1
|
Yu W, Jia X, Qiao H, Liu D, Sun Y, Yan R, Zhang C, Yu N, Song Y, Ling M, Zhang Z, Li X, Zhao C, Xing Y. Phosphoproteomic analysis reveals the mechanisms of human umbilical cord mesenchymal stem cell-derived exosomes attenuate renal aging. J Proteomics 2025; 310:105335. [PMID: 39433154 DOI: 10.1016/j.jprot.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Aging is a critical biological process, with particularly notable impacts on the kidneys. Exosomes derived from human umbilical cord mesenchymal stem cells (hUC-MSCs) are capable of transferring various bioactive molecules, which exhibit beneficial therapeutic effects on kidney diseases. This study demonstrates that exosomes derived from hUC-MSCs ameliorate cellular senescence in the kidneys of naturally aging mice. These exosomes reduce the protein expression of senescence markers and senescence-associated secretory phenotypes (SASP) leading to fewer DNA damage foci and increased expression of the proliferation indicator Ki67. During the aging process, many proteins undergo phosphorylation modifications. We utilized data-independent acquisition (DIA) phosphoproteomics to study kidneys of naturally aging mice and those treated with hUC-MSC-derived exosomes. We observed elevated phosphorylation levels of the differentially phosphorylated proteins, Lamin A/C, at Ser390 and Ser392 sites, which were subsequently verified by western blotting. Overall, this study provides a new molecular characterization of hUC-MSC-derived exosomes in mitigating cellular senescence in the kidneys. SIGNIFICANCE: DIA phosphoproteomics was employed to investigate phosphorylated proteins in the kidney tissues of naturally aging mice with hUCMSC-exos treated. The results demonstrated that the DIA technique detected a higher abundance of phosphorylated proteins. We identified 24 significantly differentially phosphorylated proteins, and found that the phosphorylation of specific Lamin A/C sites is crucial for preventing cellular senescence. This study will help to better reveal the related phosphorylated proteins involved in hUCMSC-exos intervention in the kidneys of naturally aging mice, providing a foundation for future research on specific phosphorylation sites of proteins as potential therapeutic targets for renal aging-related diseases.
Collapse
Affiliation(s)
- Wenzhuo Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Xu Jia
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Han Qiao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Di Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Yan Sun
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Rong Yan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Chenglong Zhang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Na Yu
- Division of Bacterial Anti-tumor Drugs, Shandong Precision Medicine Engineering Laboratory, Shandong Xinchuang Biotechnology Co., LTD, Jinan, Shandong, China
| | - Yiping Song
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Mingying Ling
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Xuehui Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China
| | - Chuanli Zhao
- Department of Hematology, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China.
| | - Yanqiu Xing
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 250012 Jinan, Shandong, China.
| |
Collapse
|
2
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
4
|
la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells 2023; 12:cells12081163. [PMID: 37190071 DOI: 10.3390/cells12081163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Aging is an inevitable outcome of life, characterized by a progressive decline in tissue and organ function. At a molecular level, it is marked by the gradual alterations of biomolecules. Indeed, important changes are observed on the DNA, as well as at a protein level, that are influenced by both genetic and environmental parameters. These molecular changes directly contribute to the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, neurodegenerative disorders and others aging-related diseases. Additionally, they increase the risk of mortality. Therefore, deciphering the hallmarks of aging represents a possibility for identifying potential druggable targets to attenuate the aging process, and then the age-related comorbidities. Given the link between aging, genetic, and epigenetic alterations, and given the reversible nature of epigenetic mechanisms, the precisely understanding of these factors may provide a potential therapeutic approach for age-related decline and disease. In this review, we center on epigenetic regulatory mechanisms and their aging-associated changes, highlighting their inferences in age-associated diseases.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
5
|
Bozukova M, Nikopoulou C, Kleinenkuhnen N, Grbavac D, Goetsch K, Tessarz P. Aging is associated with increased chromatin accessibility and reduced polymerase pausing in liver. Mol Syst Biol 2022; 18:e11002. [PMID: 36082605 PMCID: PMC9459415 DOI: 10.15252/msb.202211002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Regulation of gene expression is linked to the organization of the genome. With age, chromatin alterations occur on all levels of genome organization, accompanied by changes in the gene expression profile. However, little is known about the changes in the level of transcriptional regulation. Here, we used a multi-omics approach and integrated ATAC-, RNA- and NET-seq to identify age-related changes in the chromatin landscape of murine liver and to investigate how these are linked to transcriptional regulation. We provide the first systematic inventory of the connection between aging, chromatin accessibility, and transcriptional regulation in a whole tissue. Aging in murine liver is characterized by an increase in chromatin accessibility at promoter regions, but not in an increase in transcriptional output. Instead, aging is accompanied by a decrease in promoter-proximal pausing of RNA polymerase II (Pol II), while initiation of transcription is not decreased as assessed by RNA polymerase mapping using CUT&RUN. Based on the data reported, we propose that these age-related changes in transcriptional regulation are due to a reduced stability of the pausing complex.
Collapse
Affiliation(s)
- Mihaela Bozukova
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
| | - Chrysa Nikopoulou
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
| | - Niklas Kleinenkuhnen
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
- Faculty of Medicine, Institute of Medical Statistics and Computational BiologyUniversity of CologneCologneGermany
| | - Dora Grbavac
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
- Present address:
Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Katrin Goetsch
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
| | - Peter Tessarz
- Max Planck Research Group ‘Chromatin and Ageing’Max Planck Institute for Biology of AgeingCologneGermany
- Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
6
|
Ng GYQ, Sheng DPLK, Bae HG, Kang SW, Fann DYW, Park J, Kim J, Alli-Shaik A, Lee J, Kim E, Park S, Han JW, Karamyan V, Okun E, Dheen T, Hande MP, Vemuganti R, Mallilankaraman K, Lim LHK, Kennedy BK, Drummond GR, Sobey CG, Gunaratne J, Mattson MP, Foo RSY, Jo DG, Arumugam TV. Integrative epigenomic and transcriptomic analyses reveal metabolic switching by intermittent fasting in brain. GeroScience 2022; 44:2171-2194. [PMID: 35357643 DOI: 10.1007/s11357-022-00537-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Intermittent fasting (IF) remains the most effective intervention to achieve robust anti-aging effects and attenuation of age-related diseases in various species. Epigenetic modifications mediate the biological effects of several environmental factors on gene expression; however, no information is available on the effects of IF on the epigenome. Here, we first found that IF for 3 months caused modulation of H3K9 trimethylation (H3K9me3) in the cerebellum, which in turn orchestrated a plethora of transcriptomic changes involved in robust metabolic switching processes commonly observed during IF. Second, a portion of both the epigenomic and transcriptomic modulations induced by IF was remarkably preserved for at least 3 months post-IF refeeding, indicating that memory of IF-induced epigenetic changes was maintained. Notably, though, we found that termination of IF resulted in a loss of H3K9me3 regulation of the transcriptome. Collectively, our study characterizes the novel effects of IF on the epigenetic-transcriptomic axis, which controls myriad metabolic processes. The comprehensive analyses undertaken in this study reveal a molecular framework for understanding how IF impacts the metabolo-epigenetic axis of the brain and will serve as a valuable resource for future research.
Collapse
Affiliation(s)
- Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung Wook Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea
| | - Asfa Alli-Shaik
- Translational Biomedical Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sunyoung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Vardan Karamyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, TX, USA
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-IIan University, Ramat Gan, Israel
| | - Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brian K Kennedy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School Medicine, National University of Singapore, Singapore, Singapore.,Buck Institute for Research On Aging, Novato, USA
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger Sik-Yin Foo
- Genome Institute of Singapore, Singapore, Singapore. .,Centre for Translational Medicine, Cardiovascular Research Institute, National University Health Systems, National University of Singapore, Singapore, Singapore.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea. .,Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
7
|
Gomez-Sanchez JA, Patel N, Martirena F, Fazal SV, Mutschler C, Cabedo H. Emerging Role of HDACs in Regeneration and Ageing in the Peripheral Nervous System: Repair Schwann Cells as Pivotal Targets. Int J Mol Sci 2022; 23:ijms23062996. [PMID: 35328416 PMCID: PMC8951080 DOI: 10.3390/ijms23062996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The peripheral nervous system (PNS) has a remarkable regenerative capacity in comparison to the central nervous system (CNS), a phenomenon that is impaired during ageing. The ability of PNS axons to regenerate after injury is due to Schwann cells (SC) being reprogrammed into a repair phenotype called Repair Schwann cells. These repair SCs are crucial for supporting axonal growth after injury, myelin degradation in a process known as myelinophagy, neurotropic factor secretion, and axonal growth guidance through the formation of Büngner bands. After regeneration, repair SCs can remyelinate newly regenerated axons and support nonmyelinated axons. Increasing evidence points to an epigenetic component in the regulation of repair SC gene expression changes, which is necessary for SC reprogramming and regeneration. One of these epigenetic regulations is histone acetylation by histone acetyl transferases (HATs) or histone deacetylation by histone deacetylases (HDACs). In this review, we have focused particularly on three HDAC classes (I, II, and IV) that are Zn2+-dependent deacetylases. These HDACs are important in repair SC biology and remyelination after PNS injury. Another key aspect explored in this review is HDAC genetic compensation in SCs and novel HDAC inhibitors that are being studied to improve nerve regeneration.
Collapse
Affiliation(s)
- Jose A. Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-919-594
| | - Nikiben Patel
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernanda Martirena
- Department of Hematology, General University Hospital of Elda, 03600 Elda, Spain;
| | - Shaline V. Fazal
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (S.V.F.); (C.M.)
- Wellcome—MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (S.V.F.); (C.M.)
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
8
|
Li CL, Pu M, Wang W, Chaturbedi A, Emerson FJ, Lee SS. Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009432. [PMID: 34506495 PMCID: PMC8457455 DOI: 10.1371/journal.pgen.1009432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/22/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulation of the epigenome has been associated with increased susceptibility to age-related disorders. In this study, we aimed to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. We focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed region-specific gain and loss of both histone marks, but the changes are more evident for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most statistically significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed "aging-specific repressive regions" (ASRRs). These ASRRs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Maintenance of high H3K9me2 levels in these regions have been shown to correlate with a longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear element (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals. It is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mintie Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Wenke Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
9
|
Hsu CL, Lo YC, Kao CF. H3K4 Methylation in Aging and Metabolism. EPIGENOMES 2021; 5:14. [PMID: 34968301 PMCID: PMC8594702 DOI: 10.3390/epigenomes5020014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 02/03/2023] Open
Abstract
During the process of aging, extensive epigenetic alterations are made in response to both exogenous and endogenous stimuli. Here, we summarize the current state of knowledge regarding one such alteration, H3K4 methylation (H3K4me), as it relates to aging in different species. We especially highlight emerging evidence that links this modification with metabolic pathways, which may provide a mechanistic link to explain its role in aging. H3K4me is a widely recognized marker of active transcription, and it appears to play an evolutionarily conserved role in determining organism longevity, though its influence is context specific and requires further clarification. Interestingly, the modulation of H3K4me dynamics may occur as a result of nutritional status, such as methionine restriction. Methionine status appears to influence H3K4me via changes in the level of S-adenosyl methionine (SAM, the universal methyl donor) or the regulation of H3K4-modifying enzyme activities. Since methionine restriction is widely known to extend lifespan, the mechanistic link between methionine metabolic flux, the sensing of methionine concentrations and H3K4me status may provide a cogent explanation for several seemingly disparate observations in aging organisms, including age-dependent H3K4me dynamics, gene expression changes, and physiological aberrations. These connections are not yet entirely understood, especially at a molecular level, and will require further elucidation. To conclude, we discuss some potential H3K4me-mediated molecular mechanisms that may link metabolic status to the aging process.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
10
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
11
|
Saul D, Kosinsky RL. Epigenetics of Aging and Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22010401. [PMID: 33401659 PMCID: PMC7794926 DOI: 10.3390/ijms22010401] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aging represents the multifactorial decline in physiological function of every living organism. Over the past decades, several hallmarks of aging have been defined, including epigenetic deregulation. Indeed, multiple epigenetic events were found altered across different species during aging. Epigenetic changes directly contributing to aging and aging-related diseases include the accumulation of histone variants, changes in chromatin accessibility, loss of histones and heterochromatin, aberrant histone modifications, and deregulated expression/activity of miRNAs. As a consequence, cellular processes are affected, which results in the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, and neurodegenerative disorders. In this review, we focus on epigenetic mechanisms underlying aging-related processes in various species and describe how these deregulations contribute to human diseases.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA;
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2386
| |
Collapse
|
12
|
Gatto N, Dos Santos Souza C, Shaw AC, Bell SM, Myszczynska MA, Powers S, Meyer K, Castelli LM, Karyka E, Mortiboys H, Azzouz M, Hautbergue GM, Márkus NM, Shaw PJ, Ferraiuolo L. Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell 2021; 20:e13281. [PMID: 33314575 PMCID: PMC7811849 DOI: 10.1111/acel.13281] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are highly specialised cells, responsible for CNS homeostasis and neuronal activity. Lack of human in vitro systems able to recapitulate the functional changes affecting astrocytes during ageing represents a major limitation to studying mechanisms and potential therapies aiming to preserve neuronal health. Here, we show that induced astrocytes from fibroblasts donors in their childhood or adulthood display age‐related transcriptional differences and functionally diverge in a spectrum of age‐associated features, such as altered nuclear compartmentalisation, nucleocytoplasmic shuttling properties, oxidative stress response and DNA damage response. Remarkably, we also show an age‐related differential response of induced neural progenitor cells derived astrocytes (iNPC‐As) in their ability to support neurons in co‐culture upon pro‐inflammatory stimuli. These results show that iNPC‐As are a renewable, readily available resource of human glia that retain the age‐related features of the donor fibroblasts, making them a unique and valuable model to interrogate human astrocyte function over time in human CNS health and disease.
Collapse
Affiliation(s)
- Noemi Gatto
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Allan C. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Simon M. Bell
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Monika A. Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Samantha Powers
- The Research institute Nationwide Children’s Hospital Columbus OH USA
| | - Kathrin Meyer
- The Research institute Nationwide Children’s Hospital Columbus OH USA
| | - Lydia M. Castelli
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Evangelia Karyka
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Guillaume M. Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Nóra M. Márkus
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN) University of Sheffield Sheffield UK
| |
Collapse
|
13
|
Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 2020. [DOI: 10.1007/s12038-020-00099-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
McIntyre RL, Daniels EG, Molenaars M, Houtkooper RH, Janssens GE. From molecular promise to preclinical results: HDAC inhibitors in the race for healthy aging drugs. EMBO Mol Med 2019; 11:e9854. [PMID: 31368626 PMCID: PMC6728603 DOI: 10.15252/emmm.201809854] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Reversing or slowing the aging process brings great promise to treat or prevent age‐related disease, and targeting the hallmarks of aging is a strategy to achieve this. Epigenetics affects several if not all of the hallmarks of aging and has therefore emerged as a central target for intervention. One component of epigenetic regulation involves histone deacetylases (HDAC), which include the “classical” histone deacetylases (of class I, II, and IV) and sirtuin deacetylases (of class III). While targeting sirtuins for healthy aging has been extensively reviewed elsewhere, this review focuses on pharmacologically inhibiting the classical HDACs to promote health and longevity. We describe the theories of how classical HDAC inhibitors may operate to increase lifespan, supported by studies in model organisms. Furthermore, we explore potential mechanisms of how HDAC inhibitors may have such a strong grasp on health and longevity, summarizing their links to other hallmarks of aging. Finally, we show the wide range of age‐related preclinical disease models, ranging from neurodegeneration to heart disease, diabetes to sarcopenia, which show improvement upon HDAC inhibition.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen G Daniels
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Cruz C, Della Rosa M, Krueger C, Gao Q, Horkai D, King M, Field L, Houseley J. Tri-methylation of histone H3 lysine 4 facilitates gene expression in ageing cells. eLife 2018; 7:34081. [PMID: 30274593 PMCID: PMC6168286 DOI: 10.7554/elife.34081] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Transcription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which methylates histone H3 lysine 4 (H3K4) to form H3K4me1, H3K4me2 and H3K4me3. Here, we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations reduce replicative lifespan and cause expression defects in almost 500 genes. Although H3K4 methylation is reported to act primarily in gene repression, particularly in yeast, repressive functions are progressively lost with age while hundreds of genes become dependent on H3K4me3 for full expression. Basal and inducible expression of these genes is also impaired in young cells lacking COMPASS components Swd1 or Spp1. Gene induction during ageing is associated with increasing promoter H3K4me3, but H3K4me3 also accumulates in non-promoter regions and the ribosomal DNA. Our results provide clear evidence that H3K4me3 is required to maintain normal expression of many genes across organismal lifespan.
Collapse
Affiliation(s)
- Cristina Cruz
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Monica Della Rosa
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Qian Gao
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Dorottya Horkai
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Lucy Field
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
16
|
Ravaioli F, Bacalini MG, Franceschi C, Garagnani P. Age-Related Epigenetic Derangement upon Reprogramming and Differentiation of Cells from the Elderly. Genes (Basel) 2018; 9:genes9010039. [PMID: 29337900 PMCID: PMC5793190 DOI: 10.3390/genes9010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Aging is a complex multi-layered phenomenon. The study of aging in humans is based on the use of biological material from hard-to-gather tissues and highly specific cohorts. The introduction of cell reprogramming techniques posed promising features for medical practice and basic research. Recently, a growing number of studies have been describing the generation of induced pluripotent stem cells (iPSCs) from old or centenarian biologic material. Nonetheless, Reprogramming techniques determine a profound remodelling on cell epigenetic architecture whose extent is still largely debated. Given that cell epigenetic profile changes with age, the study of cell-fate manipulation approaches on cells deriving from old donors or centenarians may provide new insights not only on regenerative features and physiology of these cells, but also on reprogramming-associated and age-related epigenetic derangement.
Collapse
Affiliation(s)
- Francesco Ravaioli
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), Via San Giacomo 12, 40126 Bologna, Italy.
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Via G. Petroni 26, 40126 Bologna, Italy.
| | - Maria G Bacalini
- IRCCS Institute of Neurological Sciences, Via Altura 1-8, 40139 Bologna, Italy.
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences, Via Altura 1-8, 40139 Bologna, Italy.
| | - Paolo Garagnani
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), Via San Giacomo 12, 40126 Bologna, Italy.
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Via G. Petroni 26, 40126 Bologna, Italy.
- Karolinska Institute, Clinical Chemistry, Department of Laboratory Medicine (LABMED), H5, Huddinge University Hospital, 14186 Stockholm, Sweden.
- CNR Institute of Molecular Genetics, Unit of Bologna, 40136 Bologna, Italy.
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy.
| |
Collapse
|
17
|
Linden M, Bernert S, Funke A, Dreinhöfer KE, Jöbges M, von Kardorff E, Riedel-Heller SG, Spyra K, Völler H, Warschburger P, Wippert PM. [Medical rehabilitation from a lifespan perspective]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:445-452. [PMID: 28204902 DOI: 10.1007/s00103-017-2520-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lifespan research investigates the development of individuals over the course of life. As medical rehabilitation deals with primary and secondary prophylaxis, treatment, and compensation of chronic illnesses, a lifespan perspective is needed for the classification and diagnosis of chronic disorders, the assessment of course modifying factors, the identification of vulnerable life periods and critical incidents, the implementation of preventive measures, the development of methods for the evaluation of prior treatments, the selection and prioritization of interventions, including specialized inpatient rehabilitation, the coordination of therapies and therapists, and for evaluations in social and forensic medicine. Due to the variety of individual risk constellations, illness courses and treatment situations across the lifespan, personalized medicine is especially important in the context of medical rehabilitation, which takes into consideration hindering and fostering factors alike.
Collapse
Affiliation(s)
- Michael Linden
- Rehabilitationswissenschaftlicher Verbund Berlin, Brandenburg und Sachsen (BBS), Luisenstr. 13, 10117, Berlin, Deutschland.
- Forschungsgruppe Psychosomatische Rehabilitation, CBF, Hs II, E01, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Deutschland.
| | - Sebastian Bernert
- Institut für Medizinische Soziologie und Rehabilitationswissenschaft, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Ariane Funke
- Institut für Medizinische Soziologie und Rehabilitationswissenschaft, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Karsten E Dreinhöfer
- Abt. für Orthopädie und Unfallchirurgie, Medical Park Berlin Humboldtmühle, Berlin, Deutschland
| | - Michael Jöbges
- Brandenburgklinik Berlin-Brandenburg, Berlin, Deutschland
| | - Ernst von Kardorff
- Institut für Rehabilitationswissenschaften, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | | | - Karla Spyra
- Institut für Medizinische Soziologie und Rehabilitationswissenschaft, Charité Universitätsmedizin Berlin, Berlin, Deutschland
| | - Heinz Völler
- Professur für Rehabilitationswissenschaften, Universität Potsdam, Potsdam, Deutschland
| | - Petra Warschburger
- Professur für Beratungspsychologie, Universität Potsdam, Potsdam, Deutschland
| | - Pia-Maria Wippert
- Professur für Sport- und Gesundheitspsychologie, Universität Potsdam, Potsdam, Deutschland
| |
Collapse
|
18
|
Aunan JR, Cho WC, Søreide K. The Biology of Aging and Cancer: A Brief Overview of Shared and Divergent Molecular Hallmarks. Aging Dis 2017; 8:628-642. [PMID: 28966806 PMCID: PMC5614326 DOI: 10.14336/ad.2017.0103] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
Abstract
Aging is the inevitable time-dependent decline in physiological organ function and is a major risk factor for cancer development. Due to advances in health care, hygiene control and food availability, life expectancy is increasing and the population in most developed countries is shifting to an increasing proportion of people at a cancer susceptible age. Mechanisms of aging are also found to occur in carcinogenesis, albeit with shared or divergent end-results. It is now clear that aging and cancer development either share or diverge in several disease mechanisms. Such mechanisms include the role of genomic instability, telomere attrition, epigenetic changes, loss of proteostasis, decreased nutrient sensing and altered metabolism, but also cellular senescence and stem cell function. Cancer cells and aged cells are also fundamentally opposite, as cancer cells can be thought of as hyperactive cells with advantageous mutations, rapid cell division and increased energy consumption, while aged cells are hypoactive with accumulated disadvantageous mutations, cell division inability and a decreased ability for energy production and consumption. Nonetheless, aging and cancer are tightly interconnected and many of the same strategies and drugs may be used to target both, while in other cases antagonistic pleiotrophy come into effect and inhibition of one can be the activation of the other. Cancer can be considered an aging disease, though the shared mechanisms underpinning the two processes remain unclear. Better understanding of the shared and divergent pathways of aging and cancer is needed.
Collapse
Affiliation(s)
- Jan R Aunan
- 1Gastrointestinal Translational Research Unit, Molecular Lab, Stavanger University Hospital, Stavanger, Norway.,2Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - William C Cho
- 3Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Kjetil Søreide
- 1Gastrointestinal Translational Research Unit, Molecular Lab, Stavanger University Hospital, Stavanger, Norway.,2Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.,4Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
19
|
Montalvo-Ortiz JL, Fisher DW, Rodriguez G, Fang D, Csernansky JG, Dong H. Histone deacetylase inhibitors reverse age-related increases in side effects of haloperidol in mice. Psychopharmacology (Berl) 2017; 234:2385-2398. [PMID: 28421257 PMCID: PMC5538925 DOI: 10.1007/s00213-017-4629-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/04/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Older patients can be especially susceptible to antipsychotic-induced side effects, and the pharmacodynamic mechanism underlying this phenomenon remains unclear. We hypothesized that age-related epigenetic alterations lead to decreased expression and functionality of the dopamine D2 receptor (D2R), contributing to this susceptibility. METHODS In this study, we treated young (2-3 months old) and aged (22-24 months old) C57BL/6 mice with the D2R antagonist haloperidol (HAL) once a day for 14 days to evaluate HAL-induced motor side effects. In addition, we pretreated separate groups of young and aged mice with histone deacetylase (HDAC) inhibitors valproic acid (VPA) or entinostat (MS-275) and then administered HAL. RESULTS Our results show that the motor side effects of HAL are exaggerated in aged mice as compared to young mice and that HDAC inhibitors are able to reverse the severity of these deficits. HAL-induced motor deficits in aged mice are associated with an age- and drug-dependent decrease in striatal D2R protein levels and functionality. Further, histone acetylation was reduced while histone tri-methylation was increased at specific lysine residues of H3 and H4 within the Drd2 promoter in the striatum of aged mice. HDAC inhibitors, particularly VPA, restored striatal D2R protein levels and functionality and reversed age- and drug-related histone modifications at the Drd2 promoter. CONCLUSIONS These results suggest that epigenetic changes at the striatal Drd2 promoter drive age-related increases in antipsychotic side effect susceptibility, and HDAC inhibitors may be an effective adjunct treatment strategy to reduce side effects in aged populations.
Collapse
Affiliation(s)
- Janitza L. Montalvo-Ortiz
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Daniel W. Fisher
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Molina-Serrano D, Schiza V, Demosthenous C, Stavrou E, Oppelt J, Kyriakou D, Liu W, Zisser G, Bergler H, Dang W, Kirmizis A. Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity. EMBO Rep 2016; 17:1829-1843. [PMID: 27799288 PMCID: PMC5167350 DOI: 10.15252/embr.201642540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 01/07/2023] Open
Abstract
Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N‐alpha‐terminal acetyltransferase Nat4 and loss of its associated H4 N‐terminal acetylation (N‐acH4) extend yeast replicative lifespan. Notably, nat4Δ‐induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N‐acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N‐acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress‐response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ‐mediated longevity. Collectively, these findings establish histone N‐acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.
Collapse
Affiliation(s)
| | - Vassia Schiza
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Emmanouil Stavrou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Dimitris Kyriakou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Wei Liu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Gertrude Zisser
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität, Graz, Austria
| | - Helmut Bergler
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität, Graz, Austria
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|