1
|
Majeed S, Shah BR, Khalid N, Bielke L, Nazmi A. Dynamic Changes in the Intraepithelial Lymphocyte Numbers Following Salmonella Typhimurium Infection in Broiler Chickens. Animals (Basel) 2024; 14:3463. [PMID: 39682428 DOI: 10.3390/ani14233463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
At day 21 of age, Ross-308 broilers were orally gavaged with 7.5 × 106 CFU/mL S. Typhimurium (n = 30), and another 30 birds were kept as the control. The body weight of birds was recorded on days 0, 2, 7, and 14 days post-infection (dpi) to calculate body weight gains (BWGs). At each time point, seven birds per group were euthanized for sample collection to acquire IELs and lymphocytes from the ileum and spleen for flow cytometric analysis. A reduction in BWGs of the infected groups compared to the control group was observed only at 2 dpi. Additionally, there were no changes in the expression of IFN-γ, IL-1β, and TNF-α in the ileum at 2 and 7 dpi. The number of IELs increased significantly following Salmonella infection in the ileum at 2 and 7 dpi without any changes in spleen lymphocytes. The increase in the total number of IELs was derived from the elevated numbers of conventional CD8αβ+TCRαβ+ and natural IEL populations (CD4-CD8-TCRαβ+, CD8αα+TCRαβ+, TCRγδ+, non-T cells (TCRneg, and iCD8α cells)). The increase in regulatory IELs and the stable expression of proinflammatory cytokine genes during the first week of infection suggests the potential role of IELs in modulating intestinal inflammation.
Collapse
Affiliation(s)
- Shuja Majeed
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Bikas R Shah
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Nimra Khalid
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - Lisa Bielke
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Ali Nazmi
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Food for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Fischer MA, Jia L, Edelblum KL. Type I IFN Induces TCR-dependent and -independent Antimicrobial Responses in γδ Intraepithelial Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1380-1391. [PMID: 39311642 PMCID: PMC11493514 DOI: 10.4049/jimmunol.2400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Intraepithelial lymphocytes (IELs) expressing the TCRγδ survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I IFN is a central component of an antiviral immune response, yet how these proinflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFN-γ production, yet low-level TCR activation synergizes with type I IFN to induce IFN-γ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of costimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFN-γ expression in a STAT4-dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFN-γ production in vivo. However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFN-γ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and may produce IFN-γ in a TCR-dependent manner under permissive conditions.
Collapse
Affiliation(s)
- Matthew A Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
3
|
Liebing E, Krug SM, Neurath MF, Siegmund B, Becker C. Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. Cell Mol Gastroenterol Hepatol 2024; 19:101423. [PMID: 39461590 PMCID: PMC11720114 DOI: 10.1016/j.jcmgh.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Eva Liebing
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
4
|
Xu RH, Shen JN, Lu JB, Liu YJ, Song Y, Cao Y, Wang ZH, Zhang J. Bile acid profiles and classification model accuracy for inflammatory bowel disease diagnosis. Medicine (Baltimore) 2024; 103:e38457. [PMID: 38847684 PMCID: PMC11155534 DOI: 10.1097/md.0000000000038457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
To investigate the utility of serum bile acid profiling for the diagnosis of inflammatory bowel disease (IBD). We analyzed 15 specific bile acids in the serum of 269 IBD patients, 200 healthy controls (HC), and 174 patients with other intestinal diseases (OID) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Serum bile acid levels were compared between IBD group, HC group, and OID group. Binary logistic regression-based models were developed to model the bile acids and diagnose IBD. Furthermore, receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic accuracy of each bile acid and the model. Compared to HC group, IBD group exhibited significantly lower levels of chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), glycodeoxycholic acid (GDCA), taurodeoxycholic acid (TDCA), lithocholic acid (LCA), glycolithocholic acid (GLCA), taurolithocholic acid (TLCA), and an elevated primary-to-secondary bile acid ratio. DCA had an area under the curve (AUC) of 0.860 for diagnosing IBD, with a sensitivity of 80.67% and a specificity of 82.50%. A model Y0 combining DCA and CDCA to distinguish between IBD group and HC group further improved accuracy (AUC = 0.866, sensitivity = 76.28%, specificity = 89.37%). Compared to non-IBD group (which combined healthy controls and those with other intestinal diseases), IBD group had significantly lower levels of DCA, GDCA, TDCA, LCA, GLCA, and TLCA, and elevated levels of glycocholic acid (GCA) and glycochenodeoxycholic acid (GCDCA). A model Y1 incorporating GCDCA, DCA and TLCA to distinguish between IBD group and non-IBD group yielded an AUC of 0.792, with a sensitivity of 77.67% and specificity of 71.91%. IBD patients exhibit decreased serum secondary bile acid levels and an elevated primary-to-secondary bile acid ratio. Serum bile acid alterations are associated with the onset of IBD. A model consisting of CDCA and DCA has potential for distinguishing between IBD group and HC group, while a model incorporating GCDCA, DCA and TLCA may be suitable for distinguishing between IBD group and non-IBD group.
Collapse
Affiliation(s)
- Run-Hao Xu
- Department of Clinical Laboratory, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Nan Shen
- Department of Clinical Laboratory, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Bo Lu
- Department of Clinical Laboratory, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Jing Liu
- Department of Clinical Laboratory, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Song
- Department of Clinical Laboratory, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Cao
- Department of Clinical Laboratory, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Huan Wang
- Department of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Clinical Laboratory, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Danielson SM, Lefferts AR, Norman E, Regner EH, Schulz HM, Sansone-Poe D, Orlicky DJ, Kuhn KA. Myeloid Cells and Sphingosine-1-Phosphate Are Required for TCRαβ Intraepithelial Lymphocyte Recruitment to the Colon Epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1843-1854. [PMID: 38568091 PMCID: PMC11105980 DOI: 10.4049/jimmunol.2200556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
Intraepithelial lymphocytes (IELs) are T cells important for the maintenance of barrier integrity in the intestine. Colon IELs are significantly reduced in both MyD88-deficient mice and those lacking an intact microbiota, suggesting that MyD88-mediated detection of bacterial products is important for the recruitment and/or retention of these cells. Here, using conditionally deficient MyD88 mice, we show that myeloid cells are the key mediators of TCRαβ+ IEL recruitment to the colon. Upon exposure to luminal bacteria, myeloid cells produce sphingosine-1-phosphate (S1P) in a MyD88-dependent fashion. TCRαβ+ IEL recruitment may be blocked using the S1P receptor antagonist FTY720, confirming the importance of S1P in the recruitment of TCRαβ+ IELs to the colon epithelium. Finally, using the TNFΔARE/+ model of Crohn's-like bowel inflammation, we show that disruption of colon IEL recruitment through myeloid-specific MyD88 deficiency results in reduced pathology. Our results illustrate one mechanism for recruitment of a subset of IELs to the colon.
Collapse
Affiliation(s)
- Sarah Mann Danielson
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric Norman
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emilie H. Regner
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Gastroenterology and Hepatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
- Current affiliation: Division of Gastroenterology, Department of Medicine, Oregon Health Sciences University, Portland, OR
| | - Hanna M. Schulz
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Danielle Sansone-Poe
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
6
|
Agulla B, Villaescusa A, Sainz Á, Díaz‐Regañón D, Rodríguez‐Franco F, Calleja‐Bueno L, Olmeda P, García‐Sancho M. Peripheral and intestinal T lymphocyte subsets in dogs with chronic inflammatory enteropathy. J Vet Intern Med 2024; 38:1437-1448. [PMID: 38472110 PMCID: PMC11099799 DOI: 10.1111/jvim.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Dysregulated T lymphocyte response is thought to play a key role in chronic intestinal inflammation (CIE). OBJECTIVES To evaluate the presence of changes in peripheral and intestinal T lymphocyte subsets and to describe potential immune and inflammatory biomarkers in dogs with CIE. ANIMALS Sixteen healthy dogs and 26 dogs were diagnosed with CIE. METHODS Prospective case-control study evaluating peripheral and intestinal T lymphocytes using flow cytometry and inflammatory markers obtained from complete blood cell counts. RESULTS Dogs with CIE had higher peripheral activated T helper (Th) lymphocytes (87/μL [18-273] CIE, 44/μL [16-162] healthy control (HC, P = .013) and regulatory T cells (Treg; 108/μL [2-257] CIE, 34/μL [1-114] HC, P = .004). In the intestinal epithelium, CIE dogs presented lower percentages of Th (4.55% [1.75-18.67] CIE, 8.77% [3.79-25.03] HC, P = .002), activated Th cells (0.16% [0.02-0.83] CIE, 0.33% [0.05-0.57] HC, P = .03) and CD4/CD8 ratio (0.08 [0.02-0.39] CIE, 0.21 [0.07-0.85] HC, P = .003). Conversely, higher percentage of activated T cytotoxic cells (20.24% [3.12-77.12] CIE, 12.32% [1.21-39.22] HC, P = .04) and interferon-gamma (IFN-γ) producing T lymphocytes (7.36% [0.63-55.83] CIE, 1.44% [0.00-10.56] HC, P = .01) within the epithelium was observed. In the lamina propria the percentage of Treg lymphocytes was higher (6.02% [1.00-21.48] CIE, 3.52% [0.18-10.52] HC, P = .02). CONCLUSIONS AND CLINICAL IMPORTANCE Systemic and intestinal immune alterations occur in dogs with CIE suggesting that blood IFN-γ producing T lymphocytes and the systemic immune-inflamation index (SII) could potentially serve as biomarkers for the disease.
Collapse
Affiliation(s)
- Beatriz Agulla
- Department Medicina i Cirurgia Animals, Facultat de VeterinàriaUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Alejandra Villaescusa
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Ángel Sainz
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - David Díaz‐Regañón
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Fernando Rodríguez‐Franco
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Lydia Calleja‐Bueno
- Facultad de VeterinariaUniversidad Alfonso X El Sabio (UAX), Avenida de la Universidad 1MadridSpain
| | - Patricia Olmeda
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| | - Mercedes García‐Sancho
- Department of Animal Medicine and Surgery, College of Veterinary MedicineComplutense University of MadridMadridSpain
| |
Collapse
|
7
|
Fischer MA, Jia L, Edelblum KL. Type I interferon induces TCR-dependent and -independent antimicrobial responses in γδ intraepithelial lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584444. [PMID: 38559228 PMCID: PMC10979951 DOI: 10.1101/2024.03.11.584444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intraepithelial lymphocytes (IEL) expressing the γδ T cell receptor (TCR) survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I interferon (IFN) is a central component of an antiviral immune response, yet how these pro-inflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs, and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFNγ production, yet low level TCR activation synergizes with type I IFN to induce IFNγ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of co-stimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFNγ expression in a STAT4- dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFNγ production in vivo . However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFNγ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and under permissive conditions, produce IFNγ in a TCR-dependent manner.
Collapse
|
8
|
Mehandru S, Colombel JF, Juarez J, Bugni J, Lindsay JO. Understanding the molecular mechanisms of anti-trafficking therapies and their clinical relevance in inflammatory bowel disease. Mucosal Immunol 2023; 16:859-870. [PMID: 37574127 PMCID: PMC11141405 DOI: 10.1016/j.mucimm.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
In patients with inflammatory bowel disease (IBD), a combination of dysbiosis, increased intestinal permeability, and insufficient regulatory responses facilitate the development of chronic inflammation, which is driven by a complex interplay between the mucosal immune system and the environment and sustained by immune priming and ongoing cellular recruitment to the gut. The localization of immune cells is mediated by their expression of chemokine receptors and integrins, which bind to chemokines and adhesion molecules, respectively. In this article, we review the mechanisms of action of anti-trafficking therapies for IBD and consider clinical observations in the context of the different mechanisms of action. Furthermore, we discuss the evolution of molecular resistance to anti-cytokines, in which the composition of immune cells in the gut changes in response to treatment, and the potential implications of this for treatment sequencing. Lastly, we discuss the relevance of mechanism of action to combination therapy for IBD.
Collapse
Affiliation(s)
- Saurabh Mehandru
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julius Juarez
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James Bugni
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James O Lindsay
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK; Department of Gastroenterology, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
9
|
White Z, Cabrera I, Kapustka I, Sano T. Microbiota as key factors in inflammatory bowel disease. Front Microbiol 2023; 14:1155388. [PMID: 37901813 PMCID: PMC10611514 DOI: 10.3389/fmicb.2023.1155388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Inflammatory Bowel Disease (IBD) is characterized by prolonged inflammation of the gastrointestinal tract, which is thought to occur due to dysregulation of the immune system allowing the host's cells to attack the GI tract and cause chronic inflammation. IBD can be caused by numerous factors such as genetics, gut microbiota, and environmental influences. In recent years, emphasis on commensal bacteria as a critical player in IBD has been at the forefront of new research. Each individual harbors a unique bacterial community that is influenced by diet, environment, and sanitary conditions. Importantly, it has been shown that there is a complex relationship among the microbiome, activation of the immune system, and autoimmune disorders. Studies have shown that not only does the microbiome possess pathogenic roles in the progression of IBD, but it can also play a protective role in mediating tissue damage. Therefore, to improve current IBD treatments, understanding not only the role of harmful bacteria but also the beneficial bacteria could lead to attractive new drug targets. Due to the considerable diversity of the microbiome, it has been challenging to characterize how particular microorganisms interact with the host and other microbiota. Fortunately, with the emergence of next-generation sequencing and the increased prevalence of germ-free animal models there has been significant advancement in microbiome studies. By utilizing human IBD studies and IBD mouse models focused on intraepithelial lymphocytes and innate lymphoid cells, this review will explore the multifaceted roles the microbiota plays in influencing the immune system in IBD.
Collapse
Affiliation(s)
| | | | | | - Teruyuki Sano
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
11
|
Alonso S, Edelblum K. Metabolic regulation of γδ intraepithelial lymphocytes. DISCOVERY IMMUNOLOGY 2023; 2:kyad011. [PMID: 38179241 PMCID: PMC10766425 DOI: 10.1093/discim/kyad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
State M, Balanescu P, Voiosu T, Bengus A, Voiosu A, Coman A, Mustatea P, Negreanu L, Mateescu RB, Popp C. Real-World Endoscopic and Histologic Outcomes in Ulcerative Colitis Patients: A Retrospective Cohort Study. Biomedicines 2023; 11:1860. [PMID: 37509500 PMCID: PMC10376510 DOI: 10.3390/biomedicines11071860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Histologic activity has emerged as an aspirational therapeutic goal in ulcerative colitis management. It is not yet a formal treatment target in ulcerative colitis. However, it could be used as an adjunct to mucosal healing to represent a deeper level of healing. We investigated mucosal and histologic remission rates and potential predictors of these outcomes in a cohort of UC patients. METHODS We conducted a retrospective analysis of data collected from UC patients enrolled in an ongoing prospective cohort study. Mucosal healing was defined as Mayo endoscopic score = 0. RESULTS A total of 131 patients with ulcerative colitis were enrolled in our study and were prospectively followed for a median length of 2 years (range 0-5 years), totaling 266 study visits. Mucosal healing was recorded for 27 patients at 70 (26%) different study visits. For patients with mucosal healing, histologic remission was achieved in 18/27 (66%) patients. On univariate analysis, sustained clinical remission, SIBDQ scores ≥ 5.5, CRP ≤ 5 mg/dL and absence of corticotherapy were associated with mucosal healing and SIBDQ scores ≥ 5.5 and CRP ≤ 5 mg/dL with histologic healing, respectively. After logistic regression analysis, none of the investigated factors were associated with mucosal and histologic healing. The number of CD8+ intraepithelial lymphocytes (IELs) was significantly greater than the number of CD4+ IELs in periods of disease activity, as well as during mucosal healing (p < 0.01 in both cases). CONCLUSIONS Mucosal healing and histologic remission rates are low in real-life settings. The results of univariate analysis indicate that a good quality of life (SIBDQ score) and normal inflammatory markers (CRP) are associated with mucosal and histologic healing. However, frequently used patient- and disease-related factors, including mucosal healing, are not reliable predictors for histologic remission. Greater CD8+ lymphocyte involvement and higher CD8+/CD4+ distribution can have a meaningful impact on understanding the pathogenesis and natural history of ulcerative colitis, as well as future treatment options for lymphocyte-targeting medications.
Collapse
Affiliation(s)
- Monica State
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Paul Balanescu
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Theodor Voiosu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andreea Bengus
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Andrei Voiosu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Andrei Coman
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Pathology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Petronel Mustatea
- Surgery Department, Ion Cantacuzino Clinical Hospital, 011437 Bucharest, Romania
| | - Lucian Negreanu
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Gastroenterology Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Radu Bogdan Mateescu
- Gastroenterology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Internal Medicine Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristiana Popp
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Pathology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Song S, Chen L, Bai M, Wang S, Ye X, Lin Y, Luo X, Li Z, Zhang L, Zhu X, Wang Z, Chen Y. Time-restricted feeding ameliorates dextran sulfate sodium-induced colitis via reducing intestinal inflammation. Front Nutr 2022; 9:1043783. [PMID: 36618695 PMCID: PMC9822721 DOI: 10.3389/fnut.2022.1043783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Time-restricted feeding (TRF) is an emerging dietary intervention that improves metabolic disorders such as obesity, insulin resistance and dyslipidemia. Inflammatory bowel disease (IBD) is a chronic inflammatory disorder affecting the gastrointestinal tract, where nutrition plays an important role in its pathogenesis. Although numerous strategies of nutritional intervention have been reported, whether TRF can improve IBD has been elusive. In this study, we investigated the effect of two cycles of 7-day TRF intervention in a dextran sulfate sodium-induced IBD mouse model. We found that TRF was able to reduce the disease activity index and ameliorate the IBD-associated symptoms, as well as increase the number of colonic crypts and decrease the histological score in the colon. Furthermore, TRF lowered the percentage of CD4+ T cells in the peripheral blood and mesenteric lymph node, and increased the number of CD4+CD25+ T cells in the mesenteric lymph nodes. Additionally, TRF reduced the infiltration of leukocytes and macrophages around the crypt base in the colon. However, unlike the intermittent caloric restriction with fasting-mimicking diet, TRF was not able to increase the markers of progenitor and cell proliferation in the colon. Collectively, these results demonstrated that TRF is able to improve IBD in mice via reduction in intestinal inflammation.
Collapse
Affiliation(s)
- Shuo Song
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lingling Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Meijuan Bai
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shuo Wang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xiaoyi Ye
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yijun Lin
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xuemei Luo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Zixuan Li
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lingling Zhang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xinyu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zinan Wang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China,School of Life Science and Technology, ShanghaiTech University, Shanghai, China,*Correspondence: Yan Chen,
| |
Collapse
|
14
|
Røyset ES, Sahlin Pettersen HP, Xu W, Larbi A, Sandvik AK, Steigen SE, Catalan‐Serra I, Bakke I. Deep learning-based image analysis reveals significant differences in the number and distribution of mucosal CD3 and γδ T cells between Crohn's disease and ulcerative colitis. J Pathol Clin Res 2022; 9:18-31. [PMID: 36416283 PMCID: PMC9732684 DOI: 10.1002/cjp2.301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022]
Abstract
Colon mucosae of ulcerative colitis (UC) and Crohn's disease (CD) display differences in the number and distribution of immune cells that are difficult to assess by eye. Deep learning-based analysis on whole slide images (WSIs) allows extraction of complex quantitative data that can be used to uncover different inflammatory patterns. We aimed to explore the distribution of CD3 and γδ T cells in colon mucosal compartments in histologically inactive and active inflammatory bowel disease. By deep learning-based segmentation and cell detection on WSIs from a well-defined cohort of CD (n = 37), UC (n = 58), and healthy controls (HCs, n = 33), we quantified CD3 and γδ T cells within and beneath the epithelium and in lamina propria in proximal and distal colon mucosa, defined by the Nancy histological index. We found that inactive CD had significantly fewer intraepithelial γδ T cells than inactive UC, but higher total number of CD3 cells in all compartments than UC and HCs. Disease activity was associated with a massive loss of intraepithelial γδ T cells in UC, but not in CD. The total intraepithelial number of CD3 cells remained constant regardless of disease activity in both CD and UC. There were more mucosal CD3 and γδ T cells in proximal versus distal colon. Oral corticosteroids had an impact on γδ T cell numbers, while age, gender, and disease duration did not. Relative abundance of γδ T cells in mucosa and blood did not correlate. This study reveals significant differences in the total number of CD3 and γδ T cells in particularly the epithelial area between CD, UC, and HCs, and demonstrates useful application of deep segmentation to quantify cells in mucosal compartments.
Collapse
Affiliation(s)
- Elin Synnøve Røyset
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH)NTNU – Norwegian University of Science and TechnologyTrondheimNorway,Department of Pathology, St. Olav's HospitalTrondheim University HospitalTrondheimNorway,Clinic of Laboratory Medicine, St. Olav's HospitalTrondheim University HospitalTrondheimNorway
| | - Henrik P Sahlin Pettersen
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH)NTNU – Norwegian University of Science and TechnologyTrondheimNorway,Department of Pathology, St. Olav's HospitalTrondheim University HospitalTrondheimNorway
| | - Weili Xu
- Singapore Immunology Network (SIgN)Agency for Science Technology and Research, BiopolisSingapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN)Agency for Science Technology and Research, BiopolisSingapore
| | - Arne K Sandvik
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH)NTNU – Norwegian University of Science and TechnologyTrondheimNorway,Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav's HospitalTrondheim University HospitalTrondheimNorway,Centre of Molecular Inflammation Research (CEMIR)NTNUTrondheimNorway
| | - Sonja E Steigen
- Department of Medical Biology, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway,Department of Clinical PathologyUniversity Hospital of North NorwayTromsøNorway
| | - Ignacio Catalan‐Serra
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH)NTNU – Norwegian University of Science and TechnologyTrondheimNorway,Centre of Molecular Inflammation Research (CEMIR)NTNUTrondheimNorway,Department of Medicine, GastroenterologyLevanger Hospital, Nord‐Trøndelag Hospital TrustLevangerNorway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences (MH)NTNU – Norwegian University of Science and TechnologyTrondheimNorway,Clinic of Laboratory Medicine, St. Olav's HospitalTrondheim University HospitalTrondheimNorway
| |
Collapse
|
15
|
Xu W, Bergsbaken T, Edelblum KL. The multifunctional nature of CD103 (αEβ7 integrin) signaling in tissue-resident lymphocytes. Am J Physiol Cell Physiol 2022; 323:C1161-C1167. [PMID: 36036450 PMCID: PMC9576162 DOI: 10.1152/ajpcell.00338.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Intestinal tissue-resident lymphocytes are critical for maintenance of the mucosal barrier and to prevent enteric infections. The activation of these lymphocytes must be tightly regulated to prevent aberrant inflammation and epithelial damage observed in autoimmune diseases, yet also ensure that antimicrobial host defense remains uncompromised. Tissue-resident lymphocytes express CD103, or αE integrin, which dimerizes with the β7 subunit to bind to E-cadherin expressed on epithelial cells. Although the role of CD103 in homing and retention of lymphocytes to and within peripheral tissues has been well characterized, the molecular signals activated following CD103 engagement remain understudied. Here, we highlight recent studies that elucidate the functional contribution of CD103 in various lymphocyte subpopulations, either as an independent signaling molecule or in the context of TCR co-stimulation. Finally, we will discuss the gaps in our understanding of CD103 biology and the therapeutic potential of targeting CD103 on tissue-resident lymphocytes.
Collapse
Affiliation(s)
- Weili Xu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Tessa Bergsbaken
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Karen L Edelblum
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
16
|
Lei X, Ketelut-Carneiro N, Shmuel-Galia L, Xu W, Wilson R, Vierbuchen T, Chen Y, Reboldi A, Kang J, Edelblum KL, Ward D, Fitzgerald KA. Epithelial HNF4A shapes the intraepithelial lymphocyte compartment via direct regulation of immune signaling molecules. J Exp Med 2022; 219:e20212563. [PMID: 35792863 PMCID: PMC9263552 DOI: 10.1084/jem.20212563] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 08/29/2023] Open
Abstract
Hepatocyte nuclear factor 4 α (HNF4A) is a highly conserved nuclear receptor that has been associated with ulcerative colitis. In mice, HNF4A is indispensable for the maintenance of intestinal homeostasis, yet the underlying mechanisms are poorly characterized. Here, we demonstrate that the expression of HNF4A in intestinal epithelial cells (IECs) is required for the proper development and composition of the intraepithelial lymphocyte (IEL) compartment. HNF4A directly regulates expression of immune signaling molecules including butyrophilin-like (Btnl) 1, Btnl6, H2-T3, and Clec2e that control IEC-IEL crosstalk. HNF4A selectively enhances the expansion of natural IELs that are TCRγδ+ or TCRαβ+CD8αα+ to shape the composition of IEL compartment. In the small intestine, HNF4A cooperates with its paralog HNF4G, to drive expression of immune signaling molecules. Moreover, the HNF4A-BTNL regulatory axis is conserved in human IECs. Collectively, these findings underscore the importance of HNF4A as a conserved transcription factor controlling IEC-IEL crosstalk and suggest that HNF4A maintains intestinal homeostasis through regulation of the IEL compartment.
Collapse
Affiliation(s)
- Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Natalia Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Liraz Shmuel-Galia
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Weili Xu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Ruth Wilson
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Tim Vierbuchen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA
| | - Karen L. Edelblum
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ
| | - Doyle Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA
- Center for Microbiome Research, University of Massachusetts Chan Medical School, Worcester, MA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
17
|
Kautzman AM, Mobulakani JMF, Marrero Cofino G, Quenum AJI, Cayarga AA, Asselin C, Fortier LC, Ilangumaran S, Menendez A, Ramanathan S. Interleukin 15 in murine models of colitis. Anat Rec (Hoboken) 2022; 306:1111-1130. [PMID: 35899872 DOI: 10.1002/ar.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by abnormal, non-antigen specific chronic inflammation of unknown etiology. Genome-wide association studies show that many IBD genetic susceptibility loci map to immune function genes and compelling evidence indicate that environmental factors play a critical role in IBD pathogenesis. Clinical and experimental evidence implicate the pro-inflammatory cytokine IL-15 in the pathogenesis of IBD. IL-15 and IL-15α expression is increased in the inflamed mucosa of IBD patients. IL-15 contributes to the maintenance of different cell subsets in the intestinal mucosa. However, very few studies have addressed the role of IL-15 in pre-clinical models of colitis. In this study, we use three well-characterized models of experimental colitis to determine the contribution of IL-15 to pathological intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Molina Kautzman
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Gisela Marrero Cofino
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
18
|
Jia L, Wu G, Alonso S, Zhao C, Lemenze A, Lam YY, Zhao L, Edelblum KL. A transmissible γδ intraepithelial lymphocyte hyperproliferative phenotype is associated with the intestinal microbiota and confers protection against acute infection. Mucosal Immunol 2022; 15:772-782. [PMID: 35589986 PMCID: PMC9262869 DOI: 10.1038/s41385-022-00522-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IELs) serve as a first line of defense against luminal microbes. Although the presence of an intact microbiota is dispensable for γδ IEL development, several microbial factors contribute to the maintenance of this sentinel population. However, whether specific commensals influence population of the γδ IEL compartment under homeostatic conditions has yet to be determined. We identified a novel γδ IEL hyperproliferative phenotype that arises early in life and is characterized by expansion of multiple Vγ subsets. Horizontal transfer of this hyperproliferative phenotype to mice harboring a phenotypically normal γδ IEL compartment was prevented following antibiotic treatment, thus demonstrating that the microbiota is both necessary and sufficient for the observed increase in γδ IELs. Further, we identified two guilds of small intestinal or fecal bacteria represented by 12 amplicon sequence variants (ASV) that are strongly associated with γδ IEL expansion. Using intravital microscopy, we find that hyperproliferative γδ IELs also exhibit increased migratory behavior leading to enhanced protection against bacterial infection. These findings reveal that transfer of a specific group of commensals can regulate γδ IEL homeostasis and immune surveillance, which may provide a novel means to reinforce the epithelial barrier.
Collapse
Affiliation(s)
- Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Guojun Wu
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Sara Alonso
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Cuiping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Yan Y. Lam
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ,Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Liping Zhao
- New Jersey Institute for Food, Nutrition & Health, Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ,Correspondence: Karen Edelblum, 205 South Orange Ave, Cancer Center G1228, Newark, NJ 07103, tel: 973-972-3071,
| |
Collapse
|
19
|
Pettersen HS, Belevich I, Røyset ES, Smistad E, Simpson MR, Jokitalo E, Reinertsen I, Bakke I, Pedersen A. Code-Free Development and Deployment of Deep Segmentation Models for Digital Pathology. Front Med (Lausanne) 2022; 8:816281. [PMID: 35155486 PMCID: PMC8829033 DOI: 10.3389/fmed.2021.816281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Application of deep learning on histopathological whole slide images (WSIs) holds promise of improving diagnostic efficiency and reproducibility but is largely dependent on the ability to write computer code or purchase commercial solutions. We present a code-free pipeline utilizing free-to-use, open-source software (QuPath, DeepMIB, and FastPathology) for creating and deploying deep learning-based segmentation models for computational pathology. We demonstrate the pipeline on a use case of separating epithelium from stroma in colonic mucosa. A dataset of 251 annotated WSIs, comprising 140 hematoxylin-eosin (HE)-stained and 111 CD3 immunostained colon biopsy WSIs, were developed through active learning using the pipeline. On a hold-out test set of 36 HE and 21 CD3-stained WSIs a mean intersection over union score of 95.5 and 95.3% was achieved on epithelium segmentation. We demonstrate pathologist-level segmentation accuracy and clinical acceptable runtime performance and show that pathologists without programming experience can create near state-of-the-art segmentation solutions for histopathological WSIs using only free-to-use software. The study further demonstrates the strength of open-source solutions in its ability to create generalizable, open pipelines, of which trained models and predictions can seamlessly be exported in open formats and thereby used in external solutions. All scripts, trained models, a video tutorial, and the full dataset of 251 WSIs with ~31 k epithelium annotations are made openly available at https://github.com/andreped/NoCodeSeg to accelerate research in the field.
Collapse
Affiliation(s)
- Henrik Sahlin Pettersen
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Elin Synnøve Røyset
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Erik Smistad
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- The Clinical Research Unit for Central Norway, Trondheim, Norway
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - André Pedersen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- The Cancer Foundation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
20
|
Guanylin ligand protects the intestinal immune barrier by activating the guanylate cyclase-C signaling pathway. Acta Histochem 2022; 124:151811. [PMID: 34920371 DOI: 10.1016/j.acthis.2021.151811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022]
Abstract
Inflammatory bowel disease (IBD) impacts patient quality of life significantly. The dysfunction of intestinal immune barrier is closely associated with IBD. The guanylate cyclase-C (GC-C) signaling pathway activated by the guanylin (Gn) ligand is involved in the occurrence and development of IBD. However, how it regulates the intestinal immune barrier is still unclear. To investigate the effect of the GC-C pathway on intestinal mucosal immunity and provide experimental basis for seeking new therapeutic strategies for IBD, we focused on Caco-2 cells and intestinal intra-epithelial lymphocytes (IELs), which displayed inflammatory responses induced by lipopolysaccharide (LPS). GC-C activity was modulated by transfection with Gn overexpression or GC-C shRNA plasmid. Levels of Gn, GC-C, and CFTR; transepithelial electrical resistance (TER); paracellula r permeability; and levels of IL-2, IFN-γ, and secretory IgA (sIgA) were examined. The study found that after stimulation with LPS, Gn, GC-C, CFTR, TER, and sIgA levels were all significantly reduced, IL-2 and IFN-γ levels as well as paracellular permeability were significantly increased. These indicators changed inversely and significantly after transfection with the Gn overexpression vector. Compared to the vector controls, GC-C-silenced cells displayed significantly decreased levels of GC-C, CFTR, and TER and increased levels of IL-2, IFN-γ, and paracellular permeability stimulated by LPS. The results show that Gn ligand can protect the intestinal immune barrier by activating the GC-C signaling pathway, which may be helpful for the development of new treatments for IBD. DATA AVAILABILITY STATEMENT: The data used to support the findings of this study are available from the corresponding author upon request.
Collapse
|
21
|
Dasgupta S, Maricic I, Tang J, Wandro S, Weldon K, Carpenter CS, Eckmann L, Rivera-Nieves J, Sandborn W, Knight R, Dorrestein P, Swafford AD, Kumar V. Class Ib MHC-Mediated Immune Interactions Play a Critical Role in Maintaining Mucosal Homeostasis in the Mammalian Large Intestine. Immunohorizons 2021; 5:953-971. [PMID: 34911745 PMCID: PMC10026853 DOI: 10.4049/immunohorizons.2100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 11/19/2022] Open
Abstract
Lymphocytes within the intestinal epithelial layer (IEL) in mammals have unique composition compared with their counterparts in the lamina propria. Little is known about the role of some of the key colonic IEL subsets, such as TCRαβ+CD8+ T cells, in inflammation. We have recently described liver-enriched innate-like TCRαβ+CD8αα regulatory T cells, partly controlled by the non-classical MHC molecule, Qa-1b, that upon adoptive transfer protect from T cell-induced colitis. In this study, we found that TCRαβ+CD8αα T cells are reduced among the colonic IEL during inflammation, and that their activation with an agonistic peptide leads to significant Qa-1b-dependent protection in an acute model of colitis. Cellular expression of Qa-1b during inflammation and corresponding dependency in peptide-mediated protection suggest that Batf3-dependent CD103+CD11b- type 1 conventional dendritic cells control the protective function of TCRαβ+CD8αα T cells in the colonic epithelium. In the colitis model, expression of the potential barrier-protective gene, Muc2, is enhanced upon administration of a Qa-1b agonistic peptide. Notably, in steady state, the mucin metabolizing Akkermansia muciniphila was found in significantly lower abundance amid a dramatic change in overall microbiome and metabolome, increased IL-6 in explant culture, and enhanced sensitivity to dextran sulfate sodium in Qa-1b deficiency. Finally, in patients with inflammatory bowel disease, we found upregulation of HLA-E, a Qa-1b analog with inflammation and biologic non-response, in silico, suggesting the importance of this regulatory mechanism across species.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Igor Maricic
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jay Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Stephen Wandro
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Kelly Weldon
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Carolina S Carpenter
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Jesus Rivera-Nieves
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - William Sandborn
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA; and
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Peter Dorrestein
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA
| | - Austin D Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| | - Vipin Kumar
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA;
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
| |
Collapse
|
22
|
Dos Santos AGA, da Silva MGL, Carneiro EL, de Lima LL, Fernandes ACBS, Silveira TGV, Sant'Ana DDMG, Nogueira-Melo GDA. A New Target Organ of Leishmania (Viannia) braziliensis Chronic Infection: The Intestine. Front Cell Infect Microbiol 2021; 11:687499. [PMID: 34336715 PMCID: PMC8317265 DOI: 10.3389/fcimb.2021.687499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023] Open
Abstract
Leishmania (Viannia) braziliensis is one of the main causes of cutaneous leishmaniasis in the Americas. This species presents genetic polymorphism that can cause destructive lesions in oral, nasal, and oropharyngeal tracts. In a previous study, the parasite caused several histopathological changes to hamster ileums. Our study evaluates immune response components, morphological changes, and effects on neurons in the ileums of hamsters infected by three different strains of L. (V.) braziliensis in two infection periods. For the experiment, we separated hamsters into four groups: a control group and three infected groups. Infected hamsters were euthanized 90- or 120-days post infection. We used three strains of L. (V.) braziliensis: the reference MHOM/BR/1975/M2903 and two strains isolated from patients who had different responses to Glucantime® treatment (MHOM/BR/2003/2314 and MHOM/BR/2000/1655). After laparotomy, ileums were collected for histological processing, biochemical analysis, and evaluation of neurons in the myenteric and submucosal plexuses of the enteric nervous system (ENS). The results demonstrated the increase of blood leukocytes after the infection. Optical microscopy analysis showed histopathological changes with inflammatory infiltrates, edemas, ganglionitis, and Leishmania amastigotes in the ileums of infected hamsters. We observed changes in the organ histoarchitecture of infected hamsters when compared to control groups, such as thicker muscular and submucosa layers, deeper and wider crypts, and taller and broader villi. The number of intraepithelial lymphocytes and TGF-β-immunoreactive cells increased in all infected groups when compared to the control groups. Mast cells increased with longer infection periods. The infection also caused remodeling of intestinal collagen and morphometry of myenteric and submucosal plexus neurons; but this effect was dependent on infection duration. Our results show that L. (V.) braziliensis infection caused time-dependent alterations in hamster ileums. This was demonstrated by the reduction of inflammatory cells and the increase of tissue regeneration factors at 120 days of infection. The infected groups demonstrated different profiles in organ histoarchitecture, migration of immune cells, and morphometry of ENS neurons. These findings suggest that the small intestine (or at least the ileum) is a target organ for L. (V.) braziliensis infection, as the infection caused changes that were dependent on duration and strain.
Collapse
Affiliation(s)
| | | | - Erick Lincoln Carneiro
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Brazil
| | - Lainy Leiny de Lima
- Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | | | | | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Brazil.,Department of Morphological Sciences, Universidade Estadual de Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, Universidade Estadual de Maringá, Maringá, Brazil.,Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, Brazil
| |
Collapse
|
23
|
Yan-ling G, Yu-ning W, Ya-jing G, Yi S, Yi-ran W, Jing Z, Ji-meng Z, Huan-gan W, Yin S. Effect of herb-partitioned moxibustion in improving tight junctions of intestinal epithelium in Crohn disease mediated by TNF-α-NF-κB-MLCK pathway. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2020. [DOI: 10.1007/s11726-020-1218-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
24
|
Zhou C, Qiu Y, Yang H. CD4CD8αα IELs: They Have Something to Say. Front Immunol 2019; 10:2269. [PMID: 31649659 PMCID: PMC6794356 DOI: 10.3389/fimmu.2019.02269] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
The intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine play a critical role in maintaining the immune balance of the gut. CD4CD8αα IELs are one of the most important types of IELs, and they play an irreplaceable role in maintaining the balance of the intestinal immune system. CD4CD8αα IELs are often regarded as a special subtype of CD4+ IELs that can express CD8αα on their cytomembrane. Hence, CD4CD8αα IELs not only have the ability to modulate the functions of immune cells but also are regarded as cytotoxic T lymphocytes (CTLs). Transcription factors, microbes, and dietary factors have a substantial effect on the development of CD4CD8αα IELs, which make them exert immunosuppression and cytotoxicity activities. In addition, there is an intimate relationship between CD4CD8αα IELs and inflammatory bowel disease (IBD), whereas it is still unclear how CD4CD8αα IELs influence IBD. As such, this review will focus on the unparalleled differentiation of CD4CD8αα IELs and discuss how these cells might be devoted to tolerance and immunopathological responses in the intestinal tract. In addition, the role of CD4CD8αα IELs in IBD would also be discussed.
Collapse
Affiliation(s)
- Chao Zhou
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Lo Presti E, Di Mitri R, Mocciaro F, Di Stefano AB, Scibetta N, Unti E, Cicero G, Pecoraro G, Conte E, Dieli F, Meraviglia S. Characterization of γδ T Cells in Intestinal Mucosa From Patients With Early-Onset or Long-Standing Inflammatory Bowel Disease and Their Correlation With Clinical Status. J Crohns Colitis 2019; 13:873-883. [PMID: 30689780 DOI: 10.1093/ecco-jcc/jjz015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease [IBD] is a complex chronic inflammatory disease of the human gut with no clear aetiology. Traditionally, dysregulated adaptive immune responses play an important role even though accumulating evidence suggests a role also for innate immunity. Because of the well-known plasticity of γδ T cells, we investigated their percentage occurrence, phenotypic features and effector functions in the intestinal mucosa of early-onset and long-standing IBD patients, as compared to healthy subjects. METHODS Fresh biopsies from 30 Crohn's disease and ulcerative colitis patients were obtained and digested, and cells were analysed by flow cytometry. RESULTS We found a reduced frequency of Vδ1 T cells in tissue from early and late IBD patients (2.24% and 1.95%, respectively, vs 5.44% in healthy tissue) but an increased frequency of Vδ2 T cells in the gut of late IBD patients (3.19% in late patients vs 1.5% in early patients and 1.65% in healthy tissue). The infiltrating Vδ2 T cells had predominant effector memory and terminally differentiated phenotypes and produced elevated levels of tumour necrosis factor-α [TNF-α] and interleukin-17 [IL-17]. The frequency of tissue Vδ2 T cells correlated with the extent of the inflammatory response and the severity of IBD. CONCLUSION Our study shows that tissue Vδ1 T cells are decreased in IBD patients while Vδ2 T cells are increased in the gut of IBD patients and contribute to TNF-α production. Moreover, we identify an as yet unappreciated role of Vδ2 T cells in IL-17 production in the gut of long-standing IBD patients, suggesting that they also participate in the chronic inflammatory process.
Collapse
Affiliation(s)
- Elena Lo Presti
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Roberto Di Mitri
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Filippo Mocciaro
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Anna Barbara Di Stefano
- Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Nunzia Scibetta
- Anatomo-pathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Elettra Unti
- Anatomo-pathology Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Giuseppe Cicero
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Giulia Pecoraro
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Elisabetta Conte
- Gastroenterology and Endoscopy Unit, Arnas Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, Palermo, Italy.,Department of Biopathology and Medical Biotechnologies (DIBIMED), University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
Jia L, Edelblum KL. Intravital Imaging of Intraepithelial Lymphocytes in Murine Small Intestine. J Vis Exp 2019. [PMID: 31282900 DOI: 10.3791/59853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Intraepithelial lymphocytes expressing γδ T cell receptor (γδ IEL) play a key role in immune surveillance of the intestinal epithelium. Due in part to the lack of a definitive ligand for the γδ T cell receptor, our understanding of the regulation of γδ IEL activation and their function in vivo remains limited. This necessitates the development of alternative strategies to interrogate signaling pathways involved in regulating γδ IEL function and the responsiveness of these cells to the local microenvironment. Although γδ IELs are widely understood to limit pathogen translocation, the use of intravital imaging has been critical to understanding the spatiotemporal dynamics of IEL/epithelial interactions at steady-state and in response to invasive pathogens. Herein, we present a protocol for visualizing IEL migratory behavior in the small intestinal mucosa of a GFP γδ T cell reporter mouse using inverted spinning disk confocal laser microscopy. Although the maximum imaging depth of this approach is limited relative to the use of two-photon laser-scanning microscopy, spinning disk confocal laser microscopy provides the advantage of high speed image acquisition with reduced photobleaching and photodamage. Using 4D image analysis software, T cell surveillance behavior and their interactions with neighboring cells can be analyzed following experimental manipulation to provide additional insight into IEL activation and function within the intestinal mucosa.
Collapse
Affiliation(s)
- Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School;
| |
Collapse
|
27
|
Bruckner RS, Nissim-Eliraz E, Marsiano N, Nir E, Shemesh H, Leutenegger M, Gottier C, Lang S, Spalinger MR, Leibl S, Rogler G, Yagel S, Scharl M, Shpigel NY. Transplantation of Human Intestine Into the Mouse: A Novel Platform for Study of Inflammatory Enterocutaneous Fistulas. J Crohns Colitis 2019; 13:798-806. [PMID: 30590414 DOI: 10.1093/ecco-jcc/jjy226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Enteric fistulas represent a severe and medically challenging comorbidity commonly affecting Crohn's disease [CD] patients. Gut fistulas do not develop in animal models of the disease. We have used transplantation of the human fetal gut into mice as a novel platform for studying inflammatory enterocutaneous fistulas. METHODS Human fetal gut segments were transplanted subcutaneously into mature SCID mice, where they grew and fully developed over the course of several months. We first analysed the resident immune cells and inflammatory response elicited by systemic lipopolysaccharide [LPS] in normal, fully developed human gut xenografts. Thereafter, we used immunostaining to analyse fully developed xenografts that spontaneously developed enterocutaneous fistulas. RESULTS Resident human innate and adaptive immune cells were demonstrated in gut xenografts during steady state and inflammation. The expression of human IL-8, IL-1β, IL-6, TNF-α, A20, and IkBα was significantly elevated in response to LPS, with no change in IL-10 gene expression. Approximately 17% [19/110] of fully developed subcutaneous human gut xenografts spontaneously developed enterocutaneous fistulas, revealing striking histopathological similarities with CD fistula specimens. Immunohistochemical analyses of fistulating xenografts revealed transmural lymphocytic enteritis associated with massive expansion of resident human CD4+ lymphocytes and their migration into the intraepithelial compartment. Regionally, mucosal epithelial cells assumed spindle-shaped mesenchymal morphology and formed fistulous tracts towards chronic non-healing wounds in the host mouse skin overlying the transplants. CONCLUSIONS Inflammation and fistulas developed in human gut xenografts lacking IL-10 gene response. This novel model system will enable systematic studies of the inflamed and fistulating human gut in live animals.
Collapse
Affiliation(s)
- Ramona S Bruckner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Einat Nissim-Eliraz
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Noga Marsiano
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Eilam Nir
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Hadar Shemesh
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Martin Leutenegger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Claudia Gottier
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Leibl
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich,Zurich, Switzerland
| | - Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah University Hospital, Jerusalem, Israel
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich,Zurich, Switzerland
| | - Nahum Y Shpigel
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
28
|
Jung J, Surh CD, Lee YJ. Microbial Colonization at Early Life Promotes the Development of Diet-Induced CD8αβ Intraepithelial T Cells. Mol Cells 2019; 42:313-320. [PMID: 30841027 PMCID: PMC6530640 DOI: 10.14348/molcells.2019.2431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Intraepithelial lymphocytes (IELs) develop through the continuous interaction with intestinal antigens such as commensal microbiome and diet. However, their respective roles and mutual interactions in the development of IELs are largely unknown. Here, we showed that dietary antigens regulate the development of the majority of CD8αβ IELs in the small intestine and the absence of commensal microbiota particularly during the weaning period, delay the development of IELs. When we tested specific dietary components, such as wheat or combined corn, soybean and yeast, they were dependent on commensal bacteria for the timely development of diet-induced CD8αβ IELs. In addition, supplementation of intestinal antigens later in life was inefficient for the full induction of CD8αβ IELs. Overall, our findings suggest that early exposure to commensal bacteria is important for the proper development of dietary antigen-dependent immune repertoire in the gut.
Collapse
Affiliation(s)
- Jisun Jung
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| | - Charles D. Surh
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, CA 92037,
USA
| | - You Jeong Lee
- Academy of Immunology and Microbiology, Institute for Basic Science (IBS), Pohang 37673,
Korea
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673,
Korea
| |
Collapse
|
29
|
Van Kaer L, Olivares-Villagómez D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 200:2235-2244. [PMID: 29555677 PMCID: PMC5863587 DOI: 10.4049/jimmunol.1701704] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
The intestine is continuously exposed to commensal microorganisms, food, and environmental agents and also serves as a major portal of entry for many pathogens. A critical defense mechanism against microbial invasion in the intestine is the single layer of epithelial cells that separates the gut lumen from the underlying tissues. The barrier function of the intestinal epithelium is supported by cells and soluble factors of the intestinal immune system. Chief among them are intestinal intraepithelial lymphocytes (iIELs), which are embedded in the intestinal epithelium and represent one of the single largest populations of lymphocytes in the body. Compared with lymphocytes in other parts of the body, iIELs exhibit unique phenotypic, developmental, and functional properties that reflect their key roles in maintaining the intestinal epithelial barrier. In this article, we review the biology of iIELs in supporting normal health and how their dysregulation can contribute to disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
30
|
Zhou C, Qiu Y, Yang H, Xiao WD. Mechanism of differentiation and regulation of CD4 + intraepithelial lymphocytes: Relationship with inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2018; 26:1598-1604. [DOI: 10.11569/wcjd.v26.i27.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD4+ intraepithelial lymphocytes are a special type of lymphocytes located in the lower layer of the intestinal epithelium. According to the difference of cell phenotypes and functions, CD4+ intraepithelial lymphocytes can be divided into multiple subgroups, including Th1 cells, Th2 cells, and Th17 cells. The proliferation, differentiation, and apoptosis of CD4+ intraepithelial lymphocytes can be regulated by a variety of transcription factors, intestinal microbes, and nutrients. CD4+ intraepithelial lymphocytes play an important role in the pathogenesis of inflammatory bowel disease. In this article, we will review the mechanism of differentiation and regulation of CD4+ intraepithelial lymphocytes and their relationship with inflammatory bowel disease, with an aim to provide some new clues to the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Chao Zhou
- Department of General Surgery, Xinqiao Hospital Affiliated to the Army Medical University, Chongqing 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital Affiliated to the Army Medical University, Chongqing 400037, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital Affiliated to the Army Medical University, Chongqing 400037, China
| | - Wei-Dong Xiao
- Department of General Surgery, Xinqiao Hospital Affiliated to the Army Medical University, Chongqing 400037, China
| |
Collapse
|
31
|
Hu MD, Ethridge AD, Lipstein R, Kumar S, Wang Y, Jabri B, Turner JR, Edelblum KL. Epithelial IL-15 Is a Critical Regulator of γδ Intraepithelial Lymphocyte Motility within the Intestinal Mucosa. THE JOURNAL OF IMMUNOLOGY 2018; 201:747-756. [PMID: 29884699 DOI: 10.4049/jimmunol.1701603] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
Abstract
Intraepithelial lymphocytes (IELs) expressing the γδ TCR (γδ IELs) provide continuous surveillance of the intestinal epithelium. However, the mechanisms regulating the basal motility of these cells within the epithelial compartment have not been well defined. We investigated whether IL-15 contributes to γδ IEL localization and migratory behavior in addition to its role in IEL differentiation and survival. Using advanced live cell imaging techniques in mice, we find that compartmentalized overexpression of IL-15 in the lamina propria shifts the distribution of γδ T cells from the epithelial compartment to the lamina propria. This mislocalization could be rescued by epithelial IL-15 overexpression, indicating that epithelial IL-15 is essential for γδ IEL migration into the epithelium. Furthermore, in vitro analyses demonstrated that exogenous IL-15 stimulates γδ IEL migration into cultured epithelial monolayers, and inhibition of IL-2Rβ significantly attenuates the basal motility of these cells. Intravital microscopy showed that impaired IL-2Rβ signaling induced γδ IEL idling within the lateral intercellular space, which resulted in increased early pathogen invasion. Similarly, the redistribution of γδ T cells to the lamina propria due to local IL-15 overproduction also enhanced bacterial translocation. These findings thus reveal a novel role for IL-15 in mediating γδ T cell localization within the intestinal mucosa and regulating γδ IEL motility and patrolling behavior as a critical component of host defense.
Collapse
Affiliation(s)
- Madeleine D Hu
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alexander D Ethridge
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Rebecca Lipstein
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Sushil Kumar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yitang Wang
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jerrold R Turner
- Department of Pathology, University of Chicago, Chicago, IL 60637.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Karen L Edelblum
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; .,Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
32
|
Hu MD, Jia L, Edelblum KL. Policing the intestinal epithelial barrier: Innate immune functions of intraepithelial lymphocytes. CURRENT PATHOBIOLOGY REPORTS 2018; 6:35-46. [PMID: 29755893 PMCID: PMC5943048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW This review will explore the contribution of IELs to mucosal innate immunity and highlight the similarities in IEL functional responses to bacteria, viruses and protozoan parasite invasion. RECENT FINDINGS IELs rapidly respond to microbial invasion by activating host defense responses, including the production of mucus and antimicrobial peptides to prevent microbes from reaching the epithelial surface. During active infection, IELs promote epithelial cytolysis, cytokine and chemokine production to limit pathogen invasion, replication and dissemination. Commensal-induced priming of IEL effector function or continuous surveillance of the epithelium may be important contributing factors to the rapidity of response. SUMMARY Impaired microbial recognition, dysregulated innate immune signaling or microbial dysbiosis may limit the protective function of IELs and increase susceptibility to disease. Further understanding of the mechanisms regulating IEL surveillance and sentinel function may provide insight into the development of more effective targeted therapies designed to reinforce the mucosal barrier.
Collapse
Affiliation(s)
- Madeleine D Hu
- Center for Immunity and Inflammation, Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
33
|
Policing the Intestinal Epithelial Barrier: Innate Immune Functions of Intraepithelial Lymphocytes. CURRENT PATHOBIOLOGY REPORTS 2018. [DOI: 10.1007/s40139-018-0157-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|