1
|
Minussi FB, Araújo EB. On the prospects of high-entropy organic A-site halide perovskites. Phys Chem Chem Phys 2024; 26:26479-26488. [PMID: 39392699 DOI: 10.1039/d4cp02832e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
High entropy is a hot topic in materials research due to several interesting and surprising phenomena, of which one crucial aspect is entropic stabilization. As well-known materials for optoelectronic and electrochemical applications, halide perovskites (HPs) suffer from instability issues and would benefit greatly from increased configurational entropy. Despite that, only a few literature reports have connected HPs with the concept of high-entropy materials. Furthermore, mixing A-site cations, especially organic ones, to achieve maximized configurational entropies has not been explored in detail either in experimental or computational works. Aiming to obtain high-entropy organic A-site HPs, we synthesized and characterized a system of penta-organic A-site cations HP of general formula GAxFAxEAxACxMA1-4xPbI3. Results on the structure and phase transitions show that single-phase solid solutions can be obtained for x values up to almost 0.08, resulting in one of the highest configurational entropies ever reported in A-site-only mixed HPs. The high-entropy HPs also showed band gaps of about 1.5 eV, decreased ionic transport, and remarkable stability compared to the unsubstituted composition. The results consolidate the potential of maximizing the configurational entropy as a design parameter in HPs.
Collapse
Affiliation(s)
- F B Minussi
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira-SP, 15385-000, Brazil.
| | - E B Araújo
- Department of Physics and Chemistry, São Paulo State University, Ilha Solteira-SP, 15385-000, Brazil.
| |
Collapse
|
2
|
Jayaprakash Saiji S, Tang Y, Wu ST, Stand L, Tratsiak Y, Dong Y. Metal halide perovskite polymer composites for indirect X-ray detection. NANOSCALE 2024; 16:17654-17682. [PMID: 39248411 DOI: 10.1039/d4nr02716g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Metal halide perovskites (MHPs) have emerged as a promising class of materials for radiation detection due to their high atomic numbers and thus high radiation absorption, tunable and efficient luminescent properties and simple solution processability. Traditional MHP scintillators, however, suffer from environmental degradation, spurring interest in perovskite-polymer composites. This paper reviews recent developments in these composites tailored for scintillator applications. It discusses various synthesis methods, including solution-based and mechanochemical techniques, that enable the formation of composites with enhanced performance metrics such as light yield, detection limit, and environmental stability. The review also covers the remaining challenges and opportunities in fabrication techniques and performance metric evaluations of this class of materials. By offering a comprehensive overview of current research and future perspectives, this paper underscores the potential of perovskite-polymer composites to revolutionize the field of radiation detection.
Collapse
Affiliation(s)
- Shruti Jayaprakash Saiji
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| | - Yiteng Tang
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
| | - Shin-Tson Wu
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| | - Luis Stand
- Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Yauhen Tratsiak
- Scintillation Materials Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Yajie Dong
- NanoScience Technology Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32826, USA.
- College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32826, USA
| |
Collapse
|
3
|
Kammar SS, Barote VK, Gaikwad AA, Shirsath SE, Ibrahim AA, Batoo KM, Kadam RH, More SS. Interplay of Na Substitution in Magnetic Interaction and Photocatalytic Properties of Ca 1-xNa xTi 0.5Ta 0.5O 3 Perovskite Nanoparticles. ChemistryOpen 2024; 13:e202400021. [PMID: 39212271 PMCID: PMC11457761 DOI: 10.1002/open.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/05/2024] [Indexed: 09/04/2024] Open
Abstract
This research paper delves into the enhancement of wastewater treatment through the design and synthesis of advanced photocatalytic materials, focusing on the effects of sodium (Na) substitution in Ca1-xNaxTa0.5Ti0.5O3 perovskites. By employing various analytical techniques such as X-ray diffraction, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy and UV-vis spectroscopy, the study examines the transition of these perovskites from tetragonal to orthorhombic structures and observes a reduction in Ca content with Na substitution, which also favors the cubic phase formation and inhibits secondary phases. Significantly, magnetic property analysis uncovers an unexpected ferromagnetic ordering in these perovskites, including compositions traditionally viewed as non-magnetic. The photocatalytic tests reveal a significant improvement in degrading Rhodamine B dye under visible light, particularly in samples with higher Na levels, attributed to enhanced light absorption and efficient electron processes. The study highlights the optimal Na substitution level for peak photocatalytic performance, offering valuable insights into the complex interplay between structural, magnetic, and photocatalytic properties of these perovskites, and their potential in various applications, thereby contributing to the advancement of wastewater treatment technologies.
Collapse
Affiliation(s)
- S. S. Kammar
- Department of PhysicsHKE's A. V. Patil Degree CollegeAlandKalburgi, KAIndia
| | - V. K. Barote
- Department of PhysicsSant Dnyaneshwar MahavidyalayaSoegaon431120MaharashtraIndia
| | - A. A. Gaikwad
- People's Education Society' College of EngineeringAurangabad431001MaharashtraIndia.
| | - Sagar E. Shirsath
- Department of PhysicsVivekanand CollegeAurangabad431001, MSIndia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - A. A. Ibrahim
- Department of Physics and Astronomy, College of ScienceKing Saud UniversityP.O. Box−2455Riyadh11451Saudi Arabia
| | - K. M. Batoo
- King Abdullah Institute For NanotechnologyKing Saud UniversityP.O. Box−2455Riyadh11451Saudi Arabia
| | - R. H. Kadam
- Materials Science Research LaboratoryShrikrishna MahavidyalayaGunjotiOsmanabad, MSIndia
| | - S. S. More
- Department of PhysicsY. C. CollegeTuljapurOsmanabad, MSIndia
| |
Collapse
|
4
|
Jung S, Choi S, Shin W, Oh H, Kim N, Kim S, Kim N, Kim K, Lee H. Effects of Antisolvent Treatment on Copper(I) Thiocyanate Hole Transport Layer in n-i-p Perovskite Solar Cells. Molecules 2024; 29:4440. [PMID: 39339435 PMCID: PMC11433693 DOI: 10.3390/molecules29184440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Copper(I) thiocyanate (CuSCN) is considered an efficient HTL of low cost and with high stability in perovskite solar cells (PSCs). However, the diethyl sulfide solvent used for CuSCN preparation is known to cause damage to the underlying perovskite layer in n-i-p PSCs. Antisolvent treatment of CuSCN during spin-coating can effectively minimize interfacial interactions. However, the effects of antisolvent treatment are not sufficiently understood. In this study, the effects of five different antisolvents were investigated. Scanning electron microscopy and X-ray diffraction analyses showed that the antisolvent treatment improved the crystallinity of the CuSCN layer on the perovskite layer and reduced damage to the perovskite layer. However, X-ray and ultraviolet photoelectron spectroscopy analyses showed that antisolvent treatment did not affect the chemical bonds or electronic structures of CuSCN. As a result, the power conversion efficiency of the PSCs was increased from 14.72% for untreated CuSCN to 15.86% for ethyl-acetate-treated CuSCN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hyunbok Lee
- Department of Physics, Kangwon National University, 1 Gangwondaehak-gil, Chuncheon-si 24341, Republic of Korea; (S.J.); (S.C.); (W.S.); (H.O.); (N.K.); (S.K.); (N.K.); (K.K.)
| |
Collapse
|
5
|
Cong M, Zhao D, Yang J, Xiao G, Zou B. Identifying Organic-Inorganic Interaction Sites Toward Emission Enhancement in Non-Hydrogen-Bonded Hybrid Perovskite via Pressure Engineering. RESEARCH (WASHINGTON, D.C.) 2024; 7:0476. [PMID: 39286735 PMCID: PMC11403357 DOI: 10.34133/research.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
The interaction between organic and inorganic components in metal hybrid perovskites fundamentally determines the intrinsic optoelectronic performance. However, the underlying interaction sites have still remained elusive, especially for those non-hydrogen-bonded hybrid perovskites, thus largely impeding materials precise design with targeted properties. Herein, high pressure is utilized to elucidate the interaction mechanism between organic and inorganic components in the as-synthesized one-dimensional hybrid metal halide (DBU)PbBr3 (DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene). The interaction sites are identified to be the N from DBU and the Br from inorganic framework by the indicative of enhanced Raman mode under high pressure. The change in interaction strength is indeed derived from the pressure modulation on both distance and spatial arrangement of the nearest Br and N, rather than traditional hydrogen-bonding effect. Furthermore, the enhanced interaction increased charge transfer, resulting in a cyan emission with photoluminescence quantum yields (PLQYs) of 86.6%. The enhanced cyan emission is particularly important for underwater communication due to the much less attenuation in water than at other wavelength emissions. This study provides deep insights into the underlying photophysical mechanism of non-hydrogen-bonded hybrid metal halides and is expected to impart innovative construction with superior performance.
Collapse
Affiliation(s)
- Ming Cong
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Dianlong Zhao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Jiayi Yang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Rogalski A, Wang F, Wang J, Martyniuk P, Hu W. The Perovskite Optoelectronic Devices - A Look at the Future. SMALL METHODS 2024:e2400709. [PMID: 39235586 DOI: 10.1002/smtd.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Indexed: 09/06/2024]
Abstract
The perovskite materials are broadly incorporated into optoelectronic devices due to a number of advantages. Their rapid technological progress is related to the relatively simple fabrication process, low production cost and high efficiency. Significant improvement is made in the light emitting, detection performance and device design especially operating in the visible and near-infrared regions. This review presents the status and possible future development of the perovskite devices such as solar cells, photodetectors, and light-emitting diodes. The fundamental properties of perovskite materials related to their effective device applications are summarized. Since the development of the perovskite technology is mainly driven by the revolutionary evolution of the semiconductor perovskite solar cell as a robust candidate for next-generation solar energy harvesting, this topic is considered first. The device engineering of various perovskite photodetector structures, including perovskite quantum dot photodetectors, is then discussed in detail. Their performance is compared with the current commercial photodetectors available on the global market together with their challenges. Finally, the considerable progress in the fabrication of the perovskite light-emitting diodes with external quantum efficiency exceeding 20% is presented. The paper is completed in an attempt to determine the development of perovskite optoelectronic devices in the future.
Collapse
Affiliation(s)
- Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., Warsaw, 00-908, Poland
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Jin Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| | - Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., Warsaw, 00-908, Poland
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, 200083, China
| |
Collapse
|
7
|
Wang R, Yang X, Chen Q, Su R, Wu W, Cao J, Yu W, Zhou Y, Song B, Li Y. Enhancing the Humidity Stability of Perovskite Films through Interfacial Modification with Differentiated Hydrophilic Organics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45799-45808. [PMID: 39163115 DOI: 10.1021/acsami.4c08204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Preparing high-quality perovskite films is a decisive step toward realizing highly efficient and stable perovskite solar cells (Pero-SCs). Water is a key factor affecting the stability of the Pero-SCs. Here, the widely used water adsorbents chitosan, sorbitol, and sodium hyaluronate (NaHA) were used as hydrophilic layers on the upper interface of the perovskite to form a barrier against water. The water adsorbents also passivated defects on the surface of the perovskite active layer due to their -OH and -COOH functional groups. The NaHA-modified devices showed the best power conversion efficiency (PCE) (PCE = 21.74%). Although the NaHA-modified Pero-SCs showed optimal photovoltaic performance, the stability of the modified devices decreased due to the strong water adsorption ability of NaHA, while with moderate water adsorption ability sorbitol-modified devices exhibited good stability and PCE. The devices were tested in the dark and room temperature at different humidity levels for 800 h. At low humidity (25% ± 5% RH), the PCEs of the sorbitol- and NaHA-modified devices were maintained at 80% and 71% of the initial values, respectively. At high humidity (75% ± 5% RH), the PCE was maintained at 64% and 23% of the initial values, respectively. This work provides an avenue to select adsorbents with suitable water absorption ability as the interface modification layer, thus reducing the water erosion of perovskite films and obtaining highly stable inverted Pero-SCs.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xudong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Qiaoyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Rui Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Wenting Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Ji Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Wei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Yi Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Bo Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yongfang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Ouyang Y, Ou Z, Mwakitawa IM, Xia T, Pan Y, Wang C, Gao Q, Zhang B, Chen K, He Z, Shumilova T, Guo B, Zheng Y, Jiang T, Ma Z, Sun K. Orientation Manipulation and Defect Passivation for Perovskite Solar Cells by a Natural Compound. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401834. [PMID: 38623962 DOI: 10.1002/smll.202401834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Indexed: 04/17/2024]
Abstract
Different facets in perovskite crystals exhibit distinct atomic arrangements, influencing their electronic, physical, and chemical properties. Perovskite films incorporating tin oxide (SnO2) as the electron transport layer face challenges in facet regulation. This study reveals that tea saponin (TS), a natural compound serves as a SnO2 modifier, facilitates optimal growth of perovskite crystals on the (111) facet. The modification promotes preferential crystal orientation through hydrogen bond and Lewis coordination. TS forms a chelate with SnO2, resulting in a smoother film and n-type doping, leading to improved carrier extraction and reduced defects. The TS-modified perovskite solar cells achieve a champion efficiency of 24.2%, leveraging from an obvious enhancement of open-circuit voltage (Voc) of 1.18 V and fill factor (FF) of 82.8%. The devices also demonstrate enhanced humidity tolerance and storage stability, ensuring improved stability without encapsulation.
Collapse
Affiliation(s)
- Yunfei Ouyang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Zeping Ou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ibrahim Mwamburi Mwakitawa
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Tianyu Xia
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yi Pan
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Can Wang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qin Gao
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Bo Zhang
- R&D Center, JA Solar Holdings Co., Ltd., Yangzhou, 225131, China
| | - Kun Chen
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
- R&D Center, JA Solar Holdings Co., Ltd., Yangzhou, 225131, China
| | - Zijuan He
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
- R&D Center, JA Solar Holdings Co., Ltd., Yangzhou, 225131, China
| | - Tatyana Shumilova
- Institute of Geology, FRC Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 167982, Russia
| | - Bing Guo
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Tingming Jiang
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhu Ma
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
9
|
Yadav A, Ahmad S. Single Crystal Ruddlesden-Popper and Dion-Jacobson Metal Halide Perovskites for Visible Light Photodetectors: Present Status and Future Perspectives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43134-43155. [PMID: 39116407 DOI: 10.1021/acsami.4c07170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
2D metal halide perovskites (MHPs), mainly the studied Ruddlesden-Popper (RP) and Dion-Jacobson (DJ) phases, have gained enormous popularity as optoelectronic materials owing to their self-assembled multiple quantum well structures, tunable semiconducting properties, and improved structural stability compared to their bulk 3D counterparts. The performance of polycrystalline thin film devices is limited due to the formation of defects and trap states. However, as studied so far, single crystal-based devices can provide a better platform to improve device performance and investigate their fundamental properties more reliably. This Review provides the first comprehensive report on the emerging field of RP and DJ perovskite single crystals and their use in visible light photodetectors of varied device configurations. This Review structurally summarizes the 2D MHP single crystal growth methods and the parameters that control the crystal growth process. In addition, the characterization techniques used to investigate their crystal properties are discussed. The review further provides detailed insights into the working mechanisms as well as the operational performance of 2D MHP single crystal photodetector devices. In the end, to outline the present status and future directions, this Review provides a forward-looking perspective concerning the technical challenges and bottlenecks associated with the developing field of RP and DJ perovskite single crystals. Therefore, this timely review will provide a detailed overview of the fast-growing field of 2D MHP single crystal-based photodetectors as well as ignite new concepts for a wide range of applications including solar cells, photocatalysts, solar H2 production, neuromorphic bioelectronics, memory devices, etc.
Collapse
Affiliation(s)
- Abhishek Yadav
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| | - Shahab Ahmad
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
10
|
Rogalski A, Hu W, Wang F, Wang Y, Martyniuk P. Perovskite versus Standard Photodetectors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4029. [PMID: 39203207 PMCID: PMC11356170 DOI: 10.3390/ma17164029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024]
Abstract
Perovskites have been largely implemented into optoelectronics as they provide several advantages such as long carrier diffusion length, high absorption coefficient, high carrier mobility, shallow defect levels and finally, high crystal quality. The brisk technological development of perovskite devices is connected to their relative simplicity, high-efficiency processing and low production cost. Significant improvement has been made in the detection performance and the photodetectors' design, especially operating in the visible (VIS) and near-infrared (NIR) regions. This paper attempts to determine the importance of those devices in the broad group of standard VIS and NIR detectors. The paper evaluates the most important parameters of perovskite detectors, including current responsivity (R), detectivity (D*) and response time (τ), compared to the standard photodiodes (PDs) available on the commercial market. The conclusions presented in this work are based on an analysis of the reported data in the vast pieces of literature. A large discrepancy is observed in the demonstrated R and D*, which may be due to two reasons: immature device technology and erroneous D* estimates. The published performance at room temperature is even higher than that reported for typical detectors. The utmost D* for perovskite detectors is three to four orders of magnitude higher than commercially available VIS PDs. Some papers report a D* close to the physical limit defined by signal fluctuations and background radiation. However, it is likely that this performance is overestimated. Finally, the paper concludes with an attempt to determine the progress of perovskite optoelectronic devices in the future.
Collapse
Affiliation(s)
- Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland;
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (Y.W.)
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (Y.W.)
| | - Yang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (Y.W.)
| | - Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland;
| |
Collapse
|
11
|
Zeng J, Fan X, Wang J, Zhang Z, Chen J, Hui KN, Song W. Efficient and stable semitransparent perovskite photovoltaics via a Lewis base incorporation. NANOSCALE 2024; 16:14469-14476. [PMID: 39016026 DOI: 10.1039/d4nr02046d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Semitransparent perovskite solar cells (ST-PSCs) have great potential in building integrated photovoltaics. However, semitransparent devices suffer from a low electron mobility and an imbalanced charge-carrier transport, leading to an unsatisfactory power conversion efficiency (PCE) and limited stability. Herein, we report a high-performance ST-PSC via the incorporation of a special Lewis base. A better perovskite with an improved crystallinity and less defects was achieved, and a matched energy level alignment between the perovskite and [6,6]-phenyl-C61-butyric acid methyl ester was also induced, thereby leading to a high electron mobility and an exceptional balance of hole and electron mobility approaching 1 : 1. The prepared ST-PSC exhibited a PCE of 20.22% at average visible transmittance (AVT) of 4.93%, 18.32% at AVT of 14.38%, and 15.00% at AVT of 25.65%. These PCEs are the highest values among those ST-PSCs based on top metallic electrodes at a close AVT. The ST-PSCs maintained 92% of the initial PCE in storage for 1000 h, and they held 84% of the initial PCE under the continuous maximum power point tracking measurement for 530 hours. The work paves the way to realize ST-PSCs with a high PCE, high light utilization efficiency and substantially enhanced stability.
Collapse
Affiliation(s)
- Jixi Zeng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.
| | - Xi Fan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.
| | - Jinzhao Wang
- School of Material Science and Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Ziqi Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.
| | - Jiwen Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, P.R. China
| | - Weijie Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P.R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou, Zhejiang 311121, P.R. China
| |
Collapse
|
12
|
Zhang Y, Li Z, Han ZK, Ouyang R. Global Optimization of Cation Ordering in Perovskites by Recommendation-Based Basin-Hopping. J Chem Theory Comput 2024. [PMID: 39088397 DOI: 10.1021/acs.jctc.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Cation ordering in multication perovskites is related to many important material properties and performances, but computational determination of the cation ordering remains a major challenge. Here, we propose a new computational approach by introducing a machine learning recommender system into the basin-hopping framework (RBH) for optimizing cation ordering. Taking the electrocatalyst Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF5582) as a showcase example, we found that the efficiency of RBH in identifying low-energy configurations outperforms the methods of cluster expansion and conventional basin-hopping. The RBH results revealed that the BSCF5582 catalyst tended to have a layered ordering of A-site cations and disordered B-site cations both in bulk and on the surfaces. Further, on the A-site-terminated surface, we found the segregation of large Ba atoms. Similarly, on the A-site- terminated surface of the recently developed Cs0.2Sr0.8Co0.4Fe0.6O3 (CSCF2846) catalyst, layered ordering at the A-site and surface enrichment of large Cs atoms were also found. The layered ordering was robust against thermal effects, as found from molecular dynamics simulations at 800 K. This work provides a new approach for thermodynamic global optimization of chemical ordering in multicomponent materials.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhenjie Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Runhai Ouyang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Meng J, Lan Z, Lin W, Castelli IE, Pullerits T, Zheng K. Tailoring Auger Recombination Dynamics in CsPbI 3 Perovskite Nanocrystals via Transition Metal Doping. NANO LETTERS 2024; 24:8386-8393. [PMID: 38934731 DOI: 10.1021/acs.nanolett.4c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Auger recombination is a pivotal process for semiconductor nanocrystals (NCs), significantly affecting charge carrier generation and collection in optoelectronic devices. This process depends mainly on the NCs' electronic structures. In our study, we investigated Auger recombination dynamics in manganese (Mn2+)-doped CsPbI3 NCs using transient absorption (TA) spectroscopy combined with theoretical and experimental structural characterization. Our results show that Mn2+ doping accelerates Auger recombination, reducing the biexciton lifetime from 146 to 74 ps with increasing Mn doping concentration up to 10%. This accelerated Auger recombination in Mn-doped NCs is attributed to increased band edge wave function overlap of excitons and a larger density of final states of Auger recombination due to Mn orbital involvement. Moreover, Mn doping reduces the dielectric screening of the excitons, which also contributes to the accelerated Auger recombination. Our study demonstrates the potential of element doping to regulate Auger recombination rates by modifying the materials' electronic structure.
Collapse
Affiliation(s)
- Jie Meng
- The Division of Chemical Physics and NanoLund, Lund University, Lund 22100, Sweden
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Zhenyun Lan
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
- School of Materials Science and Engineering, Hefei University of Technology Hefei, Anhui 230009, People's Republic of China
| | - Weihua Lin
- The Division of Chemical Physics and NanoLund, Lund University, Lund 22100, Sweden
| | - Ivano E Castelli
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Tönu Pullerits
- The Division of Chemical Physics and NanoLund, Lund University, Lund 22100, Sweden
| | - Kaibo Zheng
- The Division of Chemical Physics and NanoLund, Lund University, Lund 22100, Sweden
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| |
Collapse
|
14
|
Gutiérrez M, de la Hoz Tomás M, Rakshit S, Lezama L, Cohen B, Douhal A. Direct Evidence of the Effect of Water Molecules Position in the Spectroscopy, Dynamics, and Lighting Performance of an Eco-Friendly Mn-Based Organic-Inorganic Metal Halide Material for High-Performance LEDs and Solvent Vapor Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400879. [PMID: 38654657 PMCID: PMC11234429 DOI: 10.1002/advs.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Luminescent Mn(II)-based organic-inorganic hybrid halides have drawn attention as potential materials for sensing and photonics applications. Here, the synthesis and characterization of methylammonium (MA) manganese bromide ((MA)nBrxMn(H2O)2, (n = 1, 4 and x = 3, 6)) with different stoichiometries of the organic cation and inorganic counterpart, are reported. While the Mn2+ centers have an octahedral conformation, the two coordinating water molecules are found either in cis (1) or in trans (2) positions. The photophysical behavior of 1 reflects the luminescence of Mn2+ in an octahedral environment. Although Mn2+ in 2 also has octahedral coordination, at room temperature dual emission bands at ≈530 and ≈660 nm are observed, explained in terms of emission from Mn2+ in tetragonally compressed octahedra and self-trapped excitons (STEs), respectively. Above the room temperature, 2 shows quasi-tetrahedral behavior with intense green emission, while at temperatures below 140 K, another STE band emerges at 570 nm. Time-resolved experiments (77-360 K) provide a clear picture of the excited dynamics. 2 shows rising components due to STEs formation equilibrated at room temperature with their precursors. Finally, the potential of these materials for the fabrication of color-tunable down-converted light-emitting diode (LED) and for detecting polar solvent vapors is shown.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, e INAMOL, Campus Tecnológico de Toledo, Universidad de Castilla-La Mancha (UCLM), Avenida Carlos III, S.N., Toledo, 45071, Spain
| | - Mario de la Hoz Tomás
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, e INAMOL, Campus Tecnológico de Toledo, Universidad de Castilla-La Mancha (UCLM), Avenida Carlos III, S.N., Toledo, 45071, Spain
| | - Soumyadipta Rakshit
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, e INAMOL, Campus Tecnológico de Toledo, Universidad de Castilla-La Mancha (UCLM), Avenida Carlos III, S.N., Toledo, 45071, Spain
| | - Luis Lezama
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, B° Sarriena s/n, Leioa, 48940, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, e INAMOL, Campus Tecnológico de Toledo, Universidad de Castilla-La Mancha (UCLM), Avenida Carlos III, S.N., Toledo, 45071, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, e INAMOL, Campus Tecnológico de Toledo, Universidad de Castilla-La Mancha (UCLM), Avenida Carlos III, S.N., Toledo, 45071, Spain
| |
Collapse
|
15
|
Lin HN, Chen MS, Chang PJ, Lee YC, Chen CY, Chiou YJ, Lin CK. Synthesis and Characterization of Sol-Gelled Barium Zirconate as Novel MTA Radiopacifiers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3015. [PMID: 38930384 PMCID: PMC11205342 DOI: 10.3390/ma17123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Barium zirconate (BaZrO3, BZO), which exhibits superior mechanical, thermal, and chemical stability, has been widely used in many applications. In dentistry, BZO is used as a radiopacifier in mineral trioxide aggregates (MTAs) for endodontic filling applications. In the present study, BZO was prepared using the sol-gel process, followed by calcination at 700-1000 °C. The calcined BZO powders were investigated using X-ray diffraction and scanning electron microscopy. Thereafter, MTA-like cements with the addition of calcined BZO powder were evaluated to determine the optimal composition based on radiopacity, diametral tensile strength (DTS), and setting times. The experimental results showed that calcined BZO exhibited a majority BZO phase with minor zirconia crystals. The crystallinity, the percentage, and the average crystalline size of BZO increased with the increasing calcination temperature. The optimal MTA-like cement was obtained by adding 20% of the 700 °C-calcined BZO powder. The initial and final setting times were 25 and 32 min, respectively. They were significantly shorter than those (70 and 56 min, respectively) prepared with commercial BZO powder. It exhibited a radiopacity of 3.60 ± 0.22 mmAl and a DTS of 3.02 ± 0.18 MPa. After 28 days of simulated oral environment storage, the radiopacity and DTS decreased to 3.36 ± 0.53 mmAl and 2.84 ± 0.27 MPa, respectively. This suggests that 700 °C-calcined BZO powder has potential as a novel radiopacifier for MTAs.
Collapse
Affiliation(s)
- Hsiu-Na Lin
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-N.L.); (M.-S.C.); (P.-J.C.).; (C.-Y.C.)
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - May-Show Chen
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-N.L.); (M.-S.C.); (P.-J.C.).; (C.-Y.C.)
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Prosthodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Pei-Jung Chang
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-N.L.); (M.-S.C.); (P.-J.C.).; (C.-Y.C.)
- Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Yao-Chi Lee
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104, Taiwan;
| | - Chin-Yi Chen
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-N.L.); (M.-S.C.); (P.-J.C.).; (C.-Y.C.)
- Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan
| | - Yuh-Jing Chiou
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-N.L.); (M.-S.C.); (P.-J.C.).; (C.-Y.C.)
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104, Taiwan;
| | - Chung-Kwei Lin
- Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-N.L.); (M.-S.C.); (P.-J.C.).; (C.-Y.C.)
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
16
|
Ming T, Lan T, Yu M, Cheng S, Duan X, Wang H, Deng J, Kong D, Yang S, Shen Z. Advancements in Biosensors for Point-of-Care Testing of Nucleic Acid. Crit Rev Anal Chem 2024:1-16. [PMID: 38889541 DOI: 10.1080/10408347.2024.2366943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Rapid, low-cost and high-specific diagnosis based on nucleic acid detection is pivotal in both detecting and controlling various infectious diseases, effectively curbing their spread. Moreover, the analysis of circulating DNA in whole blood has emerged as a promising noninvasive strategy for cancer diagnosis and monitoring. Although traditional nucleic acid detection methods are reliable, their time-consuming and intricate processes restrict their application in rapid field assays. Consequently, an urgent emphasis on point-of-care testing (POCT) of nucleic acids has arisen. POCT enables timely and efficient detection of specific sequences, acting as a deterrent against infection sources and potential tumor threats. To address this imperative need, it is essential to consolidate key aspects and chart future directions in POCT biosensors development. This review aims to provide an exhaustive and meticulous analysis of recent advancements in POCT devices for nucleic acid diagnosis. It will comprehensively compare these devices across crucial dimensions, encompassing their integrated structures, the synthesized nanomaterials harnessed, and the sophisticated detection principles employed. By conducting a rigorous evaluation of the current research landscape, this review will not only spotlight achievements but also identify limitations, offering valuable insights into the future trajectory of nucleic acid POCT biosensors. Through this comprehensive analysis, the review aspires to serve as an indispensable guide for fostering the development of more potent biosensors, consequently fostering precise and efficient POCT applications for nucleic acids.
Collapse
Affiliation(s)
- Tao Ming
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Tingting Lan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Mingxing Yu
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuhan Cheng
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Xu Duan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Juan Deng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Deling Kong
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Lee YR, Chung YT, Chiang TY, Hsieh T, Su YH, Wang JK. Unraveling Halogen Role in Two-Step Solution Growth of Organic-Inorganic Hybrid Mixed-Halide Perovskites: Guidelines of Fabricating Single-Phase Perovskites with Predictable Stoichiometry. ACS OMEGA 2024; 9:26439-26449. [PMID: 38911784 PMCID: PMC11190909 DOI: 10.1021/acsomega.4c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
The challenge faced in optoelectronic applications of halide perovskites is their degradation. Minimizing material imperfections is critical to averting cascade degradation processes. Identifying causes of such imperfections is, however, hindered by mystified growth processes and is particularly urgent for mixed-halide perovskites because of inhomogeneity in growth and phase segregation under stresses. To unravel two-step solution growth of MAPbBr x I3-x , we monitored the evolution of Br composition and found that the construction of perovskite lattice is contributed by iodine from PbI2 substrate and Br from MABr solution with a 1:1 ratio rather than a 2:1 ratio originally thought. Kinetic analysis based on a derived three-stage model extracted activation energies of perovskite construction and anion exchange. This model is applicable to the growth of PbI2 reacting with a mixed solution of MABr and MAI. Two guidelines of fabricating single-phase MAPbBr x I3-x with predictable stoichiometry thus developed help strategizing protocols to reproducibly fabricate mixed-halide perovskite films tailored to specific optoelectronic applications.
Collapse
Affiliation(s)
- Ya-Rong Lee
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Yun-Ting Chung
- Department
of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Chiang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Ta−Li Hsieh
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Yi-Hang Su
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Juen-Kai Wang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
18
|
Guo Y, Cao Y, Tan Q, Yang D, Che Y, Zhang C, Ming P, Xiao Q. Investigation of non-precious metal cathode catalysts for direct borohydride fuel cells. RSC Adv 2024; 14:19636-19647. [PMID: 38895534 PMCID: PMC11184940 DOI: 10.1039/d4ra02767a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Borohydride crossover in anion exchange membrane (AEM) based direct borohydride fuel cells (DBFCs) impairs their performance and induces cathode catalyst poisoning. This study evaluates three non-precious metal catalysts, namely LaMn0.5Co0.5O3 (LMCO) perovskite, MnCo2O4 (MCS) spinel, and Fe-N-C, for their application as cathode catalysts in DBFCs. The rotating disk electrode (RDE) testing shows significant borohydride tolerance of MCS. Moreover, MCS has exhibited exceptional stability in accelerated durability tests (ADTs), with a minimal reduction of 10 mV in half-wave potential. DFT calculations further reveal that these catalysts predominantly adsorb over , unlike commercial Pt/C which preferentially adsorbs . In DBFCs, MCS can deliver a peak power density of 1.5 W cm-2, and a 3% voltage loss after a 5 hours durability test. In contrast, LMCO and Fe-N-C have exhibited significantly lower peak power density and stability. The analysis of the TEM, XRD, and XPS results before and after the single-cell stability tests suggests that the diminished stability of LMCO and Fe-N-C catalysts is due to catalyst detachment from carbon supports, resulting from the nanoparticle aggregation during the high-temperature preparation process. Such findings suggest that MCS can effectively mitigate the fuel crossover challenge inherent in DBFCs, thus enhancing its viability for practical application.
Collapse
Affiliation(s)
- Yu Guo
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 China
| | - Yingjian Cao
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 China
| | - Qinggang Tan
- School of Materials Science & Engineering, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 China
| | - Daijun Yang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 China
| | - Yong Che
- Enpower Beijing Corp. 13 Area 2 Jinsheng Street Daxing Beijing 06500 China
| | - Cunman Zhang
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 China
| | - Pingwen Ming
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 China
| | - Qiangfeng Xiao
- School of Automotive Studies & Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus) 4800 Cao'an Road Shanghai 201804 China
| |
Collapse
|
19
|
Zhang X, Liu L, Zhao Y, Gao Y, Chen D, Zhu W. Coverage-sensitive mechanism of electrochemical NO reduction on the SrTiO 3(001) surface: a DFT investigation. Phys Chem Chem Phys 2024; 26:16039-16047. [PMID: 38779839 DOI: 10.1039/d4cp01076k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Due to its adverse environmental and human health hazards, addressing the elimination of nitric oxide (NO) has become a pressing concern for modern society. Currently, electrochemical NO reduction provides a new alternative to traditional selective catalytic reduction technology under mild reaction conditions. However, the complexity and variability of products make the coverage of NO an influencing factor that needs to be investigated. Hence, this study delves into the coverage-sensitive mechanism of electrochemical NO reduction on cost-effective perovskite catalysts, using SrTiO3 as an example, through density functional theory calculations. Phase diagrams analysis reveals that the coverage range from 0.25 to 1.00 monolayer (ML) coverage is favorable for NO adsorption. Gibbs free energy results indicate that the selectivity is significantly influenced by NO coverage. NH3 is likely to be generated at low coverage, while N2O and N2 are more likely to be produced at high coverage through a dimer mechanism. Charge analysis suggests that the charge transfer and Ti-O bond strength between reactants and catalysts are crucial factors. This work not only provides deep insights into coverage-sensitive reaction mechanisms but also is a guideline towards further rational design of high-performance perovskite catalysts.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, P. R. China.
| | - Lu Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, P. R. China.
| | - Yuncai Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, P. R. China.
| | - Yijing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, P. R. China.
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, P. R. China
| | - Deli Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, P. R. China.
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, P. R. China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, P. R. China.
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, P. R. China
| |
Collapse
|
20
|
Duan Y, Yu R, Zhang H, Yang W, Xie W, Huang Y, Yin Z. Programmable, High-resolution Printing of Spatially Graded Perovskites for Multispectral Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313946. [PMID: 38582876 DOI: 10.1002/adma.202313946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Micro/nanostructured perovskites with spatially graded compositions and bandgaps are promising in filter-free, chip-level multispectral, and hyperspectral detection. However, achieving high-resolution patterning of perovskites with controlled graded compositions is challenging. Here, a programmable mixed electrohydrodynamic printing (M-ePrinting) technique is presented to realize the one-step direct-printing of arbitrary spatially graded perovskite micro/nanopatterns for the first time. M-ePrinting enables in situ mixing and ejection of solutions with controlled composition/bandgap by programmatically varying driving voltage applied to a multichannel nozzle. Composition can be graded over a single dot, line or complex pattern, and the printed feature size is down to 1 µm, which is the highest printing resolution of graded patterns to the knowledge. Photodetectors based on micro/nanostructured perovskites with halide ions gradually varying from Br to I are constructed, which successfully achieve multispectral detection and full-color imaging, with a high detectivity and responsivity of 3.27 × 1015 Jones and 69.88 A W-1, respectively. The presented method provides a versatile and competitive approach for such miniaturized bandgap-tunable perovskite spectrometer platforms and artificial vision systems, and also opens new avenues for the digital fabrication of composition-programmable structures.
Collapse
Affiliation(s)
- Yongqing Duan
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Yu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hanyuan Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weili Yang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenshuo Xie
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhouping Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
21
|
Xu X, Fan C, He H, Ye Z. Epitaxial Growth of CsPbBr 3 Pyramids/CdS Nanobelt Heterostructures for High-Performance Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19742-19750. [PMID: 38563423 DOI: 10.1021/acsami.3c19282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Perovskites have great potential for optoelectronic applications due to their high photoluminescence quantum yield, large absorption coefficient, great defect tolerance, and adjustable band gap. Perovskite heterostructures may further enhance the performance of optoelectronic devices. So far, however, most of perovskite heterostructures are fabricated by mechanical stacking or spin coating, which could introduce a large number of defects or impurities at the heterointerface owing to the random stacking process. Herein, we report the epitaxial growth of CsPbBr3 pyramids/CdS nanobelt heterostructures via a 2-step vapor deposition route. The CsPbBr3 triangular pyramids are well aligned on the surface of CdS nanobelts with the epitaxial relationships of (0-22)CsPbBr3||(1-20)CdS and (-211)CsPbBr3||(002)CdS. Time-resolved photoluminescence results reveal that effective charge transfer occurred at the heterointerface, which can be attributed to the type-II band arrangement. Theoretical simulations reveal that the unique CsPbBr3 pyramids/CdS nanobelt structure facilitates diminishing the reflection losses and enhancing the light absorption. The photodetector based on these CsPbBr3 pyramids/CdS nanobelt heterostructures exhibited an ultrahigh photoswitching ratio of 2.14 × 105, a high responsivity up to 4.07 × 104 A/W, a high detectivity reaching 1.36 × 1013 Jones, fast photoresponses (τrise = 472 μs and τdecay = 894 μs), low dark current, and suppressed hysteresis.
Collapse
Affiliation(s)
- Xing Xu
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421010, P. R. China
- Wenzhou XINXINTAIJING Tech. Co., Ltd., Wenzhou 325006, P. R. China
| | - Chao Fan
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Wenzhou XINXINTAIJING Tech. Co., Ltd., Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi 030000, P. R. China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Wenzhou XINXINTAIJING Tech. Co., Ltd., Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi 030000, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
- Wenzhou XINXINTAIJING Tech. Co., Ltd., Wenzhou 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi 030000, P. R. China
| |
Collapse
|
22
|
Zhang L, Wang S, Jiang Y, Yuan M. Stable and Efficient Mixed-halide Perovskite LEDs. CHEMSUSCHEM 2024; 17:e202301205. [PMID: 38081803 DOI: 10.1002/cssc.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Tailoring bandgap by mixed-halide strategy in perovskites has attracted extraordinary attention due to the flexibility of halide ion combinations and has emerged as the most direct and effective approach to precisely tune the emission wavelength throughout the entire visible light spectrum. Mixed-halide perovskites, yet, still suffered from several problems, particularly phase segregation under external stimuli because of ions migration. Understanding the essential cause and finding sound strategies, thus, remains a challenge for stable and efficient mixed-halide perovskite light-emitting diodes (PeLEDs). The review herein presents an overview of the diverse application scenarios and the profound significance associated with mixed-halide perovskites. We then summarize the challenges and potential research directions toward developing high stable and efficient mixed-halide PeLEDs. The review thus provides a systematic and timely summary for the community to deepen the understanding of mixed-halide perovskite materials and resulting PeLEDs.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Stor1age Center (RECAST), College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Saike Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Stor1age Center (RECAST), College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yuanzhi Jiang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Stor1age Center (RECAST), College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Stor1age Center (RECAST), College of Chemistry, Nankai University, Tianjin, P. R. China
| |
Collapse
|
23
|
Sajid S, Alzahmi S, Tabet N, Haik Y, Obaidat IM. Fabricating Planar Perovskite Solar Cells through a Greener Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:594. [PMID: 38607128 PMCID: PMC11013819 DOI: 10.3390/nano14070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
High-quality perovskite thin films are typically produced via solvent engineering, which results in efficient perovskite solar cells (PSCs). Nevertheless, the use of hazardous solvents like precursor solvents (N-Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), gamma-butyrolactone (GBL)) and antisolvents (chlorobenzene (CB), dibutyl ether (DEE), diethyl ether (Et2O), etc.) is crucial to the preparation of perovskite solutions and the control of perovskite thin film crystallization. The consumption of hazardous solvents poses an imminent threat to both the health of manufacturers and the environment. Consequently, before PSCs are commercialized, the current concerns about the toxicity of solvents must be addressed. In this study, we fabricated highly efficient planar PSCs using a novel, environmentally friendly method. Initially, we employed a greener solvent engineering approach that substituted the hazardous precursor solvents with an environmentally friendly solvent called triethyl phosphate (TEP). In the following stage, we fabricated perovskite thin films without the use of an antisolvent by employing a two-step procedure. Of all the greener techniques used to fabricate PSCs, the FTO/SnO2/MAFAPbI3/spiro-OMeTAD planar device configuration yielded the highest PCE of 20.98%. Therefore, this work addresses the toxicity of the solvents used in the perovskite film fabrication procedure and provides a promising universal method for producing PSCs with high efficiency. The aforementioned environmentally friendly approach might allow for PSC fabrication on an industrial scale in the future under sustainable conditions.
Collapse
Affiliation(s)
- Sajid Sajid
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nouar Tabet
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Yousef Haik
- Department of Mechanical and Nuclear Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Mechanical Engineering, The University of Jordan, Amman P.O. Box 11942, Jordan
| | - Ihab M. Obaidat
- Department of Applied Physics and Astronomy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| |
Collapse
|
24
|
Weng N, Liao Q, Li X, Zhang Z, Huang T, Wang D, Xiong J, Zhang J. Reducing Interfacial Losses in Solution-Processed Integrated Perovskite-Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10170-10179. [PMID: 38359458 DOI: 10.1021/acsami.3c18471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Low bandgap organic semiconductors have been widely employed to broaden the light response range to utilize much more photons in the inverted perovskite solar cells (PSCs). However, the serious charge recombination at the heterointerface contact between perovskite and organic semiconductors usually leads to large energy loss and limits the device performance. In this work, a titanium chelate, bis(2,4-pentanedionato) titanium(IV) oxide (C10H14O5Ti), was directly used as an interlayer between the perovskite layer and organic bulk heterojunction layer for the first time. Impressively, it was found that C10H14O5Ti can not only increase the surface potential of perovskite films but also show a positive passivation effect toward the perovskite film surface. Drawing from the above function, a smoother perovskite active layer with a higher work function was realized upon the use of C10H14O5Ti. As a result, the C10H14O5Ti-modified integrated devices show lower interfacial loss and obtain the best power conversion efficiency (PCE) of up to 20.91% with a high voltage of 1.15 V. The research offers a promising strategy to minimize the interfacial loss for the preparation of high-performance perovskite solar cells.
Collapse
Affiliation(s)
- Nan Weng
- Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Qiaogan Liao
- Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Xiao Li
- Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Zheling Zhang
- Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Tianhuan Huang
- Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Dongjie Wang
- Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Jian Xiong
- Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Jian Zhang
- Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| |
Collapse
|
25
|
Rani C, Kumar R. Fano-type discrete-continuum interaction in perovskites and its manifestation in Raman spectral line shapes. Chem Commun (Camb) 2024; 60:2115-2124. [PMID: 38284275 DOI: 10.1039/d3cc05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Fano resonance is one of the most significant physical phenomena that correlates microscopic processes with macroscopic manifestations for experimental observations using different spectroscopic techniques. Owing to its importance, a focused study is required to clearly understand the origin of certain modifications in spectral behaviour, the nature of which is different for different materials. This means that a careful understanding of Fano interactions can enhance the understanding of several technologically important materials, including perovskites, which are also important in the area of energy storage and conversion. In semiconductors and nano materials (including 2-D materials), Fano interactions occur due to the intervalence or interconduction band transitions. However, in perovskites, Fano interactions are dominated by the interaction between polar phonons or excitons with electronic continuum. Raman spectroscopy, being a sensitive and non-destructive tool, detects subtle scale phenomena, such as Fano interactions, by analysing the Raman line shape. Herein, different dimensions associated with the identification and thereafter the origin of the Fano resonance in perovskites, which are used in energy related areas, have been highlighted using Raman scattering.
Collapse
Affiliation(s)
- Chanchal Rani
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan-48109, USA
| | - Rajesh Kumar
- Materials and Device Laboratory, Department of Physics, Indian Institute of Technology Indore, Simrol-453552, India.
| |
Collapse
|
26
|
Ihtisham-Ul-Haq, Khan MI, Ullah A, Mujtaba A, Almutairi BS, Shahid W, Ali A, Choi JR. Bandgap reduction and efficiency enhancement in Cs 2AgBiBr 6 double perovskite solar cells through gallium substitution. RSC Adv 2024; 14:5440-5448. [PMID: 38348293 PMCID: PMC10859843 DOI: 10.1039/d3ra08965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Lead-free halide double perovskite (LFHDP) Cs2AgBiBr6 has emerged as a promising alternative to traditional lead-based perovskites (LBPs), offering notable advantages in terms of chemical stability and non-toxicity. However, the efficiency of Cs2AgBiBr6 solar cells faces challenges due to their wide bandgap (Eg). As a viable strategy to settle this problem, we consider optimization of the optical and photovoltaic properties of Cs2AgBiBr6 by Gallium (Ga) substitution. The synthesized Cs2Ag0.95Ga0.05BiBr6 is rigorously characterized by means of X-ray diffraction (XRD), UV-vis spectroscopy, and solar simulator measurements. XRD analysis reveals shifts in peak positions, indicating changes in the crystal lattice due to Ga substitution. The optical analysis demonstrates a reduction in the Eg, leading to improvement of the light absorption within the visible spectrum. Importantly, the Cs2Ag0.95Ga0.05BiBr6 solar cell exhibits enhanced performance, as evidenced by higher values of open circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF), which are 0.94 V, 6.01 mA cm-2, and 0.80, respectively: this results in an increased power conversion efficiency (PCE) from 3.51% to 4.52%. This research not only helps to overcome film formation challenges, but also enables stable Cs2Ag0.95Ga0.05BiBr6 to be established as a high-performance material for photovoltaic applications. Overall, our development contributes to the advancement of environmentally friendly solar technologies.
Collapse
Affiliation(s)
- Ihtisham-Ul-Haq
- Department of Physics, The University of Lahore 53700 Pakistan
| | - M I Khan
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Asad Ullah
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Ali Mujtaba
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Badriah S Almutairi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University P.O.Box 84428 Riyadh 11671 Saudi Arabia
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Asghar Ali
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea
| |
Collapse
|
27
|
Mehra S, Pandey R, Madan J, Sharma R, Goswami L, Gupta G, Singh VN, Srivastava AK, Sharma SN. Experimental and Theoretical Investigations of MAPbX 3 -Based Perovskites (X=Cl, Br, I) for Photovoltaic Applications. ChemistryOpen 2024; 13:e202300055. [PMID: 37874015 PMCID: PMC10962479 DOI: 10.1002/open.202300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
This work mainly focuses on synthesizing and evaluating the efficiency of methylammonium lead halide-based perovskite (MAPbX3 ; X=Cl, Br, I) solar cells. We used the colloidal Hot-injection method (HIM) to synthesize MAPbX3 (X=Cl, Br, I) perovskites using the specific precursors and organic solvents under ambient conditions. We studied the structural, morphological and optical properties of MAPbX3 perovskites using XRD, FESEM, TEM, UV-Vis, PL and TRPL (time-resolved photoluminescence) characterization techniques. The particle size and morphology of these perovskites vary with respect to the halide variation. The MAPbI3 perovskite possesses a low band gap and low carrier lifetime but delivers the highest PCE among other halide perovskite samples, making it a promising candidate for solar cell technology. To further enrich the investigations, the conversion efficiency of the MAPbX3 perovskites has been evaluated through extensive device simulations. Here, the optical constants, band gap energy and carrier lifetime of MAPbX3 were used for simulating three different perovskite solar cells, namely I, Cl or Br halide-based perovskite solar cells. MAPbI3 , MAPbBr3 and MAPbCl3 absorber layer-based devices showed ~13.7 %, 6.9 % and 5.0 % conversion efficiency. The correlation between the experimental and SCAPS simulation data for HIM-synthesized MAPBX3 -based perovskites has been reported for the first time.
Collapse
Affiliation(s)
- Sonali Mehra
- CSIR–National Physical LaboratoryDr K. S. Krishann RoadNew DelhiIndia110012
- AcSIR–Academy of Scientific and Innovative ResearchGhaziabadIndia201002
| | - Rahul Pandey
- VLSI Centre of ExcellenceChitkara University Institute of Engineering and TechnologyChitkara UniversityPunjabIndia
| | - Jaya Madan
- VLSI Centre of ExcellenceChitkara University Institute of Engineering and TechnologyChitkara UniversityPunjabIndia
| | - Rajnish Sharma
- VLSI Centre of ExcellenceChitkara University Institute of Engineering and TechnologyChitkara UniversityPunjabIndia
| | - Lalit Goswami
- CSIR–National Physical LaboratoryDr K. S. Krishann RoadNew DelhiIndia110012
| | - Govind Gupta
- CSIR–National Physical LaboratoryDr K. S. Krishann RoadNew DelhiIndia110012
- AcSIR–Academy of Scientific and Innovative ResearchGhaziabadIndia201002
| | - Vidya Nand Singh
- CSIR–National Physical LaboratoryDr K. S. Krishann RoadNew DelhiIndia110012
- AcSIR–Academy of Scientific and Innovative ResearchGhaziabadIndia201002
| | - Avanish Kumar Srivastava
- CSIR–National Physical LaboratoryDr K. S. Krishann RoadNew DelhiIndia110012
- CSIR–Advanced Materials and Processes Research InstituteBhopalMadhya PradeshIndia462026
| | - Shailesh Narain Sharma
- CSIR–National Physical LaboratoryDr K. S. Krishann RoadNew DelhiIndia110012
- AcSIR–Academy of Scientific and Innovative ResearchGhaziabadIndia201002
| |
Collapse
|
28
|
Jin H, Cheng Y, Kong F, Huang H, Yang Z, Wang X, Cai X, Luo J, Ming T. Design and Validation of a Short Novel Estradiol Aptamer and Exploration of Its Application in Sensor Technology. Molecules 2024; 29:535. [PMID: 38276613 PMCID: PMC10819485 DOI: 10.3390/molecules29020535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The specific and sensitive detection of 17β-estradiol (E2) is critical for diagnosing and treating numerous diseases, and aptamers have emerged as promising recognition probes for developing detection platforms. However, traditional long-sequence E2 aptamers have demonstrated limited clinical performance due to redundant structures that can affect their stability and recognition ability. There is thus an urgent need to further optimize the structure of the aptamer to build an effective detection platform for E2. In this work, we have designed a novel short aptamer that retains the key binding structure of traditional aptamers to E2 while eliminating the redundant structures. The proposed aptamer was evaluated for its binding properties using microscale thermophoresis, a gold nanoparticle-based colorimetric method, and electrochemical assays. Our results demonstrate that the proposed aptamer has excellent specific recognition ability for E2 and a high affinity with a dissociation constant of 92 nM. Moreover, the aptamer shows great potential as a recognition probe for constructing a highly specific and sensitive clinical estradiol detection platform. The aptamer-based electrochemical sensor enabled the detection of E2 with a linear range between 5 pg mL-1 and 10 ng mL-1 (R2 = 0.973), and the detection capability of a definite low concentration level was 5 pg mL-1 (S/N = 3). Overall, this novel aptamer holds great promise as a valuable tool for future studies on the role of E2 in various physiological and pathological processes and for developing sensitive and specific diagnostic assays for E2 detection in clinical applications.
Collapse
Affiliation(s)
- Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Yan Cheng
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Huang
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing 100034, China
| | - Zhenjun Yang
- State Key Laboratory of Natural & Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ming
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin 300190, China
| |
Collapse
|
29
|
Chen L, Fu S, Li Y, Sun N, Yan Y, Song Z. On the Durability of Tin-Containing Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304811. [PMID: 37968252 PMCID: PMC10767427 DOI: 10.1002/advs.202304811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/20/2023] [Indexed: 11/17/2023]
Abstract
Tin (Sn)-containing perovskite solar cells (PSCs) have gained significant attention in the field of perovskite optoelectronics due to lower toxicity than their lead-based counterparts and their potential for tandem applications. However, the lack of stability is a major concern that hampers their development. To achieve the long-term stability of Sn-containing PSCs, it is crucial to have a clear and comprehensive understanding of the degradation mechanisms of Sn-containing perovskites and develop mitigation strategies. This review provides a compendious overview of degradation pathways observed in Sn-containing perovskites, attributing to intrinsic factors related to the materials themselves and environmental factors such as light, heat, moisture, oxygen, and their combined effects. The impact of interface and electrode materials on the stability of Sn-containing PSCs is also discussed. Additionally, various strategies to mitigate the instability issue of Sn-containing PSCs are summarized. Lastly, the challenges and prospects for achieving durable Sn-containing PSCs are presented.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and CommercializationThe University of Toledo2801 W. Bancroft StreetToledoOH43606USA
| | - Sheng Fu
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and CommercializationThe University of Toledo2801 W. Bancroft StreetToledoOH43606USA
| | - You Li
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and CommercializationThe University of Toledo2801 W. Bancroft StreetToledoOH43606USA
| | - Nannan Sun
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and CommercializationThe University of Toledo2801 W. Bancroft StreetToledoOH43606USA
| | - Yanfa Yan
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and CommercializationThe University of Toledo2801 W. Bancroft StreetToledoOH43606USA
| | - Zhaoning Song
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and CommercializationThe University of Toledo2801 W. Bancroft StreetToledoOH43606USA
| |
Collapse
|
30
|
Ou K, Wang Y, Zhang W, Tang Y, Ni Y, Xia Y, Wang H. Highly Sensitive H 2S Gas Sensor Based on a Lead-Free CsCu 2I 3 Perovskite Film at Room Temperature. ACS OMEGA 2023; 8:48326-48335. [PMID: 38144075 PMCID: PMC10733916 DOI: 10.1021/acsomega.3c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Recently, there have been reports of lead halide perovskite-based sensors demonstrating their potential for gas sensing applications. However, the toxicity of lead and the instability of lead-based perovskites have limited their applications. This study addressed this issue by developing a H2S gas sensor based on a lead-free CsCu2I3 film prepared using a one-step CVD method. The sensor demonstrated excellent sensing properties, including a high response and selectivity toward H2S, even at low concentrations (0.2 ppm) at room temperature. Furthermore, a reasonable sensing mechanism was proposed. It is suggested that the sensing mechanism sheds light on the role of defects in perovskite materials, the impact of H2S as an electron donor, and the occurrence of reversible chemical reactions. These findings suggest that lead-free CsCu2I3 has great potential in the field of H2S gas sensing.
Collapse
Affiliation(s)
- Kai Ou
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yue Wang
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Wenting Zhang
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yongliang Tang
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yuxiang Ni
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yudong Xia
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Hongyan Wang
- School of Physical Science
and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
31
|
Chi S, Yang S, Wang Y, Li D, Zhang L, Fan L, Wang F, Liu X, Liu H, Wei M, Yang J, Yang L. Break through the Steric Hindrance of Ionic Liquids with Carbon Quantum Dots to Achieve Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48304-48315. [PMID: 37792963 DOI: 10.1021/acsami.3c11370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Overcoming the negative impact of residual ionic liquids (ILs) on perovskite films based on an in-depth understanding of chemical interactions between ionic liquids and preparing perovskite precursor solutions is a great challenge when aiming to simultaneously achieve long-term stability and high efficiency within IL-based perovskite solar cells (PSCs). Herein, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), a type of IL, was introduced into the perovskite precursor solution, and carbon quantum dots (CQDs) were further introduced into the antisolvent to enhance the photovoltaic properties of PSCs. Both ILs and CQDs synergistically manipulate the crystallization process and passivate defects to obtain high-quality perovskite films. Besides serving as passivation sites to strengthen the collaboration between additives and perovskite materials, the cointroduction of CQDs further promotes the carrier transport process since it not only provides carrier channels at grain boundaries but also forms better energy alignment, which effectively overcomes the charge transfer loss caused by the steric hindrance of ILs. Based on such a synergistic effect of ILs and CQDs, the n-i-p MAPbI3-based PSCs achieve the highest efficiency of 20.84% with improved stability. This simple and low-cost synergistic integration method will subsequently provide direction for optimizing ILs to improve the photovoltaic performance of PSCs.
Collapse
Affiliation(s)
- Shaohua Chi
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, P. R. China
| | - Yijie Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Dan Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Le Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Lin Fan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Fengyou Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Xiaoyan Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Maobin Wei
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| | - Lili Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P. R. China
| |
Collapse
|