12, respectively. MI evaluation also favored BTXBrain (0.848 vs. 0.823), indicating improved SN. In SPM group analysis, BTXBrain exhibited higher sensitivity in detecting basal ganglia differences between negative and positive groups. Conclusion BTXBrain-Amyloid outperformed SPM in clinical performance evaluation, also demonstrating superior SN and improved detection of deep brain differences. These results suggest the potential of BTXBrain-Amyloid as a valuable tool for clinical amyloid PET image evaluation.
Collapse
Affiliation(s)
- Seung Kwan Kang
- Brightonix Imaging Inc., Seoul, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Mina Heo
- Department of Neurology, College of Medicine, Chosun University and Chosun University Hospital, 365 Pilmun-Daero, Dong-Gu, Gwangju, South Korea
| | - Ji Yeon Chung
- Department of Neurology, College of Medicine, Chosun University and Chosun University Hospital, 365 Pilmun-Daero, Dong-Gu, Gwangju, South Korea
| | - Daewoon Kim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, Korea
| | | | - Hongyoon Choi
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080 Korea
| | - Ari Chung
- Department of Nuclear Medicine, College of Medicine, Chosun University and Chosun University Hospital, Gwangju, Korea
| | - Jung-Min Ha
- Department of Nuclear Medicine, College of Medicine, Chosun University and Chosun University Hospital, Gwangju, Korea
| | - Hoowon Kim
- Department of Neurology, College of Medicine, Chosun University and Chosun University Hospital, 365 Pilmun-Daero, Dong-Gu, Gwangju, South Korea
| | - Jae Sung Lee
- Brightonix Imaging Inc., Seoul, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080 Korea
| |
Collapse
|
6
|
Krüger L, Biskup K, Schipke CG, Kochnowsky B, Schneider LS, Peters O, Blanchard V. The Cerebrospinal Fluid Free-Glycans Hex 1 and HexNAc 1Hex 1Neu5Ac 1 as Potential Biomarkers of Alzheimer's Disease. Biomolecules 2024; 14:512. [PMID: 38785920 PMCID: PMC11117705 DOI: 10.3390/biom14050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting a growing number of elderly people. In order to improve the early and differential diagnosis of AD, better biomarkers are needed. Glycosylation is a protein post-translational modification that is modulated in the course of many diseases, including neurodegeneration. Aiming to improve AD diagnosis and differential diagnosis through glycan analytics methods, we report the glycoprotein glycome of cerebrospinal fluid (CSF) isolated from a total study cohort of 262 subjects. The study cohort consisted of patients with AD, healthy controls and patients suffering from other types of dementia. CSF free-glycans were also isolated and analyzed in this study, and the results reported for the first time the presence of 19 free glycans in this body fluid. The free-glycans consisted of complete or truncated N-/O-glycans as well as free monosaccharides. The free-glycans Hex1 and HexNAc1Hex1Neu5Ac1 were able to discriminate AD from controls and from patients suffering from other types of dementia. Regarding CSF N-glycosylation, high proportions of high-mannose, biantennary bisecting core-fucosylated N-glycans were found, whereby only about 20% of the N-glycans were sialylated. O-Glycans and free-glycan fragments were less sialylated in AD patients than in controls. To conclude, this comprehensive study revealed for the first time the biomarker potential of free glycans for the differential diagnosis of AD.
Collapse
Affiliation(s)
- Lynn Krüger
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Karina Biskup
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| | - Carola G. Schipke
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Bianca Kochnowsky
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Luisa-Sophie Schneider
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (C.G.S.); (B.K.); (L.-S.S.); (O.P.)
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (L.K.)
- Department of Human Medicine, Medical School Berlin, Rüdesheimer Str. 50, 14197 Berlin, Germany
| |
Collapse
|
7
|
Holy EN, Li E, Bhattarai A, Fletcher E, Alfaro ER, Harvey DJ, Spencer BA, Cherry SR, DeCarli CS, Fan AP. Non-invasive quantification of 18F-florbetaben with total-body EXPLORER PET. EJNMMI Res 2024; 14:39. [PMID: 38625413 PMCID: PMC11021392 DOI: 10.1186/s13550-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/02/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Kinetic modeling of 18F-florbetaben provides important quantification of brain amyloid deposition in research and clinical settings but its use is limited by the requirement of arterial blood data for quantitative PET. The total-body EXPLORER PET scanner supports the dynamic acquisition of a full human body simultaneously and permits noninvasive image-derived input functions (IDIFs) as an alternative to arterial blood sampling. This study quantified brain amyloid burden with kinetic modeling, leveraging dynamic 18F-florbetaben PET in aorta IDIFs and the brain in an elderly cohort. METHODS 18F-florbetaben dynamic PET imaging was performed on the EXPLORER system with tracer injection (300 MBq) in 3 individuals with Alzheimer's disease (AD), 3 with mild cognitive impairment, and 9 healthy controls. Image-derived input functions were extracted from the descending aorta with manual regions of interest based on the first 30 s after injection. Dynamic time-activity curves (TACs) for 110 min were fitted to the two-tissue compartment model (2TCM) using population-based metabolite corrected IDIFs to calculate total and specific distribution volumes (VT, Vs) in key brain regions with early amyloid accumulation. Non-displaceable binding potential ([Formula: see text] was also calculated from the multi-reference tissue model (MRTM). RESULTS Amyloid-positive (AD) patients showed the highest VT and VS in anterior cingulate, posterior cingulate, and precuneus, consistent with [Formula: see text] analysis. [Formula: see text]and VT from kinetic models were correlated (r² = 0.46, P < 2[Formula: see text] with a stronger positive correlation observed in amyloid-positive participants, indicating reliable model fits with the IDIFs. VT from 2TCM was highly correlated ([Formula: see text]= 0.65, P < 2[Formula: see text]) with Logan graphical VT estimation. CONCLUSION Non-invasive quantification of amyloid binding from total-body 18F-florbetaben PET data is feasible using aorta IDIFs with high agreement between kinetic distribution volume parameters compared to [Formula: see text]in amyloid-positive and amyloid-negative older individuals.
Collapse
Affiliation(s)
- Emily Nicole Holy
- Department of Neurology, University of California (UC) Davis Health, 1590 Drew Avenue, Davis, CA, 95618, USA.
- Department of Biomedical Engineering, UC Davis, Davis, USA.
| | - Elizabeth Li
- Department of Biomedical Engineering, UC Davis, Davis, USA
| | - Anjan Bhattarai
- Department of Neurology, University of California (UC) Davis Health, 1590 Drew Avenue, Davis, CA, 95618, USA
- Department of Biomedical Engineering, UC Davis, Davis, USA
| | - Evan Fletcher
- Department of Neurology, University of California (UC) Davis Health, 1590 Drew Avenue, Davis, CA, 95618, USA
| | - Evelyn R Alfaro
- Department of Neurology, University of California (UC) Davis Health, 1590 Drew Avenue, Davis, CA, 95618, USA
| | | | - Benjamin A Spencer
- Department of Biomedical Engineering, UC Davis, Davis, USA
- Department of Radiology, UC Davis Health, Davis, USA
| | - Simon R Cherry
- Department of Biomedical Engineering, UC Davis, Davis, USA
- Department of Radiology, UC Davis Health, Davis, USA
| | - Charles S DeCarli
- Department of Neurology, University of California (UC) Davis Health, 1590 Drew Avenue, Davis, CA, 95618, USA
| | - Audrey P Fan
- Department of Neurology, University of California (UC) Davis Health, 1590 Drew Avenue, Davis, CA, 95618, USA
- Department of Biomedical Engineering, UC Davis, Davis, USA
| |
Collapse
|
8
|
Young P, Heeman F, Axelsson J, Collij LE, Hitzel A, Sanaat A, Niñerola-Baizan A, Perissinotti A, Lubberink M, Frisoni GB, Zaidi H, Barkhof F, Farrar G, Baker S, Gispert JD, Garibotto V, Rieckmann A, Schöll M. Impact of simulated reduced injected dose on the assessment of amyloid PET scans. Eur J Nucl Med Mol Imaging 2024; 51:734-748. [PMID: 37897616 PMCID: PMC10796642 DOI: 10.1007/s00259-023-06481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE To investigate the impact of reduced injected doses on the quantitative and qualitative assessment of the amyloid PET tracers [18F]flutemetamol and [18F]florbetaben. METHODS Cognitively impaired and unimpaired individuals (N = 250, 36% Aβ-positive) were included and injected with [18F]flutemetamol (N = 175) or [18F]florbetaben (N = 75). PET scans were acquired in list-mode (90-110 min post-injection) and reduced-dose images were simulated to generate images of 75, 50, 25, 12.5 and 5% of the original injected dose. Images were reconstructed using vendor-provided reconstruction tools and visually assessed for Aβ-pathology. SUVRs were calculated for a global cortical and three smaller regions using a cerebellar cortex reference tissue, and Centiloid was computed. Absolute and percentage differences in SUVR and CL were calculated between dose levels, and the ability to discriminate between Aβ- and Aβ + scans was evaluated using ROC analyses. Finally, intra-reader agreement between the reduced dose and 100% images was evaluated. RESULTS At 5% injected dose, change in SUVR was 3.72% and 3.12%, with absolute change in Centiloid 3.35CL and 4.62CL, for [18F]flutemetamol and [18F]florbetaben, respectively. At 12.5% injected dose, percentage change in SUVR and absolute change in Centiloid were < 1.5%. AUCs for discriminating Aβ- from Aβ + scans were high (AUC ≥ 0.94) across dose levels, and visual assessment showed intra-reader agreement of > 80% for both tracers. CONCLUSION This proof-of-concept study showed that for both [18F]flutemetamol and [18F]florbetaben, adequate quantitative and qualitative assessments can be obtained at 12.5% of the original injected dose. However, decisions to reduce the injected dose should be made considering the specific clinical or research circumstances.
Collapse
Affiliation(s)
- Peter Young
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Fiona Heeman
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Jan Axelsson
- Department of Radiation Sciences, Radiation Physics, Umeå University, Umeå, Sweden
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Anne Hitzel
- Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France
| | - Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Aida Niñerola-Baizan
- Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Andrés Perissinotti
- Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), ISCIII, Barcelona, Spain
| | - Mark Lubberink
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- UCL Institute of Neurology, London, UK
| | | | - Suzanne Baker
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Juan Domingo Gispert
- Barcelona βeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva; NIMTLab; Center for Biomedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Anna Rieckmann
- Institute for Psychology, Universität Der Bundeswehr München, Neubiberg, Germany
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
9
|
Chong A, Ha JM, Chung JY, Kim H, Choo ILH. Modified RCTU Score: A Semi-Quantitative, Visual Tool for Predicting Alzheimer's Conversion from aMCI. Brain Sci 2024; 14:132. [PMID: 38391707 PMCID: PMC10886563 DOI: 10.3390/brainsci14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
This research evaluated the modified RCTU score, derived from amyloid PET scans, for predicting the progression from amnestic Mild Cognitive Impairment (aMCI) to Alzheimer's Disease (AD). aMCI patients underwent baseline evaluations, including amyloid PET. AD conversion was identified through neuropsychological tests after observation. The RCTU was modified by segmenting frontal, parietal, and temporal lobes into left and right, resulting in seven areas. Scores from both modified and conventional RCTU were analyzed and compared. Among 45 patients, 12 progressed to AD (over 17.8 ± 6.8 months). AD converters showed higher scores in modified RCTU scores. Modified RCTU score had strong correlations with amyloid SUVR (r > 0.7). Modified RCTU sum score was the significant covariate of AD conversion. Modified RCTU could determine the asymmetry of amyloid deposits. We demonstrated that symmetric deposits of amyloid showed a higher risk for AD conversion when analyzed using modified RCTU. The modified RCTU score is a promising method for predicting AD conversion, correlating strongly with amyloid SUVR.
Collapse
Affiliation(s)
- Ari Chong
- Department of Nuclear Medicine, School of Medicine, Chosun University/Chosun University Hospital, Gwangju 61452, Republic of Korea
| | - Jung-Min Ha
- Department of Nuclear Medicine, School of Medicine, Chosun University/Chosun University Hospital, Gwangju 61452, Republic of Korea
| | - Ji Yeon Chung
- Department of Neurology, School of Medicine, Chosun University/Chosun University Hospital, Gwangju 61452, Republic of Korea
| | - Hoowon Kim
- Department of Neurology, School of Medicine, Chosun University/Chosun University Hospital, Gwangju 61452, Republic of Korea
| | - I L Han Choo
- Department of Neuropsychiatry, School of Medicine, Chosun University/Chosun University Hospital, Gwangju 61452, Republic of Korea
| |
Collapse
|
10
|
Lojo-Ramírez JA, Guerra-Gómez M, Marín-Cabañas AM, Fernández-Rodríguez P, Bernal Sánchez-Arjona M, Franco-Macías E, García-Solís D. Correlation Between Amyloid PET Imaging and Discordant Cerebrospinal Fluid Biomarkers Results in Patients with Suspected Alzheimer's Disease. J Alzheimers Dis 2024; 97:447-458. [PMID: 38143353 DOI: 10.3233/jad-230744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Although the concordance between cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers and amyloid-PET findings is well known, there are no data regarding the concordance of amyloid-PET with inconclusive CSF values of amyloid-β (Aβ)1 - 42 and p-tau for the diagnosis of AD. OBJECTIVE To investigate the relationship between the amyloid-PET results with discordant AD biomarkers values in CSF (Aβ1 - 42+/p-tau-or Aβ1 - 42-/p-tau+). METHODS An observational retrospective study, including 62 patients with mild cognitive impairment (32/62) or dementia (30/62), suspicious of AD who had undergone a lumbar puncture to determine CSF AD biomarkers, and presented discordant values in CSF between Aβ1 - 42 and p-tau (Aβ1 - 42+/p-tau-or Aβ1 - 42-/p-tau+). All of them, underwent an amyloid-PET with 18F-Florbetaben. An extensive neuropsychological testing as part of their diagnostic process (MMSE and TMA-93), was performed, and it was also obtained the Global Deterioration Scale. RESULTS Comparing the discordant CSF results of each patient with the cerebral amyloid-PET results, we found that in the group with Aβ1 - 42+ and p-tau-CSF values, the amyloid-PET was positive in 51.2% and negative in 48.8% of patients, while in the group with Aβ1 - 42-and p-Tau+ CSF values, the amyloid-PET was positive in 52.6% of patients and negative in 47.4% of them. No significant association was found (p = 0.951) between the results of amyloid-PET and the two divergent groups in CSF. CONCLUSIONS No significant relationship was observed between the results of discordant AD biomarkers in CSF and the result of amyloid-PET. No trend in amyloid-PET results was observed in relation to CSF biomarker values.
Collapse
Affiliation(s)
| | - Miriam Guerra-Gómez
- Department of Nuclear Medicine, Virgen del Rocío University Hospital, Seville, Spain
| | | | | | | | - Emilio Franco-Macías
- Memory Unit, Department of Neurology, Virgen del Rocío University Hospital, Seville, Spain
| | - David García-Solís
- Department of Nuclear Medicine, Virgen del Rocío University Hospital, Seville, Spain
| |
Collapse
|
11
|
Kim SJ, Jang H, Yoo H, Na DL, Ham H, Kim HJ, Kim JP, Farrar G, Moon SH, Seo SW. Clinical and Pathological Validation of CT-Based Regional Harmonization Methods of Amyloid PET. Clin Nucl Med 2024; 49:1-8. [PMID: 38048354 DOI: 10.1097/rlu.0000000000004937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
PURPOSE The CT-based regional direct comparison Centiloid (dcCL) method was developed to harmonize and quantify regional β-amyloid (Aβ) burden. In the present study, we aimed to investigate correlations between the CT-based regional dcCL scales and Aβ pathological burdens and to validate the clinical utility using thresholds derived from pathological assessment. PATIENTS AND METHODS We included a pathological cohort of 63 cases and a clinical cohort of 4062 participants, and obtained modified Consortium to Establish a Registry for Alzheimer's Disease criteria (mCERAD) scores by assessment of neuritic plaque burdens in multiple areas of each cortical region. PET and CT images were processed using the CT-based regional dcCL method to calculate scales in 6 distinct regions. RESULTS The CT-based regional dcCL scales were correlated with neuritic plaque burdens represented by mCERAD scores, globally and regionally ( r = 0.56~0.76). In addition, striatum dcCL scales reflected Aβ involvement in the striatum ( P < 0.001). The regional dcCL scales could predict significant Aβ deposition in specific brain regions with high accuracy: area under the receiver operating characteristic curve of 0.81-0.97 with an mCERAD cutoff of 1.5 and area under the receiver operating characteristic curve of 0.88-0.93 with an mCERAD cutoff of 0.5. When applying the dcCL thresholds of 1.5 mCERAD scores, the G(-)R(+) group showed lower performances in memory and global cognitive functions and had less hippocampal volume compared with the G(-)R(-) group ( P < 0.001). However, when applying the dcCL thresholds of 0.5 mCERAD scores, there were no differences in the global cognitive functions between the 2 groups. CONCLUSIONS The thresholds of regional dcCL scales derived from pathological assessments might provide clinicians with a better understanding of biomarker-guided diagnosis and distinguishable clinical phenotypes, which are particularly useful when harmonizing different PET ligands with only PET/CT.
Collapse
Affiliation(s)
| | | | - Heejin Yoo
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center
| | | | | | | | | | - Gill Farrar
- Pharmaceutical Diagnostics, GE Healthcare, Chalfont St Giles, United Kingdom
| | - Seung Hwan Moon
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | |
Collapse
|
12
|
Sun X, Zhao C, Chen SY, Chang Y, Han YL, Li K, Sun HM, Wang ZF, Liang Y, Jia JJ. Free Water MR Imaging of White Matter Microstructural Changes is a Sensitive Marker of Amyloid Positivity in Alzheimer's Disease. J Magn Reson Imaging 2023. [PMID: 38100518 DOI: 10.1002/jmri.29189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Extracellular free water (FW) resulting from white matter degeneration limits the sensitivity of diffusion tensor imaging (DTI) in predicting Alzheimer's disease (AD). PURPOSE To evaluate the sensitivity of FW-DTI in detecting white matter microstructural changes in AD. To validate the effectiveness of FW-DTI indices to predict amyloid-beta (Aβ) positivity in mild cognitive impairment (MCI) subtypes. STUDY TYPE Retrospective. POPULATION Thirty-eight Aβ-negative cognitively healthy (CH) controls (68.74 ± 8.28 years old, 55% female), 15 Aβ-negative MCI patients (MCI-n) (68.87 ± 8.83 years old, 60% female), 29 Aβ-positive MCI patients (MCI-p) (73.03 ± 7.05 years old, 52% female), and 29 Aβ-positive AD patients (72.93 ± 9.11 years old, 55% female). FIELD STRENGTH/SEQUENCE 3.0T; DTI, T1 -weighted, T2 -weighted, T2 star-weighted angiography, and Aβ PET (18 F-florbetaben or 11 C-PIB). ASSESSMENT FW-corrected and standard diffusion indices were analyzed using trace-based spatial statistics. Area under the curve (AUC) in distinguishing MCI subtypes were compared using support vector machine (SVM). STATISTICAL TESTS Chi-squared test, one-way analysis of covariance, general linear regression analyses, nonparametric permutation tests, partial Pearson's correlation, receiver operating characteristic curve analysis, and linear SVM. A P value <0.05 was considered statistically significant. RESULTS Compared with CH/MCI-n/MCI-p, AD showed significant change in tissue compartment indices of FW-DTI. No difference was found in the FW index among pair-wise group comparisons (the minimum FWE-corrected P = 0.114). There was a significant association between FW-DTI indices and memory and visuospatial function. The SVM classifier with tissue radial diffusivity as an input feature had the best classification performance of MCI subtypes (AUC = 0.91), and the classifying accuracy of FW-DTI was all over 89.89%. DATA CONCLUSION FW-DTI indices prove to be potential biomarkers of AD. The classification of MCI subtypes based on SVM and FW-DTI indices has good accuracy and could help early diagnosis. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xuan Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Cui Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Si-Yu Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yan Chang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yu-Liang Han
- Department of Neurology, The 305 Hospital of PLA, Beijing, China
| | - Ke Li
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hong-Mei Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, China
| | - Zhen-Fu Wang
- Department of Geriatric Neurology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jian-Jun Jia
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Wang YTT, Rosa-Neto P, Gauthier S. Advanced brain imaging for the diagnosis of Alzheimer disease. Curr Opin Neurol 2023; 36:481-490. [PMID: 37639461 DOI: 10.1097/wco.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW The purpose is to review the latest advances of brain imaging for the diagnosis of Alzheimer disease (AD). RECENT FINDINGS Brain imaging techniques provide valuable and complementary information to support the diagnosis of Alzheimer disease in clinical and research settings. The recent FDA accelerated approvals of aducanumab, lecanemab and donanemab made amyloid-PET critical in helping determine the optimal window for anti-amyloid therapeutic interventions. Tau-PET, on the other hand, is considered of key importance for the tracking of disease progression and for monitoring therapeutic interventions in clinical trials. PET imaging for microglial activation, astrocyte reactivity and synaptic degeneration are still new techniques only used in the research field, and more studies are needed to validate their use in the clinical diagnosis of AD. Finally, artificial intelligence has opened new prospective in the early detection of AD using MRI modalities. SUMMARY Brain imaging techniques using PET improve our understanding of the different AD-related pathologies and their relationship with each other along the course of disease. With more robust validation, machine learning and deep learning algorithms could be integrated with neuroimaging modalities to serve as valuable tools for clinicians to make early diagnosis and prognosis of AD.
Collapse
|
14
|
Chaparro CIP, Simões BT, Borges JP, Castanho MARB, Soares PIP, Neves V. A Promising Approach: Magnetic Nanosystems for Alzheimer's Disease Theranostics. Pharmaceutics 2023; 15:2316. [PMID: 37765284 PMCID: PMC10536416 DOI: 10.3390/pharmaceutics15092316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Among central nervous system (CNS) disorders, Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and a major cause of dementia worldwide. The yet unclear etiology of AD and the high impenetrability of the blood-brain barrier (BBB) limit most therapeutic compounds from reaching the brain. Although many efforts have been made to effectively deliver drugs to the CNS, both invasive and noninvasive strategies employed often come with associated side effects. Nanotechnology-based approaches such as nanoparticles (NPs), which can act as multifunctional platforms in a single system, emerged as a potential solution for current AD theranostics. Among these, magnetic nanoparticles (MNPs) are an appealing strategy since they can act as contrast agents for magnetic resonance imaging (MRI) and as drug delivery systems. The nanocarrier functionalization with specific moieties, such as peptides, proteins, and antibodies, influences the particles' interaction with brain endothelial cell constituents, facilitating transport across the BBB and possibly increasing brain penetration. In this review, we introduce MNP-based systems, combining surface modifications with the particles' physical properties for molecular imaging, as a novel neuro-targeted strategy for AD theranostics. The main goal is to highlight the potential of multifunctional MNPs and their advances as a dual nanotechnological diagnosis and treatment platform for neurodegenerative disorders.
Collapse
Affiliation(s)
- Catarina I. P. Chaparro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Beatriz T. Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| | - João P. Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| | - Paula I. P. Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| |
Collapse
|
15
|
Bun S, Ito D, Tezuka T, Kubota M, Ueda R, Takahata K, Moriguchi S, Kurose S, Momota Y, Suzuki N, Morimoto A, Hoshino Y, Seki M, Mimura Y, Shikimoto R, Yamamoto Y, Hoshino T, Sato Y, Tabuchi H, Mimura M. Performance of plasma Aβ42/40, measured using a fully automated immunoassay, across a broad patient population in identifying amyloid status. Alzheimers Res Ther 2023; 15:149. [PMID: 37667408 PMCID: PMC10476307 DOI: 10.1186/s13195-023-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Plasma biomarkers have emerged as promising screening tools for Alzheimer's disease (AD) because of their potential to detect amyloid β (Aβ) accumulation in the brain. One such candidate is the plasma Aβ42/40 ratio (Aβ42/40). Unlike previous research that used traditional immunoassay, recent studies that measured plasma Aβ42/40 using fully automated platforms reported promising results. However, its utility should be confirmed using a broader patient population, focusing on the potential for early detection. METHODS We recruited 174 participants, including healthy controls (HC) and patients with clinical diagnoses of AD, frontotemporal lobar degeneration, dementia with Lewy bodies/Parkinson's disease, mild cognitive impairment (MCI), and others, from a university memory clinic. We examined the performance of plasma Aβ42/40, measured using the fully automated high-sensitivity chemiluminescence enzyme (HISCL) immunoassay, in detecting amyloid-positron emission tomography (PET)-derived Aβ pathology. We also compared its performance with that of Simoa-based plasma phosphorylated tau at residue 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL). RESULTS Using the best cut-off derived from the Youden Index, plasma Aβ42/40 yielded an area under the receiver operating characteristic curve (AUC) of 0.949 in distinguishing visually assessed 18F-Florbetaben amyloid PET positivity. The plasma Aβ42/40 had a significantly superior AUC than p-tau181, GFAP, and NfL in the 167 participants with measurements for all four biomarkers. Next, we analyzed 99 participants, including only the HC and those with MCI, and discovered that plasma Aβ42/40 outperformed the other plasma biomarkers, suggesting its ability to detect early amyloid accumulation. Using the Centiloid scale (CL), Spearman's rank correlation coefficient between plasma Aβ42/40 and CL was -0.767. Among the 15 participants falling within the CL values indicative of potential future amyloid accumulation (CL between 13.5 and 35.7), plasma Aβ42/40 categorized 61.5% (8/13) as Aβ-positive, whereas visual assessment of amyloid PET identified 20% (3/15) as positive. CONCLUSION Plasma Aβ42/40 measured using the fully automated HISCL platform showed excellent performance in identifying Aβ accumulation in the brain in a well-characterized cohort. This equipment may be useful for screening amyloid pathology because it has the potential to detect early amyloid pathology and is readily applied in clinical settings.
Collapse
Affiliation(s)
- Shogyoku Bun
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Daisuke Ito
- Memory Center, Keio University School of Medicine, Tokyo, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Tezuka
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masahito Kubota
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuki Momota
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Natsumi Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ayaka Morimoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuka Hoshino
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryo Shikimoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takayuki Hoshino
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Yoshiaki Sato
- Eisai-Keio Innovation Laboratory for Dementia, Human Biology Integration Foundation, Eisai Co., Ltd, Tokyo, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| |
Collapse
|
16
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
17
|
Solis-Urra P, Molina-Hidalgo C, García-Rivero Y, Costa-Rodriguez C, Mora-Gonzalez J, Fernandez-Gamez B, Olvera-Rojas M, Coca-Pulido A, Toval A, Bellón D, Sclafani A, Martín-Fuentes I, Triviño-Ibañez EM, de Teresa C, Huang H, Grove G, Hillman CH, Kramer AF, Catena A, Ortega FB, Gómez-Río M, Erickson KI, Esteban-Cornejo I. Active Gains in brain Using Exercise During Aging (AGUEDA): protocol for a randomized controlled trial. Front Hum Neurosci 2023; 17:1168549. [PMID: 37284481 PMCID: PMC10239947 DOI: 10.3389/fnhum.2023.1168549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Alzheimer's disease is currently the leading cause of dementia and one of the most expensive, lethal and severe diseases worldwide. Age-related decline in executive function is widespread and plays a key role in subsequent dementia risk. Physical exercise has been proposed as one of the leading non-pharmaceutical approaches to improve executive function and ameliorate cognitive decline. This single-site, two-arm, single-blinded, randomized controlled trial (RCT) will include 90 cognitively normal older adults, aged 65-80 years old. Participants will be randomized to a 24-week resistance exercise program (3 sessions/week, 60 min/session, n = 45), or a wait-list control group (n = 45) which will be asked to maintain their usual lifestyle. All study outcomes will be assessed at baseline and at 24-weeks after the exercise program, with a subset of selected outcomes assessed at 12-weeks. The primary outcome will be indicated by the change in an executive function composite score assessed with a comprehensive neuropsychological battery and the National Institutes of Health Toolbox Cognition Battery. Secondary outcomes will include changes in brain structure and function and amyloid deposition, other cognitive outcomes, and changes in molecular biomarkers assessed in blood, saliva, and fecal samples, physical function, muscular strength, body composition, mental health, and psychosocial parameters. We expect that the resistance exercise program will have positive effects on executive function and related brain structure and function, and will help to understand the molecular, structural, functional, and psychosocial mechanisms involved.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Faculty of Education and Social Sciences, Universidad Andrés Bello, Viña del Mar, Chile
| | - Cristina Molina-Hidalgo
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL, United States
| | - Yolanda García-Rivero
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain
- ibs.GRANADA Instituto de Investigación Biosanitaria, Granada, Spain
| | | | - Jose Mora-Gonzalez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
| | - Beatriz Fernandez-Gamez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
| | - Marcos Olvera-Rojas
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
| | - Andrea Coca-Pulido
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
| | - Angel Toval
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
| | - Darío Bellón
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
| | - Alessandro Sclafani
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
| | - Isabel Martín-Fuentes
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
| | - Eva María Triviño-Ibañez
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain
- ibs.GRANADA Instituto de Investigación Biosanitaria, Granada, Spain
| | - Carlos de Teresa
- Andalusian Centre of Sports Medicine, Consejería de Turismo y Deporte, Granada, Spain
| | - Haiqing Huang
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - George Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Charles H. Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| | - Arthur F. Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, United States
- Beckman Institute, University of Illinois, Urbana, IL, United States
| | - Andrés Catena
- School of Psychology, University of Granada, Granada, Spain
| | - Francisco B. Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Gómez-Río
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, Granada, Spain
- ibs.GRANADA Instituto de Investigación Biosanitaria, Granada, Spain
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- AdventHealth Research Institute, Neuroscience Institute, Orlando, FL, United States
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute, University of Granada, Granada, Spain
- ibs.GRANADA Instituto de Investigación Biosanitaria, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Yoo J, Cheon M, Kang MJ. A Case Report of Early-Onset Alzheimer's Disease Using 18F-FDG PET and 18F-FBB PET. Diagnostics (Basel) 2023; 13:diagnostics13101671. [PMID: 37238154 DOI: 10.3390/diagnostics13101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
We describe a 40-year-old female patient who presented with sleep disturbance, intermittent headache, and gradual subjective cognitive decline. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) showed mild FDG hypometabolism in bilateral parietal and temporal lobes. However, 18F-florbetaben (FBB) amyloid PET revealed diffuse amyloid retention in the lateral temporal cortex, frontal cortex, posterior cingulate cortex/precuneus, parietal cortex, and cerebellum. This finding supports the clinical significance of amyloid imaging in diagnostic work-up of early-onset Alzheimer's disease (EOAD).
Collapse
Affiliation(s)
- Jang Yoo
- Department of Nuclear Medicine, VHS Medical Center, Seoul 05368, Republic of Korea
| | - Miju Cheon
- Department of Nuclear Medicine, VHS Medical Center, Seoul 05368, Republic of Korea
| | - Min-Ju Kang
- Department of Neurology, VHS Medical Center, Seoul 05368, Republic of Korea
| |
Collapse
|
19
|
Park HJ, Lee JY, Yang JJ, Kim HJ, Kim YS, Kim JY, Choi YY. Prediction of Amyloid β-Positivity with both MRI Parameters and Cognitive Function Using Machine Learning. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2023; 84:638-652. [PMID: 37325007 PMCID: PMC10265247 DOI: 10.3348/jksr.2022.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/05/2022] [Accepted: 10/02/2022] [Indexed: 06/17/2023]
Abstract
Purpose To investigate the MRI markers for the prediction of amyloid β (Aβ)-positivity in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to evaluate the differences in MRI markers between Aβ-positive (Aβ [+]) and -negative groups using the machine learning (ML) method. Materials and Methods This study included 139 patients with MCI and AD who underwent amyloid PET-CT and brain MRI. Patients were divided into Aβ (+) (n = 84) and Aβ-negative (n = 55) groups. Visual analysis was performed with the Fazekas scale of white matter hyperintensity (WMH) and cerebral microbleeds (CMB) scores. The WMH volume and regional brain volume were quantitatively measured. The multivariable logistic regression and ML using support vector machine, and logistic regression were used to identify the best MRI predictors of Aβ-positivity. Results The Fazekas scale of WMH (p = 0.02) and CMB scores (p = 0.04) were higher in Aβ (+). The volumes of hippocampus, entorhinal cortex, and precuneus were smaller in Aβ (+) (p < 0.05). The third ventricle volume was larger in Aβ (+) (p = 0.002). The logistic regression of ML showed a good accuracy (81.1%) with mini-mental state examination (MMSE) and regional brain volumes. Conclusion The application of ML using the MMSE, third ventricle, and hippocampal volume is helpful in predicting Aβ-positivity with a good accuracy.
Collapse
|
20
|
Wang R, Pang SC, Li JY, Li CL, Liu JM, Wang YM, Chen ML, Li YB. A review of the current research on in vivo and in vitro detection for alpha-synuclein: a biomarker of Parkinson's disease. Anal Bioanal Chem 2023; 415:1589-1605. [PMID: 36688984 DOI: 10.1007/s00216-023-04520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Parkinson's disease is a health-threatening neurodegenerative disease of the elderly with clinical manifestations of motor and non-motor deficits such as tremor palsy and loss of smell. Alpha-synuclein (α-Syn) is the pathological basis of PD, it can abnormally aggregate into insoluble forms such as oligomers, fibrils, and plaques, causing degeneration of nigrostriatal dopaminergic neurons in the substantia nigra in the patient's brain and the formation of Lewy bodies (LBs) and Lewy neuritis (LN) inclusions. As a result, achieving α-Syn aggregate detection in the early stages of PD can effectively stop or delay the progression of the disease. In this paper, we provide a brief overview and analysis of the molecular structures and α-Syn in vivo and in vitro detection methods, such as mass spectrometry, antigen-antibody recognition, electrochemical sensors, and imaging techniques, intending to provide more technological support for detecting α-Syn early in the disease and intervening in the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Rui Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.,College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shu-Chao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jing-Ya Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chan-Lian Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun-Miao Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yu-Ming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mei-Ling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yu-Bo Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
21
|
Baik K, Jeon S, Yang SJ, Na Y, Chung SJ, Yoo HS, Yun M, Lee PH, Sohn YH, Ye BS. Cortical Thickness and Brain Glucose Metabolism in Healthy Aging. J Clin Neurol 2023; 19:138-146. [PMID: 36647225 PMCID: PMC9982173 DOI: 10.3988/jcn.2022.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE We aimed to determine the effect of demographic factors on cortical thickness and brain glucose metabolism in healthy aging subjects. METHODS The following tests were performed on 71 subjects with normal cognition: neurological examination, 3-tesla magnetic resonance imaging, 18F-fluorodeoxyglucose positron-emission tomography, and neuropsychological tests. Cortical thickness and brain metabolism were measured using vertex- and voxelwise analyses, respectively. General linear models (GLMs) were used to determine the effects of age, sex, and education on cortical thickness and brain glucose metabolism. The effects of mean lobar cortical thickness and mean lobar metabolism on neuropsychological test scores were evaluated using GLMs after controlling for age, sex, and education. The intracranial volume (ICV) was further included as a predictor or covariate for the cortical thickness analyses. RESULTS Age was negatively correlated with the mean cortical thickness in all lobes (frontal and parietal lobes, p=0.001; temporal and occipital lobes, p<0.001) and with the mean temporal metabolism (p=0.005). Education was not associated with cortical thickness or brain metabolism in any lobe. Male subjects had a lower mean parietal metabolism than did female subjects (p<0.001), while their mean cortical thicknesses were comparable. ICV was positively correlated with mean cortical thickness in the frontal (p=0.016), temporal (p=0.009), and occipital (p=0.007) lobes. The mean lobar cortical thickness was not associated with cognition scores, while the mean temporal metabolism was positively correlated with verbal memory test scores. CONCLUSIONS Age and sex affect cortical thickness and brain glucose metabolism in different ways. Demographic factors must therefore be considered in analyses of cortical thickness and brain metabolism.
Collapse
Affiliation(s)
- Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Soh-Jeong Yang
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yeona Na
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young H. Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Chotipanich C, Hirata N, Jantarato A, Kiatkittikul P, Siripongsatian D, Kunawudhi A, Promteangtrong C, Tieojaroenkit N, Vanprom S, Mahanonda N. Comparison of performance between an F 18 -FDG PET normal brain template and a commercial template using the MIMneuro software. J Med Imaging (Bellingham) 2022; 9:064501. [PMID: 36388144 PMCID: PMC9639701 DOI: 10.1117/1.jmi.9.6.064501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Purpose The aim of this study was to create and validate a normal brain template ofF 18 -fluorodeoxyglucose (F 18 - FDG ) uptake using the MIMneuro software to improve clinical practice. Approach One hundred and nine volunteers underwent anF 18 - FDG positron emission tomography/computed tomography scan. Sixty-three participants with normal Alzheimer's disease (AD) biomarkers were used to create a template. A group of 23 participants with abnormal AD biomarkers and an additional group of 23 participants with normal AD biomarkers were used to validate the performance of the generated template. The MIMneuro software was used for the analysis and template creation. The performance of our newly created template was compared with that of the MIMneuro software template in the validation groups. Results were confirmed by visual analysis by nuclear medicine physicians. Results Our created template provided higher sensitivity, specificity, positive predictive value, and negative predictive value (NPV; 90%, 97.83%, 100%, and 100%, respectively) than did the MIMneuro template when using the positive validation group. Similarly, slightly higher performance was observed for our template than for the MIMneuro template in the negative validation group (the highest specificity and NPV were 100% and 100%, respectively). Conclusions Our normal brain template forF 18 - FDG was shown to be clinically useful because it enabled more accurate discrimination between aging brain and patients with AD. Thus, the template may improve the accuracy of AD diagnoses.
Collapse
Affiliation(s)
- Chanisa Chotipanich
- Chulabhorn Hospital, Chulabhorn Royal Academy, National Cyclotron and PET Centre, Bangkok, Thailand
| | - Natdanai Hirata
- Chulabhorn Hospital, Chulabhorn Royal Academy, National Cyclotron and PET Centre, Bangkok, Thailand
| | - Attapon Jantarato
- Chulabhorn Hospital, Chulabhorn Royal Academy, National Cyclotron and PET Centre, Bangkok, Thailand
| | - Peerapon Kiatkittikul
- Chulabhorn Hospital, Chulabhorn Royal Academy, National Cyclotron and PET Centre, Bangkok, Thailand
| | | | - Anchisa Kunawudhi
- Chulabhorn Hospital, Chulabhorn Royal Academy, National Cyclotron and PET Centre, Bangkok, Thailand
| | | | - Nattakoon Tieojaroenkit
- Chulabhorn Hospital, Chulabhorn Royal Academy, National Cyclotron and PET Centre, Bangkok, Thailand
| | - Saiphet Vanprom
- Chulabhorn Hospital, Chulabhorn Royal Academy, National Cyclotron and PET Centre, Bangkok, Thailand
| | - Nithi Mahanonda
- Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
23
|
Li Q, Pan FF, Huang Q, Lo CYZ, Xie F, Guo Q. Altered metamemory precedes cognitive impairment in subjective cognitive decline with positive amyloid-beta. Front Aging Neurosci 2022; 14:1046445. [PMID: 36389070 PMCID: PMC9640736 DOI: 10.3389/fnagi.2022.1046445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 06/21/2024] Open
Abstract
Subjective cognitive decline (SCD) as an indicator of preclinical Alzheimer's disease (AD) may precede mild cognitive impairment (MCI) over several decades. Self-reported cognitive decline as a typical clinical manifestation is critical in preclinical AD. Metacognition represents a person's ability to accurately assess cognition. Our study aimed to examine (1) the alternations of metamemory in a cohort across the Alzheimer's continuum, (2) the association between metamemory and cognition, and (3) the relationship of cortical thickness in four regions of interest (ROI) with metamemory scores. Six hundred ninety-seven participants were classified as 79 AD dementia, 161 aMCI, 261 SCD, and 196 cognitively unimpaired (CU) individuals, in which 418 participants aged above 65, 131 participants with Aβ+ after receiving positron emission tomography, and 602 participants received sMRI. The degree of confidence (DOC) was measured by calculating discrepancies between judgments and memory performance. We assessed the relationships between DOC tertiles and cognition and analyzed the screening power, then investigated the partial correlation between DOC and ROIs, controlled by age, sex, and cognition. In the Aβ+ subgroup, SCD showed significantly higher DOC scores than the CU group. There was an increasing trend of overconfidence with the decline of cognition across the AD spectrum (P for trend < 0.001). After adjusting for age, sex, and education, the lower degree of confidence-long-term delay recall (DOC-LD) tertiles were associated with lower odds ratio in SCD, aMCI, and AD in the Aβ+ subgroup (all P for trend < 0.05). The area under the curves of DOC scores for screening SCD from CU in the Aβ+ subgroup was better than that in all participants and the age ≥65 subgroup. Partial correlation showed that in the Aβ+ subgroup, DOC-SD (degree of confidence-short-term delay recall) was negatively correlated with the anterior cingulate cortex; DOC-LD was negatively correlated with the cortices of parahippocampal, anterior cingulate, posterior cingulate, and medial orbitofrontal. In individuals with Aβ+, SCD exhibited a detectable metamemory alternation before objective cognitive impairment could be tested, indicated by the overestimation in the memory performance. The pattern of an increasing trend of overconfidence across SCD, aMCI, and AD dementia supports the view of a continuum in Alzheimer's disease.
Collapse
Affiliation(s)
- QinJie Li
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Feng Pan
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - QiHao Guo
- Department of Gerontology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Oh SJ, Lee N, Nam KR, Kang KJ, Han SJ, Lee KC, Lee YJ, Choi JY. Amyloid pathology induces dysfunction of systemic neurotransmission in aged APPswe/PS2 mice. Front Neurosci 2022; 16:930613. [PMID: 35992913 PMCID: PMC9389227 DOI: 10.3389/fnins.2022.930613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate how amyloid pathology affects the functional aspects of neurotransmitter systems in Alzheimer’s disease. APPswe/PS2 mice (21 months of age) and wild-type (WT) mice underwent positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). First, we obtained 18F-FDG and 18F-florbetaben PET scans to evaluate neuronal integrity and amyloid pathology. Second, 18F-FPEB and 18F-FMZ PET data were acquired to assess the excitatory-inhibitory neurotransmission. Third, to monitor the dopamine system, 18F-fallypride PET was performed. Amyloid PET imaging revealed that radioactivity was higher in the AD group than that in the WT group, which was validated by immunohistochemistry. In the cortical and limbic areas, the AD group showed a 25–27% decrease and 14–35% increase in the glutamatergic and GABAergic systems, respectively. The dopaminergic system in the AD group exhibited a 29% decrease in brain uptake compared with that in the WT group. A reduction in glutamate, N-acetylaspartate, and taurine levels was observed in the AD group using MRS. Our results suggest that dysfunction of the neurotransmitter system is associated with AD pathology. Among the systems, the GABAergic system was prominent, implying that the inhibitory neurotransmission system may be the most vulnerable to AD pathology.
Collapse
Affiliation(s)
- Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Namhun Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Jae Yong Choi,
| |
Collapse
|
25
|
Bun S, Moriguchi S, Tezuka T, Sato Y, Takahata K, Seki M, Nakajima S, Yamamoto Y, Sano Y, Suzuki N, Morimoto A, Ueda R, Tabuchi H, Ito D, Mimura M. Findings of 18 F-PI-2620 tau PET imaging in patients with Alzheimer's disease and healthy controls in relation to the plasma P-tau181 levels in a Japanese sample. Neuropsychopharmacol Rep 2022; 42:437-448. [PMID: 35843629 PMCID: PMC9773651 DOI: 10.1002/npr2.12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia worldwide. In AD, abnormal tau accumulates within neurons of the brain, facilitated by extracellular β-amyloid deposition, leading to neurodegeneration, and eventually, cognitive impairment. As this process is thought to be irreversible, early identification of abnormal tau in the brain is crucial for the development of new therapeutic interventions. AIMS 18 F-PI-2620 is one of the second-generation tau PET tracers with presumably less off-target binding than its predecessors. Although a few clinical studies have recently reported the use of 18 F-PI-2620 tau PET in patients with AD, its applicability to AD is yet to be thoroughly examined. METHODS In the present pilot study, we performed 18 F-PI-2620 tau PET in seven cases of probable AD (AD group) and seven healthy controls (HC group). Standardized uptake value ratios (SUVR) in regions of interest (ROIs) in the medial temporal region and neocortex were compared between the AD and HC groups. Furthermore, correlations between regional SUVR and plasma p-tau181 as well as cognitive test scores were also analyzed. RESULTS The uptake of 18 F-PI-2620 was distinctly increased in the AD group across all the ROIs. SUVR in all the target ROIs were significantly correlated with plasma p-tau181 levels, as well as with MMSE and ADAS-cog scores. DISCUSSION & CONCLUSION Our results add to accumulating evidence suggesting that 18 F-PI-2620 is a promising tau PET tracer that allows patients with AD to be distinguished from healthy controls, although a study with a larger sample size is warranted.
Collapse
Affiliation(s)
- Shogyoku Bun
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Sho Moriguchi
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Toshiki Tezuka
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | - Yoshiaki Sato
- Eisai‐Keio Innovation Laboratory for DementiahhcData Creation CenterEisai Co., Ltd.TokyoJapan
| | - Keisuke Takahata
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan,Department of Functional Brain Imaging Research, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Morinobu Seki
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | | | - Yasuharu Yamamoto
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan,Department of Functional Brain Imaging Research, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Yasunori Sano
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan,Department of Functional Brain Imaging Research, National Institute of Radiological SciencesNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Natsumi Suzuki
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Ayaka Morimoto
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Ryo Ueda
- Office of Radiation TechnologyKeio University HospitalTokyoJapan
| | - Hajime Tabuchi
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Daisuke Ito
- Department of NeurologyKeio University School of MedicineTokyoJapan
| | - Masaru Mimura
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| |
Collapse
|
26
|
Kim HJ, Oh JS, Lim JS, Lee S, Jo S, Chung EN, Shim WH, Oh M, Kim JS, Roh JH, Lee JH. The impact of subthreshold levels of amyloid deposition on conversion to dementia in patients with amyloid-negative amnestic mild cognitive impairment. Alzheimers Res Ther 2022; 14:93. [PMID: 35821150 PMCID: PMC9277922 DOI: 10.1186/s13195-022-01035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND About 40-50% of patients with amnestic mild cognitive impairment (MCI) are found to have no significant Alzheimer's pathology based on amyloid PET positivity. Notably, conversion to dementia in this population is known to occur much less often than in amyloid-positive MCI. However, the relationship between MCI and brain amyloid deposition remains largely unknown. Therefore, we investigated the influence of subthreshold levels of amyloid deposition on conversion to dementia in amnestic MCI patients with negative amyloid PET scans. METHODS This study was a retrospective cohort study of patients with amyloid-negative amnestic MCI who visited the memory clinic of Asan Medical Center. All participants underwent detailed neuropsychological testing, brain magnetic resonance imaging, and [18F]-florbetaben (FBB) positron emission tomography scan (PET). Conversion to dementia was determined by a neurologist based on a clinical interview with a detailed neuropsychological test or a decline in the Korean version of the Mini-Mental State Examination score of more than 4 points per year combined with impaired activities of daily living. Regional cortical amyloid levels were calculated, and a receiver operating characteristic (ROC) curve for conversion to dementia was obtained. To increase the reliability of the results of the study, we analyzed the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset together. RESULTS During the follow-up period, 36% (39/107) of patients converted to dementia from amnestic MCI. The dementia converter group displayed increased standardized uptake value ratio (SUVR) values of FBB on PET in the bilateral temporal, parietal, posterior cingulate, occipital, and left precuneus cortices as well as increased global SUVR. Among volume of interests, the left parietal SUVR predicted conversion to dementia with the highest accuracy in the ROC analysis (area under the curve [AUC] = 0.762, P < 0.001). The combination of precuneus, parietal cortex, and FBB composite SUVRs also showed a higher accuracy in predicting conversion to dementia than other models (AUC = 0.763). Of the results of ADNI data, the SUVR of the left precuneus SUVR showed the highest AUC (AUC = 0.596, P = 0.006). CONCLUSION Our findings suggest that subthreshold amyloid levels may contribute to conversion to dementia in patients with amyloid-negative amnestic MCI.
Collapse
Affiliation(s)
- Hyung-Ji Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, South Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jae-Sung Lim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sunju Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Sungyang Jo
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - E-Nae Chung
- Health Innovation Bigdata Center, Asan Institute for Lifesciences, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Woo-Hyun Shim
- Health Innovation Bigdata Center, Asan Institute for Lifesciences, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Jee Hoon Roh
- Neuroscience Institute, Korea University College of Medicine and School of Medicine, Seoul, South Korea
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
27
|
Huynh TT, Wang Y, Terpstra K, Cho HJ, Mirica LM, Rogers BE. 68Ga-Labeled Benzothiazole Derivatives for Imaging Aβ Plaques in Cerebral Amyloid Angiopathy. ACS OMEGA 2022; 7:20339-20346. [PMID: 35721913 PMCID: PMC9202065 DOI: 10.1021/acsomega.2c02369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/20/2022] [Indexed: 05/17/2023]
Abstract
Timely diagnostic imaging plays a crucial role in managing cerebral amyloid angiopathy (CAA)-the condition in which amyloid β is deposited on blood vessels. To selectively map these amyloid plaques, we have designed amyloid-targeting ligands that can effectively complex with 68Ga3+ while maintaining good affinity for amyloid β. In this study, we introduced novel 1,4,7-triazacyclononane-based bifunctional chelators (BFCs) that incorporate a benzothiazole moiety as the Aβ-binding fragment and form charged and neutral species with 68Ga3+. In vitro autoradiography using 5xFAD and WT mouse brain sections (11-month-old) suggested strong and specific binding of the 68Ga complexes to amyloid β. Biodistribution studies in CD-1 mice revealed a low brain uptake of 0.10-0.33% ID/g, thus suggesting 68Ga-labeled novel BFCs as promising candidates for detecting CAA.
Collapse
Affiliation(s)
- Truc T. Huynh
- Department
of Radiation Oncology, Washington University
School of Medicine, 4511
Forest Park Avenue, St. Louis, Missouri 63108, United
States
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Yujue Wang
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Karna Terpstra
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Hong-Jun Cho
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Liviu M. Mirica
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United
States
- Hope
Center for Neurological Disorders, Washington
University School of Medicine, St. Louis, Missouri 63110, United States
| | - Buck E. Rogers
- Department
of Radiation Oncology, Washington University
School of Medicine, 4511
Forest Park Avenue, St. Louis, Missouri 63108, United
States
| |
Collapse
|
28
|
Patterns of Focal Amyloid Deposition Using 18F-Florbetaben PET in Patients with Cognitive Impairment. Diagnostics (Basel) 2022; 12:diagnostics12061357. [PMID: 35741166 PMCID: PMC9221882 DOI: 10.3390/diagnostics12061357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Accumulation of aggregated amyloid-β (Aβ) in the brain is considered the first pathological event within the pathogenesis of Alzheimer’s disease (AD). It is difficult to accurately identify the initial brain regions of Aβ accumulation due to the time-lag between the start of the pathophysiology and symptom onset. However, focal regional amyloid uptake on amyloid PET scans may provide insights into this. Hence, we aimed to evaluate the topographic distribution of amyloid deposition in patients with cognitive impairment and to identify the starting order of amyloid accumulation in the brain using conditional probability. We enrolled 58 patients composed of 9 normal cognition (NC), 32 mild cognitive impairment (MCI), and 17 dementia showing focal regional amyloid deposition corresponding to a brain amyloid plaque load (BAPL) score of 2 among those who visited the Memory Clinic of Asan Medical Center and underwent an 18F-florbetaben PET scan (March 2013 to April 2019). Regions of interest (ROI) included the frontal, parietal, lateral temporal, and occipital cortices, the posterior cingulate/precuneus, and the striatum. The most frequent occurrence of Aβ deposition was in the posterior cingulate/precuneus (n = 41, 68.3%). The second most frequent site was the lateral temporal cortex (n = 24, 40.0%), followed by the lateral parietal cortex (n = 21, 35.6%) and other lesions, such as the frontal and occipital cortices. The striatum was the least frequently affected. Our study found that the posterior cingulate/precuneus and the lateral temporal and parietal cortices may be the earliest areas to be affected by Aβ accumulation. Longitudinal follow-up of focal brain amyloid deposition may help elucidate the evolutionary pattern of Aβ accumulation in the brain of people with AD continuum.
Collapse
|
29
|
Wu KY, Lin KJ, Chen CH, Liu CY, Wu YM, Chen CS, Yen TC, Hsiao IT. Decreased Cerebral Amyloid-β Depositions in Patients With a Lifetime History of Major Depression With Suspected Non-Alzheimer Pathophysiology. Front Aging Neurosci 2022; 14:857940. [PMID: 35721010 PMCID: PMC9204309 DOI: 10.3389/fnagi.2022.857940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral amyloid-β (Aβ) depositions in depression in old age are controversial. A substantial proportion of individuals with late-life major depressive disorder (MDD) could be classified as having suspected non-Alzheimer’s disease pathophysiology (SNAP) by a negative test for the biomarker amyloid-β (Aβ−) but positive neurodegeneration (ND+). This study aimed to evaluate subthreshold Aβ loads in amyloid-negative MDD, particularly in SNAP MDD patients. This study included 46 amyloid-negative MDD patients: 23 SNAP (Aβ−/ND+) MDD and 23 Aβ−/ND− MDD, and 22 Aβ−/ND− control subjects. All subjects underwent 18F-florbetapir PET, FDG-PET, and MRI. Regions of interest (ROIs) and voxel-wise group comparisons were performed with adjustment for age, gender, and level of education. The SNAP MDD patients exhibited significantly deceased 18F-florbetapir uptakes in most cortical regions but not the parietal and precuneus cortex, as compared with the Aβ−/ND− MDD and control subjects (FDR correction, p < 0.05). No correlations of neuropsychological tests or depression characteristics with global cortical uptakes, but significant positive correlations between cognitive functions and adjusted hippocampal volumes among different groups were observed. The reduced Aβ depositions in the amyloid-negative MDD patients might be attributed mainly to the SNAP MDD patients. Our results indicated that meaningfully low amounts of subclinical Aβ might contain critical information on the non-amyloid-mediated pathogenesis.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- *Correspondence: Ing-Tsung Hsiao,
| |
Collapse
|
30
|
García Vicente A, Tello Galán M, Pena Pardo F, Amo-Salas M, Mondejar Marín B, Navarro Muñoz S, Rueda Medina I, Poblete García V, Marsal Alonso C, Soriano Castrejón Á. Aumento de la confianza en la interpretación del PET con 18F-Florbetaben: “machine learning” basado en la aproximación cuantitativa. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Chu WT, Wang WE, Zaborszky L, Golde TE, DeKosky S, Duara R, Loewenstein DA, Adjouadi M, Coombes SA, Vaillancourt DE. Association of Cognitive Impairment With Free Water in the Nucleus Basalis of Meynert and Locus Coeruleus to Transentorhinal Cortex Tract. Neurology 2022; 98:e700-e710. [PMID: 34906980 PMCID: PMC8865892 DOI: 10.1212/wnl.0000000000013206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The goal of this work was to determine the relationship between diffusion microstructure and early changes in Alzheimer disease (AD) severity as assessed by clinical diagnosis, cognitive performance, dementia severity, and plasma concentrations of neurofilament light chain. METHODS Diffusion MRI scans were collected on cognitively normal participants (CN) and patients with early mild cognitive impairment (EMCI), late mild cognitive impairment, and AD. Free water (FW) and FW-corrected fractional anisotropy were calculated in the locus coeruleus to transentorhinal cortex tract, 4 magnocellular regions of the basal forebrain (e.g., nucleus basalis of Meynert), entorhinal cortex, and hippocampus. All patients underwent a battery of cognitive assessments; neurofilament light chain levels were measured in plasma samples. RESULTS FW was significantly higher in patients with EMCI compared to CN in the locus coeruleus to transentorhinal cortex tract, nucleus basalis of Meynert, and hippocampus (mean Cohen d = 0.54; p fdr < 0.05). FW was significantly higher in those with AD compared to CN in all the examined regions (mean Cohen d = 1.41; p fdr < 0.01). In addition, FW in the hippocampus, entorhinal cortex, nucleus basalis of Meynert, and locus coeruleus to transentorhinal cortex tract positively correlated with all 5 cognitive impairment metrics and neurofilament light chain levels (mean r 2 = 0.10; p fdr < 0.05). DISCUSSION These results show that higher FW is associated with greater clinical diagnosis severity, cognitive impairment, and neurofilament light chain. They also suggest that FW elevation occurs in the locus coeruleus to transentorhinal cortex tract, nucleus basalis of Meynert, and hippocampus in the transition from CN to EMCI, while other basal forebrain regions and the entorhinal cortex are not affected until a later stage of AD. FW is a clinically relevant and noninvasive early marker of structural changes related to cognitive impairment.
Collapse
Affiliation(s)
- Winston Thomas Chu
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - Wei-En Wang
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - Laszlo Zaborszky
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - Todd Eliot Golde
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - Steven DeKosky
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - Ranjan Duara
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - David A Loewenstein
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - Malek Adjouadi
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - Stephen A Coombes
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami
| | - David E Vaillancourt
- From the J. Crayton Pruitt Family Department of Biomedical Engineering (W.T.C., D.E.V.), Department of Applied Physiology and Kinesiology (W.T.C., W.-e.W., S.A.C., D.E.V.), Department of Neuroscience (T.E.G.); Center for Translational Research in Neurodegenerative Diseases (T.E.G.), Department of Neurology (S.D., D.E.V.), and McKnight Brain Institute (S.D., D.E.V.), University of Florida, Gainesville; Center for Molecular and Behavioral Neuroscience (L.Z.), Rutgers University, Newark, NJ; Wein Center for Alzheimer's Disease and Memory Disorders (R.D., D.A.L.), Mount Sinai Medical Center, Miami Beach; Center for Cognitive Neuroscience and Aging (D.A.L.) and Department of Psychiatry and Behavioral Sciences (D.A.L.), University of Miami Miller School of Medicine; and Center for Advanced Technology and Education (M.A.), Florida International University, Miami.
| |
Collapse
|
32
|
Park JE, Gunasekaran TI, Cho YH, Choi SM, Song MK, Cho SH, Kim J, Song HC, Choi KY, Lee JJ, Park ZY, Song WK, Jeong HS, Lee KH, Lee JS, Kim BC. Diagnostic Blood Biomarkers in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10010169. [PMID: 35052848 PMCID: PMC8773964 DOI: 10.3390/biomedicines10010169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Potential biomarkers for Alzheimer’s disease (AD) include amyloid β1–42 (Aβ1–42), t-Tau, p-Tau181, neurofilament light chain (NFL), and neuroimaging biomarkers. Their combined use is useful for diagnosing and monitoring the progress of AD. Therefore, further development of a combination of these biomarkers is essential. We investigated whether plasma NFL/Aβ1–42 can serve as a plasma-based primary screening biomarker reflecting brain neurodegeneration and amyloid pathology in AD for monitoring disease progression and early diagnosis. We measured the NFL and Aβ1–42 concentrations in the CSF and plasma samples and performed correlation analysis to evaluate the utility of these biomarkers in the early diagnosis and monitoring of AD spectrum disease progression. Pearson’s correlation analysis was used to analyse the associations between the fluid biomarkers and neuroimaging data. The study included 136 participants, classified into five groups: 28 cognitively normal individuals, 23 patients with preclinical AD, 22 amyloid-negative patients with amnestic mild cognitive impairment, 32 patients with prodromal AD, and 31 patients with AD dementia. With disease progression, the NFL concentrations increased and Aβ1–42 concentrations decreased. The plasma and CSF NFL/Aβ1–42 were strongly correlated (r = 0.558). Plasma NFL/Aβ1–42 was strongly correlated with hippocampal volume/intracranial volume (r = 0.409). In early AD, plasma NFL/Aβ1–42 was associated with higher diagnostic accuracy than the individual biomarkers. Moreover, in preclinical AD, plasma NFL/Aβ1–42 changed more rapidly than the CSF t-Tau or p-Tau181 concentrations. Our findings highlight the utility of plasma NFL/Aβ1–42 as a non-invasive plasma-based biomarker for early diagnosis and monitoring of AD spectrum disease progression.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea; (J.E.P.); (T.I.G.); (Y.H.C.); (K.H.L.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Tamil Iniyan Gunasekaran
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea; (J.E.P.); (T.I.G.); (Y.H.C.); (K.H.L.)
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Center, Chosun University, Gwangju 61452, Korea; (K.Y.C.); (J.J.L.)
| | - Yeong Hee Cho
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea; (J.E.P.); (T.I.G.); (Y.H.C.); (K.H.L.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.-M.C.); (S.H.C.)
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Korea;
| | - Min-Kyung Song
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Korea;
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.-M.C.); (S.H.C.)
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Korea;
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.K.); (H.-C.S.)
| | - Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea; (J.K.); (H.-C.S.)
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Center, Chosun University, Gwangju 61452, Korea; (K.Y.C.); (J.J.L.)
| | - Jang Jae Lee
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Center, Chosun University, Gwangju 61452, Korea; (K.Y.C.); (J.J.L.)
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Woo Keun Song
- Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Kun Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea; (J.E.P.); (T.I.G.); (Y.H.C.); (K.H.L.)
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Center, Chosun University, Gwangju 61452, Korea; (K.Y.C.); (J.J.L.)
- Aging Neuroscience Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Jung Sup Lee
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea; (J.E.P.); (T.I.G.); (Y.H.C.); (K.H.L.)
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
- Correspondence: (J.S.L.); (B.C.K.); Tel.: +82-62-220-6665 (J.S.L.); +82-62-220-6123 (B.C.K.)
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.-M.C.); (S.H.C.)
- Department of Neurology, Chonnam National University Hospital, Gwangju 61469, Korea;
- Correspondence: (J.S.L.); (B.C.K.); Tel.: +82-62-220-6665 (J.S.L.); +82-62-220-6123 (B.C.K.)
| |
Collapse
|
33
|
Rosselli M, Uribe IV, Ahne E, Shihadeh L. Culture, Ethnicity, and Level of Education in Alzheimer's Disease. Neurotherapeutics 2022; 19:26-54. [PMID: 35347644 PMCID: PMC8960082 DOI: 10.1007/s13311-022-01193-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia, where the abnormal accumulation of beta-amyloid (Aβ) and tau lead to neurodegeneration as well as loss of cognitive, behavioral, and functional abilities. The present review analyzes AD from a cross-cultural neuropsychological perspective, looking at differences in culture-associated variables, neuropsychological test performance and biomarkers across ethnic and racial groups. Studies have found significant effects of culture, preferred language, country of origin, race, and ethnicity on cognitive test performance, although the definition of those grouping terms varies across studies. Together, with the substantial underrepresentation of minority groups in research, the inconsistent classification might conduce to an inaccuratte diagnosis that often results from biases in testing procedures that favor the group to which test developers belong. These biases persist even after adjusting for variables related to disadvantageous societal conditions, such as low level of education, unfavorable socioeconomic status, health care access, or psychological stressors. All too frequently, educational level is confounded with culture. Minorities often have lower educational attainment and lower quality of education, causing differences in test results that are then attributed to culture. Higher levels of education are also associated with increased cognitive reserve, a protective factor against cognitive decline in the presence of neurodegeneration. Biomarker research suggests there might be significant differences in specific biomarker profiles for each ethnicity/race in need of accurate cultural definitions to adequately predict risk and disease progression across ethnic/racial groups. Overall, this review highlights the need for diversity in all domains of AD research that lack inclusion and the collection of relevant information from these groups.
Collapse
Affiliation(s)
- Mónica Rosselli
- Department of Psychology, Florida Atlantic University, Charles E. Schmidt College of Science 3200 College Av, Davie, FL, 33314, USA.
- 1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA.
| | - Idaly Vélez Uribe
- Department of Psychology, Florida Atlantic University, Charles E. Schmidt College of Science 3200 College Av, Davie, FL, 33314, USA
- 1Florida Alzheimer's Disease Research Center, Miami Beach, FL, USA
| | - Emily Ahne
- Department of Psychology, Florida Atlantic University, Charles E. Schmidt College of Science 3200 College Av, Davie, FL, 33314, USA
| | - Layaly Shihadeh
- Department of Psychology, Florida Atlantic University, Charles E. Schmidt College of Science 3200 College Av, Davie, FL, 33314, USA
| |
Collapse
|
34
|
Kim SH, Lee EH, Kim HJ, Kim AR, Kim YE, Lee JH, Yoon MY, Koh SH. Development of a Low-Molecular-Weight Aβ42 Detection System Using a Enzyme-Linked Peptide Assay. Biomolecules 2021; 11:1818. [PMID: 34944462 PMCID: PMC8699310 DOI: 10.3390/biom11121818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disease that is the most common cause of dementia. The incidence of AD is rapidly rising because of the aging of the world population. Because AD is presently incurable, early diagnosis is very important. The disease is characterized by pathological changes such as deposition of senile plaques and decreased concentration of the amyloid-beta 42 (Aβ42) peptide in the cerebrospinal fluid (CSF). The concentration of Aβ42 in the CSF is a well-studied AD biomarker. The specific peptide probe was screened through four rounds of biopanning, which included the phage display process. The screened peptide showed strong binding affinity in the micromolar range, and the enzyme-linked peptide assay was optimized using the peptide we developed. This diagnostic method showed specificity toward Aβ42 in the presence of other proteins. The peptide-binding site was also estimated using molecular docking analysis. Finally, the diagnostic method we developed could significantly distinguish patients who were classified based on amyloid PET images.
Collapse
Affiliation(s)
- Sang-Heon Kim
- Department of Chemistry and Research, Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.-H.K.); (A.-R.K.)
| | - Eun-Hye Lee
- Departments of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea; (E.-H.L.); (Y.-E.K.)
| | - Hyung-Ji Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - A-Ru Kim
- Department of Chemistry and Research, Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.-H.K.); (A.-R.K.)
| | - Ye-Eun Kim
- Departments of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea; (E.-H.L.); (Y.-E.K.)
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Korea
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Moon-Young Yoon
- Department of Chemistry and Research, Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.-H.K.); (A.-R.K.)
| | - Seong-Ho Koh
- Departments of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea; (E.-H.L.); (Y.-E.K.)
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Korea
| |
Collapse
|
35
|
Youn H, Hyung WSW, Kim J, Lee ES, Eo JS, Han CE, Han C, Kim SH, Jeong HG. Brain amyloid accumulation possibly exacerbates concurrent mild cognitive impairment with subthreshold depression in older adults: A 1-year follow-up study. J Affect Disord 2021; 295:93-100. [PMID: 34418779 DOI: 10.1016/j.jad.2021.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND This study aimed to investigate the 1-year changes in neuropsychological test results in older adults with concomitant late-life depression (LLD) and mild cognitive impairment (MCI) according to the presence or absence of brain amyloidopathy. METHODS All subjects underwent 18F-florbetaben-positron emission tomography and a standardized neuropsychological battery. The subjects were divided based on brain amyloidopathy and severity of depressive symptoms into the following groups: LLD-MCI-A(+), subthreshold depression (STD)-MCI-A(+), major depressive disorder (MDD)-MCI-A(+), LLD-MCI-A(-), STD-MCI-A(-), and MDD-MCI-A(-). After one year, follow-up neurocognitive tests were conducted. Fifty-nine participants completed both the baseline and 1-year follow-up neurocognitive tests. RESULTS In the LLD-MCI-A(+) group, the word list recall and word list recognition scores decreased during the follow-up period. The STD-MCI-A(+) group also showed a significant decrease in word list recall score and the score/Z-score of word list recognition. On the other hand, the word list recall Z-score improved at the 1-year follow-up in the LLD-MCI-A(-) group. In particular, the MDD-MCI-A(-) group showed significant increases in word list memory score/Z-score and word list recall Z-score during the follow-up period. LIMITATIONS Considering that AD progresses slowly, a longer follow-up period may be required. CONCLUSIONS Our findings showed differences in the extent of change of neuropsychological test results depending on the severity of depressive symptoms and presence or absence of brain amyloidopathy. Our results suggest that clinicians might explore the underlying neuropathology when assessing older adults with concomitant depression and cognitive impairment, even if the symptoms of depression are not severe.
Collapse
Affiliation(s)
- HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Won Seok William Hyung
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Junhyung Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hyun Kim
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; Korea University Research Institute of Mental Health, Seoul, Republic of Korea
| |
Collapse
|
36
|
Duong MT, Chen YJ, Doot RK, Young AJ, Lee H, Cai J, Pilania A, Wolk DA, Nasrallah IM. Astrocyte activation imaging with 11C-acetate and amyloid PET in mild cognitive impairment due to Alzheimer pathology. Nucl Med Commun 2021; 42:1261-1269. [PMID: 34231519 PMCID: PMC8800345 DOI: 10.1097/mnm.0000000000001460] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neuroinflammation is a well-known feature of early Alzheimer disease (AD) yet astrocyte activation has not been extensively evaluated with in vivo imaging in mild cognitive impairment (MCI) due to amyloid plaque pathology. Unlike neurons, astrocytes metabolize acetate, which has potential as a glial biomarker in neurodegeneration in response to AD pathologic features. Since the medial temporal lobe (MTL) is a hotspot for AD neurodegeneration and inflammation, we assessed astrocyte activity in the MTL and compared it to amyloid and cognition. METHODS We evaluate spatial patterns of in vivo astrocyte activation and their relationships to amyloid deposition and cognition in a cross-sectional pilot study of six participants with MCI and five cognitively normal participants. We measure 11C-acetate and 18F-florbetaben amyloid standardized uptake values ratios (SUVRs) and kinetic flux compared to the cerebellum on PET, with MRI and neurocognitive testing. RESULTS MTL 11C-acetate SUVR was significantly elevated in MCI compared to cognitively normal participants (P = 0.03; Cohen d = 1.76). Moreover, MTL 11C-acetate SUVR displayed significant associations with global and regional amyloid burden in MCI. Greater MTL 11C-acetate retention was significantly related with worse neurocognitive measures including the Montreal Cognitive Assessment (P = 0.001), word list recall memory (P = 0.03), Boston naming test (P = 0.04) and trails B test (P = 0.04). CONCLUSIONS While further validation is required, this exploratory pilot study suggests a potential role for 11C-acetate PET as a neuroinflammatory biomarker in MCI and early AD to provide clinical and translational insights into astrocyte activation as a pathological response to amyloid.
Collapse
Affiliation(s)
- Michael Tran Duong
- Division of Nuclear Medicine, Department of Radiology
- Penn Memory Center, Department of Neurology, Perelman School of Medicine
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yin Jie Chen
- Division of Nuclear Medicine, Department of Radiology
| | - Robert K Doot
- Division of Nuclear Medicine, Department of Radiology
| | | | - Hsiaoju Lee
- Division of Nuclear Medicine, Department of Radiology
| | - Jenny Cai
- Division of Nuclear Medicine, Department of Radiology
| | - Arun Pilania
- Penn Memory Center, Department of Neurology, Perelman School of Medicine
| | - David A Wolk
- Penn Memory Center, Department of Neurology, Perelman School of Medicine
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ilya M Nasrallah
- Division of Nuclear Medicine, Department of Radiology
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Levin F, Jelistratova I, Betthauser TJ, Okonkwo O, Johnson SC, Teipel SJ, Grothe MJ. In vivo staging of regional amyloid progression in healthy middle-aged to older people at risk of Alzheimer's disease. Alzheimers Res Ther 2021; 13:178. [PMID: 34674764 PMCID: PMC8532333 DOI: 10.1186/s13195-021-00918-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND We investigated regional amyloid staging characteristics in 11C-PiB-PET data from middle-aged to older participants at elevated risk for AD enrolled in the Wisconsin Registry for Alzheimer's Prevention. METHODS We analyzed partial volume effect-corrected 11C-PiB-PET distribution volume ratio maps from 220 participants (mean age = 61.4 years, range 46.9-76.8 years). Regional amyloid positivity was established using region-specific thresholds. We used four stages from the frequency-based staging of amyloid positivity to characterize individual amyloid deposition. Longitudinal PET data was used to assess the temporal progression of stages and to evaluate the emergence of regional amyloid positivity in participants who were amyloid-negative at baseline. We also assessed the effect of amyloid stage on longitudinal cognitive trajectories. RESULTS The staging model suggested progressive accumulation of amyloid from associative to primary neocortex and gradually involving subcortical regions. Longitudinal PET measurements supported the cross-sectionally estimated amyloid progression. In mixed-effects longitudinal analysis of cognitive follow-up data obtained over an average period of 6.5 years following the baseline PET measurement, amyloid stage II showed a faster decline in executive function, and advanced amyloid stages (III and IV) showed a faster decline across multiple cognitive domains compared to stage 0. CONCLUSIONS Overall, the 11C-PiB-PET-based staging model was generally consistent with previously derived models from 18F-labeled amyloid PET scans and a longitudinal course of amyloid accumulation. Differences in longitudinal cognitive decline support the potential clinical utility of in vivo amyloid staging for risk stratification of the preclinical phase of AD even in middle-aged to older individuals at risk for AD.
Collapse
Affiliation(s)
- Fedor Levin
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
| | - Irina Jelistratova
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
| | - Tobey J Betthauser
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ozioma Okonkwo
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sterling C Johnson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer's Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Rostock, Germany.
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, s/n, 41013, Seville, Spain.
| |
Collapse
|
38
|
Kim HJ, Cheong EN, Jo S, Lee S, Shim WH, Kang DW, Kwon M, Kim JS, Lee JH. Early Impairment in the Ventral Visual Pathway Can Predict Conversion to Dementia in Patients With Amyloid-negative Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 2021; 35:298-305. [PMID: 34132669 DOI: 10.1097/wad.0000000000000457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Around 15% to 20% of patients with clinically probable Alzheimer disease have been found to have no significant Alzheimer pathology on amyloid positron emission tomography. A previous study showed that conversion to dementia from amyloid-negative mild cognitive impairment (MCI) was observed in up to 11% of patients, drawing attention to this condition. OBJECT We gathered the detailed neuropsychological and neuroimaging data of this population to elucidate factors for conversion to dementia from amyloid-negative amnestic MCI. METHODS This study was a single-institutional, retrospective cohort study of amyloid-negative MCI patients over age 50 with at least 36 months of follow-up. All subjects underwent detailed neuropsychological testing, 3 tesla brain magnetic resonance imaging), and fluorine-18(18F)-florbetaben amyloid positron emission tomography scans. RESULTS During the follow-up period, 39 of 107 (36.4%) patients converted to dementia from amnestic MCI. The converter group had more severe impairment in all visual memory tasks. The volumetric analysis revealed that the converter group had significantly reduced total hippocampal volume on the right side, gray matter volume in the right lateral temporal, lingual gyri, and occipital pole. CONCLUSION Our study showed that reduced gray matter volume related to visual memory processing may predict clinical progression in this amyloid-negative MCI population.
Collapse
Affiliation(s)
| | - E-Nae Cheong
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology
| | | | | | - Woo-Hyun Shim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine
- Health Innovation Big Data Center, Asan Institute for Life Sciences
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | | | | | | | | |
Collapse
|
39
|
Barker W, Quinonez C, Greig MT, Behar R, Chirinos C, Rodriguez RA, Rosselli M, Rodriguez MJ, Cid RC, Rundek T, McFarland K, Hanson K, Smith G, DeKosky S, Vaillancourt D, Adjouadi M, Marsiske M, Ertekin-Taner N, Golde T, Loewenstein DA, Duara R. Utility of Plasma Neurofilament Light in the 1Florida Alzheimer's Disease Research Center (ADRC). J Alzheimers Dis 2021; 79:59-70. [PMID: 33216030 PMCID: PMC7902971 DOI: 10.3233/jad-200901] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Plasma NfL (pNfL) levels are elevated in many neurological disorders. However, the utility of pNfL in a clinical setting has not been established. Objective: In a cohort of diverse older participants, we examined: 1) the association of pNfL to age, sex, Hispanic ethnicity, diagnosis, and structural and amyloid imaging biomarkers; and 2) its association to baseline and longitudinal cognitive and functional performance. Methods: 309 subjects were classified at baseline as cognitively normal (CN) or with cognitive impairment. Most subjects had structural MRI and amyloid PET scans. The most frequent etiological diagnosis was Alzheimer’s disease (AD), but other neurological and neuropsychiatric disorders were also represented. We assessed the relationship of pNfL to cognitive and functional status, primary etiology, imaging biomarkers, and to cognitive and functional decline. Results: pNfL increased with age, degree of hippocampal atrophy, and amyloid load, and was higher in females among CN subjects, but was not associated with Hispanic ethnicity. Compared to CN subjects, pNfL was elevated among those with AD or FTLD, but not those with neuropsychiatric or other disorders. Hippocampal atrophy, amyloid positivity and higher pNfL levels each added unique variance in predicting greater functional impairment on the CDR-SB at baseline. Higher baseline pNfL levels also predicted greater cognitive and functional decline after accounting for hippocampal atrophy and memory scores at baseline. Conclusion: pNfL may have a complementary and supportive role to brain imaging and cognitive testing in a memory disorder evaluation, although its diagnostic sensitivity and specificity as a stand-alone measure is modest. In the absence of expensive neuroimaging tests, pNfL could be used for differentiating neurodegenerative disease from neuropsychiatric disorders.
Collapse
Affiliation(s)
- Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorder, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Carlos Quinonez
- Wien Center for Alzheimer's Disease and Memory Disorder, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Maria T Greig
- Wien Center for Alzheimer's Disease and Memory Disorder, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Raquel Behar
- Wien Center for Alzheimer's Disease and Memory Disorder, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Cesar Chirinos
- Wien Center for Alzheimer's Disease and Memory Disorder, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Rosemarie A Rodriguez
- Wien Center for Alzheimer's Disease and Memory Disorder, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Monica Rosselli
- Florida Atlantic University, Department of Psychology, Charles E. Schmidt College of Science, Davie, FL, USA
| | | | - Rosie Curiel Cid
- Department of Psychiatry and Behavioral Sciences and Neurology, Miller School of Medicine, University of Miami, FL, USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Kevin Hanson
- Florida ADRC, University of Florida, Gainesville, FL, USA
| | - Glenn Smith
- Florida ADRC, University of Florida, Gainesville, FL, USA
| | - Steven DeKosky
- Florida ADRC, University of Florida, Gainesville, FL, USA
| | | | - Malek Adjouadi
- College of Engineering and Computing, Florida International University, Miami, Florida, USA
| | | | - Nilufer Ertekin-Taner
- Mayo Clinic Florida, Department of Neuroscience, Jacksonville, FL, USA.,Mayo Clinic Florida, Department of Neurology, Jacksonville, FL, USA
| | - Todd Golde
- Florida ADRC, University of Florida, Gainesville, FL, USA
| | - David A Loewenstein
- Department of Psychiatry and Behavioral Sciences and Neurology, Miller School of Medicine, University of Miami, FL, USA
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorder, Mount Sinai Medical Center, Miami Beach, FL, USA
| |
Collapse
|
40
|
Lee ES, Youn H, Hyung WSW, Suh S, Han CE, Eo JS, Jeong HG. The effects of cerebral amyloidopathy on regional glucose metabolism in older adults with depression and mild cognitive impairment while performing memory tasks. Eur J Neurosci 2021; 54:6663-6672. [PMID: 34528336 DOI: 10.1111/ejn.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
Co-occurring depression and mild cognitive impairment (MCI) in older adults are important because they have a high risk of conversion to dementia. In the present study, task-related F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) was used to analyse older adults with concomitant depression and MCI. We recruited 20 older adults with simultaneous depression and MCI and 10 older adults with normal cognition (NC). The Verbal Paired Associates test and digit span test were used for the task-related FDG-PET. The 20 older adults with depression and MCI were classified into two groups based on the F-18 florbetaben PET results: depressed MCI patients with (LLD-MCI-A[+]; n = 11) and without amyloid accumulation (LLD-MCI-A[-]; n = 9). Reduced regional cerebral glucose metabolism (rCMglc) in the left superior frontal region was observed in the LLD-MCI-A(-) group compared with the NC group. Analyses of the NC and LLD-MCI-A(+) groups showed significantly decreased rCMglc in the right inferior parietal and left middle frontal regions in the LLD-MCI-A(+) group. rCMglc in the left precuneus was lower in the LLD-MCI-A(+) group than in the LLD-MCI-A(-) group. Significant correlations between the rCMglc in the right inferior parietal/left precuneus regions and memory task scores were observed based on correlation analyses of NC and LLD-MCI-A(+) groups. The findings in the present study indicate the presence of amyloid accumulation influences glucose metabolism in depressed elderly subjects with MCI while performing cognitive tasks. Task-related FDG-PET examinations may help differentiate MCI associated with depression from comorbid depression in patients with prodromal Alzheimer's disease.
Collapse
Affiliation(s)
- Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | | | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Seoul, South Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Seoul, South Korea.,Korea University Research Institute of Mental Health, Seoul, South Korea
| |
Collapse
|
41
|
Rejc L, Gómez-Vallejo V, Rios X, Cossío U, Baz Z, Mujica E, Gião T, Cotrina EY, Jiménez-Barbero J, Quintana J, Arsequell G, Cardoso I, Llop J. Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study1. J Alzheimers Dis 2021; 77:99-112. [PMID: 32804152 DOI: 10.3233/jad-200570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transthyretin (TTR) is a tetrameric, amyloid-β (Aβ)-binding protein, which reduces Aβ toxicity. The TTR/Aβ interaction can be enhanced by a series of small molecules that stabilize its tetrameric form. Hence, TTR stabilizers might act as disease-modifying drugs in Alzheimer's disease. OBJECTIVE We monitored the therapeutic efficacy of two TTR stabilizers, iododiflunisal (IDIF), which acts as small-molecule chaperone of the TTR/Aβ interaction, and tolcapone, which does not behave as a small-molecule chaperone, in an animal model of Alzheimer's disease using positron emission tomography (PET). METHODS Female mice (AβPPswe/PS1A246E/TTR+/-) were divided into 3 groups (n = 7 per group): IDIF-treated, tolcapone-treated, and non-treated. The oral treatment (100 mg/Kg/day) was started at 5 months of age. Treatment efficacy assessment was based on changes in longitudinal deposition of Aβ in the hippocampus (HIP) and the cortex (CTX) and determined using PET-[18F]florbetaben. Immunohistochemical analysis was performed at age = 14 months. RESULTS Standard uptake values relative to the cerebellum (SUVr) of [18F]florbetaben in CTX and HIP of non-treated animals progressively increased from age = 5 to 11 months and stabilized afterwards. In contrast, [18F]florbetaben uptake in HIP of IDIF-treated animals remained constant between ages = 5 and 11 months and significantly increased at 14 months. In the tolcapone-treated group, SUVr progressively increased with time, but at lower rate than in the non-treated group. No significant treatment effect was observed in CTX. Results from immunohistochemistry matched the in vivo data at age = 14 months. CONCLUSION Our work provides encouraging preliminary results on the ability of small-molecule chaperones to ameliorate Aβ deposition in certain brain regions.
Collapse
Affiliation(s)
- Luka Rejc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Xabier Rios
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Zuriñe Baz
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain
| | - Edurne Mujica
- Biochemistry and Molecular Biology, EHU-UPV, Leioa, Spain
| | - Tiago Gião
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department Organic Chemistry II, Faculty Science & Technology, EHU-UPV, Leioa, Spain
| | - Jordi Quintana
- Plataforma Drug Discovery, Parc Científic de Barcelona (PCB), Barcelona, Spain
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), Barcelona, Spain
| | - Isabel Cardoso
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, Guipúzcoa, Spain.,Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES)
| |
Collapse
|
42
|
Joo SH, Lee CU. Cerebral Amyloid Positivity Prediction Models Using Clinical Data in Subjects With Mild Cognitive Impairment and Dementia. Psychiatry Investig 2021; 18:864-870. [PMID: 34500505 PMCID: PMC8473862 DOI: 10.30773/pi.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Due to high cost of amyloid imaging, its use of amyloid imaging to confirm amyloid pathology is limited in clinical practice. It is of importance to develop a model to predict cerebral amyloid positivity using clinical data obtained from a memory clinic. METHODS A total of 410 participants who had symptom of subjective cognitive decline and underwent amyloid PET and apolipoprotein ε (APOE) genotyping were retrospectively enrolled from January 2016 to January 2019. Models for cerebral amyloid positivity prediction were developed in all subjects, mild cognitive impairment (MCI) subjects, and Alzheimer's disease (AD) dementia subjects through multivariate logistic regression analysis. The performance of the models was assessed using receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC) values. RESULTS Age, sex, years of education, body mass index (BMI), APOE4, and mini mental state examination score (MMSE) were selected for the final model for all subjects. The AUC value of the ROC curve was 0.775. Age, sex, years of education, BMI, and APOE4 were selected for the final model for MCI subjects. The AUC value was 0.735. Age, sex, years of education, BMI, APOE4, MMSE, and history of hypertension were selected for the final model for AD dementia subjects. The AUC value was 0.845. CONCLUSION This study found that models using clinical data can predict cerebral amyloid positivity according to cognitive status. These models can be useful as a screening tool predict cerebral amyloid deposition in cognitively impaired patients in a memory clinic.
Collapse
Affiliation(s)
- Soo Hyun Joo
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
43
|
Butler T, Goldberg JD, Galvin JE, Maloney T, Ravdin L, Glodzik L, de Leon MJ, Hochman T, Bowen RL, Atwood CS. Rationale, study design and implementation of the LUCINDA Trial: Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's. Contemp Clin Trials 2021; 107:106488. [PMID: 34166841 PMCID: PMC8550816 DOI: 10.1016/j.cct.2021.106488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
The LUCINDA Trial (Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's) is a 52 week, randomized, placebo-controlled trial of leuprolide acetate (Eligard) in women with Alzheimer's disease (AD). Leuprolide acetate is a gonadotropin analogue commonly used for hormone-sensitive conditions such as prostate cancer and endometriosis. This repurposed drug demonstrated efficacy in a previous Phase II clinical trial in those women with AD who also received a stable dose of the acetylcholinesterase inhibitor donepezil (Bowen et al., 2015). Basic biological, epidemiological and clinical trial data suggest leuprolide acetate mediates improvement and stabilization of neuropathology and cognitive performance via the modulation of gonadotropin and/or gonadotropin-releasing hormone signaling. LUCINDA will enroll 150 women with mild-moderate AD who are receiving a stable dose of donepezil from three study sites in the United States. Cognition and function are the primary outcome measures as assessed by the Alzheimer's Disease Assessment Scale-Cognitive Subscale. Blood and MRI biomarkers are also measured to assess hormonal, inflammatory and AD biomarker changes. We present the protocol for LUCINDA and discuss trial innovations and challenges including changes necessitated by the covid-19 pandemic and study drug procurement issues.
Collapse
Affiliation(s)
- Tracy Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Judith D Goldberg
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Departments of Neurology and Psychiatry, University of Miami, Miller School of Medicine, Boca Raton, FL 33433, USA
| | - Thomas Maloney
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lisa Ravdin
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lidia Glodzik
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mony J de Leon
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tsivia Hochman
- Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | - Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, and Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA
| |
Collapse
|
44
|
Schmitt J, Palleis C, Sauerbeck J, Unterrainer M, Harris S, Prix C, Weidinger E, Katzdobler S, Wagemann O, Danek A, Beyer L, Rauchmann BS, Rominger A, Simons M, Bartenstein P, Perneczky R, Haass C, Levin J, Höglinger GU, Brendel M. Dual-Phase β-Amyloid PET Captures Neuronal Injury and Amyloidosis in Corticobasal Syndrome. Front Aging Neurosci 2021; 13:661284. [PMID: 34054506 PMCID: PMC8155727 DOI: 10.3389/fnagi.2021.661284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: In recent years several 18F-labeled amyloid PET (Aβ-PET) tracers have been developed and have obtained clinical approval. There is evidence that Aβ-PET perfusion can provide surrogate information about neuronal injury in neurodegenerative diseases when compared to conventional blood flow and glucose metabolism assessment. However, this paradigm has not yet been tested in neurodegenerative disorders with cortical and subcortical affection. Therefore, we investigated the performance of early acquisition 18F-flutemetamol Aβ-PET in comparison to 18F-fluorodeoxyglucose (FDG)-PET in corticobasal syndrome (CBS). Methods: Subjects with clinically possible or probable CBS were recruited within the prospective Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease (ActiGliA) observational study and all CBS cases with an available FDG-PET prior to Aβ-PET were selected. Aβ-PET was acquired 0-10 min p.i. (early-phase) and 90-110 min p.i. (late-phase) whereas FDG-PET was recorded statically from 30 to 50 min p.i. Semiquantitative regional values and asymmetry indices (AI) were compared between early-phase Aβ-PET and FDG-PET. Visual assessments of hypoperfusion and hypometabolism were compared between both methods. Late-phase Aβ-PET was evaluated visually for assessment of Aβ-positivity. Results: Among 20 evaluated patients with CBS, 5 were Aβ-positive. Early-phase Aβ-PET and FDG-PET SUVr correlated highly in cortical (mean R = 0.86, range 0.77-0.92) and subcortical brain regions (mean R = 0.84, range 0.79-0.90). Strong asymmetry was observed in FDG-PET for the motor cortex (mean |AI| = 2.9%), the parietal cortex (mean |AI| = 2.9%), and the thalamus (mean |AI| = 5.5%), correlating well with AI of early-phase Aβ-PET (mean R = 0.87, range 0.62-0.98). Visual assessments of hypoperfusion and hypometabolism were highly congruent. Conclusion: Early-phase Aβ-PET facilitates assessment of neuronal injury in CBS for cortical and subcortical areas. Known asymmetries in CBS are captured by this method, enabling assessment of Aβ-status and neuronal injury with a single radiation exposure at a single visit.
Collapse
Affiliation(s)
- Julia Schmitt
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Julia Sauerbeck
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Catharina Prix
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Endy Weidinger
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Olivia Wagemann
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Adrian Danek
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Nuclear Medicine, University of Bern, Inselspital, Bern, Switzerland.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, United Kingdom
| | - Christian Haass
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Faculty of Medicine, Chair of Metabolic Biochemistry, Biomedical Center (BMC), Ludwig-Maximilians-Universtität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Medizinische Hochschule Hannover, Hanover, Germany.,Department of Neurology, Technical University Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | |
Collapse
|
45
|
Lim HJ, Park JE, Kim BC, Choi SM, Song MK, Cho SH, Seo HJ, Kim J, Song HC, Choi KY, Lee JJ, Kim HW, Ha JM, Song WK, Park SG, Lee JS, Lee KH. Comparison of Two Analytical Platforms in Cerebrospinal Fluid Biomarkers for the Classification of Alzheimer's Disease Spectrum with Amyloid PET Imaging. J Alzheimers Dis 2021; 75:949-958. [PMID: 32390627 DOI: 10.3233/jad-191331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) amyloid-β1-42 (Aβ1-42), total tau protein (t-Tau), and phosphorylated Tau (p-Tau) are ATN biomarkers for Alzheimer's disease (AD) and reflect pathogenic changes in the brain. CSF biomarkers of AD are considered for inclusion in the diagnostic criteria for research and clinical purposes to reduce the uncertainty of clinical diagnosis and to distinguish among AD stages. OBJECTIVE This study aims to compare two commercially available analytical platforms with respect to accuracy and the potential for early diagnosis of AD. METHODS A total of 211 CSF samples from healthy control (HC) and AD subjects were analyzed using two analytical platforms, INNOTEST ELISA and INNOBIA AlzBio3 xMAP kits. The accuracy of diagnosis and AUC values distinguishing study groups were compared between the two analytical platforms. RESULTS The absolute values for Aβ1-42, t-Tau, and p-Tau181 levels differed between the two platforms. The Aβ1-42 levels decreased, while t-Tau and p-Tau levels increased according to the AD stages. The AUC of Aβ1-42 and t-Tau, which distinguish the early stages of AD (preclinical and prodromal AD), were similar between the two platforms, whereas there were significant differences in p-Tau AUC values. CSF p-Tau using the INNOBIA was highly accurate for distinguishing both preclinical AD (AUC = 0.826, cut-off score≥38.89) and prodromal AD (AUC = 0.862, cut-off score≥41.88) from HC. CONCLUSION The accuracy of CSF p-Tau levels in the preclinical and prodromal AD is higher for the INNOBIA than the INNOTEST, and the early stage AD can be accurately distinguished from HC.
Collapse
Affiliation(s)
- Ho Jae Lim
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Jung Eun Park
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,BK21-plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Min-Kyung Song
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyeon Jeong Seo
- Department of Neurology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's Disease and Related Dementias Cohort Center, Chosun University, Gwangju, Republic of Korea
| | - Jang Jae Lee
- Gwangju Alzheimer's Disease and Related Dementias Cohort Center, Chosun University, Gwangju, Republic of Korea
| | - Hoo-Won Kim
- Department of Neurology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Jung-Min Ha
- Department of Nuclear Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Woo Keun Song
- Department of Life Science, Bioimaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sung-Gyoo Park
- Department of Life Science, Bioimaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Sup Lee
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,BK21-plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,Gwangju Alzheimer's Disease and Related Dementias Cohort Center, Chosun University, Gwangju, Republic of Korea.,Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
46
|
García Vicente AM, Tello Galán MJ, Pena Pardo FJ, Amo-Salas M, Mondejar Marín B, Navarro Muñoz S, Rueda Medina I, Poblete García VM, Marsal Alonso C, Soriano Castrejón Á. Increasing the confidence of 18F-Florbetaben PET interpretations: Machine learning quantitative approximation. Rev Esp Med Nucl Imagen Mol 2021; 41:153-163. [DOI: 10.1016/j.remnie.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 11/28/2022]
|
47
|
Kim HJ, Cheong EN, Jo S, Lee S, Shim WH, Kwon M, Kim JS, Kim BJ, Lee JH. The cerebellum could serve as a potential imaging biomarker of dementia conversion in patients with amyloid-negative amnestic mild cognitive impairment. Eur J Neurol 2021; 28:1520-1527. [PMID: 33559375 DOI: 10.1111/ene.14770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE As part of network-specific neurodegeneration, changes in cerebellar gray matter (GM) volume and impaired cerebello-cerebral functional networks have been reported in Alzheimer disease (AD). Compared with healthy controls, a volume loss in the cerebellum has been observed in patients with continuum of AD. However, little is known about the anatomical or functional changes in patients with clinical AD but no brain amyloidosis. We aimed to identify the relationship between cerebellar volume and dementia conversion of amyloid-negative mild cognitive impairment (MCI). METHODS This study was a retrospective cohort study of patients over the age 50 years with amyloid-negative amnestic MCI who visited the memory clinic of Asan Medical Center with no less than a 36-month follow-up period. All subjects underwent detailed neuropsychological tests, 3 T brain magnetic resonance imaging scans including three-dimensional T1 imaging, and fluorine-18[F18 ]-florbetaben amyloid positron emission tomography scans. A spatially unbiased atlas template of the cerebellum and brainstem was used for analyzing cerebellar GM volume. RESULTS During the 36 months of follow-up, 39 of 107 (36.4%) patients converted to dementia from amnestic MCI. The converter group had more severe impairments in all visual memory tasks. In terms of volumetric analysis, reduced crus I/II volume adjusted with total intracranial volume, and age was observed in the converter group. CONCLUSIONS Significant cerebellar GM atrophy involving the bilateral crus I/II may be a novel imaging biomarker for predicting dementia progression in amyloid-negative amnestic MCI patients.
Collapse
Affiliation(s)
- Hyung-Ji Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - E-Nae Cheong
- Department of Medical Science and Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sunju Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo-Hyun Shim
- Department of Radiology and Research Institute of Radiology, Health Innovation Big Data Center, Asan Medical Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea.,Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Miseon Kwon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bum Joon Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Librizzi D, Cabanel N, Zavorotnyy M, Riehl E, Kircher T, Luster M, Hooshyar Yousefi B. Clinical Relevance of [ 18F]Florbetaben and [ 18F]FDG PET/CT Imaging on the Management of Patients with Dementia. Molecules 2021; 26:molecules26051282. [PMID: 33652938 PMCID: PMC7956266 DOI: 10.3390/molecules26051282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
PET of β-Amyloid plaques (Aβ) using [18F]florbetaben ([18F]FBB) and [18F]fluorodeoxyglucose ([18F]FDG) increasingly aid clinicians in early diagnosis of dementia, including Alzheimer’s disease (AD), frontotemporal disease, dementia with Lewy bodies, and vascular dementia. The aim of this retrospective analysis was to evaluate clinical relevance of [18F]FBB, [18F]FDG PET and complimentary CSF measurements in patients with suspected dementia. In this study, 40 patients with clinically suspected or history of dementia underwent (1) measurement of Aβ peptides, total tau, and p-tau protein levels in the cerebrospinal fluid (CSF) compared with healthy controls (HC); (2) clinical and neuropsychological assessment, which included Consortium to Establish a Registry for Alzheimer’s Disease neuropsychological assessment battery (CERAD-NAB); (3) [18F]FBB and [18F]FDG PET imaging within an average of 3 weeks. The subjects were within 15 days stratified using PET, CSF measurements as HC, mild cognitive impaired (MCI) and dementia including Alzheimer´s disease. The predictive dementia-related cognitive decline values were supporting the measurements. PET images were evaluated visually and quantitatively using standard uptake value ratios (SUVR). Twenty-one (52.5%) subjects were amyloid-positive (Aβ+), with a median neocortical SUVR of 1.80 for AD versus 1.20 relative to the respective 19 (47.5 %) amyloid-negative (Aβ-) subjects. Moreover, the [18F]FDG and [18F]FBB confirmed within a sub-group of 10 patients a good complimentary role by correlation between amyloid pathology and brain glucose metabolism in 8 out of 10 subjects. The results suggest the clinical relevance for [18F]FBB combined with [18F]FDG PET retention and CFS measurements serving the management of our patients with dementia. Therefore, [18F]FBB combined with [18F]FDG PET is a helpful tool for differential diagnosis, and supports the patients’ management as well as treatment.
Collapse
Affiliation(s)
- Damiano Librizzi
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany; (D.L.); (E.R.); (M.L.)
| | - Nicole Cabanel
- Department of Psychiatry and Psychotherapy, Philipps-University of Marburg, 35039 Marburg, Germany; (N.C.); (M.Z.); (T.K.)
- Marburg Center for Mind, Brain and Behavior—MCMBB, University of Marburg, 35032 Marburg, Germany
| | - Maxim Zavorotnyy
- Department of Psychiatry and Psychotherapy, Philipps-University of Marburg, 35039 Marburg, Germany; (N.C.); (M.Z.); (T.K.)
- Marburg Center for Mind, Brain and Behavior—MCMBB, University of Marburg, 35032 Marburg, Germany
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, 5210 Windisch, Switzerland
| | - Elisabeth Riehl
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany; (D.L.); (E.R.); (M.L.)
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University of Marburg, 35039 Marburg, Germany; (N.C.); (M.Z.); (T.K.)
- Marburg Center for Mind, Brain and Behavior—MCMBB, University of Marburg, 35032 Marburg, Germany
| | - Markus Luster
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany; (D.L.); (E.R.); (M.L.)
| | - Behrooz Hooshyar Yousefi
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany; (D.L.); (E.R.); (M.L.)
- Correspondence: ; Tel.: +49-6421-586-5806
| |
Collapse
|
49
|
Lee S, Kim D, Youn H, Hyung WSW, Suh S, Kaiser M, Han CE, Jeong HG. Brain network analysis reveals that amyloidopathy affects comorbid cognitive dysfunction in older adults with depression. Sci Rep 2021; 11:4299. [PMID: 33619307 PMCID: PMC7900108 DOI: 10.1038/s41598-021-83739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Late-life depression (LLD) may increase the risk of Alzheimer's dementia (AD). While amyloidopathy accelerates AD progression, its role in such patients has not yet been elucidated. We hypothesized that cerebral amyloidopathy distinctly affects the alteration of brain network topology and may be associated with distinct cognitive symptoms. We recruited 26 and 27 depressed mild cognitive impairment (MCI) patients with (LLD-MCI-A(+)) and without amyloid accumulation (LLD-MCI-A(-)), respectively, and 21 normal controls. We extracted structural brain networks using their diffusion-weighted images. We aimed to compare the distinct network deterioration in LLD-MCI with and without amyloid accumulation and the relationship with their distinct cognitive decline. Thus, we performed a group comparison of the network topological measures and investigated any correlations with neurocognitive testing scores. Topological features of brain networks were different according to the presence of amyloid accumulation. Disrupted network connectivity was highly associated with impaired recall and recognition in LLD-MCI-A(+) patients. Inattention and dysexecutive function were more influenced by the altered networks involved in fronto-limbic circuitry dysfunction in LLD-MCI-A(-) patients. Our results show that alterations in brain network topology may reflect different cognitive dysfunction depending on amyloid accumulation in depressed older adults with MCI.
Collapse
Affiliation(s)
- Suji Lee
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea
| | - Daegyeom Kim
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Won Seok William Hyung
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK
- Institute of Neuroscience, Newcastle University, The Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK
- Department of Functional Neurosurgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea.
| | - Hyun-Ghang Jeong
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea.
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Chung SJ, Lee S, Yoo HS, Baik K, Lee HS, Jung JH, Choi Y, Hong JM, Kim YJ, Ye BS, Sohn YH, Yun M, Lee PH. Different patterns of β-amyloid deposition in patients with Alzheimer's disease according to the presence of mild parkinsonism. Neurobiol Aging 2021; 101:199-206. [PMID: 33631471 DOI: 10.1016/j.neurobiolaging.2021.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to compare the patterns of β-amyloid deposition between patients with early-stage Alzheimer's disease (AD) with mild parkinsonism and those without parkinsonism. Sixty-one patients with early-stage AD (Clinical Dementia Rating [CDR], 0.5 or 1) who underwent 18F-florbetaben (18F-FBB) PET scans were enrolled. We performed comparative analyses of regional FBB uptake in the frontal, parietal, lateral temporal, medial temporal, occipital, anterior cingulate, and posterior cingulate cortices and in the precuneus, striatum, and thalamus between AD patients with mild parkinsonism (AD-p+; n = 23) and those without parkinsonism (AD-p-; n = 38). There was no significant difference in age, sex, years of education, Mini-Mental State Examination score, and white matter hyperintensity severity between groups. The AD-p+ group had lower composite scores in frontal/executive function domain than the AD-p- group. The AD-p+ group had a higher FBB uptake in the occipital cortex, but not in other cortical regions, than the AD-p- group. Our findings suggest that additional β-amyloid deposition in the occipital region is associated with mild parkinsonism in early-stage AD.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Sangwon Lee
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yonghoon Choi
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Man Hong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|