1
|
Fuscaldi LL, Durante ACR, Dapueto R, Reyes AL, Paolino A, Savio E, Malavolta L, de Lima ME, Fernandes SOA, Cardoso VN, de Barboza MF. Antimicrobial peptide LyeTx I mn∆K labeled with 68Ga is a potential PET radiopharmaceutical for molecular imaging of infections. Nucl Med Biol 2024; 138-139:108966. [PMID: 39426352 DOI: 10.1016/j.nucmedbio.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Antimicrobial peptides have been radiolabeled and investigated as molecular diagnostic probes due to their propensity to accumulate in infectious sites rather than aseptic inflammatory lesions. LyeTx I is a cationic peptide from the venom of Lycosa erythrognatha, exhibiting significant antimicrobial activity. LyeTx I mn∆K is a shortened derivative of LyeTx I, with an optimized balance between antimicrobial and hemolytic activities. This study reports the first 68Ga-radiolabeling of the DOTA-modified LyeTx I mn∆K and primarily preclinical evaluations of [68Ga]Ga-DOTA(K)-LyeTx I mn∆K as a PET radiopharmaceutical for infection imaging. METHODS DOTA(K)-LyeTx I mn∆K was radiolabeled with freshly eluted 68Ga. Radiochemical yield (RCY), radiochemical purity (RCP), and radiochemical stability (in saline and serum) were evaluated using ascending thin-layer chromatography (TLC) and reversed-phase high-performance liquid chromatography (RP-HPLC). The radiopeptide's lipophilicity was assessed by determining the logarithm of the partition coefficient (Log P). Serum protein binding (SBP) and binding to Staphylococcus aureus (S. aureus) cells were determined in vitro. Ex vivo biodistribution studies and PET/CT imaging were conducted in healthy mice (control) and mice with infection and aseptic inflammation to evaluate the potential of [68Ga]Ga-DOTA(K)-LyeTx I mn∆K as a specific PET radiopharmaceutical for infections. RESULTS [68Ga]Ga-DOTA(K)-LyeTx I mn∆K was obtained with a high RCY (>90 %), and after purification through a Sep-Pak C18 cartridge, the RCP exceeded 99 %. Ascending TLC and RP-HPLC showed that the radiopeptide remained stable for up to 3.0 h in saline solution and up to 1.5 h in murine serum. [68Ga]Ga-DOTA(K)-LyeTx I mn∆K exhibited hydrophilic characteristics (Log P = -2.4 ± 0.1) and low SPB (ranging from 23.3 ± 0.4 % at 5 min of incubation to 10.5 ± 1.1 % at 60 min of incubation). The binding of [68Ga]Ga-DOTA(K)-LyeTx I mn∆K to S. aureus cells was proportional to bacterial concentration, with binding percentages of 8.8 ± 0.5 % (0.5 × 109 CFU.mL-1), 16.2 ± 1.4 % (1.0 × 109 CFU.mL-1), and 62.2 ± 0.6 % (5.0 × 109 CFU.mL-1). Ex vivo biodistribution studies and PET/CT images showed higher radiopeptide uptake at the infection site compared to the aseptic inflammation site; the latter was similar to the control group. Target-to-non-target (T/NT) ratios obtained by ex vivo biodistribution data were approximately 1.0, 1.3, and 3.0 at all investigated time intervals for the control, aseptic inflammation, and infection groups, respectively. Furthermore, T/NT ratios obtained from PET/CT images were 1.1 ± 0.1 for the control group and 1.4 ± 0.1 for the aseptic inflammation group. For the infection group, T/NT ratio was 5.0 ± 0.3, approximately 5 times greater compared to the former groups. CONCLUSIONS The results suggest the potential of [68Ga]Ga-DOTA(K)-LyeTx I mn∆K as a PET radiopharmaceutical for molecular imaging of infections.
Collapse
Affiliation(s)
- Leonardo Lima Fuscaldi
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil.
| | | | - Rosina Dapueto
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Ana Laura Reyes
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Andrea Paolino
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Eduardo Savio
- Centro Uruguayo de Imagenología Molecular, Montevideo, Uruguay
| | - Luciana Malavolta
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Departamento de Ciências Fisiológicas, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
2
|
Akter A, Firth G, Darwesh AMF, Cooper MS, Chuljerm H, Cilibrizzi A, Blower PJ, Hider RC, Lyons O, Schelenz S, Mehra V, Abbate V. [ 68Ga]Ga-Schizokinen, a Potential Radiotracer for Selective Bacterial Infection Imaging. ACS Infect Dis 2024; 10:2615-2622. [PMID: 39012184 PMCID: PMC11320569 DOI: 10.1021/acsinfecdis.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Gallium-68-labeled siderophores as radiotracers have gained interest for the development of in situ infection-specific imaging diagnostics. Here, we report radiolabeling, in vitro screening, and in vivo pharmacokinetics (PK) of gallium-68-labeled schizokinen ([68Ga]Ga-SKN) as a new potential radiotracer for imaging bacterial infections. We radiolabeled SKN with ≥95% radiochemical purity. Our in vitro studies demonstrated its hydrophilic characteristics, neutral pH stability, and short-term stability in human serum and toward transchelation. In vitro uptake of [68Ga]Ga-SKN by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and S. epidermidis, but no uptake by Candida glabrata, C. albicans, or Aspergillus fumigatus, demonstrated its specificity to bacterial species. Whole-body [68Ga]Ga-SKN positron emission tomography (PET) combined with computerized tomography (CT) in healthy mice showed rapid renal excretion with no or minimal organ uptake. The subsequent ex vivo biodistribution resembled this fast PK with rapid renal excretion with minimal blood retention and no major organ uptake and showed some dissociation of the tracer in the urine after 60 min postinjection. These findings warrant further evaluation of [68Ga]Ga-SKN as a bacteria-specific radiotracer for infection imaging.
Collapse
Affiliation(s)
- Asma Akter
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - George Firth
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Afnan M. F. Darwesh
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
- Department
of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Margaret S. Cooper
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Hataichanok Chuljerm
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
- School
of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Agostino Cilibrizzi
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - Philip J. Blower
- School
of Biomedical Engineering and Imaging Sciences, Faculty of Life Science
and Medicine, King’s College London, London SE1 7EH, United Kingdom
| | - Robert C. Hider
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| | - Oliver Lyons
- Department
of Surgery, University of Otago, Christchurch 8013, New Zealand
| | - Silke Schelenz
- Department
of Microbiology, Kings College Hospital
NHS Foundation Trust, London SE5 9RS, United
Kingdom
| | - Varun Mehra
- Department
of Hematology, King’s College Hospital
NHS Foundation Trust, London SE5 9RS, United
Kingdom
| | - Vincenzo Abbate
- Institute
of Pharmaceutical Science, Faculty of Life Science and Medicine, King’s College London, London SE1 9NH, United Kingdom
| |
Collapse
|
3
|
Spoelstra GB, Blok SN, Reali Nazario L, Noord L, Fu Y, Simeth NA, IJpma FFA, van Oosten M, van Dijl JM, Feringa BL, Szymanski W, Elsinga PH. Synthesis and preclinical evaluation of novel 18F-vancomycin-based tracers for the detection of bacterial infections using positron emission tomography. Eur J Nucl Med Mol Imaging 2024; 51:2583-2596. [PMID: 38644432 PMCID: PMC11224109 DOI: 10.1007/s00259-024-06717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Bacterial infections are a major problem in medicine, and the rapid and accurate detection of such infections is essential for optimal patient outcome. Bacterial infections can be diagnosed by nuclear imaging, but most currently available modalities are unable to discriminate infection from sterile inflammation. Bacteria-targeted positron emission tomography (PET) tracers have the potential to overcome this hurdle. In the present study, we compared three 18F-labelled PET tracers based on the clinically applied antibiotic vancomycin for targeted imaging of Gram-positive bacteria. METHODS [18F]FB-NHS and [18F]BODIPY-FL-NHS were conjugated to vancomycin. The resulting conjugates, together with our previously developed [18F]PQ-VE1-vancomycin, were tested for stability, lipophilicity, selective binding to Gram-positive bacteria, antimicrobial activity and biodistribution. For the first time, the pharmacokinetic properties of all three tracers were compared in healthy animals to identify potential binding sites. RESULTS [18F]FB-vancomycin, [18F]BODIPY-FL-vancomycin, and [18F]PQ-VE1-vancomycin were successfully synthesized with radiochemical yields of 11.7%, 2.6%, and 0.8%, respectively. [18F]FB-vancomycin exhibited poor in vitro and in vivo stability and, accordingly, no bacterial binding. In contrast, [18F]BODIPY-FL-vancomycin and [18F]PQ-VE1-vancomycin showed strong and specific binding to Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which was outcompeted by unlabeled vancomycin only at concentrations exceeding clinically relevant vancomycin blood levels. Biodistribution showed renal clearance of [18F]PQ-VE1-vancomycin and [18F]BODIPY-FL-vancomycin with low non-specific accumulation in muscles, fat and bones. CONCLUSION Here we present the synthesis and first evaluation of the vancomycin-based PET tracers [18F]BODIPY-FL-vancomycin and [18F]PQ-VE1-vancomycin for image-guided detection of Gram-positive bacteria. Our study paves the way towards real-time bacteria-targeted diagnosis of soft tissue and implant-associated infections that are oftentimes caused by Gram-positive bacteria, even after prophylactic treatment with vancomycin.
Collapse
Affiliation(s)
- G B Spoelstra
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - S N Blok
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - L Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - L Noord
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - Y Fu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - N A Simeth
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstraβe 2, 37077, Göttingen, Germany
| | - F F A IJpma
- Department of Trauma Surgery, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - M van Oosten
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - J M van Dijl
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
| | - B L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands
| | - W Szymanski
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - P H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713GZ, The Netherlands.
| |
Collapse
|
4
|
Kahts M, Summers B, Gutta A, Pilloy W, Ebenhan T. Recently developed radiopharmaceuticals for bacterial infection imaging. EJNMMI Radiopharm Chem 2024; 9:49. [PMID: 38896373 PMCID: PMC11187059 DOI: 10.1186/s41181-024-00279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Infection remains a major cause of morbidity and mortality, regardless of advances in antimicrobial therapy and improved knowledge of microorganisms. With the major global threat posed by antimicrobial resistance, fast and accurate diagnosis of infections, and the reliable identification of intractable infection, are becoming more crucial for effective treatment and the application of antibiotic stewardship. Molecular imaging with the use of nuclear medicine allows early detection and localisation of infection and inflammatory processes, as well as accurate monitoring of treatment response. There has been a continuous search for more specific radiopharmaceuticals to be utilised for infection imaging. This review summarises the most prominent discoveries in specifically bacterial infection imaging agents over the last five years, since 2019. MAIN BODY Some promising new radiopharmaceuticals evaluated in patient studies are reported here, including radiolabelled bacterial siderophores like [68Ga]Ga-DFO-B, radiolabelled antimicrobial peptide/peptide fragments like [68Ga]Ga-NOTA-UBI29-41, and agents that target bacterial synthesis pathways (folic acid and peptidoglycan) like [11C]para-aminobenzoic acid and D-methyl-[11C]-methionine, with clinical trials underway for [18F]fluorodeoxy-sorbitol, as well as for 11C- and 18F-labelled trimethoprim. CONCLUSION It is evident that a great deal of effort has gone into the development of new radiopharmaceuticals for infection imaging over the last few years, with remarkable progress in preclinical investigations. However, translation to clinical trials, and eventually clinical Nuclear Medicine practice, is apparently slow. It is the authors' opinion that a more structured and harmonised preclinical setting and well-designed clinical investigations are the key to reliably evaluate the true potential of the newly proposed infection imaging agents.
Collapse
Affiliation(s)
- Maryke Kahts
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa.
| | - Beverley Summers
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa
| | - Aadil Gutta
- Nuclear Medicine Department, Dr George Mukhari Academic Hospital, Ga-Rankuwa, 0208, South Africa
- School of Medicine, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa
| | - Wilfrid Pilloy
- Nuclear Medicine Department, Dr George Mukhari Academic Hospital, Ga-Rankuwa, 0208, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Department and Nuclear Medicine Research Infrastructure, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
5
|
Abdulrehman T, Qadri S, Haik Y, Sultan A, Skariah S, Kumar S, Mendoza Z, Yadav KK, Titus A, Khader S. Advances in the targeted theragnostics of osteomyelitis caused by Staphylococcus aureus. Arch Microbiol 2024; 206:288. [PMID: 38834761 DOI: 10.1007/s00203-024-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.
Collapse
Affiliation(s)
- Tahir Abdulrehman
- eHealth Program, DeGroote School of Business, McMaster University, Hamilton, ON, Canada
- Health Policy, Management and Informatics, Allied Health, Credit Valley Hospital, Mississauga, ON, Canada
| | - Shahnaz Qadri
- School of Pharmacy, Texas A&M University, Kingsville, USA.
| | - Yousef Haik
- Department of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah, UAE.
| | - Ali Sultan
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sini Skariah
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shourya Kumar
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Zachary Mendoza
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Kamlesh K Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Anoop Titus
- Department of Preventive Cardiology, Houston Methodist, Houston, TX, USA
| | - Shameer Khader
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
6
|
te Beek ET, ten Broek MRJ, Abdul-Fatah S, Glaudemans AWJM. [18F]FDG PET/CT imaging of spinal infections. Clin Transl Imaging 2024; 12:527-539. [DOI: 10.1007/s40336-024-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 01/03/2025]
|
7
|
Koatale P, Welling MM, Ndlovu H, Kgatle M, Mdanda S, Mdlophane A, Okem A, Takyi-Williams J, Sathekge MM, Ebenhan T. Insights into Peptidoglycan-Targeting Radiotracers for Imaging Bacterial Infections: Updates, Challenges, and Future Perspectives. ACS Infect Dis 2024; 10:270-286. [PMID: 38290525 PMCID: PMC10862554 DOI: 10.1021/acsinfecdis.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
The unique structural architecture of the peptidoglycan allows for the stratification of bacteria as either Gram-negative or Gram-positive, which makes bacterial cells distinguishable from mammalian cells. This classification has received attention as a potential target for diagnostic and therapeutic purposes. Bacteria's ability to metabolically integrate peptidoglycan precursors during cell wall biosynthesis and recycling offers an opportunity to target and image pathogens in their biological state. This Review explores the peptidoglycan biosynthesis for bacteria-specific targeting for infection imaging. Current and potential radiolabeled peptidoglycan precursors for bacterial infection imaging, their development status, and their performance in vitro and/or in vivo are highlighted. We conclude by providing our thoughts on how to shape this area of research for future clinical translation.
Collapse
Affiliation(s)
- Palesa
C. Koatale
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Honest Ndlovu
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Mankgopo Kgatle
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Sipho Mdanda
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Amanda Mdlophane
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Ambrose Okem
- Department
of Anaesthesia, School of Clinical Medicine, University of Witwatersrand, 2050 Johannesburg, South Africa
| | - John Takyi-Williams
- Pharmacokinetic
and Mass Spectrometry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mike M. Sathekge
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
| | - Thomas Ebenhan
- Department
of Nuclear Medicine, University of Pretoria, 0001 Pretoria, South Africa
- Nuclear
Medicine Research Infrastructure (NuMeRI) NPC, 0001 Pretoria, South Africa
- DSI/NWU Pre-clinical
Drug Development Platform, North West University, 2520 Potchefstroom, South Africa
| |
Collapse
|
8
|
Miranda ACC, Fuscaldi LL, Mejia J, da Silva FFA, Turato WM, Mendonça FF, Nogueira SA, Osawa A, Yamaga LYI, Malavolta L, de Barboza MF. Radiosynthesis Standardization and Preclinical Assessment of the [ 68Ga]Ga-DOTA-Ubiquicidin 29-41: A Translational Study Targeting Differential Diagnosis of Infectious Processes. Pharmaceuticals (Basel) 2023; 17:48. [PMID: 38256881 PMCID: PMC10821498 DOI: 10.3390/ph17010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Human bacterial infections significantly contribute to the increase in healthcare-related burdens. This scenario drives the study of novel techniques for the early and precise diagnosis of infectious processes. Some alternatives include Nuclear Medicine- and Molecular Imaging-based strategies. However, radiopharmaceuticals that are available for routine assessments are not specific to differentiating infectious from aseptic inflammatory processes. In this context, [68Ga]Ga-DOTA-Ubiquicidin29-41 was synthesized using an automated module and radiochemical; in vivo and in vitro studies were performed. The radiopharmaceutical remained stable in saline (up to 180 min) and in rodent serum (up to 120 min) with radiochemical purities > 99 and 95%, respectively. Partition coefficient and serum protein binding at 60 min were determined (-3.63 ± 0.17 and 44.06 ± 1.88%, respectively). Ex vivo biodistribution, as well as in vivo microPET/CT images in mice, showed rapid blood clearance with renal excretion and reduced uptake in other organs in Staphylococcus aureus-infected animals. Higher uptake was observed in the target as compared to the non-target tissue (p < 0.0001) at 60 min post administration. The presented in-human clinical case demonstrates uptake of the radiopharmaceutical by Staphyloccocus aureus bacteria. These results indicate the potential of [68Ga]Ga-DOTA-Ubiquicidin29-41 as a radiopharmaceutical that can be obtained in a hospital radiopharmacy for the diagnosis of infectious processes using PET/CT.
Collapse
Affiliation(s)
| | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01224-001, Brazil; (L.L.F.); (F.F.M.); (L.M.)
| | - Jorge Mejia
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (J.M.); (S.A.N.); (L.Y.I.Y.); (M.F.d.B.)
| | | | - Walter Miguel Turato
- School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Fernanda Ferreira Mendonça
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01224-001, Brazil; (L.L.F.); (F.F.M.); (L.M.)
| | - Solange Amorim Nogueira
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (J.M.); (S.A.N.); (L.Y.I.Y.); (M.F.d.B.)
| | - Akemi Osawa
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (J.M.); (S.A.N.); (L.Y.I.Y.); (M.F.d.B.)
| | - Lilian Yuri Itaya Yamaga
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (J.M.); (S.A.N.); (L.Y.I.Y.); (M.F.d.B.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo 01224-001, Brazil; (L.L.F.); (F.F.M.); (L.M.)
| | - Marycel Figols de Barboza
- Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil; (J.M.); (S.A.N.); (L.Y.I.Y.); (M.F.d.B.)
| |
Collapse
|
9
|
Kahts M, Guo H, Kommidi H, Yang Y, Sayman HB, Summers B, Ting R, Zeevaart JR, Sathekge M, Aras O. 89Zr-leukocyte labelling for cell trafficking: in vitro and preclinical investigations. EJNMMI Radiopharm Chem 2023; 8:36. [PMID: 37930454 PMCID: PMC10628102 DOI: 10.1186/s41181-023-00223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The non-invasive imaging of leukocyte trafficking to assess inflammatory areas and monitor immunotherapy is currently generating great interest. There is a need to develop more robust cell labelling and imaging approaches to track living cells. Positron emission tomography (PET), a highly sensitive molecular imaging technique, allows precise signals to be produced from radiolabelled moieties. Here, we developed a novel leukocyte labelling approach with the PET radioisotope zirconium-89 (89Zr, half-life of 78.4 h). Experiments were carried out using human leukocytes, freshly isolated from whole human blood. RESULTS The 89Zr-leukocyte labelling efficiency ranged from 46 to 87% after 30-60 min. Radioactivity concentrations of labelled cells were up to 0.28 MBq/1 million cells. Systemically administered 89Zr-labelled leukocytes produced high-contrast murine PET images at 1 h-5 days post injection. Murine biodistribution data showed that cells primarily distributed to the lung, liver, and spleen at 1 h post injection, and are then gradually trafficked to liver and spleen over 5 days. Histological analysis demonstrated that exogenously 89Zr-labelled human leukocytes were present in the lung, liver, and spleen at 1 h post injection. However, intravenously injected free [89Zr]Zr4+ ion showed retention only in the bone with no radioactivity in the lung at 5 days post injection, which implied good stability of radiolabelled leukocytes in vivo. CONCLUSIONS Our study presents a stable and generic radiolabelling technique to track leukocytes with PET imaging and shows great potential for further applications in inflammatory cell and other types of cell trafficking studies.
Collapse
Affiliation(s)
- Maryke Kahts
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa.
| | - Hua Guo
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Harikrishna Kommidi
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yanping Yang
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Haluk Burcak Sayman
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University, 34303, Fatih, Istanbul, Turkey
| | - Beverley Summers
- Pharmaceutical Sciences Department, School of Pharmacy, Sefako Makgatho Health Sciences University, Ga-Rankuwa, 0208, South Africa
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jan Rijn Zeevaart
- Radiochemistry, The South African Nuclear Energy Corporation, Pelindaba, Hartebeespoort, 0240, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
- DST/NWU, Preclinical Drug Development Platform, North West University, Potchefstroom, 2520, South Africa
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
10
|
Mitra JB, Mukherjee A, Kumar A, Chandak A, Rakshit S, Yadav HD, Pandey BN, Sarma HD. Imaging of bacterial infection: Harnessing positron emission tomography and Cherenkov luminescence imaging with UBI-derived octapeptide. Drug Dev Res 2023; 84:1513-1521. [PMID: 37571805 DOI: 10.1002/ddr.22103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Noninvasive imaging techniques for the early detection of infections are in high demand. In this study, we present the development of an infection imaging agent consisting of the antimicrobial peptide fragment UBI (31-38) conjugated to the chelator 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), which allows for labeling with the positron emitter Ga-68. The preclinical evaluation of [68 Ga]Ga-NODAGA-UBI (31-38) was conducted to investigate its potential for imaging bacterial infections caused by Staphylococcus aureus. The octapeptide derived from ubiquicidin, UBI (31-38), was synthesized and conjugated with the chelator NODAGA. The conjugate was then radiolabeled with Ga-68. The radiolabeling process and the stability of the radio formulation were confirmed through chromatography. The study included both in vitro evaluations using S. aureus and in vivo evaluations in an animal model of infection and inflammation. Positron emission tomography (PET) and Cherenkov luminescence imaging (CLI) were performed to visualize the targeted localization of the radio formulation at the site of infection. Ex vivo biodistribution studies were carried out to quantify the uptake of the radio formulation in different organs and tissues. Additionally, the uptake of [18 F]Fluorodeoxyglucose ([18 F] FDG) in the animal model was also studied for comparison. The [68 Ga]Ga-NODAGA-UBI (31-38) complex consistently exhibited high radiochemical purity (>90%) after formulation. The complex demonstrated stability in saline, phosphate-buffered saline, and human serum for up to 3 h. Notably, the complex displayed significantly higher uptake in S. aureus, which was inhibited in the presence of unconjugated UBI (29-41) peptide, confirming the specificity of the formulation for bacterial membranes. Bacterial imaging capability was also observed in PET and CLI images. Biodistribution results indicated a substantial target-to-nontarget ratio of approximately 4 at 1 h postinjection of the radio formulation. Conversely, the uptake of [18 F]FDG in the animal model did not allow for the discrimination of infected and inflamed sites. Our studies have demonstrated that [68 Ga]Ga-NODAGA-UBI (31-38) holds promise as a radiotracer for imaging bacterial infections caused by S. aureus.
Collapse
Affiliation(s)
- Jyotsna Bhatt Mitra
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Ashok Chandak
- Board of Radiation & Isotope Technology, Navi Mumbai, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Hansa D Yadav
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Badri Narain Pandey
- Homi Bhabha National Institute, Mumbai, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
| |
Collapse
|
11
|
Li L, Liu M, Deng S, Zhu X, Song Y, Song E. Enzyme-Triggered Transforming of Assembly Peptide-Modified Magnetic Resonance-Tuned Probe for Highly Sensitive Imaging of Bacterial Infection In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208249. [PMID: 36929641 DOI: 10.1002/smll.202208249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Confirming bacterial infection at an early stage and distinguishing between sterile inflammation and bacterial infection is still highly needed for efficient treatment. Here, in situ highly sensitive magnetic resonance imaging (MRI) bacterial infection in vivo based on a peptide-modified magnetic resonance tuning (MRET) probe (MPD-1) that responds to matrix metallopeptidase 2 (MMP-2) highly expressed in bacteria-infected microenvironments is achieved. MPD-1 is an assembly of magnetic nanoparticle (MNP) bearing with gadolinium ion (Gd3+ ) modified MMP-2-cleavable self-assembled peptide (P1 ) and bacteria-targeting peptide (P), and it shows T2 -weighted signal due to the assemble of MNP and MRET ON phenomenon between MNP assembly and Gd3+ . Once MPD-1 accumulates at the bacterially infected site, P1 included in MPD-1 is cleaved explicitly by MMP-2, which triggers the T2 contrast agent of MPD-1 to disassemble into the monomer of MNP, leading the recovery of T1 -weighted signal. Simultaneously, Gd3+ detaches from MNP, further enhancing the T1 -weighted signal due to MRET OFF. The sensitive MRI of Staphylococcus aureus (low to 104 CFU) at the myositis site and accurate differentiation between sterile inflammation and bacterial infection based on the proposed MPD-1 probe suggests that this novel probe would be a promising candidate for efficiently detecting bacterial infection in vivo.
Collapse
Affiliation(s)
- Linyao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Maojuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Siyu Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, CAS, Beijing, 100085, P. R. China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
12
|
Li L, Liu M, Deng S, Zhu X, Song Y, Song E. A pH-responsive magnetic resonance tuning probe for precise imaging of bacterial infection in vivo. Acta Biomater 2023; 164:487-495. [PMID: 37061111 DOI: 10.1016/j.actbio.2023.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Accurate and sensitive detection of bacteria is essential for treating bacterial infections. Herein, a pH-responsive magnetic resonance tuning (MRET) probe, whose T1-weighted signal is activated in the bacteria-infected acid microenvironment, is developed for in situ accurately magnetic resonance imaging (MRI) of bacterial infection in vivo. The MRET probe (MDVG-1) is an assembly of paramagnetic enhancer (gadolinium-modified i-motif DNA3, abbreviated as Gd-DNA3-Gd) and the precursor of superparamagnetic quencher (DNA and vancomycin-modified magnetic nanoparticle, abbreviated as MDV). The T1-weighted signal of Gd-DNA3-Gd is quenched once the formation of MDVG-1 (MRET ON). Interestingly, the MDVG-1 probe was disassembled into the monomers of Gd-DNA3-Gd and MDV under the bacteria-infected acid microenvironment, resulting significantly enhanced T1-weighted signal at the infected site (MRET OFF). The pH-responsive MRET probe-based enhanced MRI signal and bacteria targeting significantly improve the distinction between bacterial infectious tissues and sterile inflamed tissues, which provides a promising approach for accurately detecting bacterial infection in vivo. STATEMENT OF SIGNIFICANCE: : Detecting pathogenic bacteria in vivo based on magnetic resonance imaging (MRI) strategy has been exploring recently. Although various bacterial-targeted MRI probes have been developed to image bacteria in vivo, the MRI signal of these MRI probes is always "on", which inevitably generates nonspecific background MRI signals, affecting the accuracy of MRI to a certain extent. In the current study, based on the magnetic resonance tuning (MRET) phenomenon, we present a pH-responsive MRET probe (MDVG-1) with T2-weighted imaging to T1-weighted imaging switchable properties to achieve in situ precise imaging of bacterial infection in vivo.
Collapse
Affiliation(s)
- Linyao Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Maojuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Siyu Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, CAS, Beijing, 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MAT. Metals to combat antimicrobial resistance. Nat Rev Chem 2023; 7:202-224. [PMID: 37117903 PMCID: PMC9907218 DOI: 10.1038/s41570-023-00463-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/10/2023]
Abstract
Bacteria, similar to most organisms, have a love-hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity ('metalloantibiotics'). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Angelo Frei
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Anthony D Verderosa
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alysha G Elliott
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Johannes Zuegg
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark A T Blaskovich
- Community for Open Antimicrobial Drug Discovery, Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
14
|
Chen D, Guo J, Li A, Sun C, Lin H, Lin H, Yang C, Wang W, Gao J. Metabolic fluorine labeling and hotspot imaging of dynamic gut microbiota in mice. SCIENCE ADVANCES 2023; 9:eabg6808. [PMID: 36706178 PMCID: PMC9882976 DOI: 10.1126/sciadv.abg6808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Real-time localization and microbial activity information of indigenous gut microbiota over an extended period of time remains a challenge with existing visualizing methods. Here, we report a metabolic fluorine labeling (MEFLA)-based strategy for monitoring the dynamic gut microbiota via 19F magnetic resonance imaging (19F MRI). In situ labeling of different microbiota subgroups is achieved by using a panel of peptidoglycan-targeting MEFLA probes containing 19F atoms of different chemical shifts, and subsequent real-time in vivo imaging is accomplished by multiplexed hotspot 19F MRI with high sensitivity and unlimited penetration. Using this method, we realize extended visualization (>24 hours) of native gut microbes located at different intestinal sections and semiquantitative analysis of their metabolic dynamics modulated by various conditions, such as the host death and different β-lactam antibiotics. Our strategy holds great potential for noninvasive and real-time assessing of the metabolic activities and locations of the highly dynamic gut microbiota.
Collapse
Affiliation(s)
- Dongxia Chen
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junnan Guo
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chengjie Sun
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huibin Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hongyu Lin
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jinhao Gao
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Welling MM, Warbroek K, Khurshid C, van Oosterom MN, Rietbergen DDD, de Boer MGJ, Nelissen RGHH, van Leeuwen FWB, Pijls BG, Buckle T. A radio- and fluorescently labelled tracer for imaging and quantification of bacterial infection on orthopaedic prostheses : a proof of principle study. Bone Joint Res 2023; 12:72-79. [PMID: 36649933 PMCID: PMC9872039 DOI: 10.1302/2046-3758.121.bjr-2022-0216.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods. METHODS 99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria. RESULTS Bacteria could be effectively stained in vitro and on prostheses, irrespective of the presence of biofilm. Infected prostheses revealed bacterial presence on the transition zone between the head and neck, and in the screw hole. Qualitative 2D fluorescence images could be complemented with quantitative 3D fhSPECT scans. Despite thorough chlorhexidine treatments, 28% to 44% of the signal remained present in the locations of the infection that were identified using imaging, which included 500 to 2,000 viable bacteria. CONCLUSION The hybrid tracer 99mTc-UBI29-41-Cy5 allowed effective bacterial staining. Qualitative real-time fluorescence guidance could be effectively combined with nuclear imaging that enables quantitative monitoring of the effectiveness of cleaning strategies.Cite this article: Bone Joint Res 2023;12(1):72-79.
Collapse
Affiliation(s)
- Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Kim Warbroek
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Chrow Khurshid
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daphne D. D. Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands,Department of Radiology, Section Nuclear Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mark G. J. de Boer
- Departments of Internal Medicine and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Bart G. Pijls
- Department of Orthopedics, Leiden University Medical Center, Leiden, Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands, Tessa Buckle. E-mail:
| |
Collapse
|
16
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Jiang Y, Fang S, Feng J, Ruan Q, Zhang J. Synthesis and Bioevaluation of Novel Technetium-99m-Labeled Complexes with Norfloxacin HYNIC Derivatives for Bacterial Infection Imaging. Mol Pharm 2023; 20:630-640. [PMID: 36398935 DOI: 10.1021/acs.molpharmaceut.2c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To seek a novel 99mTc-labeled quinolone derivative for bacterial infection SPECT imaging that aims to lower nontarget organ uptake, a novel norfloxacin 6-hydrazinoicotinamide (HYNIC) derivative (HYNICNF) was designed and synthesized. It was radiolabeled with different coligands, such as tricine, trisodium triphenylphosphine-3,3',3″-trisulfonate (TPPTS), sodium triphenylphosphine-3-monosulfonate (TPPMS), and ethylenediamine-N,N'-diacetic acid (EDDA), to obtain three 99mTc-labeled norfloxacin HYNIC complexes, namely, [99mTc]Tc-tricine-TPPTS-HYNICNF, [99mTc]Tc-tricine-TPPMS-HYNICNF, and [99mTc]Tc-EDDA-HYNICNF. These complexes were purified (RCP > 95%) and evaluated in vitro and in vivo for targeting bacteria. All three complexes are hydrophilic, maintain good stability, and specifically bind Staphylococcus aureus in vitro. The biodistribution in mice with bacterial infection demonstrated that [99mTc]Tc-EDDA-HYNICNF showed a higher abscess uptake and lower nontarget organ uptake and was able to distinguish bacterial infection and sterile inflammation. Single photon emission computed tomography (SPECT) image study in bacterial infection mice showed there was a visible accumulation in the infection site, suggesting that [99mTc]Tc-EDDA-HYNICNF is a potential radiotracer for bacterial infection imaging.
Collapse
Affiliation(s)
- Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Si'an Fang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Product Administration), College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Marjanovic-Painter B, Kleynhans J, Zeevaart JR, Rohwer E, Ebenhan T. A decade of ubiquicidin development for PET imaging of infection: A systematic review. Nucl Med Biol 2023; 116-117:108307. [PMID: 36435145 DOI: 10.1016/j.nucmedbio.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ubiquicidin is a peptide fragment with selective binding to negatively charged bacterial cell membranes. Besides its earlier labelling with gamma emitting radionuclides, it has been labelled with Positron Emission Tomography (PET) radionuclides in the last decade for imaging infection and distinguishing infectious disease from sterile inflammation. This systematic review aims to evaluate the technology readiness level of PET based ubiquicidin radiopharmaceuticals. METHODS Two independent researchers reviewed all articles and abstracts pertaining ubiquicidin and PET imaging that are currently available. Scopus, Google Scholar and PubMed/Medline were used in the search. Upon completion of the literature search all articles and abstracts were evaluated and duplicates were excluded. All non-PET articles as well as review articles without new data were deemed ineligible. RESULTS From a total of 17 papers and 10 abstracts the studies were grouped into development, preclinical and clinical studies. Development was published in 15/17 (88%) publications and 6/10 (60%) abstracts, preclinical applications in 9/17 (53%) publications and 1/10 (10%) of abstracts. Finally, clinical studies made up 6/17 (35%) of full publications and 4/10 (40%) of the available abstracts. Development results were the most abundant. All the findings in the different areas of development of ubiquicidin as PET radiopharmaceutical are summarized in this paper. CONCLUSION Labelling procedures are generally uncomplicated and relatively fast and there are indications of adequate product stability. The production of PET radiopharmaceuticals based on UBI will therefore not be a barrier for clinical introduction of this technology. Systematization and unification of criteria for preclinical imaging and larger clinical trials are needed to ensure the translation of this radiopharmaceutical into the clinic. Therefore a conclusion with regards to the clinical relevance of ubiquicidin based PET is not yet possible.
Collapse
Affiliation(s)
| | - Janke Kleynhans
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
| | - Jan Rijn Zeevaart
- Radiochemistry, The South African Nuclear Energy Corporation, Pelindaba, South Africa; Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
| | - Egmont Rohwer
- Department of Chemistry, University of Pretoria, Pretoria, South Africa
| | - Thomas Ebenhan
- Radiochemistry, The South African Nuclear Energy Corporation, Pelindaba, South Africa; Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa.
| |
Collapse
|
19
|
Gouws AC, Kruger HG, Gheysens O, Zeevaart JR, Govender T, Naicker T, Ebenhan T. Antibiotic-Derived Radiotracers for Positron Emission Tomography: Nuclear or "Unclear" Infection Imaging? Angew Chem Int Ed Engl 2022; 61:e202204955. [PMID: 35834311 PMCID: PMC9826354 DOI: 10.1002/anie.202204955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 01/11/2023]
Abstract
The excellent features of non-invasive molecular imaging, its progressive technology (real-time, whole-body imaging and quantification), and global impact by a growing infrastructure for positron emission tomography (PET) scanners are encouraging prospects to investigate new concepts, which could transform clinical care of complex infectious diseases. Researchers are aiming towards the extension beyond the routinely available radiopharmaceuticals and are looking for more effective tools that interact directly with causative pathogens. We reviewed and critically evaluated (challenges or pitfalls) antibiotic-derived PET radiopharmaceutical development efforts aimed at infection imaging. We considered both radiotracer development for infection imaging and radio-antibiotic PET imaging supplementing other tools for pharmacologic drug characterization; overall, a total of 20 original PET radiotracers derived from eleven approved antibiotics.
Collapse
Affiliation(s)
- Arno Christiaan Gouws
- Catalysis and Peptide Research UnitUniversity of KwaZulu-NatalDurban4000South Africa
| | | | - Olivier Gheysens
- Department of Nuclear MedicineCliniques Universitaires Saint-Luc, and Institute of Clinical and Experimental ResearchUniversité Catholique de LouvainBrusselsBelgium
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure NPCPretoria0001South Africa
- RadiochemistryThe South African Nuclear Energy CorporationBrits0420South Africa
- Preclinical Drug Development PlatformNorth West UniversityPotchefstroom2520South Africa
| | | | - Tricia Naicker
- Catalysis and Peptide Research UnitUniversity of KwaZulu-NatalDurban4000South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPCPretoria0001South Africa
- Preclinical Drug Development PlatformNorth West UniversityPotchefstroom2520South Africa
- Department of Nuclear MedicineUniversity of PretoriaPretoria0001South Africa
| |
Collapse
|
20
|
Gouws AC, Kruger HG, Gheysens O, Zeevaart JR, Govender T, Naiker T, Ebenhan T. Antibiotic‐Derived Radiotracers for Positron Emission Tomography: Nuclear or ‘Unclear’ Infection Imaging? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arno Christiaan Gouws
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Hendrik Gerhardus Kruger
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Olivier Gheysens
- Cliniques Universitaires Saint-Luc Department of Nuclear Medicine BELGIUM
| | - Jan Rijn Zeevaart
- North-West University Potchefstroom Campus: North-West University Preclinical Drug Development Platform SOUTH AFRICA
| | | | - Tricia Naiker
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Thomas Ebenhan
- University of Pretoria Nuclear Medicine Steve Biko and Malherbe St 0001 Pretoria SOUTH AFRICA
| |
Collapse
|
21
|
Liu Z, Sun Y, Liu T. Recent Advances in Synthetic Methodologies to Form C-18F Bonds. Front Chem 2022; 10:883866. [PMID: 35494631 PMCID: PMC9047704 DOI: 10.3389/fchem.2022.883866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Positron emission tomography (PET) is an important technique for the early diagnosis of disease. Due to the specific physical and chemical properties of Fluorine-18, this important isotope is widely used in PET for labelling and molecular imaging, and its introduction into medicine molecules could produce PET tracers. Developing with the development of organic synthetic methodologies, the introduction of Fluorine-18 into drug molecules efficiently and rapidly under mild conditions, and the formation of C-18F chemical bonds, has become one of the leading topics in both organic synthetic chemistry and radiochemistry. In this mini-review, we review a series of recent advances in the organic synthesis of C-18F bonds (2015–2021), including non-catalytic radiofluorinations via good leaving functional groups, transition metal-catalyzed radiofluorinations, and photo- or electro-catalytic synthetic radiofluorinations. As a result of the remarkable advancements in this field, organic synthetic methods for forming C-18F bonds are expected to continue growing.
Collapse
Affiliation(s)
- Zhiyi Liu
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
- The Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, China
| | - Yijun Sun
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
- The Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, China
| | - Tianfei Liu
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China
- The Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tianfei Liu,
| |
Collapse
|
22
|
Shrivastava S, Arya R, Kim KK, Lee NE. A quorum-based fluorescent probe for imaging pathogenic bacteria. J Mater Chem B 2022; 10:4491-4500. [DOI: 10.1039/d2tb00247g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging of bacterial infections can be used for a wide range of investigations, including diagnosis and pathogenesis of infections, and molecular probes targeting biological processes during infection have been used...
Collapse
|
23
|
Wang Z, Yang BB, Fang ZJ, Ou Q, Ma H, Zhang QP, Sun YL, Zhang C. Emissive oxidase-like nanozyme based on an organic molecular cage. Chem Commun (Camb) 2021; 57:11541-11544. [PMID: 34664563 DOI: 10.1039/d1cc04430c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we introduced four "claw-like" units of dipicolylamine (DPA) to a tetraphenylethylene (TPE)-based organic molecular cage (DPA-TPE-Cage). Coordinated with Zn2+ ions, the obtained ZnDPA-TPE-Cage exhibited aggregation induced emission (AIE) effects and oxidase-like properties, which endowed it with the ability to selectively image and kill Gram-positive bacteria S. aureus efficiently.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zi-Jun Fang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qiang Ou
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qing-Pu Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yu-Ling Sun
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
24
|
Peukert C, Langer LNB, Wegener SM, Tutov A, Bankstahl JP, Karge B, Bengel FM, Ross TL, Brönstrup M. Optimization of Artificial Siderophores as 68Ga-Complexed PET Tracers for In Vivo Imaging of Bacterial Infections. J Med Chem 2021; 64:12359-12378. [PMID: 34370949 DOI: 10.1021/acs.jmedchem.1c01054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diagnosis of bacterial infections at deep body sites benefits from noninvasive imaging of molecular probes that can be traced by positron emission tomography (PET). We specifically labeled bacteria by targeting their iron transport system with artificial siderophores. The cyclen-based probes contain different binding sites for iron and the PET nuclide gallium-68. A panel of 11 siderophores with different iron coordination numbers and geometries was synthesized in up to 8 steps, and candidates with the best siderophore potential were selected by a growth recovery assay. The probes [68Ga]7 and [68Ga]15 were found to be suitable for PET imaging based on their radiochemical yield, radiochemical purity, and complex stability in vitro and in vivo. Both showed significant uptake in mice infected with Escherichia coli and were able to discern infection from lipopolysaccharide-triggered, sterile inflammation. The study qualifies cyclen-based artificial siderophores as readily accessible scaffolds for the in vivo imaging of bacteria.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Laura N B Langer
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sophie M Wegener
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Tutov
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bianka Karge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
25
|
Fu Y, Helbert H, Simeth NA, Crespi S, Spoelstra GB, van Dijl JM, van Oosten M, Nazario LR, van der Born D, Luurtsema G, Szymanski W, Elsinga PH, Feringa BL. Ultrafast Photoclick Reaction for Selective 18F-Positron Emission Tomography Tracer Synthesis in Flow. J Am Chem Soc 2021; 143:10041-10047. [PMID: 34181410 PMCID: PMC8283755 DOI: 10.1021/jacs.1c02229] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The development of
very fast, clean, and selective methods for
indirect labeling in PET tracer synthesis is an ongoing challenge.
Here we present the development of an ultrafast photoclick method
for the synthesis of short-lived 18F-PET tracers based
on the photocycloaddition reaction of 9,10-phenanthrenequinones
with electron-rich alkenes. The respective precursors are synthetically
easily accessible and can be functionalized with various target groups.
Using a flow photo-microreactor, the photoclick reaction can be performed
in 60 s, and clinically relevant tracers for prostate cancer and bacterial
infection imaging were prepared to demonstrate practicality of the
method.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hugo Helbert
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerbren B Spoelstra
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marleen van Oosten
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dion van der Born
- FutureChemistry, Agro Business Park 10, 6708 PW Wageningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
26
|
Jiang Y, Fang S, Zhang X, Feng J, Ruan Q, Zhang J. Radiolabeling and evaluation of a novel [ 99mTcN] 2+ complex with deferoxamine dithiocarbamate as a potential agent for bacterial infection imaging. Bioorg Med Chem Lett 2021; 43:128102. [PMID: 33984471 DOI: 10.1016/j.bmcl.2021.128102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/17/2023]
Abstract
In order to find a 99mTc-labeled deferoxamine radiotracer for bacterial infection imaging, deferoxamine dithiocarbamate (DFODTC) was successfully synthesized and it was radiolabeled with [99mTcN]2+ core to prepare the 99mTcN(DFODTC)2 complex. 99mTcN(DFODTC)2 was obtained with high radiochemical purity without further purification. The complex was lipophilic and exhibited good in vitro stability. According to the result of bacterial binding study, the binding of 99mTcN(DFODTC)2 to bacteria was specific. Biodistribution in mice study indicated that 99mTcN(DFODTC)2 had a higher uptake in bacterial infection tissues than in turpentine-induced abscesses at 120 min after injection, which showed that the radiotracer could differentiate between bacterial infection and sterile inflammation. SPECT/CT images showed that there was a clear accumulation in infection sites, suggesting that 99mTcN(DFODTC)2 could be a potential bacterial infection imaging radiotracer.
Collapse
Affiliation(s)
- Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Si'an Fang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Xuran Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
27
|
Welling MM, Duszenko N, van Willigen DM, Hensbergen AW, Buckle T, Rietbergen DDD, Roestenberg M, van Leeuwen FWB. Interventional nuclear medicine: "click" chemistry as an in vivo targeting strategy for imaging microspheres and bacteria. Biomater Sci 2021; 9:1683-1690. [PMID: 33410436 DOI: 10.1039/d0bm01823f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Pre-targeting is a proven strategy for in vivo delivery of a diagnostic or therapeutic payload. The pre-targeting concept can be realized through various conjugation strategies, one of which is based on copper-free "click" chemistry. Copper-free click reactions have shown in vivo potential for imaging and radionuclide therapy, but this conjugation strategy has not yet been explored in combination with microspheres or unicellular organisms. This study aims to evaluate the in vivo efficacy of strain-promoted azide-alkyne cycloaddition (SPAAC) reactions to achieve imaging and targeting of azide-functionalized macro-aggregated albumin (MAA) microspheres and Staphylococcus aureus bacteria. METHODS MAA microspheres (diameter 10-90 μm) were functionalized with a biorthogonal Cy5 fluorophore, bearing an azide functionality (N3), to generate MAA-Cy5-N3. S. aureus (diameter ∼1 μm) were functionalized with 99mTc-UBI29-41-Cy5-N3, generating S. aureus-99mTc-UBI29-41-Cy5-N3. In situ and in vitro click conjugation on the -N3 moieties was studied for 20 h using a radioactivity-based assay and fluorescence microscopy. For in vivo validation, both primary entities, radiolabeled with 99mTc, were deposited into the microvasculature of the liver via intrasplenic injections. Secondary targeting was realized following the intravenous administration of indium-111-radiolabeled diethylenetriaminepentaacetic acid-dibenzocyclooctyne (111In-DTPA-DBCO). To assess click reaction efficiency in vivo, 99mTc and 111In-biodistributions were measured (SPECT and %ID g-1). Use of 111In-DTPA-DBCO in mice without MAA deposits or mice infected with non-functionalized S. aureus served as controls. Ex vivo confocal fluorescence imaging was carried out in excised tissues to confirm the presence of functionalized MAA and bacteria. RESULTS In vitro data confirmed effective click reactions on both the MAA particles and the bacterial membrane. SPECT imaging and biodistribution studies revealed significantly (p < 0.05) increased accumulation of 111In-DTPA-DBCO at the sites where MAA-Cy5-N3 (7.5 ± 1.5%ID g-1vs. 3.5 ± 0.5%ID g-1 in control mice) and S. aureus-99mTc-UBI29-41-Cy5-N3 (9.3 ± 1.3%ID g-1vs. 6.0 ± 0.5%ID g-1 in control mice) resided. Ex vivo fluorescence imaging confirmed the presence of either functionalized MAA or S. aureus in excised spleens and livers of mice. CONCLUSION Copper-free click chemistry between a DBCO moiety and Cy5-N3-functionalized microspheres or bacterial entities in the liver can be used to realize in vivo imaging and targeting.
Collapse
Affiliation(s)
- M M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| | - N Duszenko
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands. and Departments of Parasitology and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - D M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| | - A W Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| | - T Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| | - D D D Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands. and Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - M Roestenberg
- Departments of Parasitology and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - F W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, Netherlands.
| |
Collapse
|
28
|
Klenner MA, Pascali G, Fraser BH, Darwish TA. Kinetic isotope effects and synthetic strategies for deuterated carbon-11 and fluorine-18 labelled PET radiopharmaceuticals. Nucl Med Biol 2021; 96-97:112-147. [PMID: 33892374 DOI: 10.1016/j.nucmedbio.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
The deuterium labelling of pharmaceuticals is a useful strategy for altering pharmacokinetic properties, particularly for improving metabolic resistance. The pharmacological effects of such metabolites are often assumed to be negligible during standard drug discovery and are factored in later at the clinical phases of development, where the risks and benefits of the treatment and side-effects can be wholly assessed. This paradigm does not translate to the discovery of radiopharmaceuticals, however, as the confounding effects of radiometabolites can inevitably show in preliminary positron emission tomography (PET) scans and thus complicate interpretation. Consequently, the formation of radiometabolites is crucial to take into consideration, compared to non-radioactive metabolites, and the application of deuterium labelling is a particularly attractive approach to minimise radiometabolite formation. Herein, we provide a comprehensive overview of the deuterated carbon-11 and fluorine-18 radiopharmaceuticals employed in PET imaging experiments. Specifically, we explore six categories of deuterated radiopharmaceuticals used to investigate the activities of monoamine oxygenase (MAO), choline, translocator protein (TSPO), vesicular monoamine transporter 2 (VMAT2), neurotransmission and the diagnosis of Alzheimer's disease; from which we derive four prominent deuteration strategies giving rise to a kinetic isotope effect (KIE) for reducing the rate of metabolism. Synthetic approaches for over thirty of these deuterated radiopharmaceuticals are discussed from the perspective of deuterium and radioisotope incorporation, alongside an evaluation of the deuterium labelling and radiolabelling efficacies across these independent studies. Clinical and manufacturing implications are also discussed to provide a more comprehensive overview of how deuterated radiopharmaceuticals may be introduced to routine practice.
Collapse
Affiliation(s)
- Mitchell A Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW 2170, Australia.
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Chemistry, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Benjamin H Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Tamim A Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| |
Collapse
|
29
|
Bauckneht M, Raffa S, Leale G, Sambuceti V, De Cesari M, Donegani MI, Marini C, Drakonaki E, Orlandi D. Molecular imaging in MSK radiology: Where are we going? Eur J Radiol 2021; 140:109737. [PMID: 33951567 DOI: 10.1016/j.ejrad.2021.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/18/2021] [Accepted: 04/25/2021] [Indexed: 11/15/2022]
Abstract
Musculoskeletal (MSK) pathologies are one of the leading causes of disability worldwide. However, treatment options and understanding of pathogenetic processes are still partially unclear, mainly due to a limited ability in early disease detection and response to therapy assessment. In this scenario, thanks to a strong technological advancement, structural imaging is currently established as the gold-standard of diagnosis in many MSK disorders but each single diagnostic modality (plain films, high-resolution ultrasound, computed tomography and magnetic resonance) still suffer by a low specificity regarding the characterization of inflammatory processes, the quantification of inflammatory activity levels, and the degree of response to therapy. To overcome these limitations, molecular imaging techniques may play a promising role. Starting from the strengths and weaknesses of structural anatomical imaging, the present narrative review aims to highlight the promising role of molecular imaging in the assessment of non-neoplastic MSK diseases with a special focus on its role to monitor treatment response.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Stefano Raffa
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Giacomo Leale
- Private MSK Imaging Institution, Heraklion, Crete, Greece & European University of Cyprus Medical School, Nicosia, Cyprus
| | - Virginia Sambuceti
- Postgraduate School of Radiology, Genoa University, Via Alberti 4, 16132, Genoa, Italy
| | | | - Maria Isabella Donegani
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences (DISSAL), Genoa University, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate (MI), Italy
| | - Eleni Drakonaki
- Private MSK Imaging Institution, Heraklion, Crete, Greece & European University of Cyprus Medical School, Nicosia, Cyprus
| | - Davide Orlandi
- Department of Radiology, Ospedale Evangelico Internazionale, Corso Solferino, 1a, 16122, Genoa, Italy.
| |
Collapse
|
30
|
Synthesis and Evaluation of Novel Norfloxacin Isonitrile 99mTc Complexes as Potential Bacterial Infection Imaging Agents. Pharmaceutics 2021; 13:pharmaceutics13040518. [PMID: 33918583 PMCID: PMC8069222 DOI: 10.3390/pharmaceutics13040518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
To develop potential technetium-99m single-photon emission computed tomography (SPECT) imaging agents for bacterial infection imaging, the novel norfloxacin isonitrile derivatives CN4NF and CN5NF were synthesized and radiolabeled with a [99mTc][Tc(I)]+ core to obtain [99mTc]Tc-CN4NF and [99mTc]Tc-CN5NF. These compounds were produced in high radiolabeling yields and showed hydrophilicity and good stability in vitro. The bacterial binding assay indicated that [99mTc]Tc-CN4NF and [99mTc]Tc-CN5NF were specific to bacteria. Compared with [99mTc]Tc-CN4NF, biodistribution studies of [99mTc]Tc-CN5NF showed a higher uptake in bacteria-infected tissues than in turpentine-induced abscesses, indicating that [99mTc]Tc-CN5NF could distinguish bacterial infection from sterile inflammation. In addition, [99mTc]Tc-CN5NF had higher abscess/blood and abscess/muscle ratios. SPECT image of [99mTc]Tc-CN5NF showed that there was a clear accumulation in the infection site, suggesting that it could be a potential bacterial infection imaging radiotracer.
Collapse
|
31
|
Welling MM, Duszenko N, van Willigen DM, Smits WK, Buckle T, Roestenberg M, van Leeuwen FWB. Cyclodextrin/Adamantane-Mediated Targeting of Inoculated Bacteria in Mice. Bioconjug Chem 2021; 32:607-614. [PMID: 33621052 PMCID: PMC8028042 DOI: 10.1021/acs.bioconjchem.1c00061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Cyclodextrin (CD)-based
host–guest interactions with adamantane
(Ad) have demonstrated use for functionalizing living cells in vitro. The next step in this supramolecular functionalization
approach is to explore the concept to deliver chemical cargo to living
cells in vivo, e.g., inoculated bacteria, in order
to study their dissemination. We validated this concept in two rodent Staphylococcus aureus models. Bacteria (1 × 108 viable S. aureus) were inoculated by (1)
intramuscular injection or (2) intrasplenic injection followed by
dissemination throughout the liver. The bacteria were prefunctionalized
with 99mTc-UBI29–41-Ad2 (primary
vector), which allowed us to both determine the bacterial load and
create an in vivo target for the secondary host-vector
(24 h post-inoculation). The secondary vector, i.e., chemical cargo
delivery system, made use of a 111In-Cy50.5CD9PIBMA39 polymer that was administered intravenously.
Bacteria-specific cargo delivery as a result of vector complexation
was evaluated by dual-isotope SPECT imaging and biodistribution studies
(111In), and by fluorescence (Cy5); these evaluations were
performed 4 h post-injection of the secondary vector. Mice inoculated
with nonfunctionalized S. aureus and mice without
an infection served as controls. Dual-isotope SPECT imaging demonstrated
that 111In-Cy50.5CD9PIBMA39 colocalized with 99mTc-UBI29–41-Ad2-labeled bacteria in both muscle and liver. In inoculated
muscle, a 2-fold higher uptake level (3.2 ± 1.0%ID/g) was noted
compared to inoculation with nonfunctionalized bacteria (1.9 ±
0.4%ID/g), and a 16-fold higher uptake level compared to noninfected
muscle (0.2 ± 0.1%ID/g). The hepatic accumulation of the host-vector
was nearly 10-fold higher (27.1 ± 11.1%ID/g) compared to the
noninfected control (2.7 ± 0.3%ID/g; p <
0.05). Fluorescence imaging of the secondary vector corroborated SPECT-imaging
and biodistribution findings. We have demonstrated that supramolecular
host–guest complexation can be harnessed to achieve an in vivo cargo delivery strategy, using two different bacterial
models in soft tissue and liver. This proof-of-principle study paves
a path toward developing innovative drug delivery concepts via cell
functionalization techniques.
Collapse
Affiliation(s)
- Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Nikolas Duszenko
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands.,Department of Parasitology and Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Meta Roestenberg
- Department of Parasitology and Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| |
Collapse
|
32
|
Pijl JP, Kwee TC, Slart RHJA, Glaudemans AWJM. PET/CT Imaging for Personalized Management of Infectious Diseases. J Pers Med 2021; 11:133. [PMID: 33669375 PMCID: PMC7920259 DOI: 10.3390/jpm11020133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022] Open
Abstract
Positron emission tomography combined with computed tomography (PET/CT) is a nuclear imaging technique which is increasingly being used in infectious diseases. Because infection foci often consume more glucose than surrounding tissue, most infections can be diagnosed with PET/CT using 2-deoxy-2-[18F]fluoro-D-glucose (FDG), an analogue of glucose labeled with Fluorine-18. In this review, we discuss common infectious diseases in which FDG-PET/CT is currently applied including bloodstream infection of unknown origin, infective endocarditis, vascular graft infection, spondylodiscitis, and cyst infections. Next, we highlight the latest developments within the field of PET/CT, including total body PET/CT, use of novel PET radiotracers, and potential future applications of PET/CT that will likely lead to increased capabilities for patient-tailored treatment of infectious diseases.
Collapse
Affiliation(s)
- Jordy P. Pijl
- Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, 9700 RB Groningen, The Netherlands; (T.C.K.); (R.H.J.A.S.); (A.W.J.M.G.)
| | - Thomas C. Kwee
- Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, 9700 RB Groningen, The Netherlands; (T.C.K.); (R.H.J.A.S.); (A.W.J.M.G.)
| | - Riemer H. J. A. Slart
- Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, 9700 RB Groningen, The Netherlands; (T.C.K.); (R.H.J.A.S.); (A.W.J.M.G.)
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Andor W. J. M. Glaudemans
- Departments of Radiology, Nuclear Medicine and Molecular Imaging, University of Groningen, 9700 RB Groningen, The Netherlands; (T.C.K.); (R.H.J.A.S.); (A.W.J.M.G.)
| |
Collapse
|
33
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
34
|
Kış TT, Köse Ş, Yılmaz O, Kış M, Yurt F, Acar E, Bekiş R, Yılmaz C, Barış M, Diniz G, Tatar B, Tunçel A. Evaluation of 99mTechnetium-Vancomycin Imaging Potential in Experimental Rat Model for the Diagnosis of Infective Endocarditis. Curr Med Imaging 2020; 17:781-789. [PMID: 33372880 DOI: 10.2174/1573405616666201229161850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/21/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infective endocarditis (IE) is an infection of the heart's endocardial surface. In recent years, nuclear imaging methods have gained importance in the diagnosis of IE. The present study aims to investigate the imaging potential of 99mTc-labeled vancomycin (99mTc-Vancomycin) as a new agent that would enable the diagnosis of IE in its early stages when it is difficult to diagnose or has small vegetation in the experimental rat model. METHODS 99mTc-Vancomycin scintigraphy was evaluated for its accumulation in IE with Staphylococcus aureus performed in an experimental rat model. Serial planar scintigraphic and biodistribution analysis of infected vegetations are compared to rats with sterile vegetations. The heart was identified as an infected organ, the liver was identified as a non-infected organ and the heart/liver uptake ratio (T / NT ratio) was compared between infective endocarditis and sterile endocarditis groups. RESULTS Planar scintigrams (in vivo measurements) showed more uptake in the heart of rats in the infective endocarditis group compared to the uptake in the heart of rats in the sterile endocarditis group, but this difference was not statistically significant (p>0.05). From the ex vivo measurements, the 99mTc-Vancomycin heart uptake increased significantly (p = 0.016), liver uptake was significantly decreased (p = 0.045) and the T/NT ratio was significantly higher (p = 0.014) in the infective endocarditis group compared to the sterile endocarditis group. CONCLUSION In this experimental study, 99mTc-Vancomycin scintigraphy ensured the detection of ex vivo infected tissue in a rat model of IE. In addition, the absence of significant 99mTc-Vancomycin uptake in the sterile endocarditis group indicates that this agent targeted the infected tissue instead of the sterile inflammatory tissue. Finally, this agent should also be evaluated with animal- specific imaging devices.
Collapse
Affiliation(s)
- Tuba Tatlı Kış
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Osman Yılmaz
- Department of Laboratory Animals Science, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Mehmet Kış
- Depertment of Cardiology, Ege University School of Medicine, Izmir, Turkey
| | - Fatma Yurt
- Department of Nuclear Applications, Institute of Nuclear Science, Ege University, Izmir, Turkey
| | - Emine Acar
- Department of Nuclear Medicine, Katip Celebi University School of Medicine, Izmir, Turkey
| | - Recep Bekiş
- Department of Nuclear Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | | | - Mustafa Barış
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Gülden Diniz
- Department of Pathology, Izmir Democracy University, Izmir, Turkey
| | - Bengü Tatar
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ayça Tunçel
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
35
|
Kleynhans J, Kruger HG, Cloete T, Zeevaart JR, Ebenhan T. In Silico Modelling in the Development of Novel Radiolabelled Peptide Probes. Curr Med Chem 2020; 27:7048-7063. [DOI: 10.2174/0929867327666200504082256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
This review describes the usefulness of in silico design approaches in the design of
new radiopharmaceuticals, especially peptide-based radiotracers (including peptidomimetics).
Although not part of the standard arsenal utilized during radiopharmaceutical design, the use
of in silico strategies is steadily increasing in the field of radiochemistry as it contributes to a
more rational and scientific approach. The development of new peptide-based radiopharmaceuticals
as well as a short introduction to suitable computational approaches are provided in
this review. The first section comprises a concise overview of the three most useful computeraided
drug design strategies used, namely i) a Ligand-based Approach (LBDD) using pharmacophore
modelling, ii) a Structure-based Design Approach (SBDD) using molecular docking
strategies and iii) Absorption-Distribution-Metabolism-Excretion-Toxicity (ADMET)
predictions. The second section summarizes the challenges connected to these computer-aided
techniques and discusses successful applications of in silico radiopharmaceutical design in
peptide-based radiopharmaceutical development, thereby improving the clinical procedure in
Nuclear Medicine. Finally, the advances and future potential of in silico modelling as a design
strategy is highlighted.
Collapse
Affiliation(s)
- Janke Kleynhans
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| | | | - Theunis Cloete
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| |
Collapse
|
36
|
Gabr MT, Haywood T, Gowrishankar G, Srinivasan A, Gambhir SS. New synthesis of 6″-[ 18 F]fluoromaltotriose for positron emission tomography imaging of bacterial infection. J Labelled Comp Radiopharm 2020; 63:466-475. [PMID: 32602175 DOI: 10.1002/jlcr.3868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
Abstract
6″-[18 F]fluoromaltotriose is a positron emission tomography tracer that can differentiate between bacterial infection and inflammation in vivo. Bacteria-specific uptake of 6″-[18 F]fluoromaltotriose is attributed to the targeting of maltodextrin transporter in bacteria that is absent in mammalian cells. Herein, we report a new synthesis of 6″-[18 F]fluoromaltotriose as a key step for its clinical translation. In comparison with the previously reported synthesis, the new synthesis features unambiguous assignment of the fluorine-18 position on the maltotriose unit. The new method utilizes direct fluorination of 2″,3″,4″-tri-O-acetyl-6″-O-trifyl-α-D-glucopyranosyl-(1-4)-O-2',3',6'-tri-O-acetyl-α-D-glucopyranosyl-(1-4)-1,2,3,6-tetra-O-acetyl-D-glucopyranose followed by basic hydrolysis. Radiolabeling of the new maltotriose triflate precursor proceeds using a single HPLC purification step, which results in shorter reaction time in comparison with the previously reported synthesis. Successful synthesis of 6″-[18 F]fluoromaltotriose has been achieved in 3.5 ± 0.3% radiochemical yield (decay corrected, n = 7) and radiochemical purity above 95%. The efficient radiosynthesis of 6″-[18 F]fluoromaltotriose would be critical in advancing this positron emission tomography tracer into clinical trials for imaging bacterial infections.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Tom Haywood
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gayatri Gowrishankar
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ananth Srinivasan
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Sanjiv S Gambhir
- Bio-X Program and Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Materials Science and Engineering, Bio-X Program, Stanford University, Stanford, California, USA
- Department of Bioengineering, Bio-X Program, Stanford University, Stanford, California, USA
| |
Collapse
|
37
|
Polvoy I, Flavell RR, Rosenberg OS, Ohliger MA, Wilson DM. Nuclear Imaging of Bacterial Infection: The State of the Art and Future Directions. J Nucl Med 2020; 61:1708-1716. [PMID: 32764120 DOI: 10.2967/jnumed.120.244939] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Increased mortality rates from infectious diseases is a growing public health concern. Successful management of acute bacterial infections requires early diagnosis and treatment, which are not always easy to achieve. Structural imaging techniques such as CT and MRI are often applied to this problem. However, these methods generally rely on secondary inflammatory changes and are frequently not specific to infection. The use of nuclear medicine techniques can add crucial complementary information, allowing visualization of infectious pathophysiology beyond morphologic imaging. This review will discuss the current structural and functional imaging techniques used for the diagnosis of bacterial infection and their roles in different clinical scenarios. We will also present several new radiotracers in development, with an emphasis on probes targeting bacteria-specific metabolism. As highlighted by the current coronavirus disease 2019 epidemic, caused by the novel severe acute respiratory syndrome coronavirus 2, similar thinking may apply in imaging viral pathogens; for this case, prominent effects on host proteins, most notably angiotensin-converting enzyme 2, might also provide worthwhile imaging targets.
Collapse
Affiliation(s)
- Ilona Polvoy
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Oren S Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, California; and
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.,Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
38
|
Abstract
Purpose of Review The main goal of the article is to familiarize the reader with commonly and uncommonly used nuclear medicine procedures that can significantly contribute to improved patient care. The article presents examples of specific modality utilization in the chest including assessment of lung ventilation and perfusion, imaging options for broad range of infectious and inflammatory processes, and selected aspects of oncologic imaging. In addition, rapidly developing new techniques utilizing molecular imaging are discussed. Recent Findings The article describes nuclear medicine imaging modalities including gamma camera, SPECT, PET, and hybrid imaging (SPECT/CT, PET/CT, and PET/MR) in the context of established and emerging clinical applications. Areas of potential future development in nuclear medicine are discussed with emphasis on molecular imaging and implementation of new targeted tracers used in diagnostics and therapeutics (theranostics). Summary Nuclear medicine and molecular imaging provide many unique and novel options for the diagnosis and treatment of pulmonary diseases. This article reviews current applications for nuclear medicine and molecular imaging and selected future applications for radiopharmaceuticals and targeted molecular imaging techniques.
Collapse
|
39
|
Oliveira FA, Nucci MP, Filgueiras IS, Ferreira JM, Nucci LP, Mamani JB, Alvieri F, Souza LEB, Rego GNA, Kondo AT, Hamerschlak N, Gamarra LF. Noninvasive Tracking of Hematopoietic Stem Cells in a Bone Marrow Transplant Model. Cells 2020; 9:cells9040939. [PMID: 32290257 PMCID: PMC7226958 DOI: 10.3390/cells9040939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, 38% xenogeneic, and 5% autologous, being the HSC receptor: 57% mice, 9% rat, 19% fish, 5% for dog, porcine and salamander. The imaging technique used in the HSC tracking had the following distribution between studies: Positron emission tomography/single-photon emission computed tomography 29%, bioluminescence 33%, fluorescence 19%, magnetic resonance imaging 14%, and near-infrared fluorescence imaging 5%. The efficiency of the graft was evaluated in 61% of the selected studies, and before one month of implantation, the cell renewal was very low (less than 20%), but after three months, the efficiency was more than 50%, mainly in the allogeneic graft. In conclusion, our review showed an increase in using noninvasive imaging techniques in HSC tracking using the bone marrow transplant model. However, successful transplantation depends on the formation of engraftment, and the functionality of cells after the graft, aspects that are poorly explored and that have high relevance for clinical analysis.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- LIM44—Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Igor S. Filgueiras
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília DF 72445-020, Brazil;
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Fernando Alvieri
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lucas E. B. Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14049-900, Brazil;
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
40
|
Wu LL, Wang Q, Wang Y, Zhang N, Zhang Q, Hu HY. Rapid differentiation between bacterial infections and cancer using a near-infrared fluorogenic probe. Chem Sci 2020; 11:3141-3145. [PMID: 34122818 PMCID: PMC8157330 DOI: 10.1039/d0sc00508h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The reliable differentiation between bacterial infections and other pathologies is crucial for both diagnostics and therapeutic approaches. To accommodate such needs, we herein report the development of an activatable near-infrared fluorescent probe 1 that could be applied in the ultrafast, ultrasensitive and specific detection of nitroreductase (NTR) activity in bacterial pathogens both in vitro and in vivo. Upon reaction with NTR, the nitro-group of the para-nitro phenyl sulfonic moiety present in probe 1 was reduced to an amino-group, resulting in a near-infrared fluorescence turn-on of the latent cyanine 7 fluorophore. Probe 1 was capable of rapid and real-time quantitative detection of 0–150 ng mL−1 NTR with a limit of detection as low as 0.67 ng mL−1in vitro. In addition, probe 1 exhibited an outstanding performance of ultrafast measurements and suitable selectivity toward NTR to accurately sense intracellular basal NTR in ESKAPE bacterial pathogens. Most remarkably, probe 1 was capable of noninvasively identifying bacterial infection sites without showing any significantly increased signal of tumour sites in the same animal within 30 min. A new nitroreductase-responsive near-infrared fluorogenic probe can specifically image live bacteria in mouse models and does not accumulate at sites of inflammation or tumor.![]()
Collapse
Affiliation(s)
- Ling-Ling Wu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Yali Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Na Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
41
|
Evaluation of the specific uptake of radiolabeled Staphylococcus aureus aptamers in the infectious foci. Appl Radiat Isot 2020; 158:109047. [PMID: 31989931 DOI: 10.1016/j.apradiso.2020.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 11/22/2022]
Abstract
The specific uptake of 99mTc radiolabeled Staphylococcus aureus aptamers in the infectious foci was evaluated by scintigraphic imaging of infection-bearing mice. The radiotracer uptake was inhibited by non-radiolabeled aptamers in a competition assay. In addition, when a different number of bacterial cells was used to infect mice an increase in the target/non-target ratios of images correlated with the increase of CFU per gram of tissue was verified. These results confirmed that 99mTc-aptamers were specific to bacterial focus and the level of uptake was dependent on the number of bacterial cells.
Collapse
|
42
|
Northrup JD, Mach RH, Sellmyer MA. Radiochemical Approaches to Imaging Bacterial Infections: Intracellular versus Extracellular Targets. Int J Mol Sci 2019; 20:E5808. [PMID: 31752318 PMCID: PMC6888724 DOI: 10.3390/ijms20225808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 02/03/2023] Open
Abstract
The discovery of penicillin began the age of antibiotics, which was a turning point in human healthcare. However, to this day, microbial infections are still a concern throughout the world, and the rise of multidrug-resistant organisms is an increasing challenge. To combat this threat, diagnostic imaging tools could be used to verify the causative organism and curb inappropriate use of antimicrobial drugs. Nuclear imaging offers the sensitivity needed to detect small numbers of bacteria in situ. Among nuclear imaging tools, radiolabeled antibiotics traditionally have lacked the sensitivity or specificity necessary to diagnose bacterial infections accurately. One reason for the lack of success is that the antibiotics were often chelated to a radiometal. This was done without addressing the ramifications of how the radiolabeling would impact probe entry to the bacterial cell, or the mechanism of binding to an intracellular target. In this review, we approach bacterial infection imaging through the lens of bacterial specific molecular targets, their intracellular or extracellular location, and discuss radiochemistry strategies to guide future probe development.
Collapse
Affiliation(s)
- Justin D. Northrup
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.D.N.); (R.H.M.)
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.D.N.); (R.H.M.)
| | - Mark A. Sellmyer
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.D.N.); (R.H.M.)
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Welling MM, de Korne CM, Spa SJ, van Willigen DM, Hensbergen AW, Bunschoten A, Duszenko N, Smits WK, Roestenberg M, van Leeuwen FWB. Multimodal Tracking of Controlled Staphylococcus aureus Infections in Mice. ACS Infect Dis 2019; 5:1160-1168. [PMID: 31016979 PMCID: PMC6630532 DOI: 10.1021/acsinfecdis.9b00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 12/14/2022]
Abstract
There is a need to develop diagnostic and analytical tools that allow noninvasive monitoring of bacterial growth and dissemination in vivo. For such cell-tracking studies to hold translational value to controlled human infections, in which volunteers are experimentally colonized, they should not require genetic modification, and they should allow tracking over a number of replication cycles. To gauge if an antimicrobial peptide tracer, 99mTc-UBI29-41-Cy5, which contains both a fluorescent and a radioactive moiety, could be used for such in vivo bacterial tracking, we performed longitudinal imaging of a thigh-muscle infection with 99mTc-UBI29-41-Cy5-labeled Staphylococcus aureus. Mice were imaged using SPECT and fluorescence-imaging modalities at various intervals during a 28 h period. Biodistribution analyses were performed to quantitate radioactivity in the abscess and other tissues. SPECT and fluorescence imaging in mice showed clear retention of the 99mTc-UBI29-41-Cy5-labeled bacteria following inoculation in the thigh muscle. Despite bacterial replication, the signal intensity in the abscess only modestly decreased within a 28 h period: 52% of the total injected radioactivity per gram of tissue (%ID/g) at 4 h postinfection (pi) versus 44%ID/g at 28 h pi (15% decrease). After inoculation, a portion of the bacteria disseminated from the abscess, and S. aureus cultures were obtained from radioactive urine samples. Bacterial staining with 99mTc-UBI29-41-Cy5 allowed noninvasive bacterial-cell tracking during a 28 h period. Given the versatility of the presented bacterial-tracking method, we believe that this concept could pave the way for precise imaging capabilities during controlled-human-infection studies.
Collapse
Affiliation(s)
- Mick M. Welling
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Clarize M. de Korne
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Department
of Parasitology and Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Silvia J. Spa
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Danny M. van Willigen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Albertus W. Hensbergen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Anton Bunschoten
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Laboratory
of BioNanoTechnology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| | - Nikolas Duszenko
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Department
of Parasitology and Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department
of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Meta Roestenberg
- Department
of Parasitology and Department of Infectious Diseases, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional
Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Laboratory
of BioNanoTechnology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| |
Collapse
|
44
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Scheper H, Smits WK, Roestenberg M, van Leeuwen FWB. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|