1
|
Frost WN, Katz PS. The legacies of A. O. Dennis Willows and Peter A. Getting: neuroscience research using Tritonia. J Neurophysiol 2025; 133:34-45. [PMID: 39611858 DOI: 10.1152/jn.00318.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024] Open
Abstract
This review was inspired by a January 2024 conference held at Friday Harbor Laboratories, WA, honoring the pioneering work of A.O. Dennis Willows, who initiated research on the sea slug Tritonia diomedea (now T. exsulans). A chance discovery while he was a student at a summer course there has, over the years, led to many insights into the roles of identified neurons in neural circuits and their influence on behavior. Among Dennis's trainees was Peter Getting, whose later groundbreaking work on central pattern generators profoundly influenced the field and included one of the earliest uses of realistic modeling for understanding neural circuits. Research on Tritonia has led to key conceptual advances in polymorphic or multifunctional neural networks, intrinsic neuromodulation, and the evolution of neural circuits. It also has enhanced our understanding of geomagnetic sensing, learning and memory mechanisms, prepulse inhibition, and even drug-induced hallucinations. Although the community of researchers studying Tritonia has never been large, its contributions to neuroscience have been substantial, underscoring the importance of examining a diverse array of animal species rather than focusing on a small number of standard model organisms.
Collapse
Affiliation(s)
- William N Frost
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States
| |
Collapse
|
2
|
Charles S, Short G, Dimech M. A new distributional record of Hippocampus kuda Bleeker, 1852 (Teleostei, Syngnathidae) from Saudi Arabia in the South-Central Red Sea. Zootaxa 2024; 5501:334-344. [PMID: 39647112 DOI: 10.11646/zootaxa.5501.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Indexed: 12/10/2024]
Abstract
The common seahorse, Hippocampus kuda, is widely distributed throughout the Indo-Pacific region, occurring from East Africa to Hawaii, where it typically inhabits diverse ecosystems such as estuaries, lagoons, coastal zones, and seagrass beds. Despite its extensive geographic range, reports of its occurrence in the Red Sea remains limited, primarily restricted to the northern region of the Red Sea. Here, we report a new distributional record of H. kuda in Saudi Arabian waters within the south-central Red Sea. A single female specimen of H. kuda was collected through trawling conducted off the coast of Al Qunfudah at depths ranging from 15 to 20 meters. Morphological and molecular examination confirmed the identity of the specimen as H. kuda. The new record of H. kuda represents the second occurrence of this species in south-central Red Sea and expands its known distribution range 367 kilometers further south than the first reported record off Jeddah in 1838.
Collapse
Affiliation(s)
- Santhosh Charles
- KAUST Beacon Development; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900; Saudi Arabia.
| | - Graham Short
- Department of Ichthyology; California Academy of Sciences; 55 Music Concourse Dr; San Francisco; CA 94118; United States.
| | - Mark Dimech
- KAUST Beacon Development; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900; Saudi Arabia.
| |
Collapse
|
3
|
Ji Z, Guo S, Qiao Y, McDougal RA. Automating literature screening and curation with applications to computational neuroscience. J Am Med Inform Assoc 2024; 31:1463-1470. [PMID: 38722233 PMCID: PMC11187430 DOI: 10.1093/jamia/ocae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE ModelDB (https://modeldb.science) is a discovery platform for computational neuroscience, containing over 1850 published model codes with standardized metadata. These codes were mainly supplied from unsolicited model author submissions, but this approach is inherently limited. For example, we estimate we have captured only around one-third of NEURON models, the most common type of models in ModelDB. To more completely characterize the state of computational neuroscience modeling work, we aim to identify works containing results derived from computational neuroscience approaches and their standardized associated metadata (eg, cell types, research topics). MATERIALS AND METHODS Known computational neuroscience work from ModelDB and identified neuroscience work queried from PubMed were included in our study. After pre-screening with SPECTER2 (a free document embedding method), GPT-3.5, and GPT-4 were used to identify likely computational neuroscience work and relevant metadata. RESULTS SPECTER2, GPT-4, and GPT-3.5 demonstrated varied but high abilities in identification of computational neuroscience work. GPT-4 achieved 96.9% accuracy and GPT-3.5 improved from 54.2% to 85.5% through instruction-tuning and Chain of Thought. GPT-4 also showed high potential in identifying relevant metadata annotations. DISCUSSION Accuracy in identification and extraction might further be improved by dealing with ambiguity of what are computational elements, including more information from papers (eg, Methods section), improving prompts, etc. CONCLUSION Natural language processing and large language model techniques can be added to ModelDB to facilitate further model discovery, and will contribute to a more standardized and comprehensive framework for establishing domain-specific resources.
Collapse
Affiliation(s)
- Ziqing Ji
- Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Siyan Guo
- Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Yujie Qiao
- Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06510, United States
- Integrative Genomics, Princeton University, Princeton, NJ 08540, United States
| | - Robert A McDougal
- Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06510, United States
- Biomedical Informatics and Data Science, Yale School of Medicine, Yale University, New Haven, CT 06510, United States
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, United States
- Wu Tsai Institute, Yale University, New Haven, CT 06510, United States
| |
Collapse
|
4
|
Sutton NM, Gutiérrez-Guzmán BE, Dannenberg H, Ascoli GA. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology. Int J Mol Sci 2024; 25:6059. [PMID: 38892248 PMCID: PMC11173171 DOI: 10.3390/ijms25116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal is to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software (version 1.0) is released as open source to enable broad community reuse and encourage novel applications.
Collapse
Affiliation(s)
- Nate M. Sutton
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
| | - Blanca E. Gutiérrez-Guzmán
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
| | - Holger Dannenberg
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Giorgio A. Ascoli
- Bioengineering Department, George Mason University, Fairfax, VA 22030, USA; (N.M.S.); (B.E.G.-G.); (H.D.)
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
5
|
Sutton N, Gutiérrez-Guzmán B, Dannenberg H, Ascoli GA. A Continuous Attractor Model with Realistic Neural and Synaptic Properties Quantitatively Reproduces Grid Cell Physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591748. [PMID: 38746202 PMCID: PMC11092518 DOI: 10.1101/2024.04.29.591748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal was to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software is released as open source to enable broad community reuse and encourage novel applications.
Collapse
Affiliation(s)
- Nate Sutton
- Bioengineering Department, at George Mason University
| | | | - Holger Dannenberg
- Bioengineering Department, at George Mason University
- Interdisciplinary Program in Neuroscience at George Mason University
| | - Giorgio A. Ascoli
- Bioengineering Department, at George Mason University
- Interdisciplinary Program in Neuroscience at George Mason University
| |
Collapse
|
6
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. eLife 2024; 12:RP90597. [PMID: 38345923 PMCID: PMC10942544 DOI: 10.7554/elife.90597] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Previously, Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression (Wheeler et al., 2015). Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W Wheeler
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Jeffrey D Kopsick
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Alexander O Komendantov
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason UniversityFairfaxUnited States
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, College of Engineering and Computing, George Mason UniversityFairfaxUnited States
- Interdisciplinary Program in Neuroscience, College of Science, George Mason UniversityFairfaxUnited States
| |
Collapse
|
7
|
Wheeler DW, Kopsick JD, Sutton N, Tecuatl C, Komendantov AO, Nadella K, Ascoli GA. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540597. [PMID: 37425693 PMCID: PMC10327012 DOI: 10.1101/2023.05.12.540597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Hippocampome.org is a mature open-access knowledge base of the rodent hippocampal formation focusing on neuron types and their properties. Hippocampome.org v1.0 established a foundational classification system identifying 122 hippocampal neuron types based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, and molecular expression. Releases v1.1 through v1.12 furthered the aggregation of literature-mined data, including among others neuron counts, spiking patterns, synaptic physiology, in vivo firing phases, and connection probabilities. Those additional properties increased the online information content of this public resource over 100-fold, enabling numerous independent discoveries by the scientific community. Hippocampome.org v2.0, introduced here, besides incorporating over 50 new neuron types, now recenters its focus on extending the functionality to build real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely downloadable model parameters are directly linked to the specific peer-reviewed empirical evidence from which they were derived. Possible research applications include quantitative, multiscale analyses of circuit connectivity and spiking neural network simulations of activity dynamics. These advances can help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms underlying associative memory and spatial navigation.
Collapse
Affiliation(s)
- Diek W. Wheeler
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Jeffrey D. Kopsick
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
| | - Nate Sutton
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Carolina Tecuatl
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Alexander O. Komendantov
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Kasturi Nadella
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity; Krasnow Institute for Advanced Study; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| |
Collapse
|
8
|
Hawrylycz M, Martone ME, Ascoli GA, Bjaalie JG, Dong HW, Ghosh SS, Gillis J, Hertzano R, Haynor DR, Hof PR, Kim Y, Lein E, Liu Y, Miller JA, Mitra PP, Mukamel E, Ng L, Osumi-Sutherland D, Peng H, Ray PL, Sanchez R, Regev A, Ropelewski A, Scheuermann RH, Tan SZK, Thompson CL, Tickle T, Tilgner H, Varghese M, Wester B, White O, Zeng H, Aevermann B, Allemang D, Ament S, Athey TL, Baker C, Baker KS, Baker PM, Bandrowski A, Banerjee S, Bishwakarma P, Carr A, Chen M, Choudhury R, Cool J, Creasy H, D’Orazi F, Degatano K, Dichter B, Ding SL, Dolbeare T, Ecker JR, Fang R, Fillion-Robin JC, Fliss TP, Gee J, Gillespie T, Gouwens N, Zhang GQ, Halchenko YO, Harris NL, Herb BR, Hintiryan H, Hood G, Horvath S, Huo B, Jarecka D, Jiang S, Khajouei F, Kiernan EA, Kir H, Kruse L, Lee C, Lelieveldt B, Li Y, Liu H, Liu L, Markuhar A, Mathews J, Mathews KL, Mezias C, Miller MI, Mollenkopf T, Mufti S, Mungall CJ, Orvis J, Puchades MA, Qu L, Receveur JP, Ren B, Sjoquist N, Staats B, Tward D, van Velthoven CTJ, Wang Q, Xie F, Xu H, Yao Z, Yun Z, Zhang YR, Zheng WJ, Zingg B. A guide to the BRAIN Initiative Cell Census Network data ecosystem. PLoS Biol 2023; 21:e3002133. [PMID: 37390046 PMCID: PMC10313015 DOI: 10.1371/journal.pbio.3002133] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023] Open
Abstract
Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.
Collapse
Affiliation(s)
- Michael Hawrylycz
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Maryann E. Martone
- Department of Neuroscience, University of California San Diego, San Diego, California, United States of America
- San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Giorgio A. Ascoli
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity, Volgenau School of Engineering, George Mason University, Fairfax, Virginia, United States of America
| | - Jan G. Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hong-Wei Dong
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Satrajit S. Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David R. Haynor
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Yufeng Liu
- SEU-Allen Institute Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu Province, China
| | - Jeremy A. Miller
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Partha P. Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Eran Mukamel
- Department of Cognitive Science, University of California, San Diego, La Jolla, California, United States of America
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - David Osumi-Sutherland
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Hanchuan Peng
- SEU-Allen Institute Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu Province, China
| | - Patrick L. Ray
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Raymond Sanchez
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Aviv Regev
- Genentech, South San Francisco, California, United States of America
| | - Alex Ropelewski
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | | | - Shawn Zheng Kai Tan
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carol L. Thompson
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Timothy Tickle
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Hagen Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, United States of America
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Brock Wester
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States of America
| | - Owen White
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Brian Aevermann
- Chan Zuckerberg Initiative, Redwood City, California, United States of America
| | - David Allemang
- Kitware Inc., Albany, New York, United States of America
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas L. Athey
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cody Baker
- CatalystNeuro, Benicia, California, United States of America
| | - Katherine S. Baker
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Pamela M. Baker
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Anita Bandrowski
- Department of Neuroscience, University of California San Diego, San Diego, California, United States of America
| | - Samik Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Prajal Bishwakarma
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Ambrose Carr
- Chan Zuckerberg Initiative, Redwood City, California, United States of America
| | - Min Chen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roni Choudhury
- Kitware Inc., Albany, New York, United States of America
| | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, California, United States of America
| | - Heather Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Florence D’Orazi
- Chan Zuckerberg Initiative, Redwood City, California, United States of America
| | - Kylee Degatano
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Joseph R. Ecker
- Genomic Analysis Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies La Jolla, California, United States of America
| | - Rongxin Fang
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | | | - Timothy P. Fliss
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - James Gee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tom Gillespie
- Department of Neuroscience, University of California San Diego, San Diego, California, United States of America
| | - Nathan Gouwens
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Guo-Qiang Zhang
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Yaroslav O. Halchenko
- Department of Psychological and Brain Sciences, Dartmouth College, Hannover, New Hampshire, United States of America
| | - Nomi L. Harris
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brian R. Herb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Houri Hintiryan
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| | - Gregory Hood
- Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Sam Horvath
- Kitware Inc., Albany, New York, United States of America
| | - Bingxing Huo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Dorota Jarecka
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shengdian Jiang
- SEU-Allen Institute Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu Province, China
| | - Farzaneh Khajouei
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Elizabeth A. Kiernan
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Huseyin Kir
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Boudewijn Lelieveldt
- Department of Intelligent Systems, Delft University of Technology, Delft, the Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yang Li
- Center for Epigenomics, Department of Cellular and Molecular Medicine, UC San Diego School of Medicine, La Jolla, California, United States of America
| | - Hanqing Liu
- Genomic Analysis Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies La Jolla, California, United States of America
| | - Lijuan Liu
- SEU-Allen Institute Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu Province, China
| | - Anup Markuhar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James Mathews
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Kaylee L. Mathews
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Chris Mezias
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Michael I. Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tyler Mollenkopf
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Christopher J. Mungall
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Maja A. Puchades
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lei Qu
- SEU-Allen Institute Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu Province, China
| | - Joseph P. Receveur
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, UC San Diego School of Medicine, La Jolla, California, United States of America
- Ludwig Institute for Cancer Research, La Jolla, California, United States of America
| | - Nathan Sjoquist
- Microsoft Corporation, Seattle, Washington, United States of America
| | - Brian Staats
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Daniel Tward
- UCLA Brain Mapping Center, University of California, Los Angeles, California, United States of America
| | | | - Quanxin Wang
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Fangming Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, California, United States of America
| | - Hua Xu
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Zhixi Yun
- SEU-Allen Institute Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu Province, China
| | - Yun Renee Zhang
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - W. Jim Zheng
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Brian Zingg
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Bijari K, Zoubi Y, Ascoli GA. Assisted neuroscience knowledge extraction via machine learning applied to neural reconstruction metadata on NeuroMorpho.Org. Brain Inform 2022; 9:26. [PMID: 36344713 PMCID: PMC9640520 DOI: 10.1186/s40708-022-00174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
The amount of unstructured text produced daily in scholarly journals is enormous. Systematically identifying, sorting, and structuring information from such a volume of data is increasingly challenging for researchers even in delimited domains. Named entity recognition is a fundamental natural language processing tool that can be trained to annotate, structure, and extract information from scientific articles. Here, we harness state-of-the-art machine learning techniques and develop a smart neuroscience metadata suggestion system accessible by both humans through a user-friendly graphical interface and machines via Application Programming Interface. We demonstrate a practical application to the public repository of neural reconstructions, NeuroMorpho.Org, thus expanding the existing web-based metadata management system currently in use. Quantitative analysis indicates that the suggestion system reduces personnel labor by at least 50%. Moreover, our results show that larger training datasets with the same software architecture are unlikely to further improve performance without ad-hoc heuristics due to intrinsic ambiguities in neuroscience nomenclature. All components of this project are released open source for community enhancement and extensions to additional applications.
Collapse
Affiliation(s)
- Kayvan Bijari
- College of Science, Neuroscience Program, George Mason University, Fairfax, USA
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, USA
| | - Yasmeen Zoubi
- College of Science, Neuroscience Program, George Mason University, Fairfax, USA
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, USA
| | - Giorgio A. Ascoli
- College of Science, Neuroscience Program, George Mason University, Fairfax, USA
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, USA
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, USA
| |
Collapse
|
10
|
Shao Y, Ge Q, Yang J, Wang M, Zhou Y, Guo JX, Zhu M, Shi J, Hu Y, Shen L, Chen Z, Li XM, Zhu JM, Zhang J, Duan S, Chen J. Pathological Networks Involving Dysmorphic Neurons in Type II Focal Cortical Dysplasia. Neurosci Bull 2022; 38:1007-1024. [PMID: 35235180 PMCID: PMC9468210 DOI: 10.1007/s12264-022-00828-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/24/2021] [Indexed: 10/19/2022] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common causes of drug-resistant epilepsy. Dysmorphic neurons are the major histopathological feature of type II FCD, but their role in seizure genesis in FCD is unclear. Here we performed whole-cell patch-clamp recording and morphological reconstruction of cortical principal neurons in postsurgical brain tissue from drug-resistant epilepsy patients. Quantitative analyses revealed distinct morphological and electrophysiological characteristics of the upper layer dysmorphic neurons in type II FCD, including an enlarged soma, aberrant dendritic arbors, increased current injection for rheobase action potential firing, and reduced action potential firing frequency. Intriguingly, the upper layer dysmorphic neurons received decreased glutamatergic and increased GABAergic synaptic inputs that were coupled with upregulation of the Na+-K+-Cl- cotransporter. In addition, we found a depolarizing shift of the GABA reversal potential in the CamKII-cre::PTENflox/flox mouse model of drug-resistant epilepsy, suggesting that enhanced GABAergic inputs might depolarize dysmorphic neurons. Thus, imbalance of synaptic excitation and inhibition of dysmorphic neurons may contribute to seizure genesis in type II FCD.
Collapse
Affiliation(s)
- Yijie Shao
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qianqian Ge
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiachao Yang
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mi Wang
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Zhou
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jin-Xin Guo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengyue Zhu
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiachen Shi
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiqi Hu
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedic Surgery, School of Medicine, the Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
- Hangzhou Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Joint Institute for Genetics and Genome Medicine between, Guangdong Hong Kong Macao Greater Bay Area, Zhejiang University and the University of Toronto, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun-Ming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Shumin Duan
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Jiadong Chen
- Center for Neuroscience and Department of Neurosurgery of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Attili SM, Moradi K, Wheeler DW, Ascoli GA. Quantification of neuron types in the rodent hippocampal formation by data mining and numerical optimization. Eur J Neurosci 2022; 55:1724-1741. [PMID: 35301768 PMCID: PMC10026515 DOI: 10.1111/ejn.15639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Quantifying the population sizes of distinct neuron types in different anatomical regions is an essential step towards establishing a brain cell census. Although estimates exist for the total neuronal populations in different species, the number and definition of each specific neuron type are still intensively investigated. Hippocampome.org is an open-source knowledge base with morphological, physiological and molecular information for 122 neuron types in the rodent hippocampal formation. While such framework identifies all known neuron types in this system, their relative abundances remain largely unknown. This work quantitatively estimates the counts of all Hippocampome.org neuron types by literature mining and numerical optimization. We report the number of neurons in each type identified by main neurotransmitter (glutamate or GABA) and axonal-dendritic patterns throughout 26 subregions and layers of the dentate gyrus, Ammon's horn, subiculum and entorhinal cortex. We produce by sensitivity analysis reliable numerical ranges for each type and summarize the amounts across broad neuronal families defined by biomarkers expression and firing dynamics. Study of density distributions indicates that the number of dendritic-targeting interneurons, but not of other neuronal classes, is independent of anatomical volumes. All extracted values, experimental evidence and related software code are released on Hippocampome.org.
Collapse
Affiliation(s)
- Sarojini M Attili
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
| | - Keivan Moradi
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
| | - Diek W Wheeler
- Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, Virginia, USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Interdisciplinary Neuroscience Program, Krasnow Institute for Advanced Study, Fairfax, Virginia, USA
- Bioengineering Department and Volgenau School of Engineering, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
12
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
13
|
Bjerke IE, Puchades MA, Bjaalie JG, Leergaard TB. Database of literature derived cellular measurements from the murine basal ganglia. Sci Data 2020; 7:211. [PMID: 32632099 PMCID: PMC7338524 DOI: 10.1038/s41597-020-0550-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
Quantitative measurements and descriptive statistics of different cellular elements in the brain are typically published in journal articles as text, tables, and example figures, and represent an important basis for the creation of biologically constrained computational models, design of intervention studies, and comparison of subject groups. Such data can be challenging to extract from publications and difficult to normalise and compare across studies, and few studies have so far attempted to integrate quantitative information available in journal articles. We here present a database of quantitative information about cellular parameters in the frequently studied murine basal ganglia. The database holds a curated and normalised selection of currently available data collected from the literature and public repositories, providing the most comprehensive collection of quantitative neuroanatomical data from the basal ganglia to date. The database is shared as a downloadable resource from the EBRAINS Knowledge Graph (https://kg.ebrains.eu), together with a workflow that allows interested researchers to update and expand the database with data from future reports.
Collapse
Affiliation(s)
- Ingvild E Bjerke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
14
|
Kang J, Jung K, Eo J, Son J, Park HJ. Dynamic causal modeling of hippocampal activity measured via mesoscopic voltage-sensitive dye imaging. Neuroimage 2020; 213:116755. [DOI: 10.1016/j.neuroimage.2020.116755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022] Open
|
15
|
Moradi K, Ascoli GA. A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation. Hippocampus 2020; 30:314-331. [PMID: 31472001 DOI: 10.1101/632760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 05/25/2023]
Abstract
The cellular and synaptic architecture of the rodent hippocampus has been described in thousands of peer-reviewed publications. However, no human- or machine-readable public catalog of synaptic electrophysiology data exists for this or any other neural system. Harnessing state-of-the-art information technology, we have developed a cloud-based toolset for identifying empirical evidence from the scientific literature pertaining to synaptic electrophysiology, for extracting the experimental data of interest, and for linking each entry to relevant text or figure excerpts. Mining more than 1,200 published journal articles, we have identified eight different signal modalities quantified by 90 different methods to measure synaptic amplitude, kinetics, and plasticity in hippocampal neurons. We have designed a data structure that both reflects the differences and maintains the existing relations among experimental modalities. Moreover, we mapped every annotated experiment to identified potential connections, that is, specific pairs of presynaptic and postsynaptic neuron types. To this aim, we leveraged Hippocampome.org, an open-access knowledge base of morphologically, electrophysiologically, and molecularly characterized neuron types in the rodent hippocampal formation. Specifically, we have implemented a computational pipeline to systematically translate neuron type properties into formal queries in order to find all compatible potential connections. With this system, we have collected nearly 40,000 synaptic data entities covering 88% of the 3,120 potential connections in Hippocampome.org. Correcting membrane potentials with respect to liquid junction potentials significantly reduced the difference between theoretical and experimental reversal potentials, thereby enabling the accurate conversion of all synaptic amplitudes to conductance. This data set allows for large-scale hypothesis testing of the general rules governing synaptic signals. To illustrate these applications, we confirmed several expected correlations between synaptic measurements and their covariates while suggesting previously unreported ones. We release all data open-source at Hippocampome.org in order to further research across disciplines.
Collapse
Affiliation(s)
- Keivan Moradi
- Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | - Giorgio A Ascoli
- Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
- Bioengineering Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| |
Collapse
|
16
|
Moradi K, Ascoli GA. A comprehensive knowledge base of synaptic electrophysiology in the rodent hippocampal formation. Hippocampus 2020; 30:314-331. [PMID: 31472001 PMCID: PMC7875289 DOI: 10.1002/hipo.23148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 01/14/2023]
Abstract
The cellular and synaptic architecture of the rodent hippocampus has been described in thousands of peer-reviewed publications. However, no human- or machine-readable public catalog of synaptic electrophysiology data exists for this or any other neural system. Harnessing state-of-the-art information technology, we have developed a cloud-based toolset for identifying empirical evidence from the scientific literature pertaining to synaptic electrophysiology, for extracting the experimental data of interest, and for linking each entry to relevant text or figure excerpts. Mining more than 1,200 published journal articles, we have identified eight different signal modalities quantified by 90 different methods to measure synaptic amplitude, kinetics, and plasticity in hippocampal neurons. We have designed a data structure that both reflects the differences and maintains the existing relations among experimental modalities. Moreover, we mapped every annotated experiment to identified potential connections, that is, specific pairs of presynaptic and postsynaptic neuron types. To this aim, we leveraged Hippocampome.org, an open-access knowledge base of morphologically, electrophysiologically, and molecularly characterized neuron types in the rodent hippocampal formation. Specifically, we have implemented a computational pipeline to systematically translate neuron type properties into formal queries in order to find all compatible potential connections. With this system, we have collected nearly 40,000 synaptic data entities covering 88% of the 3,120 potential connections in Hippocampome.org. Correcting membrane potentials with respect to liquid junction potentials significantly reduced the difference between theoretical and experimental reversal potentials, thereby enabling the accurate conversion of all synaptic amplitudes to conductance. This data set allows for large-scale hypothesis testing of the general rules governing synaptic signals. To illustrate these applications, we confirmed several expected correlations between synaptic measurements and their covariates while suggesting previously unreported ones. We release all data open-source at Hippocampome.org in order to further research across disciplines.
Collapse
Affiliation(s)
- Keivan Moradi
- Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA (USA)
| | - Giorgio A. Ascoli
- Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA (USA)
- Bioengineering Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA (USA)
| |
Collapse
|
17
|
Bijari K, Akram MA, Ascoli GA. An open-source framework for neuroscience metadata management applied to digital reconstructions of neuronal morphology. Brain Inform 2020; 7:2. [PMID: 32219575 PMCID: PMC7098402 DOI: 10.1186/s40708-020-00103-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/14/2020] [Indexed: 12/21/2022] Open
Abstract
Research advancements in neuroscience entail the production of a substantial amount of data requiring interpretation, analysis, and integration. The complexity and diversity of neuroscience data necessitate the development of specialized databases and associated standards and protocols. NeuroMorpho.Org is an online repository of over one hundred thousand digitally reconstructed neurons and glia shared by hundreds of laboratories worldwide. Every entry of this public resource is associated with essential metadata describing animal species, anatomical region, cell type, experimental condition, and additional information relevant to contextualize the morphological content. Until recently, the lack of a user-friendly, structured metadata annotation system relying on standardized terminologies constituted a major hindrance in this effort, limiting the data release pace. Over the past 2 years, we have transitioned the original spreadsheet-based metadata annotation system of NeuroMorpho.Org to a custom-developed, robust, web-based framework for extracting, structuring, and managing neuroscience information. Here we release the metadata portal publicly and explain its functionality to enable usage by data contributors. This framework facilitates metadata annotation, improves terminology management, and accelerates data sharing. Moreover, its open-source development provides the opportunity of adapting and extending the code base to other related research projects with similar requirements. This metadata portal is a beneficial web companion to NeuroMorpho.Org which saves time, reduces errors, and aims to minimize the barrier for direct knowledge sharing by domain experts. The underlying framework can be progressively augmented with the integration of increasingly autonomous machine intelligence components.
Collapse
Affiliation(s)
- Kayvan Bijari
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA USA
| | - Masood A. Akram
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA USA
| |
Collapse
|
18
|
Komendantov AO, Venkadesh S, Rees CL, Wheeler DW, Hamilton DJ, Ascoli GA. Quantitative firing pattern phenotyping of hippocampal neuron types. Sci Rep 2019; 9:17915. [PMID: 31784578 PMCID: PMC6884469 DOI: 10.1038/s41598-019-52611-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Systematically organizing the anatomical, molecular, and physiological properties of cortical neurons is important for understanding their computational functions. Hippocampome.org defines 122 neuron types in the rodent hippocampal formation based on their somatic, axonal, and dendritic locations, putative excitatory/inhibitory outputs, molecular marker expression, and biophysical properties. We augmented the electrophysiological data of this knowledge base by collecting, quantifying, and analyzing the firing responses to depolarizing current injections for every hippocampal neuron type from published experiments. We designed and implemented objective protocols to classify firing patterns based on 5 transients (delay, adapting spiking, rapidly adapting spiking, transient stuttering, and transient slow-wave bursting) and 4 steady states (non-adapting spiking, persistent stuttering, persistent slow-wave bursting, and silence). This automated approach revealed 9 unique (plus one spurious) families of firing pattern phenotypes while distinguishing potential new neuronal subtypes. Novel statistical associations emerged between firing responses and other electrophysiological properties, morphological features, and molecular marker expression. The firing pattern parameters, experimental conditions, spike times, references to the original empirical evidences, and analysis scripts are released open-source through Hippocampome.org for all neuron types, greatly enhancing the existing search and browse capabilities. This information, collated online in human- and machine-accessible form, will help design and interpret both experiments and model simulations.
Collapse
Affiliation(s)
- Alexander O Komendantov
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA.
| | - Siva Venkadesh
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Christopher L Rees
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Diek W Wheeler
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - David J Hamilton
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA
| | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, MS 2A1, Fairfax, Virginia, 2230, USA.
| |
Collapse
|
19
|
Emmenegger V, Qi G, Wang H, Feldmeyer D. Morphological and Functional Characterization of Non-fast-Spiking GABAergic Interneurons in Layer 4 Microcircuitry of Rat Barrel Cortex. Cereb Cortex 2019; 28:1439-1457. [PMID: 29329401 PMCID: PMC6093438 DOI: 10.1093/cercor/bhx352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
GABAergic interneurons are notorious for their heterogeneity, despite constituting a small fraction of the neuronal population in the neocortex. Classification of interneurons is crucial for understanding their widespread cortical functions as they provide a complex and dynamic network, balancing excitation and inhibition. Here, we investigated different types of non-fast-spiking (nFS) interneurons in Layer 4 (L4) of rat barrel cortex using whole-cell patch-clamp recordings with biocytin-filling. Based on a quantitative analysis on a combination of morphological and electrophysiological parameters, we identified 5 distinct types of L4 nFS interneurons: 1) trans-columnar projecting interneurons, 2) locally projecting non-Martinotti-like interneurons, 3) supra-granular projecting Martinotti-like interneurons, 4) intra-columnar projecting VIP-like interneurons, and 5) locally projecting neurogliaform-like interneurons. Trans-columnar projecting interneurons are one of the most striking interneuron types, which have not been described so far in Layer 4. They feature extensive axonal collateralization not only in their home barrel but also in adjacent barrels. Furthermore, we identified that most of the L4 nFS interneurons express somatostatin, while few are positive for the transcription factor Prox1. The morphological and electrophysiological characterization of different L4 nFS interneuron types presented here provides insights into their synaptic connectivity and functional role in cortical information processing.
Collapse
Affiliation(s)
- Vishalini Emmenegger
- Institute of Neuroscience and Medicine, INM-2 and INM-10, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Department of Biosystems Sciences and Engineering, Bio Engineering Lab, ETH Zürich, Basel, Switzerland
| | - Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-2 and INM-10, Research Centre Jülich, Jülich, Germany
| | - Haijun Wang
- Institute of Neuroscience and Medicine, INM-2 and INM-10, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, P.R. China
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-2 and INM-10, Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
- Address correspondence to Dirk Feldmeyer, Institute of Neuroscience and Medicine (INM-2), Research Centre Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
20
|
Shepherd GM, Marenco L, Hines ML, Migliore M, McDougal RA, Carnevale NT, Newton AJH, Surles-Zeigler M, Ascoli GA. Neuron Names: A Gene- and Property-Based Name Format, With Special Reference to Cortical Neurons. Front Neuroanat 2019; 13:25. [PMID: 30949034 DOI: 10.3389/fnana.2019.00025/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/07/2019] [Indexed: 05/25/2023] Open
Abstract
Precision in neuron names is increasingly needed. We are entering a new era in which classical anatomical criteria are only the beginning toward defining the identity of a neuron as carried in its name. New criteria include patterns of gene expression, membrane properties of channels and receptors, pharmacology of neurotransmitters and neuropeptides, physiological properties of impulse firing, and state-dependent variations in expression of characteristic genes and proteins. These gene and functional properties are increasingly defining neuron types and subtypes. Clarity will therefore be enhanced by conveying as much as possible the genes and properties in the neuron name. Using a tested format of parent-child relations for the region and subregion for naming a neuron, we show how the format can be extended so that these additional properties can become an explicit part of a neuron's identity and name, or archived in a linked properties database. Based on the mouse, examples are provided for neurons in several brain regions as proof of principle, with extension to the complexities of neuron names in the cerebral cortex. The format has dual advantages, of ensuring order in archiving the hundreds of neuron types across all brain regions, as well as facilitating investigation of a given neuron type or given gene or property in the context of all its properties. In particular, we show how the format is extensible to the variety of neuron types and subtypes being revealed by RNA-seq and optogenetics. As current research reveals increasingly complex properties, the proposed approach can facilitate a consensus that goes beyond traditional neuron types.
Collapse
Affiliation(s)
- Gordon M Shepherd
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Medical Informatics, New Haven, CT, United States
| | - Luis Marenco
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Medical Informatics, New Haven, CT, United States
| | - Michael L Hines
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Michele Migliore
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Robert A McDougal
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Medical Informatics, New Haven, CT, United States
| | - Nicholas T Carnevale
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Adam J H Newton
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Monique Surles-Zeigler
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Medical Informatics, New Haven, CT, United States
| | - Giorgio A Ascoli
- Bioengineering Department and Center for Neural Informatics, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| |
Collapse
|
21
|
Shepherd GM, Marenco L, Hines ML, Migliore M, McDougal RA, Carnevale NT, Newton AJH, Surles-Zeigler M, Ascoli GA. Neuron Names: A Gene- and Property-Based Name Format, With Special Reference to Cortical Neurons. Front Neuroanat 2019; 13:25. [PMID: 30949034 PMCID: PMC6437103 DOI: 10.3389/fnana.2019.00025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Precision in neuron names is increasingly needed. We are entering a new era in which classical anatomical criteria are only the beginning toward defining the identity of a neuron as carried in its name. New criteria include patterns of gene expression, membrane properties of channels and receptors, pharmacology of neurotransmitters and neuropeptides, physiological properties of impulse firing, and state-dependent variations in expression of characteristic genes and proteins. These gene and functional properties are increasingly defining neuron types and subtypes. Clarity will therefore be enhanced by conveying as much as possible the genes and properties in the neuron name. Using a tested format of parent-child relations for the region and subregion for naming a neuron, we show how the format can be extended so that these additional properties can become an explicit part of a neuron's identity and name, or archived in a linked properties database. Based on the mouse, examples are provided for neurons in several brain regions as proof of principle, with extension to the complexities of neuron names in the cerebral cortex. The format has dual advantages, of ensuring order in archiving the hundreds of neuron types across all brain regions, as well as facilitating investigation of a given neuron type or given gene or property in the context of all its properties. In particular, we show how the format is extensible to the variety of neuron types and subtypes being revealed by RNA-seq and optogenetics. As current research reveals increasingly complex properties, the proposed approach can facilitate a consensus that goes beyond traditional neuron types.
Collapse
Affiliation(s)
- Gordon M. Shepherd
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Medical Informatics, New Haven, CT, United States
| | - Luis Marenco
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Medical Informatics, New Haven, CT, United States
| | - Michael L. Hines
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Michele Migliore
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Robert A. McDougal
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Medical Informatics, New Haven, CT, United States
| | | | - Adam J. H. Newton
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Monique Surles-Zeigler
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Medical Informatics, New Haven, CT, United States
| | - Giorgio A. Ascoli
- Bioengineering Department and Center for Neural Informatics, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, United States
| |
Collapse
|
22
|
Ceder MM, Lekholm E, Hellsten SV, Perland E, Fredriksson R. The Neuronal and Peripheral Expressed Membrane-Bound UNC93A Respond to Nutrient Availability in Mice. Front Mol Neurosci 2017; 10:351. [PMID: 29163028 PMCID: PMC5671512 DOI: 10.3389/fnmol.2017.00351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Many transporters such as the solute carriers belonging to the Major facilitator superfamily Pfam clan are orphans in that their tissue and cellular localization as well as substrate profile and function are still unknown. Here we have characterized the putative solute carrier UNC93A. We aimed to investigate the expression profile on both protein and mRNA level of UNC93A in mouse since it has not been clarified. UNC93A staining was found in cortex, hippocampus and cerebellum. It was found to be expressed in many neurons, but not all, with staining located in close proximity to the plasma membrane. Furthermore, we aimed to extend the starvation data available for Unc93a in hypothalamic cell cultures from mouse. We investigated the Unc93a alterations with focus on amino acid deprivation in embryonic cortex cells from mice as well as 24 h starvation in adult male mice and compared it to recently studied putative and known solute carriers. Unc93a expression was found both in the brain and peripheral organs, in low to moderate levels in the adult mice and was affected by amino acid deprivation in embryonic cortex cultures and starvation in in vivo samples. In conclusion, the membrane-bound UNC93A is expressed in both the brain and peripheral tissues and responds to nutrient availability in mice.
Collapse
Affiliation(s)
- Mikaela M Ceder
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Emilia Lekholm
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sofie V Hellsten
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Emelie Perland
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Robert Fredriksson
- Molecular Neuropharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Polavaram S, Ascoli GA. An ontology-based search engine for digital reconstructions of neuronal morphology. Brain Inform 2017; 4:123-134. [PMID: 28337675 PMCID: PMC5413594 DOI: 10.1007/s40708-017-0062-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 11/27/2022] Open
Abstract
Neuronal morphology is extremely diverse across and within animal species, developmental stages, brain regions, and cell types. This diversity is functionally important because neuronal structure strongly affects synaptic integration, spiking dynamics, and network connectivity. Digital reconstructions of axonal and dendritic arbors are thus essential to quantify and model information processing in the nervous system. NeuroMorpho.Org is an established repository containing tens of thousands of digitally reconstructed neurons shared by several hundred laboratories worldwide. Each neuron is annotated with specific metadata based on the published references and additional details provided by data owners. The number of represented metadata concepts has grown over the years in parallel with the increase of available data. Until now, however, the lack of standardized terminologies and of an adequately structured metadata schema limited the effectiveness of user searches. Here we present a new organization of NeuroMorpho.Org metadata grounded on a set of interconnected hierarchies focusing on the main dimensions of animal species, anatomical regions, and cell types. We have comprehensively mapped each metadata term in NeuroMorpho.Org to this formal ontology, explicitly resolving all ambiguities caused by synonymy and homonymy. Leveraging this consistent framework, we introduce OntoSearch, a powerful functionality that seamlessly enables retrieval of morphological data based on expert knowledge and logical inferences through an intuitive string-based user interface with auto-complete capability. In addition to returning the data directly matching the search criteria, OntoSearch also identifies a pool of possible hits by taking into consideration incomplete metadata annotation.
Collapse
Affiliation(s)
- Sridevi Polavaram
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures and Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
24
|
Rees CL, White CM, Ascoli GA. Neurochemical Markers in the Mammalian Brain: Structure, Roles in Synaptic Communication, and Pharmacological Relevance. Curr Med Chem 2017; 24:3077-3103. [PMID: 28413962 PMCID: PMC5646670 DOI: 10.2174/0929867324666170414163506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Knowledge of molecular marker (typically protein or mRNA) expression in neural systems can provide insight to the chemical blueprint of signal processing and transmission, assist in tracking developmental or pathological progressions, and yield key information regarding potential medicinal targets. These markers are particularly relevant in the mammalian brain in the light of its unsurpassed cellular diversity. Accordingly, molecular expression profiling is rapidly becoming a major approach to classify neuron types. Despite a profusion of research, however, the biological functions of molecular markers commonly used to distinguish neuron types remain incompletely understood. Furthermore, most molecular markers of mammalian neuron types are also present in other organs, therefore complicating considerations of their potential pharmacological interactions. OBJECTIVE Here, we survey 15 prominent neurochemical markers from five categories, namely membrane transporters, calcium-binding proteins, neuropeptides, receptors, and extracellular matrix proteins, explaining their relation and relevance to synaptic communication. METHOD For each marker, we summarize fundamental structural features, cellular functionality, distributions within and outside the brain, as well as known drug effectors and mechanisms of action. CONCLUSION This essential primer thus links together the cellular complexity of the brain, the chemical properties of key molecular players in neurotransmission, and possible biomedical opportunities.
Collapse
Affiliation(s)
- Christopher L. Rees
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Charise M. White
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
25
|
Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome. eNeuro 2016; 3:eN-NWR-0205-16. [PMID: 27896314 PMCID: PMC5114701 DOI: 10.1523/eneuro.0205-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/11/2023] Open
Abstract
We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122 neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested, two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations at the computationally crucial level of neuron types.
Collapse
|
26
|
Ascoli GA, Wheeler DW. In search of a periodic table of the neurons: Axonal-dendritic circuitry as the organizing principle: Patterns of axons and dendrites within distinct anatomical parcels provide the blueprint for circuit-based neuronal classification. Bioessays 2016; 38:969-76. [PMID: 27516119 DOI: 10.1002/bies.201600067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
No one knows yet how to organize, in a simple yet predictive form, the knowledge concerning the anatomical, biophysical, and molecular properties of neurons that are accumulating in thousands of publications every year. The situation is not dissimilar to the state of Chemistry prior to Mendeleev's tabulation of the elements. We propose that the patterns of presence or absence of axons and dendrites within known anatomical parcels may serve as the key principle to define neuron types. Just as the positions of the elements in the periodic table indicate their potential to combine into molecules, axonal and dendritic distributions provide the blueprint for network connectivity. Furthermore, among the features commonly employed to describe neurons, morphology is considerably robust to experimental conditions. At the same time, this core classification scheme is suitable for aggregating biochemical, physiological, and synaptic information.
Collapse
Affiliation(s)
- Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA.
| | - Diek W Wheeler
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|