1
|
Ye F, Wei C, Wu A. The potential mechanism of mitochondrial homeostasis in postoperative neurocognitive disorders: an in-depth review. Ann Med 2024; 56:2411012. [PMID: 39450938 PMCID: PMC11514427 DOI: 10.1080/07853890.2024.2411012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 10/26/2024] Open
Abstract
Postoperative neurocognitive disorders (PND) are the most common neurological disorders following surgery and anaesthesia before and within 12 months after surgery, with a high prevalence in the geriatric population. PND can severely deteriorate the quality of life of patients, especially among the elderly, mainly manifested as memory loss, attention, decline and language comprehension disorders, mostly in elderly patients, with an incidence as high as 31%. Previous studies have also raised the possibility of accelerated cognitive decline and underlying neuropathological processes associated with diseases that affect cognitive performance (e.g. Alzheimer's dementia) for reasons related to anaesthesia and surgery. Currently, most research on PND has focused on various molecular pathways, especially in the geriatric population. The various hypotheses that have been proposed regarding the mechanisms imply peripheral neuroinflammation, oxidative stress, mitochondrial homeostasis, synaptic function, autophagy disorder, blood-brain barrier dysfunction, the microbiota-gut-brain axis and lack of neurotrophic support. However, the underlying pathogenesis and molecular mechanisms of PND have not yet been uncovered. Recent research has focused on mitochondrial homeostasis. In this paper, we present a review of various studies to better understand and characterize the mechanisms of associated cognitive dysfunction. As the biochemical basis of PND becomes more clearly defined, future treatments based on mitochondrial homeostasis modulation can prove to be very promising.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Koyya P, Manthari RK, Pandrangi SL. Brain-Derived Neurotrophic Factor - The Protective Agent Against Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:353-366. [PMID: 37287291 PMCID: PMC11348470 DOI: 10.2174/1871527322666230607110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer's, Parkinson's, Schizophrenia, and Huntington's, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.
Collapse
Affiliation(s)
- Prathyusha Koyya
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Santhi Latha Pandrangi
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
3
|
Cozzolino F, Canè L, Gatto MC, Iacobucci I, Sacchettino L, De Biase D, Di Napoli E, Paciello O, Avallone L, Monti M, d’Angelo D, Napolitano F. Proteomic signature profiling in the cortex of dairy cattle unravels the physiology of brain aging. Front Aging Neurosci 2023; 15:1277546. [PMID: 38131010 PMCID: PMC10733460 DOI: 10.3389/fnagi.2023.1277546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Aging is a physiological process occurring in all living organisms. It is characterized by a progressive deterioration of the physiological and cognitive functions of the organism, accompanied by a gradual impairment of mechanisms involved in the regulation of tissue and organ homeostasis, thus exacerbating the risk of developing pathologies, including cancer and neurodegenerative disorders. Methods In the present work, for the first time, the influence of aging has been investigated in the brain cortex of the Podolica cattle breed, through LC-MS/MS-based differential proteomics and the bioinformatic analysis approach (data are available via ProteomeXchange with identifier PXD044108), with the aim of identifying potential aging or longevity markers, also associated with a specific lifestyle. Results and discussion We found a significant down-regulation of proteins involved in cellular respiration, dendric spine development, synaptic vesicle transport, and myelination. On the other hand, together with a reduction of the neurofilament light chain, we observed an up-regulation of both GFAP and vimentin in the aged samples. In conclusion, our data pave the way for a better understanding of molecular mechanisms underlying brain aging in grazing cattle, which could allow strategies to be developed that are aimed at improving animal welfare and husbandry practices of dairy cattle from intensive livestock.
Collapse
Affiliation(s)
- Flora Cozzolino
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Luisa Canè
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Claudia Gatto
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
| | - Ilaria Iacobucci
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Evaristo Di Napoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Monti
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesco Napolitano
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Zhang J, Xiong YW, Tan LL, Zheng XM, Zhang YF, Ling Q, Zhang C, Zhu HL, Chang W, Wang H. Sperm Rhoa m6A modification mediates intergenerational transmission of paternally acquired hippocampal neuronal senescence and cognitive deficits after combined exposure to environmental cadmium and high-fat diet in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131891. [PMID: 37354721 DOI: 10.1016/j.jhazmat.2023.131891] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Little is currently known about the effect and mechanism of combined paternal environmental cadmium (Cd) and high-fat diet (HFD) on offspring cognitive ability. Here, using in vivo model, we found that combined paternal environmental Cd and HFD caused hippocampal neuronal senescence and cognitive deficits in offspring. MeRIP-seq revealed m6A level of Rhoa, a regulatory gene of cellular senescence, was significantly increased in combined environmental Cd and HFD-treated paternal sperm. Interestingly, combined paternal environmental Cd and HFD markedly enhanced Rhoa mRNA, its m6A and reader protein IGF2BP1 in offspring hippocampus. STM2457, the inhibitor of m6A modification, markedly mitigated paternal exposure-caused the elevation of hippocampal Rhoa m6A, neuronal senescence and cognitive deficits in offspring. In vitro experiments, Rhoa siR significantly reversed mouse hippocampal neuronal senescence. Igf2bp1 siR obviously reduced the level and stability of Rhoa in aging mouse hippocampal neuronal cells. In conclusion, combined paternal environmental Cd and HFD induce offspring hippocampal neuronal senescence and cognitive deficits by promoting IGF2BP1-mediated Rhoa stabilization in offspring hippocampus via elevating Rhoa m6A in paternal sperm.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Chao Zhang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
5
|
Dorszewska J, Ong KT, Zabel M, Marchetti C. Editorial: Insights into mechanisms underlying brain impairment in aging, volume II. Front Aging Neurosci 2023; 15:1242271. [PMID: 37496756 PMCID: PMC10368071 DOI: 10.3389/fnagi.2023.1242271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Affiliation(s)
- Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznań, Poland
| | - Kevin T. Ong
- Armadale Health Service, Mount Nasura, WA, Australia
| | - Matthew Zabel
- University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Cristina Marchetti
- Institute of Molecular Biology and Pathology (IBPM), National Research Council, Rome, Italy
- European Brain Research Institute (EBRI)-Fondazione Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
6
|
Korczowska-Łącka I, Hurła M, Banaszek N, Kobylarek D, Szymanowicz O, Kozubski W, Dorszewska J. Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases. Mol Neurobiol 2023; 60:4132-4149. [PMID: 37039942 DOI: 10.1007/s12035-023-03329-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023]
Abstract
Neurological diseases can be broadly divided according to causal factors into circulatory system disorders leading to ischemic stroke; degeneration of the nerve cells leading to neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, and immune system disorders; bioelectric activity (epileptic) problems; and genetically determined conditions as well as viral and bacterial infections developing inflammation. Regardless of the cause of neurological diseases, they are usually accompanied by disturbances of the central energy in a completely unexplained mechanism. The brain makes up only 2% of the human body's weight; however, while working, it uses as much as 20% of the energy obtained by the body. The energy requirements of the brain are very high, and regulatory mechanisms in the brain operate to ensure adequate neuronal activity. Therefore, an understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving cooperativity between structural and molecular factors in the central nervous system. This article reviewed selected molecular biomarkers of oxidative stress and energy metabolism disorders such as homocysteine, DNA damage such as 8-oxo2dG, genetic variants, and antioxidants such as glutathione in selected neurological diseases including ischemic stroke, AD, PD, and epilepsy. This review summarizes our and others' recent research on oxidative stress in neurological disorders. In the future, the diagnosis and treatment of neurological diseases may be substantially improved by identifying specific early markers of metabolic and energy disorders.
Collapse
Affiliation(s)
- Izabela Korczowska-Łącka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Dominik Kobylarek
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49, Przybyszewskiego St, 60-355, Poznan, Poland.
| |
Collapse
|
7
|
Liu K, Li H, Zeng N, Lu W, Wu X, Xu H, Yan C, Wu L. Decline of stress resilience in aging rats: Focus on choroid plexus-cerebrospinal fluid-hippocampus. World J Biol Psychiatry 2022:1-15. [PMID: 36416065 DOI: 10.1080/15622975.2022.2151044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objectives: This study was designed to examine the mechanisms underlying decline of stress resilience in aged rats from the perspective of CP-CSF-hippocampus.Methods: Male Wistar rats (7-8 weeks old or 20 months old) were subjected to chronic unpredictable mild stress (CUMS) for 6 weeks. The behavioral tests were conducted to assess anxiety, depression and cognitive function. Hippocampal neurogenesis, apoptosis and synaptic plasticity were detected by western blot (WB) and/or immunofluorescence (IF) assay. Differential expression of growth factors (GFs) and axon guidance proteins (AGPs) in CSF was analyzed using the quantitative proteomics approach. IF and WB were performed to detect expression of occludin-1, Ki-67/Transthyretin, and folate transporters in choroid plexus (CP).Results: Decreased proliferation, impaired structure and transport function of CP were correlated with CSF composition alterations in stressed aging rats, including reduced 5-Methyltetrahydrofolate, growth factors and axon growth factors. Nutritional support of CSF upon hippocampus was attenuated, therefore affecting hippocampal plasticity. It has led to depression-like behaviors and cognitive deficits in stressful aged rats.Conclusions: Keeping normal structure and function of CP-CSF system may be a practical strategy for neuropsychological disorders in the elderly. This work provides evidential basis for CP transplant and CSF replacement therapy in future studies.
Collapse
Affiliation(s)
- Kaige Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huizhen Li
- Key Laboratory of Depression Animal Model Based on TCM Syndrome, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ningxi Zeng
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Lu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaofeng Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanfang Xu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Yan
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Kokubun K, Nemoto K, Yamakawa Y. Brain conditions mediate the association between aging and happiness. Sci Rep 2022; 12:4290. [PMID: 35277535 PMCID: PMC8915763 DOI: 10.1038/s41598-022-07748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
As the population ages, the realization of a long and happy life is becoming an increasingly important issue in many societies. Therefore, it is important to clarify how happiness and the brain change with aging. In this study, which was conducted with 417 healthy adults in Japan, the analysis showed that fractional anisotropy (FA) correlated with happiness, especially in the internal capsule, corona radiata, posterior thalamic radiation, cingulum, and superior longitudinal fasciculus. According to previous neuroscience studies, these regions are involved in emotional regulation. In psychological studies, emotional regulation has been associated with improvement in happiness. Therefore, this study is the first to show that FA mediates the relationship between age and subjective happiness in a way that bridges these different fields.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation Institute, Kyoto University, Kyoto, Japan. .,Smart-Aging Research Center, Tohoku University, Sendai, Japan.
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshinori Yamakawa
- Open Innovation Institute, Kyoto University, Kyoto, Japan.,ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan.,Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan.,Brain Impact, Kyoto, Japan
| |
Collapse
|
9
|
Archie SR, Sharma S, Burks E, Abbruscato T. Biological determinants impact the neurovascular toxicity of nicotine and tobacco smoke: A pharmacokinetic and pharmacodynamics perspective. Neurotoxicology 2022; 89:140-160. [PMID: 35150755 PMCID: PMC8958572 DOI: 10.1016/j.neuro.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 01/01/2023]
Abstract
Accumulating evidence suggests that the detrimental effect of nicotine and tobacco smoke on the central nervous system (CNS) is caused by the neurotoxic role of nicotine on blood-brain barrier (BBB) permeability, nicotinic acetylcholine receptor expression, and the dopaminergic system. The ultimate consequence of these nicotine associated neurotoxicities can lead to cerebrovascular dysfunction, altered behavioral outcomes (hyperactivity and cognitive dysfunction) as well as future drug abuse and addiction. The severity of these detrimental effects can be associated with several biological determinants. Sex and age are two important biological determinants which can affect the pharmacokinetics and pharmacodynamics of several systemically available substances, including nicotine. With regard to sex, the availability of gonadal hormone is impacted by the pregnancy status and menstrual cycle resulting in altered metabolism rate of nicotine. Additionally, the observed lower smoking cessation rate in females compared to males is a consequence of differential effects of sex on pharmacokinetics and pharmacodynamics of nicotine. Similarly, age-dependent alterations in the pharmacokinetics and pharmacodynamics of nicotine have also been observed. One such example is related to severe vulnerability of adolescence towards addiction and long-term behavioral changes which may continue through adulthood. Considering the possible neurotoxic effects of nicotine on the central nervous system and the deterministic role of sex as well as age on these neurotoxic effects of smoking, it has become important to consider sex and age to study nicotine induced neurotoxicity and development of treatment strategies for combating possible harmful effects of nicotine. In the future, understanding the role of sex and age on the neurotoxic actions of nicotine can facilitate the individualization and optimization of treatment(s) to mitigate nicotine induced neurotoxicity as well as smoking cessation therapy. Unfortunately, however, no such comprehensive study is available which has considered both the sex- and age-dependent neurotoxicity of nicotine, as of today. Hence, the overreaching goal of this review article is to analyze and summarize the impact of sex and age on pharmacokinetics and pharmacodynamics of nicotine and possible neurotoxic consequences associated with nicotine in order to emphasize the importance of including these biological factors for such studies.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Elizabeth Burks
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
10
|
Risco JR, Kelly AG, Holloway RG. Prognostication in neurology. HANDBOOK OF CLINICAL NEUROLOGY 2022; 190:175-193. [PMID: 36055715 DOI: 10.1016/b978-0-323-85029-2.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prognosticating is central to primary palliative care in neurology. Many neurologic diseases carry a high burden of troubling symptoms, and many individuals consider health states due to neurologic disease worse than death. Many patients and families report high levels of need for information at all disease stages, including information about prognosis. There are many barriers to communicating prognosis including prognostic uncertainty, lack of training and experience, fear of destroying hope, and not enough time. Developing the right mindset, tools, and skills can improve one's ability to formulate and communicate prognosis. Prognosticating is subject to many biases which can dramatically affect the quality of patient care; it is important for providers to recognize and reduce them. Patients and surrogates often do not hear what they are told, and even when they hear correctly, they form their own opinions. With practice and self-reflection, one can improve their prognostic skills, help patients and families create honest roadmaps of the future, and deliver high-quality person-centered care.
Collapse
Affiliation(s)
- Jorge R Risco
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Adam G Kelly
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Robert G Holloway
- Department of Neurology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
11
|
Wang T, Ruan B, Wang J, Zhou Z, Zhang X, Zhang C, Zhao H, Yang Y, Yuan D. Activation of NLRP3-Caspase-1 pathway contributes to age-related impairments in cognitive function and synaptic plasticity. Neurochem Int 2021; 152:105220. [PMID: 34743016 DOI: 10.1016/j.neuint.2021.105220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Aging is characterized by a progressive deterioration in physiological functions that is associated with cognitive decline as well as other physical functional impairments. Microglia activation leading to neuroinflammation has been generally recognized as playing a critical role in the development of age-related cognitive decline. NLRP3 inflammasome in microglia is fundamental for IL-1β maturation and subsequent inflammatory events. However, it remains unknown whether NLRP3 activation contributes to aging-induced cognitive decline in vivo. Here, our study demonstrated that aging rats showed declined cognitive function and impaired synaptic plasticity as well as decreased density of dendritic spines. Importantly, our data demonstrated strongly enhanced expression of NLRP3, ASC and Caspase-1 in the hippocampus of aged rats as well as decreased AMPA receptor and phosphorylated levels of CaMKII and CREB in the hippocampus of natural aging rats. Furthermore, NLRP3 inflammasome inhibitor elevated the surface expression of AMPA receptor and the phosphorylated levels of CaMKII, CREB in hippocampus, and finally contributed to the attenuation of hippocampal long-term potentiation (LTP) deficits and the improvement of cognitive decline of natural aging rats. These results revealed an important role for the NLRP3-Caspase-1 pathway in aging-induced cognitive decline and suggested that inhibition of NLRP3 inflammasome represented a novel therapeutic intervention for aging-related cognitive impairment.
Collapse
Affiliation(s)
- Ting Wang
- Academy of Nutrition and Health,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China; Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Bo Ruan
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Jinxin Wang
- College of Traditional Chinese Medicine, Three Gorges University & Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei, China
| | - Zhiyong Zhou
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Xulan Zhang
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Changcheng Zhang
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Haixia Zhao
- College of Medical Science, Three Gorges University, Yichang, Hubei, China
| | - Yuanjian Yang
- Biological Psychiatry Laboratory, Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.
| | - Ding Yuan
- College of Medical Science, Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
12
|
Zohar K, Lezmi E, Eliyahu T, Linial M. Ladostigil Attenuates Induced Oxidative Stress in Human Neuroblast-like SH-SY5Y Cells. Biomedicines 2021; 9:biomedicines9091251. [PMID: 34572436 PMCID: PMC8471141 DOI: 10.3390/biomedicines9091251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
A hallmark of the aging brain is the robust inflammation mediated by microglial activation. Pathophysiology of common neurodegenerative diseases involves oxidative stress and neuroinflammation. Chronic treatment of aging rats by ladostigil, a compound with antioxidant and anti-inflammatory function, prevented microglial activation and learning deficits. In this study, we further investigate the effect of ladostigil on undifferentiated SH-SY5Y cells. We show that SH-SY5Y cells exposed to acute (by H2O2) or chronic oxidative stress (by Sin1, 3-morpholinosydnonimine) induced apoptotic cell death. However, in the presence of ladostigil, the decline in cell viability and the increase of oxidative levels were partially reversed. RNA-seq analysis showed that prolonged oxidation by Sin1 resulted in a simultaneous reduction of the expression level of endoplasmic reticulum (ER) genes that participate in proteostasis. By comparing the differential gene expression profile of Sin1 treated cells to cells incubated with ladostigil before being exposed to Sin1, we observed an over-expression of Clk1 (Cdc2-like kinase 1) which was implicated in psychophysiological stress in mice and Alzheimer’s disease. Ladostigil also suppressed the expression of Ccpg1 (Cell cycle progression 1) and Synj1 (Synaptojanin 1) that are involved in ER-autophagy and endocytic pathways. We postulate that ladostigil alleviated cell damage induced by oxidation. Therefore, under conditions of chronic stress that are observed in the aging brain, ladostigil may block oxidative stress processes and consequently reduce neurotoxicity.
Collapse
Affiliation(s)
- Keren Zohar
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
| | - Elyad Lezmi
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
- Correspondence:
| |
Collapse
|
13
|
Jové M, Mota-Martorell N, Torres P, Portero-Otin M, Ferrer I, Pamplona R. New insights into human prefrontal cortex aging with a lipidomics approach. Expert Rev Proteomics 2021; 18:333-344. [PMID: 34098823 DOI: 10.1080/14789450.2021.1940142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human prefrontal cortex (hPFC) is a recent evolutionarily developed brain region involved in cognitive functions. Human cognitive functions decline during aging. Yet the molecular mechanisms underlying the functional deterioration of the neural cells of this brain region still remain to be fully described. AREAS COVERED In this review, we explore the role of lipids in hPFC aging. Firstly, we briefly consider the approaches used to identify lipid species in brain tissue with special attention paid to a lipidomics analysis. Then, as the evolution process has conferred a specific lipid profile on the hPFC, we consider the lipidome of hPFC. In addition, the role of lipids in hPFC aging, and in particular, the cognitive decline associated with aging, is discussed. Finally, nutritional and pharmacological interventions designed to modulate this process are examined. It is suggested that the dysfunction of key cellular processes secondarily to the damage of lipid membrane underlies the cognitive decline of hPFC during aging. EXPERT OPINION Lipidomics methods are and will continue to be key tools in the effort to gain additional insights into the aging of the human brain.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (Udl-irblleida), Lleida, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (Udl-irblleida), Lleida, Spain
| | - Pascual Torres
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (Udl-irblleida), Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (Udl-irblleida), Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (Udl-irblleida), Lleida, Spain
| |
Collapse
|
14
|
Kowalska M, Wize K, Prendecki M, Lianeri M, Kozubski W, Dorszewska J. Genetic Variants and Oxidative Stress in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:208-223. [PMID: 32091332 DOI: 10.2174/1567205017666200224121447] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/08/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
In an aging society, the number of people suffering from Alzheimer's Disease (AD) is still growing. Currently, intensive research is being carried out on the pathogenesis of AD. The results of these studies indicated that oxidative stress plays an important role in the onset and development of this disease. Moreover, in AD oxidative stress is generated by both genetic and biochemical factors as well as the functioning of the systems responsible for their formation and removal. The genetic factors associated with the regulation of the redox system include TOMM40, APOE, LPR, MAPT, APP, PSEN1 and PSEN2 genes. The most important biochemical parameters related to the formation of oxidative species in AD are p53, Homocysteine (Hcy) and a number of others. The formation of Reactive Oxygen Species (ROS) is also related to the efficiency of the DNA repair system, the effectiveness of the apoptosis, autophagy and mitophagy processes as well as the antioxidant potential. However, these factors are responsible for the development of many disorders, often with similar clinical symptoms, especially in the early stages of the disease. The discovery of markers of the early diagnosis of AD may contribute to the introduction of pharmacotherapy and slow down the progression of this disease.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Wize
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Prendecki
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Margarita Lianeri
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
15
|
Dorszewska J, Lahiri DK. Diversity of Molecular Factors in Alzheimer's Disease. Curr Alzheimer Res 2021; 17:205-207. [PMID: 32442077 DOI: 10.2174/156720501703200518081524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Debomoy K Lahiri
- Departments of Psychiatry, and of Medical & Molecular Genetics, Indiana University School of Medicine, Stark Neuroscience Research Institute, Indianapolis, IN 46202, United States
| |
Collapse
|
16
|
Molecular Factors Mediating Neural Cell Plasticity Changes in Dementia Brain Diseases. Neural Plast 2021; 2021:8834645. [PMID: 33854544 PMCID: PMC8021472 DOI: 10.1155/2021/8834645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Neural plasticity-the ability to alter a neuronal response to environmental stimuli-is an important factor in learning and memory. Short-term synaptic plasticity and long-term synaptic plasticity, including long-term potentiation and long-term depression, are the most-characterized models of learning and memory at the molecular and cellular level. These processes are often disrupted by neurodegeneration-induced dementias. Alzheimer's disease (AD) accounts for 50% of cases of dementia. Vascular dementia (VaD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD) constitute much of the remaining cases. While vascular lesions are the principal cause of VaD, neurodegenerative processes have been established as etiological agents of many dementia diseases. Chief among such processes is the deposition of pathological protein aggregates in vivo including β-amyloid deposition in AD, the formation of neurofibrillary tangles in AD and FTD, and the accumulation of Lewy bodies composed of α-synuclein aggregates in DLB and PDD. The main symptoms of dementia are cognitive decline and memory and learning impairment. Nonetheless, accurate diagnoses of neurodegenerative diseases can be difficult due to overlapping clinical symptoms and the diverse locations of cortical lesions. Still, new neuroimaging and molecular biomarkers have improved clinicians' diagnostic capabilities in the context of dementia and may lead to the development of more effective treatments. Both genetic and environmental factors may lead to the aggregation of pathological proteins and altered levels of cytokines, such that can trigger the formation of proinflammatory immunological phenotypes. This cascade of pathological changes provides fertile ground for the development of neural plasticity disorders and dementias. Available pharmacotherapy and disease-modifying therapies currently in clinical trials may modulate synaptic plasticity to mitigate the effects neuropathological changes have on cognitive function, memory, and learning. In this article, we review the neural plasticity changes seen in common neurodegenerative diseases from pathophysiological and clinical points of view and highlight potential molecular targets of disease-modifying therapies.
Collapse
|
17
|
Seibel R, Schneider RH, Gottlieb MGV. Effects of Spices (Saffron, Rosemary, Cinnamon, Turmeric and Ginger) in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:347-357. [PMID: 34279199 DOI: 10.2174/1567205018666210716122034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/14/2021] [Accepted: 03/17/2021] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the elderly, causing disability, physical, psychological, social, and economic damage to the individual, their families, and caregivers. Studies have shown some spices, such as saffron, rosemary, cinnamon, turmeric, and ginger, have antioxidant and anti-inflammatory properties that act in inhibiting the aggregation of acetylcholinesterase and amyloid in AD. For this reason, spices have been studied as beneficial sources against neurodegenerative diseases, including AD. In this sense, this study aims to present a review of some spices (Saffron, Rosemary, Cinnamon, Turmeric and Ginger) and their bioactive compounds, most consumed and investigated in the world regarding AD. In this article, scientific evidence is compiled in clinical trials in adults, the elderly, animals, and in vitro, on properties considered neuroprotective, having no or negative effects on neuroprotection of these spices and their bioactive compounds. The importance of this issue is based on the pharmacological treatment for AD that is still not very effective. In addition, the recommendations and prescriptions of these spices are still permeated by questioning and lack of robust evidence of their effects on neurodegeneration. The literature search suggests all spices included in this article have bioactive compounds with anti-inflammatory and antioxidant actions associated with neuroprotection. To date, the amounts of spice ingestion in humans are not uniform, and there is no consensus on its indication and chronic consumption guarantees safety and efficacy in neuroprotection. Therefore, clinical evidence on this topic is necessary to become a formal adjuvant treatment for AD.
Collapse
Affiliation(s)
- Raquel Seibel
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre/RS, Brazil
| | - Rodolfo H Schneider
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre/RS, Brazil
| | - Maria G V Gottlieb
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre/RS, Brazil
| |
Collapse
|
18
|
Dobri SGJ, Ross B. Total GABA level in human auditory cortex is associated with speech-in-noise understanding in older age. Neuroimage 2020; 225:117474. [PMID: 33099004 DOI: 10.1016/j.neuroimage.2020.117474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Speech-in-noise (SIN) understanding often becomes difficult for older adults because of impaired hearing and aging-related changes in central auditory processing. Central auditory processing depends on a fine balance between excitatory and inhibitory neural mechanisms, which may be upset in older age by a change in the level of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). In this study, we used MEGA-PRESS magnetic resonance spectroscopy (MRS) to estimate GABA levels in both the left and right auditory cortices of young and older adults. We found that total auditory GABA levels were lower in older compared to young adults. To understand the relationship between GABA and hearing function, we correlated GABA levels with hearing loss and SIN performance. In older adults, the GABA level in the right auditory cortex was correlated with age and SIN performance. The relationship between chronological age and SIN loss was partially mediated by the GABA level in the right auditory cortex. These findings support the hypothesis that inhibitory mechanisms in the auditory system are reduced in aging, and this reduction relates to functional impairments.
Collapse
Affiliation(s)
- Simon G J Dobri
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Bernhard Ross
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Kowalska M, Piekut T, Prendecki M, Sodel A, Kozubski W, Dorszewska J. Mitochondrial and Nuclear DNA Oxidative Damage in Physiological and Pathological Aging. DNA Cell Biol 2020; 39:1410-1420. [PMID: 32315547 DOI: 10.1089/dna.2019.5347] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in numerous processes, including energy generation, regulating ion homeostasis, and cell signaling. Mitochondria are also the main source of reactive oxygen species (ROS). Due to the oxidative environment within mitochondria, the macromolecules therein, for example, mtDNA, proteins, and lipids are more susceptible to sustaining damage. During aging, mitochondrial functions decline, partly as a result of an accumulation of mtDNA mutations, decreased mtDNA copy number and protein expression, and a reduction in oxidative capacity. The aim of this study was to summarize the knowledge on DNA oxidative damage in aging and age-related neurodegenerative diseases. It has been hypothesized that various ROS may play an important role not only in physiological senescence but also in the development of neurodegenerative diseases, for example, Alzheimer's disease and Parkinson's disease. Thus, mitochondria seem to be a potential target of novel treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Sodel
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Işıldak U, Somel M, Thornton JM, Dönertaş HM. Temporal changes in the gene expression heterogeneity during brain development and aging. Sci Rep 2020; 10:4080. [PMID: 32139741 PMCID: PMC7058021 DOI: 10.1038/s41598-020-60998-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/11/2020] [Indexed: 01/06/2023] Open
Abstract
Cells in largely non-mitotic tissues such as the brain are prone to stochastic (epi-)genetic alterations that may cause increased variability between cells and individuals over time. Although increased inter-individual heterogeneity in gene expression was previously reported, whether this process starts during development or if it is restricted to the aging period has not yet been studied. The regulatory dynamics and functional significance of putative aging-related heterogeneity are also unknown. Here we address these by a meta-analysis of 19 transcriptome datasets from three independent studies, covering diverse human brain regions. We observed a significant increase in inter-individual heterogeneity during aging (20 + years) compared to postnatal development (0 to 20 years). Increased heterogeneity during aging was consistent among different brain regions at the gene level and associated with lifespan regulation and neuronal functions. Overall, our results show that increased expression heterogeneity is a characteristic of aging human brain, and may influence aging-related changes in brain functions.
Collapse
Affiliation(s)
- Ulaş Işıldak
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Handan Melike Dönertaş
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
21
|
Pamplona R, Borras C, Jové M, Pradas I, Ferrer I, Viña J. Redox lipidomics to better understand brain aging and function. Free Radic Biol Med 2019; 144:310-321. [PMID: 30898667 DOI: 10.1016/j.freeradbiomed.2019.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Human prefrontal cortex (PFC) is a recently evolutionary emerged brain region involved in cognitive functions. Human cognitive abilities decline during aging. Yet the molecular mechanisms that sustain the preservation or deterioration of neurons and PFC functions are unknown. In this review, we focus on the role of lipids in human PFC aging. As the evolution of brain lipid concentrations is particularly accelerated in the human PFC, conferring a specific lipid profile, a brief approach to the lipidome of PFC was consider along with the relationship between lipids and lipoxidative damage, and the role of lipids in human PFC aging. In addition, the specific targets of lipoxidative damage in human PFC, the affected biological processes, and their potential role in the cognitive decline associated with aging are discussed. Finally, interventions designed to modify this process are considered. We propose that the dysfunction of key biological processes due to selective protein lipoxidation damage may have a role the cognitive decline of PFC during aging.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain.
| | - Consuelo Borras
- Freshage Research Group-Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Spain.
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Irene Pradas
- Department of Experimental Medicine, University of Lleida-Institute for Research in Biomedicine of Lleida (UdL-IRBLleida), Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain; Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, Spain
| | - Jose Viña
- Freshage Research Group-Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, INCLIVA, Spain
| |
Collapse
|
22
|
Li LJ, Zheng JC, Kang R, Yan JQ. Targeting Trim69 alleviates high fat diet (HFD)-induced hippocampal injury in mice by inhibiting apoptosis and inflammation through ASK1 inactivation. Biochem Biophys Res Commun 2019; 515:658-664. [DOI: 10.1016/j.bbrc.2019.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
|
23
|
Improving mitochondrial function significantly reduces the rate of age related photoreceptor loss. Exp Eye Res 2019; 185:107691. [DOI: 10.1016/j.exer.2019.107691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
|
24
|
Bavafa A, Khazaie H, Khaledi-Paveh B, Rezaie L. The relationship of severity of symptoms of depression, anxiety, and stress with sleep quality in earthquake survivors in Kermanshah. J Inj Violence Res 2019; 11:225-232. [PMID: 31263090 PMCID: PMC6646827 DOI: 10.5249/jivr.v11i2.1203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/26/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Earthquake is one of the most common natural disasters. A 7.3" Richter earthquake happened at 5km from the town of Ezgeleh in Kermanshah province in 2017, which caused several physical and mental injuries. The present study was conducted to investigate the sleep quality and mental health difficulties of those affected by earthquake and predict sleep quality according to severity of symptoms of depression, anxiety, and stress in the township of Sarpol-e Zahab, which suffered the most damage. METHODS A total of 999 earthquake survivors living in temporary tents and camps were assessed in terms of sleep quality and pattern using Pittsburgh Sleep Quality Index, and severity of psychological symptoms using Depression, Anxiety, and Stress scale 10 days after the disaster. RESULTS According to the results, poor sleep quality was experienced by 20.61% of survivors, severe stress by 60.5%, and severe depression by 41.5%, and moderate anxiety by 74%. The subjective quality, efficiency, daily dysfunction, use of hypnotics, and total sleep quality had a positive and significant relation with severity of experienced depression, anxiety, and stress. Sleep latency had a positive and significant relation only with stress, and sleep disturbance with depression and stress. CONCLUSIONS Severity of depression, anxiety, and stress can predict changes in total sleep quality of those affected by earthquake. Stress can be considered as the sole predictor of total sleep quality and the only factor that can explain components of sleep quality. The implications of the present study are debatable.
Collapse
Affiliation(s)
| | | | - Behnam Khaledi-Paveh
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | |
Collapse
|
25
|
Short-Term Effects of Overnight Orthokeratology on Corneal Sensitivity in Chinese Children and Adolescents. J Ophthalmol 2018; 2018:6185919. [PMID: 30671260 PMCID: PMC6323471 DOI: 10.1155/2018/6185919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/24/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose To assess the effects of the 3-month period of orthokeratology (OK) treatment on corneal sensitivity in Chinese children and adolescents. Methods Thirty subjects wore overnight OK lenses in both eyes for 3 months and were assessed at baseline, 1 day, 1 week, 1 month, and 3 months after the treatment. Changes in corneal sensitivity were measured by the Cochet–Bonnet (COBO) esthesiometer at the corneal apex and approximately 2 mm from the temporal limbus. Changes in refraction and corneal topography were also measured. Results Central corneal sensitivity suffered a significant reduction within the first month of the OK treatment period but returned to the baseline level at three months (F = 3.009, P=0.039), while no statistically significant difference occurred in temporal sensitivity (F = 2.462, P=0.074). The baseline of central corneal sensitivity correlated with age (r = −0.369, P=0.045). A marked change in refraction (uncorrected visual acuity, P < 0.001; spherical equivalent, P < 0.001) and corneal topographical condition (mean keratometry reading, P < 0.001; eccentricity value, P < 0.001; Surface Regularity Index, P < 0.001) occurred, but none of these measurements were correlated with corneal sensitivity. Conclusions A 3-month period OK treatment causes a reduction in central corneal sensitivity in Chinese children and adolescents but with a final recovery to the baseline level, which might be because neuronal adaptation occurred earlier in children and adolescents than in adults.
Collapse
|
26
|
Mejias NH, Martinez CC, Stephens ME, de Rivero Vaccari JP. Contribution of the inflammasome to inflammaging. JOURNAL OF INFLAMMATION-LONDON 2018; 15:23. [PMID: 30473634 PMCID: PMC6240324 DOI: 10.1186/s12950-018-0198-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/05/2018] [Indexed: 01/14/2023]
Abstract
Background Inflammation is a natural part of the aging process. This process is referred to as inflammaging. Inflammaging has been associated with deleterious outcomes in the aging brain in diseases such as Alzheimer’s disease and Parkinson’s disease. The inflammasome is a multi-protein complex of the innate immune response involved in the activation of caspase-1 and the processing of the inflammatory cytokines interleukin (IL)-1β and IL-18. We have previously shown that the inflammasome plays a role in the aging process in the brain. In this study, we analyzed the brain of young (3 months old) and aged (18 months old) mice for the expression of inflammasome proteins. Results Our findings indicate that the inflammasome proteins NLRC4, caspase-1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and IL-18 are elevated in the cytosol of cortical lysates in aged mice when compared to young. In addition, in the cytosolic fraction of hippocampal lysates in aged mice, we found an increase in NLRC4, caspase-1, caspase-11, ASC and IL-1β. Moreover, we found higher levels of ASC in the mitochondrial fraction of aged mice when compared to young, consistent with higher levels of the substrate of pyroptosis gasdermin-D (GSDM-D) and increased pyroptosome formation (ASC oligomerization). Importantly, in this study we obtained fibroblasts from a subject that donated his cells at three different ages (49, 52 and 64 years old (y/o)) and found that the protein levels of caspase-1 and ASC were higher at 64 than at 52 y/o. In addition, the 52 y/o cells were more susceptible to oxidative stress as determined by lactose dehydrogenase (LDH) release levels. However, this response was ameliorated by inhibition of the inflammasome with Ac-Tyr-Val-Ala-Asp-Chloromethylketone (Ac-YVAD-CMK). In addition, we found that the protein levels of ASC and IL-18 are elevated in the serum of subjects over the age of 45 y/o when compared to younger subjects, and that ASC was higher in Caucasians than Blacks and Hispanics, whereas IL-18 was higher in Caucasians than in blacks, regardless of age. Conclusions Taken together, our data indicate that the inflammasome contributes to inflammaging and that the inflammasome-mediated cell death mechanism of pyroptosis contributes to cell demise in the aging brain.
Collapse
Affiliation(s)
- Nancy H Mejias
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Camila C Martinez
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Marisa E Stephens
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, Lois Pope LIFE Center, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, 3-25, Miami, FL 33136-1060 USA
| |
Collapse
|
27
|
Hu Y, Pan J, Xin Y, Mi X, Wang J, Gao Q, Luo H. Gene Expression Analysis Reveals Novel Gene Signatures Between Young and Old Adults in Human Prefrontal Cortex. Front Aging Neurosci 2018; 10:259. [PMID: 30210331 PMCID: PMC6119720 DOI: 10.3389/fnagi.2018.00259] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Human neurons function over an entire lifetime, yet the molecular mechanisms which perform their functions and protecting against neurodegenerative disease during aging are still elusive. Here, we conducted a systematic study on the human brain aging by using the weighted gene correlation network analysis (WGCNA) method to identify meaningful modules or representative biomarkers for human brain aging. Significantly, 19 distinct gene modules were detected based on the dataset GSE53890; among them, six modules related to the feature of brain aging were highly preserved in diverse independent datasets. Interestingly, network feature analysis confirmed that the blue modules demonstrated a remarkably correlation with human brain aging progress. Besides, the top hub genes including PPP3CB, CAMSAP1, ACTR3B, and GNG3 were identified and characterized by high connectivity, module membership, or gene significance in the blue module. Furthermore, these genes were validated in mice of different ages. Mechanically, the potential regulators of blue module were investigated. These findings highlight an important role of the blue module and its affiliated genes in the control of normal brain aging, which may lead to potential therapeutic interventions for brain aging by targeting the hub genes.
Collapse
Affiliation(s)
- Yang Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| | - Junping Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yirong Xin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangnan Mi
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiahui Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Qin Gao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Huanmin Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.,Institute of Brain Sciences, Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Musella A, Gentile A, Rizzo FR, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Centonze D, Mandolesi G. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front Aging Neurosci 2018; 10:238. [PMID: 30135651 PMCID: PMC6092506 DOI: 10.3389/fnagi.2018.00238] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Aging is one of the main risk factors for the development of many neurodegenerative diseases. Emerging evidence has acknowledged neuroinflammation as potential trigger of the functional changes occurring during normal and pathological aging. Two main determinants have been recognized to cogently contribute to neuroinflammation in the aging brain, i.e., the systemic chronic low-grade inflammation and the decline in the regulation of adaptive and innate immune systems (immunosenescence, ISC). The persistence of the inflammatory status in the brain in turn may cause synaptopathy and synaptic plasticity impairments that underlie both motor and cognitive dysfunctions. Interestingly, such inflammation-dependent synaptic dysfunctions have been recently involved in the pathophysiology of multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease, typically affecting young adults that cause an early and progressive deterioration of both cognitive and motor functions. Of note, recent controlled studies have clearly shown that age at onset modifies prognosis and exerts a significant effect on presenting phenotype, suggesting that aging is a significant factor associated to the clinical course of MS. Moreover, some lines of evidence point to the different impact of age on motor disability and cognitive deficits, being the former most affected than the latter. The precise contribution of aging-related factors to MS neurological disability and the underlying molecular and cellular mechanisms are still unclear. In the present review article, we first emphasize the importance of the neuroinflammatory dependent mechanisms, such as synaptopathy and synaptic plasticity impairments, suggesting their potential exacerbation or acceleration with advancing age in the MS disease. Lastly, we provide an overview of clinical and experimental studies highlighting the different impact of age on motor disability and cognitive decline in MS, raising challenging questions on the putative age-related mechanisms involved.
Collapse
Affiliation(s)
- Alessandra Musella
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Francesca Romana Rizzo
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca De Vito
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Vanni
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Fabio Buttari
- Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Diego Centonze
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology, Istituto Neurologico Mediterraneo (IRCCS Neuromed), Pozzilli, Italy
| | - Georgia Mandolesi
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy.,San Raffaele University of Rome, Rome, Italy
| |
Collapse
|
29
|
Ho NTT, Kutzner A, Heese K. Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2-FAM72-|. Biol Chem 2017; 399:55-61. [PMID: 28822221 DOI: 10.1515/hsz-2017-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Due to an aging society with an increased dementia-induced threat to higher cognitive functions, it has become imperative to understand the molecular and cellular events controlling the memory and learning processes in the brain. Here, we suggest that the novel master gene pair |-SRGAP2-FAM72-| (SLIT-ROBO Rho GTPase activating the protein 2, family with sequence similarity to 72) reveals a new dogma for the regulation of neural stem cell (NSC) gene expression and is a distinctive player in the control of human brain plasticity. Insight into the specific regulation of the brain-specific neural master gene |-SRGAP2-FAM72-| may essentially contribute to novel therapeutic approaches to restore or improve higher cognitive functions.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
30
|
Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Sci Rep 2017; 7:16890. [PMID: 29203886 PMCID: PMC5715102 DOI: 10.1038/s41598-017-17322-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/22/2017] [Indexed: 11/23/2022] Open
Abstract
Aging is a biologically universal event, and yet the key events that drive aging are still poorly understood. One approach to generate new hypotheses about aging is to use unbiased methods to look at change across lifespan. Here, we have examined gene expression in the human dorsolateral frontal cortex using RNA- Seq to populate a whole gene co-expression network analysis. We show that modules of co-expressed genes enriched for those encoding synaptic proteins are liable to change with age. We extensively validate these age-dependent changes in gene expression across several datasets including the publically available GTEx resource which demonstrated that gene expression associations with aging vary between brain regions. We also estimated the extent to which changes in cellular composition account for age associations and find that there are independent signals for cellularity and aging. Overall, these results demonstrate that there are robust age-related alterations in gene expression in the human brain and that genes encoding for neuronal synaptic function may be particularly sensitive to the aging process.
Collapse
|
31
|
Dönertaş HM, İzgi H, Kamacıoğlu A, He Z, Khaitovich P, Somel M. Gene expression reversal toward pre-adult levels in the aging human brain and age-related loss of cellular identity. Sci Rep 2017; 7:5894. [PMID: 28724976 PMCID: PMC5517654 DOI: 10.1038/s41598-017-05927-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/06/2017] [Indexed: 01/21/2023] Open
Abstract
It was previously reported that mRNA expression levels in the prefrontal cortex at old age start to resemble pre-adult levels. Such expression reversals could imply loss of cellular identity in the aging brain, and provide a link between aging-related molecular changes and functional decline. Here we analyzed 19 brain transcriptome age-series datasets, comprising 17 diverse brain regions, to investigate the ubiquity and functional properties of expression reversal in the human brain. Across all 19 datasets, 25 genes were consistently up-regulated during postnatal development and down-regulated in aging, displaying an "up-down" pattern that was significant as determined by random permutations. In addition, 113 biological processes, including neuronal and synaptic functions, were consistently associated with genes showing an up-down tendency among all datasets. Genes up-regulated during in vitro neuronal differentiation also displayed a tendency for up-down reversal, although at levels comparable to other genes. We argue that reversals may not represent aging-related neuronal loss. Instead, expression reversals may be associated with aging-related accumulation of stochastic effects that lead to loss of functional and structural identity in neurons.
Collapse
Affiliation(s)
- Handan Melike Dönertaş
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.
| | - Hamit İzgi
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Altuğ Kamacıoğlu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Zhisong He
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China
| | - Philipp Khaitovich
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|
32
|
Buscher N, van Dorsselaer P, Steckler T, Talpos JC. Evaluating aged mice in three touchscreen tests that differ in visual demands: Impaired cognitive function and impaired visual abilities. Behav Brain Res 2017; 333:142-149. [PMID: 28690184 DOI: 10.1016/j.bbr.2017.06.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
Normal aging is often accompanied by reductions in cognitive abilities as well as impairments in visual acuity in men and mice. In preclinical models of human cognition this concomitance can make it difficult to assess the relative contributions of declined vision and cognitive ability on behavioral measures of cognition. To assess the influence of age on cognition and the impact of visual decline on the performance of touchscreen-based behavioral paradigms in mice, aged (11, 12, 16, 17, 19 and 21 months old) male C57BL/6J mice were compared to young (3 or 4 months old) male C57BL/6J mice using three tests of cognition as well as an assessment of visual acuity. Performance of a Visual Discrimination, Spatial Reversal, and an Automated Search Task were all affected by age. However, there was no relationship between reduced visual acuity and the observed performance impairments. Moreover, the visual acuity of animals with profound cognitive impairments overlapped with those showing normal cognitive ability. Despite the potential confound of impaired visual ability, it appears that the touchscreen approach might be particularly effective in studying age-related cognitive decline. This approach will increase the utility of aged mice as a model of decreased cognitive flexibility and may be particularly important for the study of age-related disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Nathalie Buscher
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium; University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| | | | - Thomas Steckler
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - John C Talpos
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
33
|
Wu B, Jiang M, Peng Q, Li G, Hou Z, Milne GL, Mori S, Alonso R, Geisler JG, Duan W. 2,4 DNP improves motor function, preserves medium spiny neuronal identity, and reduces oxidative stress in a mouse model of Huntington's disease. Exp Neurol 2017; 293:83-90. [PMID: 28359739 PMCID: PMC9912814 DOI: 10.1016/j.expneurol.2017.03.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the gene huntingtin. There is no treatment to prevent or delay the disease course of HD currently. Oxidative stress and mitochondrial dysfunction have emerged as key determinants of the disease progression in HD. Therefore, counteracting mutant huntingtin (mHtt)-induced oxidative stress and mitochondrial dysfunction appears as a new approach to treat this devastating disease. Interestingly, mild mitochondrial uncoupling improves neuronal resistance to stress and facilitates neuronal survival. Mild mitochondrial uncoupling can be induced by the proper dose of 2,4-dinitrophenol (DNP), a proton ionophore that was previously used for weight loss. In this study, we evaluated the effects of chronic administration of DNP at three doses (0.5, 1, 5mg/kg/day) on mHtt-induced behavioral deficits and cellular abnormalities in the N171-82Q HD mouse model. DNP at a low dose (1mg/kg/day) significantly improved motor function and preserved medium spiny neuronal marker DARPP32 and postsynaptic protein PSD95 in the striatum of HD mice. Further mechanistic study suggests that DNP at this dose reduced oxidative stress in HD mice, which was indicated by reduced levels of F2-isoprostanes in the brain of HD mice treated with DNP. Our data indicated that DNP provided behavioral benefit and neuroprotective effect at a weight neutral dose in HD mice, suggesting that the potential value of repositioning DNP to HD treatment is warranted in well-controlled clinical trials in HD.
Collapse
Affiliation(s)
- Bin Wu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of General Practice, The First hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gang Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Pharmacology, Inner Mongolian Medical University School of Pharmacy, Hohhot, Inner Mongolian, China
| | - Zhipeng Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ginger L. Milne
- Eicosanoid Core Laboratory, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert Alonso
- Mitochon Pharmaceuticals Inc., Radnor, PA, United States
| | | | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
34
|
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79:66-86. [PMID: 28476525 DOI: 10.1016/j.neubiorev.2017.04.030] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that is associated with cognitive decline as well as functional and social impairments. One structure of particular interest when considering aging and cognitive decline is the hippocampus, a brain region known to play an important role in learning and memory consolidation as well as in affective behaviours and mood regulation, and where both functional and structural plasticity (e.g., neurogenesis) occur well into adulthood. Neurobiological alterations seen in the aging hippocampus including increased oxidative stress and neuroinflammation, altered intracellular signalling and gene expression, as well as reduced neurogenesis and synaptic plasticity, are thought to be associated with age-related cognitive decline. Non-invasive strategies such as caloric restriction, physical exercise, and environmental enrichment have been shown to counteract many of the age-induced alterations in hippocampal signalling, structure, and function. Thus, such approaches may have therapeutic value in counteracting the deleterious effects of aging and protecting the brain against age-associated neurodegenerative processes.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; UBC Island Medical program, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
35
|
Lu T, Kim PP, Greig NH, Luo Y. Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity. Neurotox Res 2017; 32:218-230. [PMID: 28342134 DOI: 10.1007/s12640-017-9723-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
p53 plays an essential role in the regulation of cell death in dopaminergic (DA) neurons and its activation has been implicated in the neurotoxic effects of methamphetamine (MA). However, how p53 mediates MA neurotoxicity remains largely unknown. In this study, we examined the effect of DA-specific p53 gene deletion in DAT-p53KO mice. Whereas in vivo MA binge exposure reduced locomotor activity in wild-type (WT) mice, this was significantly attenuated in DAT-p53KO mice and associated with significant differences in the levels of the p53 target genes BAX and p21 between WT and DAT-p53KO. Notably, DA-specific deletion of p53 provided protection of substantia nigra pars reticulata (SNpr) tyrosine hydroxylase (TH) positive fibers following binge MA, with DAT-p53KO mice having less decline of TH protein levels in striatum versus WT mice. Whereas DAT-p53KO mice demonstrated a consistently higher density of TH fibers in striatum compared to WT mice at 10 days after MA exposure, DA neuron counts within the substantia nigra pars compacta (SNpc) were similar. Finally, supportive of these results, administration of a p53-specific inhibitor (PFT-α) provided a similarly protective effect on MA binge-induced behavioral deficits. Neither DA specific p53 deletion nor p53 pharmacological inhibition affected hyperthermia induced by MA binge. These findings demonstrate a specific contribution of p53 activation in behavioral deficits and DA neuronal terminal loss by MA binge exposure.
Collapse
Affiliation(s)
- Tao Lu
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA.,Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Paul P Kim
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute of Aging, Baltimore, USA
| | - Yu Luo
- Department of Neurological Surgery, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, OH, USA.
| |
Collapse
|
36
|
Todorova V, Blokland A. Mitochondria and Synaptic Plasticity in the Mature and Aging Nervous System. Curr Neuropharmacol 2017; 15:166-173. [PMID: 27075203 PMCID: PMC5327446 DOI: 10.2174/1570159x14666160414111821] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/23/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023] Open
Abstract
Synaptic plasticity in the adult brain is believed to represent the cellular mechanisms of learning and memory. Mitochondria are involved in the regulation of the complex processes of synaptic plasticity. This paper reviews the current knowledge on the regulatory roles of mitochondria in the function and plasticity of synapses and the implications of mitochondrial dysfunctions in synaptic transmission. First, the importance of mitochondrial distribution and motility for maintenance and strengthening of dendritic spines, but also for new spines/synapses formation is presented. Secondly, the major mitochondrial functions as energy supplier and calcium buffer organelles are considered as possible explanation for their essential and regulatory roles in neuronal plasticity processes. Thirdly, the effects of synaptic potentiation on mitochondrial gene expression are discussed. And finally, the relation between age-related alterations in synaptic plasticity and mitochondrial dysfunctions is considered. It appears that memory loss and neurodegeneration during aging are related to mitochondrial (dys)function. Although, it is clear that mitochondria are essential for synaptic plasticity, further studies are indicated to scrutinize the intracellular and molecular processes that regulate the functions of mitochondria in synaptic plasticity.
Collapse
Affiliation(s)
- Vyara Todorova
- Institute II for Anatomy, Medical Faculty, University of Cologne, Cologne, Germany
| | | |
Collapse
|
37
|
Barzilai A, Schumacher B, Shiloh Y. Genome instability: Linking ageing and brain degeneration. Mech Ageing Dev 2017; 161:4-18. [DOI: 10.1016/j.mad.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 02/06/2023]
|
38
|
Martínez-Pinilla E, Ordóñez C, Del Valle E, Navarro A, Tolivia J. Regional and Gender Study of Neuronal Density in Brain during Aging and in Alzheimer's Disease. Front Aging Neurosci 2016; 8:213. [PMID: 27679571 PMCID: PMC5020132 DOI: 10.3389/fnagi.2016.00213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Background: Learning processes or language development are only some of the cognitive functions that differ qualitatively between men and women. Gender differences in the brain structure seem to be behind these variations. Indeed, this sexual dimorphism at neuroanatomical level is accompanied unequivocally by differences in the way that aging and neurodegenerative diseases affect men and women brains. Objective: The aim of this study is the analysis of neuronal density in four areas of the hippocampus, and entorhinal and frontal cortices to analyze the possible gender influence during normal aging and in Alzheimer's disease (AD). Methods: Human brain tissues of different age and from both sexes, without neurological pathology and with different Braak's stages of AD, were studied. Neuronal density was quantified using the optical dissector. Results: Our results showed the absence of a significant neuronal loss during aging in non-pathological brains in both sexes. However, we have demonstrated specific punctual significant variations in neuronal density related with the age and gender in some regions of these brains. In fact, we observed a higher neuronal density in CA3 and CA4 hippocampal areas of non-pathological brains of young men compared to women. During AD, we observed a negative correlation between Braak's stages and neuronal density in hippocampus, specifically in CA1 for women and CA3 for men, and in frontal cortex for both, men and women. Conclusion: Our data demonstrated a sexual dimorphism in the neuronal vulnerability to degeneration suggesting the need to consider the gender of the individuals in future studies, regarding neuronal loss in aging and AD, in order to avoid problems in interpreting data.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Cristina Ordóñez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Eva Del Valle
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Ana Navarro
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Jorge Tolivia
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
39
|
Abstract
OBJECTIVE Systemic PaO2 oscillations occur during cyclic recruitment and derecruitment of atelectasis in acute respiratory failure and might harm brain tissue integrity. DESIGN Controlled animal study. SETTING University research laboratory. SUBJECTS Adult anesthetized pigs. INTERVENTIONS Pigs were randomized to a control group (anesthesia and extracorporeal circulation for 20 hr with constant PaO2, n = 10) or an oscillation group (anesthesia and extracorporeal circulation for 20 hr with artificial PaO2 oscillations [3 cycles min⁻¹], n = 10). Five additional animals served as native group (n = 5). MEASUREMENTS AND MAIN RESULTS Outcome following exposure to artificial PaO2 oscillations compared with constant PaO2 levels was measured using 1) immunohistochemistry, 2) real-time polymerase chain reaction for inflammatory markers, 3) receptor autoradiography, and 4) transcriptome analysis in the hippocampus. Our study shows that PaO2 oscillations are transmitted to brain tissue as detected by novel ultrarapid oxygen sensing technology. PaO2 oscillations cause significant decrease in NISSL-stained neurons (p < 0.05) and induce inflammation (p < 0.05) in the hippocampus and a shift of the balance of hippocampal neurotransmitter receptor densities toward inhibition (p < 0.05). A pathway analysis suggests that cerebral immune and acute-phase response may play a role in mediating PaO2 oscillation-induced brain injury. CONCLUSIONS Artificial PaO2 oscillations cause mild brain injury mediated by inflammatory pathways. Although artificial PaO2 oscillations and endogenous PaO2 oscillations in lung-diseased patients have different origins, it is likely that they share the same noxious effect on the brain. Therefore, PaO2 oscillations might represent a newly detected pathway potentially contributing to the crosstalk between acute lung and remote brain injury.
Collapse
|
40
|
Xu B, Gao Y, Zhan S, Xiong F, Qiu W, Qian X, Wang T, Wang N, Zhang D, Yang Q, Wang R, Bao X, Dou W, Tian R, Meng S, Gai WP, Huang Y, Yan XX, Ge W, Ma C. Quantitative protein profiling of hippocampus during human aging. Neurobiol Aging 2015; 39:46-56. [PMID: 26923401 DOI: 10.1016/j.neurobiolaging.2015.11.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 11/17/2022]
Abstract
The hippocampus appears commonly affected by aging and various neurologic disorders in humans, whereas little is known about age-related change in overall protein expression in this brain structure. Using the 4-plex tandem mass tag labeling, we carried out a quantitative proteomic study of the hippocampus during normal aging using postmortem brains from Chinese subjects. Hippocampal samples from 16 subjects died of non-neurological/psychiatric diseases were divided into 4 age groups: 22-49, 50-69, 70-89, and >90. Among 4582 proteins analyzed, 35 proteins were significantly elevated, whereas 25 proteins were downregulated, along with increasing age. Several upregulated proteins, including transgelin, vimentin, myosin regulatory light polypeptide 9, and calcyphosin, were further verified by quantitative Western blot analysis of hippocampal tissues from additional normal subjects. Bioinformatic analysis showed that the upregulated and downregulated proteins were largely involved in several important protein-protein interaction networks. Proteins in the electron transport chain and synaptic vesicle fusion pathway were consistently downregulated with aging, whereas proteins associated with Alzheimer's disease showed little change. Our study demonstrates substantial protein profile changes in the human hippocampus during aging, which could be of relevance to age-related loss of hippocampal functions.
Collapse
Affiliation(s)
- Benhong Xu
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanpan Gao
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Xiong
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaojing Qian
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Naili Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Qian Yang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wanchen Dou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Tian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Meng
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Ping Gai
- Department of Surgery and Centre for Neuroscience, Flinders University School of Medicine, Bedford Park, SA, Australia
| | - Yue Huang
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Science, Changsha, Hunan, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
41
|
Kubik LL, Philbert MA. The role of astrocyte mitochondria in differential regional susceptibility to environmental neurotoxicants: tools for understanding neurodegeneration. Toxicol Sci 2015; 144:7-16. [PMID: 25740792 DOI: 10.1093/toxsci/kfu254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent decades, there has been a significant expansion in our understanding of the role of astrocytes in neuroprotection, including spatial buffering of extracellular ions, secretion of metabolic coenzymes, and synaptic regulation. Astrocytic neuroprotective functions require energy, and therefore require a network of functional mitochondria. Disturbances to astrocytic mitochondrial homeostasis and their ability to produce ATP can negatively impact neural function. Perturbations in astrocyte mitochondrial function may accrue as the result of physiological aging processes or as a consequence of neurotoxicant exposure. Hydrophobic environmental neurotoxicants, such as 1,3-dinitrobenzene and α-chlorohydrin, cause regionally specific spongiform lesions mimicking energy deprivation syndromes. Astrocyte involvement includes mitochondrial damage that either precedes or is accompanied by neuronal damage. Similarly, environmental neurotoxicants that are implicated in the etiology of age-related neurodegenerative conditions cause regionally specific damage in the brain. Based on the regioselective nature of age-related neurodegenerative lesions, chemically induced models of regioselective lesions targeting astrocyte mitochondria can provide insight into age-related susceptibilities in astrocyte mitochondria. Most of the available research to date focuses on neuronal damage in cases of age-related neurodegeneration; however, there is a body of evidence that supports a central mechanistic role for astrocyte mitochondria in the expression of neural injury. Regional susceptibility to neuronal damage induced by aging by exposure to neurotoxicants may be a reflection of highly variable regional energy requirements. This review identifies region-specific vulnerabilities in astrocyte mitochondria in examples of exposure to neurotoxicants and in age-related neurodegeneration.
Collapse
Affiliation(s)
- Laura L Kubik
- Toxicology Program, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109
| | - Martin A Philbert
- Toxicology Program, Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
42
|
Haas CB, Kalinine E, Zimmer ER, Hansel G, Brochier AW, Oses JP, Portela LV, Muller AP. Brain Insulin Administration Triggers Distinct Cognitive and Neurotrophic Responses in Young and Aged Rats. Mol Neurobiol 2015; 53:5807-5817. [PMID: 26497034 DOI: 10.1007/s12035-015-9494-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/15/2015] [Indexed: 11/27/2022]
Abstract
Aging is a major risk factor for cognitive deficits and neurodegenerative disorders, and impaired brain insulin receptor (IR) signaling is mechanistically linked to these abnormalities. The main goal of this study was to investigate whether brain insulin infusions improve spatial memory in aged and young rats. Aged (24 months) and young (4 months) male Wistar rats were intracerebroventricularly injected with insulin (20 mU) or vehicle for five consecutive days. The animals were then assessed for spatial memory using a Morris water maze. Insulin increased memory performance in young rats, but not in aged rats. Thus, we searched for cellular and molecular mechanisms that might account for this distinct memory response. In contrast with our expectation, insulin treatment increased the proliferative activity in aged rats, but not in young rats, implying that neurogenesis-related effects do not explain the lack of insulin effects on memory in aged rats. Furthermore, the expression levels of the IR and downstream signaling proteins such as GSK3-β, mTOR, and presynaptic protein synaptophysin were increased in aged rats in response to insulin. Interestingly, insulin treatment increased the expression of the brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) receptors in the hippocampus of young rats, but not of aged rats. Our data therefore indicate that aged rats can have normal IR downstream protein expression but failed to mount a BDNF response after challenge in a spatial memory test. In contrast, young rats showed insulin-mediated TrkB/BDNF response, which paralleled with improved memory performance.
Collapse
Affiliation(s)
- Clarissa B Haas
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo Kalinine
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo R Zimmer
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
- Instituto do Cérebro do Rio Grande do Sul (InsCer ), PUCRS, A. Ipiranga, 6690, prédio 63 - Bairro, Jardim Botânico, CEP 90610.000, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gisele Hansel
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andressa W Brochier
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jean P Oses
- Programa de Pós-Graduação em Saúde & Comportamento Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas, Rua Almirante Barroso, 1202 sala G109, CEP: 96010-280, Pelotas, RS, Brazil
| | - Luis V Portela
- Departamento de Bioquímica, ICBS, UFRGS. Programa de Pós Graduação em Ciências Biológicas-Bioquímica, Rua Ramiro Barcelos, 2600 anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre P Muller
- Unidade de Ciências da Saúde, Laboratório de Bioquímica e Fisiologia do Exercício Universidade do Extremo Sul Catarinense-UNESC, Av. Universitária, 1105 - Bairro Universitário, CEP: 88806-000, Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
43
|
Park HA, Licznerski P, Alavian KN, Shanabrough M, Jonas EA. Bcl-xL is necessary for neurite outgrowth in hippocampal neurons. Antioxid Redox Signal 2015; 22:93-108. [PMID: 24787232 PMCID: PMC4281845 DOI: 10.1089/ars.2013.5570] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS B-cell lymphoma-extra large (Bcl-xL) protects survival in dividing cells and developing neurons, but was not known to regulate growth. Growth and synapse formation are indispensable for neuronal survival in development, inextricably linking these processes. We have previously shown that, during synaptic plasticity, Bcl-xL produces changes in synapse number, size, activity, and mitochondrial metabolism. In this study, we determine whether Bcl-xL is required for healthy neurite outgrowth and whether neurite outgrowth is necessary for survival in developing neurons in the presence or absence of stress. RESULTS Depletion of endogenous Bcl-xL impairs neurite outgrowth in hippocampal neurons followed by delayed cell death which is dependent on upregulation of death receptor 6 (DR6), a molecule that regulates axonal pruning. Under hypoxic conditions, Bcl-xL-depleted neurons demonstrate increased vulnerability to neuronal process loss and to death compared with hypoxic controls. Endogenous DR6 expression and upregulation during hypoxia are associated with worsened neurite damage; depletion of DR6 partially rescues neuronal process loss, placing DR6 downstream of the effects of Bcl-xL on neuronal process outgrowth and protection. In vivo ischemia produces early increases in DR6, suggesting a role for DR6 in brain injury. INNOVATION We suggest that DR6 levels are usually suppressed by Bcl-xL; Bcl-xL depletion leads to upregulation of DR6, failure of neuronal outgrowth in nonstressed cells, and exacerbation of hypoxia-induced neuronal injury. CONCLUSION Bcl-xL regulates neuronal outgrowth during development and protects neurites from hypoxic insult, as opposed by DR6. Factors that enhance neurite formation may protect neurons against hypoxic injury or neurodegenerative stimuli.
Collapse
Affiliation(s)
- Han-A Park
- Section of Endocrinology, Department of Internal Medicine, Yale University , New Haven, Connecticut
| | | | | | | | | |
Collapse
|
44
|
Zamzow DR, Elias V, Legette LL, Choi J, Stevens JF, Magnusson KR. Xanthohumol improved cognitive flexibility in young mice. Behav Brain Res 2014; 275:1-10. [PMID: 25192637 DOI: 10.1016/j.bbr.2014.08.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/19/2022]
Abstract
The protein palmitoylation cycle has been shown to be important for protein signaling and synaptic plasticity. Data from our lab showed a change in the palmitoylation status of certain proteins with age. A greater percentage of the NMDA receptor subunits GluN2A and GluN2B, along with Fyn and PSD95 proteins, were palmitoylated in the old mice. The higher level of protein palmitoylation was also associated with poorer learning scores. Xanthohumol is a prenylated flavonoid that has been shown to increase beta-oxidation in the livers of rodents, decreasing circulating free fatty acids in the serum. What is not known is whether the application of xanthohumol could influence the palmitoylation status of proteins. In this study, young and old mice were fed a diet supplemented with xanthohumol for 8 weeks. Spatial memory was assessed with the Morris water maze and protein palmitoylation quantified. The young xanthohumol-treated mice showed a significant improvement in cognitive flexibility. However, this appeared to be associated with the young control mice, on a defined, phytoestrogen-deficient diet, performing as poorly as the old mice and xanthohumol reversing this effect. The old mice receiving xanthohumol did not significantly improve their learning scores. Xanthohumol treatment was unable to affect the palmitoylation of NMDA receptor subunits and associated proteins assessed in this study. This evidence suggests that xanthohumol may play a role in improving cognitive flexability in young animals, but it appears to be ineffective in adjusting the palmitoylation status of neuronal proteins in aged individuals.
Collapse
Affiliation(s)
- Daniel R Zamzow
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Valerie Elias
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - LeeCole L Legette
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - J Fred Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Kathy R Magnusson
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
45
|
Hu H, Li P, Wang Y, Gu R. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem 2014; 156:100-9. [PMID: 24629944 DOI: 10.1016/j.foodchem.2014.01.067] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/30/2013] [Accepted: 01/21/2014] [Indexed: 01/23/2023]
Abstract
The effect of hydrogen-rich water (HRW) on prolonging the shelf life of kiwifruit and possible underlying mechanisms were assessed. Our results revealed that HRW (30%, 80%, and 100%) displayed different effects in inhibiting the rot of kiwifruit. Among these treatments, 80% HRW had the most significant effect by decreasing the rot incidence and preserving the firmness of kiwifruit. This conclusion was supported by the fact that 80% HRW treatment could effectively alleviate pectin solubilization and reduce the activities of cell wall-degrading enzymes. On the other hand, HRW treatment was able to reduce the respiration intensity, increase the activity of superoxide dismutase, decrease lipid peroxidation level, and maintain the radical (DPPH,O2(-),andOH)-scavenging activity of kiwifruit. Moreover, the inner membrane of mitochondria exhibited higher integrity. Thus, our results demonstrate that HRW treatment could delay fruit ripening and senescence during storage by regulating the antioxidant defence.
Collapse
Affiliation(s)
- Huali Hu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Pengxia Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China.
| | - Yuning Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| | - Rongxin Gu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, PR China
| |
Collapse
|