1
|
Lahcen AA, Slaughter G. Nanomaterial-based electrochemical sensors for anti-HIV drug monitoring: Innovations, challenges, and prospects. J Pharm Biomed Anal 2025; 258:116727. [PMID: 39914329 DOI: 10.1016/j.jpba.2025.116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 03/10/2025]
Abstract
Monitoring human immunodeficiency virus (HIV) and anti-HIV drugs is critical for optimizing treatment outcomes and preventing drug resistance. Accurate detection and quantification of anti-HIV drugs are essential to ensure appropriate dosing, enhancing patient care and therapeutic efficacy. Electrochemical biosensors have emerged as a pivotal tool in this context, offering high sensitivity, specificity, and rapid response times. Leveraging advancements in nanomaterials, these sensors provide reliable and efficient solutions for point-of-care (POC) applications in clinical and environmental settings. This review presents a comprehensive analysis of recent innovations in electrochemical sensor technologies for anti-HIV drug detection and quantification, focusing on nanomaterial-based platforms. It addresses the challenges of developing and implementing these technologies, including matrix effects, stability, and scalability. Furthermore, the review explores future directions, emphasizing the integration of sensors into POC systems and their potential to revolutionize personalized HIV treatment and pharmaceutical monitoring.
Collapse
Affiliation(s)
- Abdellatif Ait Lahcen
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, United States
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, United States.
| |
Collapse
|
2
|
Papavasileiou AV, Děkanovský L, Chacko L, Wu B, Luxa J, Regner J, Paštika J, Koňáková D, Sofer Z. Unraveling the Versatility of Carbon Black - Polylactic Acid (CB/PLA) 3D-Printed Electrodes via Sustainable Electrochemical Activation. SMALL METHODS 2025:e2402214. [PMID: 40079048 DOI: 10.1002/smtd.202402214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Commercially available conductive filaments are not designed for electrochemical applications, resulting in 3D printed electrodes with poor electrochemical behavior, restricting their implementation in energy and sensing technologies. The proper selection of an activation method can unlock their use in advanced applications. In this work, rectangular electrodes made from carbon black - polylactic acid (CB/PLA) filament are 3D printed with different layouts (grid and compact) and then activated using a highly reproducible eco-compatible electrochemical (EC) treatment. The electrodes are characterized for their morphological, structural, and electrochemical features to obtain insights into the material properties and functionality. Furthermore, the influence of the electrode layout as well as the activation conditions are studied aiming to provide a better understanding of the mechanism driving the electrochemical behavior of the electrodes. The EC activation enhances the electrochemical performance, provides a uniform electrochemical activity in the electrode's interface and allows the manipulation of the electrochemical properties of 3D printed electrodes by adjusting the duration of the treatment. CB/PLA electrodes offer a wide stable potential window that benefits their use in water-based electrochemical applications. Thus, their suitability for Zn-ion batteries and electrochemical sensing is explored, followed by their application in hydroquinone determination in water samples.
Collapse
Affiliation(s)
- Anastasios V Papavasileiou
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Lukáš Děkanovský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Levna Chacko
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Bing Wu
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Jan Paštika
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| | - Dana Koňáková
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University, Thakurova 7, Prague 6, 160 00, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6, 16628, Czech Republic
| |
Collapse
|
3
|
Ajab H, Khan MH, Naveed P, Abdullah MA. Evolution and recent development of cellulose-modified, nucleic acid-based and green nanosensors for trace heavy metal ion analyses in complex media: A review. Int J Biol Macromol 2025; 307:141745. [PMID: 40057091 DOI: 10.1016/j.ijbiomac.2025.141745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
With increased manufacturing activities and energy sector development, monitoring of heavy metal ion (HMI) pollution is becoming increasingly pressing. The discharge of metals from industrial effluents into the waterways could cause major economic and environmental disruption. In situ and on-site detection methods of trace HMIs can be effective countermeasures before the toxicity spreads out to larger areas, affecting the ecosystem. Conventional methods are often lacking in portability and costly. In contrast, electrochemical sensing, especially with nanoplatforms, is promising for trace detection of HMIs in complex media because of the ease of fabrication and adaptability of incorporating green technology. Appropriate electrode selection with suitable modifiers is crucial in complex medium analyses to overcome electrode fouling. In this review, the evolution from metal-based and carbon-based electrodes to advancements in electrode modification involving agro/biocomposite nanomaterials (NMs) such as cellulose, chitosan, and hydroxyapatite is discussed. The fabrication of nucleic acid-based aptasensors for analyzing HMIs and the adoption of smart systems based on microfluidics with high selectivity, operational stability, and sensitivity are highlighted. The challenges and future prospects for trace HMI determination based on electrochemical sensors in real complex media, including blood and industrial effluent or wastewater, are critically examined.
Collapse
Affiliation(s)
- Huma Ajab
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Muhammad Hashim Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Pakeeza Naveed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Mohd Azmuddin Abdullah
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., No. 2, Level 5, Jalan Tengku Ampuan Zabedah, D9/D, Seksyen 9, 40000 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
4
|
Khonina SN, Kazanskiy NL. Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1367. [PMID: 40096150 PMCID: PMC11902420 DOI: 10.3390/s25051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025]
Abstract
Wearable sensors have appeared as a promising solution for real-time, non-invasive monitoring in diverse fields, including healthcare, environmental sensing, and wearable electronics. Surface-enhanced Raman spectroscopy (SERS)-based sensors leverage the unique properties of SERS, such as plasmonic signal enhancement, high molecular specificity, and the potential for single-molecule detection, to detect and identify a wide range of analytes with ultra-high sensitivity and molecular selectivity. However, it is important to note that wearable sensors utilize various sensing mechanisms, and not all rely on SERS technology, as their design depends on the specific application. This comprehensive review highlights the recent trends and advancements in wearable plasmonic sensing technologies, focusing on their design, fabrication, and integration into practical wearable devices. Key innovations in material selection, such as the use of nanomaterials and flexible substrates, have significantly enhanced sensor performance and wearability. Moreover, we discuss challenges such as miniaturization, power consumption, and long-term stability, along with potential solutions to address these issues. Finally, the outlook for wearable plasmonic sensing technologies is presented, emphasizing the need for interdisciplinary research to drive the next generation of smart wearables capable of real-time health diagnostics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
- Svetlana N. Khonina
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| | - Nikolay L. Kazanskiy
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| |
Collapse
|
5
|
Rouhi S, Ghasemi H, Alizadeh M, Movahedpour A, Vahedi F, Fattahi M, Aiiashi S, Khatami SH. miRNA-based electrochemical biosensors for ovarian cancer. Clin Chim Acta 2025; 564:119946. [PMID: 39214394 DOI: 10.1016/j.cca.2024.119946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.
Collapse
Affiliation(s)
- Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Mirceski V, Lovric M. Genuine differential voltammetry. Talanta 2024; 279:126560. [PMID: 39059067 DOI: 10.1016/j.talanta.2024.126560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
A novel form of differential voltammetry is proposed, developed through the implicit anodic and cathodic current components of the experimentally accessible conventional net current measured in a voltammetric experiment. By employing basic mathematical modelling of an electrode reaction of a dissolved redox couple at a conventional, macroscopic electrode within the framework of the Butler-Volmer electrode kinetic model, the implicit anodic and cathodic current components of the net conventional current are clearly defined and can be estimated. Consequently, a novel form of differential current, calculated as the difference between anodic and cathodic implicit current components associated with a single potential of the voltammetric experiment, can be established. This differential current demonstrates remarkable characteristics in terms of electrode kinetics and analytical performance, particularly in cases involving fast, seemingly electrochemically reversible electrode processes. It holds promise to be analytically superior to the best-known differential voltammetric techniques so far (e.g., square-wave voltammetry), as well as provides a means for estimating the rate constants of very fast, apparently reversible electrode processes at macroscopic electrodes under mild experimental conditions (i.e., studied at slow potential scan rates). The practical implication of the novel methodology is significant: a simple linear sweep voltammogram of a quasi-reversible electrode reaction with unknown electrode kinetic parameters can be readily transformed into the novel type of differential voltammogram through a convolution procedure of the conventional net current, paving a new way for studying electrode processes by voltammetry.
Collapse
Affiliation(s)
- Valentin Mirceski
- Department of Inorganic and Analytical Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland; Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje, P.O. Box 162, 1000, Skopje, Macedonia; Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000, Skopje, Macedonia.
| | | |
Collapse
|
7
|
Torres do Couto MT, Galdino da Silva Júnior A, Pereira Dos Santos Avelino KY, Vega Gonzales Gil LH, Cordeiro MT, Lima de Oliveira MD, Souza de Andrade CA. Development of optical and electrochemical immunodevices for dengue virus detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3539-3550. [PMID: 38780022 DOI: 10.1039/d4ay00514g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Dengue virus (DENV) is the most prevalent global arbovirus, exhibiting a high worldwide incidence with intensified severity of symptoms and alarming mortality rates. Faced with the limitations of diagnostic methods, an optical and electrochemical biosystem was developed for the detection of DENV genotypes 1 and 2, using cysteine (Cys), cadmium telluride (CdTe) quantum dots, and anti-DENV antibodies. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), surface plasmon resonance (SPR), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the immunosensor. The AFM and SPR results demonstrated discernible topographic and angular changes confirming the biomolecular recognition. Different concentrations of DENV-1 and DENV-2 were evaluated (0.05 × 106 to 2.0 × 106 PFU mL-1), resulting in a maximum anodic shift (ΔI%) of 263.67% ± 12.54 for DENV-1 and 63.36% ± 3.68 for DENV-2. The detection strategies exhibited a linear response to the increase in viral concentration. Excellent linear correlations, with R2 values of 0.95391 for DENV-1 and 0.97773 for DENV-2, were obtained across a broad concentration range. Data analysis demonstrated high reproducibility, displaying relative standard deviation values of 3.42% and 3.62% for Cys-CdTe-antibodyDENV-1-BSA and Cys-CdTe-antibodyDENV-2-BSA systems. The detection limits were 0.34 × 106 PFU mL-1 and 0.02 × 106 PFU mL-1, while the quantification limits were set at 1.49 × 106 PFU mL-1 and 0.06 × 106 PFU mL-1 for DENV-1 and DENV-2, respectively. Therefore, the biosensing apparatus demonstrates analytical effectiveness in viral screening and can be considered an innovative solution for early dengue diagnosis, contributing to global public health.
Collapse
Affiliation(s)
- Milena Tereza Torres do Couto
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| | - Alberto Galdino da Silva Júnior
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| | - Karen Yasmim Pereira Dos Santos Avelino
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
- Escola de Ciências da Saúde e da Vida, Universidade Católica de Pernambuco, 50050-410 Recife, PE, Brazil
- OX-NANO Tecnologia, Porto Digital, 50030-140 Recife, PE, Brazil
| | | | - Marli Tenório Cordeiro
- Departamento de Virologia, Instituto Aggeu Magalhães-Fiocruz, 50670-420 Recife, PE, Brazil
| | - Maria Danielly Lima de Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
- OX-NANO Tecnologia, Porto Digital, 50030-140 Recife, PE, Brazil
| | - César Augusto Souza de Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
- OX-NANO Tecnologia, Porto Digital, 50030-140 Recife, PE, Brazil
| |
Collapse
|
8
|
Alyamni N, Abot JL, Zestos AG. Perspective-Advances in Voltammetric Methods for the Measurement of Biomolecules. ECS SENSORS PLUS 2024; 3:027001. [PMID: 38645638 PMCID: PMC11024638 DOI: 10.1149/2754-2726/ad3c4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Voltammetry is a powerful electroanalytical tool that makes fast, real-time measurements of neurotransmitters and other molecules. Electroanalytical methods like cyclic, pulse, and stripping voltammetry are useful for qualitative and quantitative examination. Neurochemical sensing has been enhanced using carbon-based electrodes and waveform modification methods that improve sensitivity and stability of electrode performance. Voltammetry has revolutionized neurochemical monitoring by providing real-time information on neurotransmitter dynamics for neurochemical studies. Selectivity and electrode fouling remain issues for biomolecule detection, but recent advances promise new methods of analysis for other applications to enhance spatiotemporal resolution, sensitivity, selectivity, and other important considerations.
Collapse
Affiliation(s)
- Nadiah Alyamni
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, 20064, United States of America
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| | - Jandro L. Abot
- Department of Mechanical Engineering, The Catholic University of America, Washington, DC, 20064, United States of America
| | - Alexander G. Zestos
- Department of Chemistry, American University, Washington, D.C. 20016, United States of America
| |
Collapse
|
9
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R, Kumar Srivastava A. Electrochemical Nanobiosensor of Ionic Liquid Functionalized MoO 3-rGO for Sensitive Detection of Carcinoembryonic Antigen. Chempluschem 2024; 89:e202300625. [PMID: 38321835 DOI: 10.1002/cplu.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Early diagnosis of cancer can be achieved by detecting associated biomarkers before the appearance of symptoms. Herein, we have developed an electrochemical immunosensor of ionic liquid tailored to molybdenum trioxide-reduced graphene oxide (MoO3-rGO-IL) nanocomposite to detect carcinoembryonic antigen (CEA), a cancer biomarker. The MoO3-rGO-IL nanocomposite has been synthesized in situ via the hydrothermal method. The functionalization of 1-butyl-3-methylimidazolium tetrafluoroborate IL with MoO3-rGO synergistically improves the electrochemical and surface properties of the nanocomposite. The characterization studies revealed that the MoO3-rGO-IL nanocomposite is a highly appropriate material for the construction of immunosensors. The material exhibits exceptional electrical conductivity, surface properties, stability, and a large electrochemical effective surface area (13.77×10-2 cm2) making it ideal for fabricating immunosensors. The quantitative outcome showed that the developed immunosensor (BSA/anti-CEA/MoO3-rGO-IL/GCE) possesses excellent sensitivity, broad linearity from 25 fg mL-1 to 100 ng mL-1, and a low detection limit of 1.19 fg mL-1. Moreover, the remarkable selectivity, repeatability, and efficiency of detecting CEA in serum specimens demonstrated the feasibility of the immunosensor. Thus, the projected electrochemical immunosensor can potentially be utilized for the quantification of CEA in clinical specimens.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Mohd Abubakar Sadique
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Shalu Yadav
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Raju Khan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Avanish Kumar Srivastava
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
10
|
Krause CH, Schneider AB, Kolling L, de Morais PHSR, da Silva MM. How to overcome the difficulty in assaying Ni in biodiesel samples? Extraction induced by microemulsion breaking and square wave adsorptive stripping voltammetry could be the answer. Talanta 2024; 272:125776. [PMID: 38428129 DOI: 10.1016/j.talanta.2024.125776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Herein, a simple, green, and relatively inexpensive approach to determine nickel (Ni) in biodiesel samples by square wave adsorptive cathodic stripping voltammetry (SWAdCSV) is presented. A method based on the accumulation of Ni as Ni(II)-dimethylglyoxime (Ni(II)(HDMG)2) on the glassy carbon electrode was carried out in a solution containing the aqueous phase extract (APhEx) obtained from an extraction induced by microemulsion breaking (EIMB), which was achieved by adding a few microliters of ultrapure water to a microemulsion composed of biodiesel, n-propanol and a diluted HNO3 solution. The LOD and LOQ were 0.2 μg L-1 and 0.8 μg L-1, respectively, and the accuracy was evaluated by recovery assays of spiked samples and by analyzing a standard reference material. Results obtained from a comparative method (HR-CS GF AAS) were also used for this evaluation. The method was applied to biodiesel samples produced from different feedstocks. To the best of the authors knowledge, it is the first time that: 1) Ni in biodiesel is determined by a voltammetric method; 2) EIMB is applied to extract Ni from this matrix and 3) this type of sample preparation method is used with adsorptive stripping voltammetry.
Collapse
Affiliation(s)
- Cristian H Krause
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Alexandre B Schneider
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil.
| | - Leandro Kolling
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Pedro H S R de Morais
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Marcia M da Silva
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15003, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Steiner D, Meyer A, Immohr LI, Pein-Hackelbusch M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024; 16:658. [PMID: 38794320 PMCID: PMC11125162 DOI: 10.3390/pharmaceutics16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
In this review, we aim to highlight the advantages, challenges, and limitations of electronic tongues (e-tongues) in pharmaceutical drug development. The authors, therefore, critically evaluated the performance of e-tongues regarding their qualification to assess peroral formulations containing bitter active pharmaceutical ingredients. A literature search using the keywords 'electronic', 'tongue', 'bitter', and 'drug' in a Web of Science search was therefore initially conducted. Reviewing the publications of the past decade, and further literature where necessary, allowed the authors to discuss whether and how e-tongues perform as expected and whether they have the potential to become a standard tool in drug development. Specifically highlighted are the expectations an e-tongue should meet. Further, a brief insight into the technologies of the utilized e-tongues is given. Reliable protocols were found that enable (i) the qualified performance of e-tongue instruments from an analytical perspective, (ii) proper taste-masking assessments, and (iii) under certain circumstances, the evaluation of bitterness.
Collapse
Affiliation(s)
- Denise Steiner
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany;
| | - Alexander Meyer
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | | | - Miriam Pein-Hackelbusch
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| |
Collapse
|
12
|
Lerdsri J, Jakmunee J, Reanpang P. Development of a sensitive electrochemical method to determine amitraz based on perylene tetracarboxylic acid/mesoporous carbon/Nafion@SPCEs. Mikrochim Acta 2024; 191:228. [PMID: 38558104 DOI: 10.1007/s00604-024-06308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
A cutting-edge electrochemical method is presented for precise quantification of amitraz (AMZ), a commonly used acaricide in veterinary medicine and agriculture. Leveraging a lab-made screen-printed carbon electrode modified with a synergistic blend of perylene tetracarboxylic acid (PTCA), mesoporous carbon (MC), and Nafion, the sensor's sensitivity was significantly improved. Fine-tuning of PTCA, MC, and Nafion ratios, alongside optimization of the pH of the supporting electrolyte and accumulation time, resulted in remarkable sensitivity enhancements. The sensor exhibited a linear response within the concentration range 0.01 to 0.70 μg mL-1, boasting an exceptionally low limit of detection of 0.002 μg mL-1 and a limit of quantification of 0.10 μg mL-1, surpassing maximum residue levels permitted in honey, tomato, and longan samples. Validation with real samples demonstrated high recoveries ranging from 80.8 to 104.8%, with a relative standard deviation below 10%, affirming the method's robustness and precision. The modified PTCA/MC/Nafion@SPCE-based electrochemical sensor not only offers superior sensitivity but also simplicity and cost-effectiveness, making it a pivotal tool for accurate AMZ detection in food samples. Furthermore, beyond the scope of this study, the sensor presents promising prospects for wider application across various electrochemical analytical fields, thereby significantly contributing to food safety and advancing agricultural practices.
Collapse
Affiliation(s)
- Jamras Lerdsri
- Department of Livestock Development, Veterinary Research and Development Center (Upper Northern Region), Lampang, 52190, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, and Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Preeyaporn Reanpang
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Lampang, 52190, Thailand.
| |
Collapse
|
13
|
Abdelshafi NA, Darwish HW, Alanazi AS, Naguib IA, Elkhouly HH, Khodary NS, Mohamed EH. Voltammetric analysis of pholcodine on graphene-modified GNPs/PTs with green assessment. BMC Chem 2024; 18:48. [PMID: 38449002 PMCID: PMC10919016 DOI: 10.1186/s13065-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Pholcodine, an anti-tussive medication widely used as an over-the-counter, OTC drug, has recently faced restrictions in several countries. This paper presents a sensitive electrochemical approach for pholcodine detection. The electrochemical method involved fabricating a graphene nanoplatelets electrode, incorporating polythiophene nanospheres polymer to promote electron transfer and increase the activated surface area. Characterization of the fabricated electrode was performed using transmission electron microscopy, ATR-Fourier-transform infrared spectroscopy, X-ray crystallography, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The electrochemical behavior of pholcodine with the fabricated electrode was investigated using cyclic voltammetry, chronoamperometry, square wave voltammetry (SWV), and differential pulse voltammetry (DPV). The developed electrode led to a linear response for pholcodine ranging from 10 to 45 mg/L with detection limits of 1.41 and 1.51 mg/mL for SWV and DPV, respectively and quantification limits of 4.27 and 4.57 mg/L for SWV and DPV, respectively. The proposed method has accurately recovered pholcodine in spiked serum samples with a recovery percentage ranging from 1.2 to 2.9%. The optimized method is found to be accurate, precise, and robust by applying validation parameters provided by International Council for Harmonization. Two green metrics were computed to assess the method's greenness, the findings showed that the developed method is environmentally friendly with minimum sample preparation steps.
Collapse
Affiliation(s)
- Nahla A Abdelshafi
- Department of Pharmaceutical Analytical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ashwag S Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hadeer H Elkhouly
- School of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Nehal S Khodary
- School of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Cairo, 11837, Egypt
| |
Collapse
|
14
|
Mustafa SK, Khan MF, Sagheer M, Kumar D, Pandey S. Advancements in biosensors for cancer detection: revolutionizing diagnostics. Med Oncol 2024; 41:73. [PMID: 38372827 DOI: 10.1007/s12032-023-02297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Cancer stands as the reigning champion of life-threatening diseases, casting a shadow with the highest global mortality rate. Unleashing the power of early cancer treatment is a vital weapon in the battle for efficient and positive outcomes. Yet, conventional screening procedures wield limitations of exorbitant costs, time-consuming endeavors, and impracticality for repeated testing. Enter bio-marker-based cancer diagnostics, which emerge as a formidable force in the realm of early detection, disease progression assessment, and ultimate cancer therapy. These remarkable devices boast a reputation for their exceptional sensitivity, streamlined setup requirements, and lightning fast response times. In this study, we embark on a captivating exploration of the most recent advancements and enhancements in the field of electrochemical marvels, targeting the detection of numerous cancer biomarkers. With each breakthrough, we inch closer to a future where cancer's grip on humanity weakens, guided by the promise of personalized treatment and improved patient outcomes. Together, we unravel the mysteries that cancer conceals and illuminate a path toward triumph against this daunting adversary. This study celebrates the relentless pursuit of progress, where electrochemical innovations take center stage in the quest for a world free from the clutches of carcinoma.
Collapse
Affiliation(s)
- Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Zip 71491, Tabuk, Saudi Arabia.
| | - Mohd Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, 202002, India
| | - Mehak Sagheer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sadanand Pandey
- Faculty of Applied Sciences and Biotechnology, School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
15
|
Shanbhag MM, Shetti NP, Daouli A, Nadagouda MN, Badawi M, Aminabhavi TM. Detection of Perfluorooctanoic and Perfluorodecanoic Acids on a Graphene-Based Electrochemical Sensor Aided by Computational Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38331755 DOI: 10.1021/acs.langmuir.3c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) exhibit high chemical and thermal stability, rendering them versatile for various applications. However, their notable toxicity poses environmental and human health concerns. Detecting trace amounts of these chemicals is crucial to mitigate risks. Electrochemical sensors surpass traditional methods in sensitivity, selectivity, and cost-effectiveness. In this study, a graphene nanosheet-based sensor was developed for detecting perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA). Using the Hummer method, graphene nanosheets were synthesized and characterized in terms of morphology, structural ordering, and surface topology. Ab initio molecular dynamics simulations determined the molecular interaction of per- and poly-fluoroalkyl substances (PFASs) with the sensor material. The sensor exhibited high sensitivity (50.75 μA·μM-1·cm-2 for PFOA and 29.58 μA·μM-1·cm-2 for PFDA) and low detection limits (10.4 nM for PFOA and 16.6 nM for PFDA) within the electrode dynamic linearity range of 0.05-500.0 μM (PFOA) and 0.08-500.0 μM (PFDA). Under optimal conditions, the sensor demonstrated excellent selectivity and recovery in testing for PFOA and PFDA in environmental samples, including spiked soil, water, spoiled vegetables, and fruit samples.
Collapse
Affiliation(s)
- Mahesh M Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi, Karnataka 580 027, India
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580 031, India
- University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Ayoub Daouli
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy 54506, France
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435, United States
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Université de Lorraine, Vandœuvre-lès-Nancy 54506, France
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580 031, India
| |
Collapse
|
16
|
Soliman SS, Mahmoud AM, Elghobashy MR, Zaazaa HE, Sedik GA. Eco-friendly electrochemical sensor for determination of conscious sedating drug "midazolam'' based on Au-NPs@Silica modified carbon paste electrode. Talanta 2024; 267:125238. [PMID: 37774450 DOI: 10.1016/j.talanta.2023.125238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Benzodiazepines (BZDs) are a group of drugs prescribed for their sedating effect. Their misuse and addictive properties stipulate different authorities for developing simple, fast and accurate analytical methods for instantaneous detection. Differential pulse voltammetric technique (DPV) was utilized for the selective assay of midazolam hydrochloride (MDZ) in the pure, parenteral dosage forms and plasma samples. A chemically modified carbon paste electrode (CPE) was implemented during the study. The method depended on the electroreduction of MDZ on the surface of the electrode over a potential range of 0.0 V to -1.6 V. The electrode was fabricated using silica nanoparticles (Si-NPs) which were incorporated into the composition of the CPE and used to enhance the electrode performance. Then, to enhance the sensitivity of the method, a chronoamperometric modification step was applied for depositing gold nanoparticles (Au-NPs) on the carbon paste electrode surface. Modification with Au-NPs showed a higher reduction current peak for MDZ with well-defined peaks. Various parameters such as pH of the media and measurements scan rate were investigated and optimized to enhance the sensor sensitivity. The sensor showed a dynamic linear response over a concentration range of 4.0 × 10-7 M to 2.9 × 10-4 M of MDZ with a LOD of 2.24 × 10-8 M using 0.1 M acetate buffer (pH 5.6). The sensor was validated in accordance with the ICH guidelines regarding accuracy, precision and specificity for the selective assay of MDZ in the presence of excipients. A greenness evaluation was performed using three different assessment tools, namely, the "Green Analytical Procedure Index" (GAPI), the "Analytical Greenness metric" (AGREE) and the "Whiteness Analytical Chemistry tool" (WAC) using the RGB12 model.
Collapse
Affiliation(s)
- Shymaa S Soliman
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, October 6 City, Giza, 12858, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Mohamed R Elghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, October 6 City, Giza, 12858, Egypt; Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Hala E Zaazaa
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt
| | - Ghada A Sedik
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr-El Aini Street, Cairo, 11562, Egypt.
| |
Collapse
|
17
|
Chen S, Zhou D, Yu J, Huang Z, Wang L. Porous carbon nanosheets derived from two-dimensional Fe-MOF for simultaneous voltammetric sensing of dopamine and uric acid. NANOTECHNOLOGY 2023; 34:495102. [PMID: 37604147 DOI: 10.1088/1361-6528/acf225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
It is of great significance for electrochemical sensors to simultaneously detect dopamine (DA) and uric acid (UA) related to biological metabolism. In this work, two-dimensional (2D) porous carbon nanosheets (CNS) was prepared as electrocatalysts to improve the sensitivity, the selectivity, and the detection limit of the simultaneous detection. First, 2D amorphous iron-metal organic frameworks (Fe-MOF) was synthesized with Fe3+and terephthalic acid via a facile wet chemistry method at room temperature. And then, CNS was prepared by pyrolysis and pickling of Fe-MOF. CNS had large specific surface area, good electrical conductivity and lots of carbon defects. The response currents of the CNS modified electrode was larger than those of the control electrodes in the simultaneous determination. The simultaneous determination was measured via differential pulse voltammetry to reduce the effect of capacitive currents on quantitative analysis. The CNS modified electrodes showed high sensitivity and low detection limit for the simultaneous detection of DA and UA. The modified electrodes have been successfully used to detect DA and UA in normal human serum.
Collapse
Affiliation(s)
- Shouhui Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| | - Dan Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| | - Jingguo Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| | - Zhenzhong Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| |
Collapse
|
18
|
Choi KH, Kim SJ, Kim H, Jang HW, Yi H, Park MC, Choi C, Ju H, Lim JA. Fibriform Organic Electrochemical Diodes with Rectifying, Complementary Logic and Transient Voltage Suppression Functions for Wearable E-Textile Embedded Circuits. ACS NANO 2023; 17:5821-5833. [PMID: 36881690 DOI: 10.1021/acsnano.2c12418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a fibriform electrochemical diode capable of performing rectifying, complementary logic and device protection functions for future e-textile circuit systems is fabricated. The diode was fabricated using a simple twisted assembly of metal/polymer semiconductor/ion gel coaxial microfibers and conducting microfiber electrodes. The fibriform diode exhibited a prominent asymmetrical current flow with a rectification ratio of over 102, and its performance was retained after repeated bending deformations and washings. Fundamental studies on the electrochemical interactions of polymer semiconductors with ions reveal that the Faradaic current generated in polymer semiconductors by electrochemical reactions results in an abrupt current increase under a forward bias, in which the threshold voltages of the device are determined by the oxidation or reduction potential of the polymer semiconductor. Textile-embedded full-wave rectifiers and logic gate circuits were implemented by simply integrating the fibriform diodes, exhibiting AC-to-DC signal conversion and logic operation functions, respectively. It was also confirmed that the proposed fibriform diode can suppress transient voltages and thus protect a low-voltage operational wearable e-textile circuit.
Collapse
Affiliation(s)
- Kwang-Hun Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Jin Kim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoungjun Kim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, Korea University of Science and Technology of Korea (UST), Seoul 02792, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Chul Park
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Changsoon Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyunsu Ju
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung Ah Lim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, Korea University of Science and Technology of Korea (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
19
|
Doménech-Carbó A, Martini M, Di Turo F, de Silveira GD, Montoya N. Electrochemistry for non-electrochemists: a postgraduate formative project. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
AbstractThe essential guidelines are presented of a postgraduate course on electrochemistry for master studies at the University of Valencia (Spain). This course has been designed for students with a minimal knowledge of electrochemistry. It is based on laboratory experiments that, starting from an initial theoretical core, promotes the in-laboratory discussion of concepts, operations, functional relations, etc. The course, although focused on voltammetric techniques, covers the main concepts and experimental aspects of electrochemistry and particular attention is put to erroneous conceptions regarding fundamental physicochemical concepts and operations (misconceptions) as well as on general aspects of the scientific methodology (meta-conceptions) around this discipline.
Collapse
|
20
|
The possibilities of voltammetry in the study reactivity of dissolved organic carbon (DOC) in natural waters. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
21
|
Poma N, Vivaldi F, Bonini A, Biagini D, Bottai D, Tavanti A, Di Francesco F. Voltammetric sensing of trypsin activity using gelatin as a substrate. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
22
|
González J, Laborda E, Molina Á. Voltammetric Kinetic Studies of Electrode Reactions: Guidelines for Detailed Understanding of Their Fundamentals. JOURNAL OF CHEMICAL EDUCATION 2023; 100:697-706. [PMID: 36812115 PMCID: PMC9933535 DOI: 10.1021/acs.jchemed.2c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Theoretical and practical foundations of basic electrochemical concepts of heterogeneous charge transfer reactions that underline electrochemical processes are presented for their detailed study by undergraduate and postgraduate students. Several simple methods for calculating key variables, such as the half-wave potential, limiting current, and those implied in the kinetics of the process, are explained, discussed, and put in practice through simulations making use of an Excel document. The current-potential response of electron transfer processes of any kinetics (i.e., any degree of reversibility) are deduced and compared for electrodes of different size, geometry, and dynamics, namely: static macroelectrodes in chronoamperometry and normal pulse voltammetry, and static ultramicroelectrodes and rotating disc electrodes in steady state voltammetry. In all cases, a universal, normalized current-potential response is obtained in the case of reversible (fast) electrode reactions, whereas this is not possible for nonreversible processes. For this last situation, different widely used protocols for the determination of the kinetic parameters (the mass-transport corrected Tafel analysis and the Koutecký-Levich plot) are deduced, proposing learning activities that highlight the foundations and limitations of such protocols, as well as the influence of the mass transport conditions. Discussions on the implementation of this framework and on the benefits and difficulties found are also presented.
Collapse
|
23
|
Scholz F. Benefits of electrochemistry studies for the majority of students who will not become electrochemists. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractIn teaching electrochemistry, it is of primary importance to make students always aware of the relations between electrochemistry and all the non-electrochemical topics, which are taught. The vast majority of students will not specialise in electrochemistry, but they all can very much benefit from the basics and concepts of electrochemistry. This paper is aimed to give suggestions how the teaching of electrochemistry can easily be interrelated to topics of inorganic, organic, analytical, environmental chemistry, biochemistry and biotechnology.
Collapse
|
24
|
Mehrannia L, Khalilzadeh B, Rahbarghazi R, Milani M, Saydan Kanberoglu G, Yousefi H, Erk N. Electrochemical Biosensors as a Novel Platform in the Identification of Listeriosis Infection. BIOSENSORS 2023; 13:216. [PMID: 36831982 PMCID: PMC9954029 DOI: 10.3390/bios13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Listeria monocytogenes (L.M.) is a gram-positive bacillus with wide distribution in the environment. This bacterium contaminates water sources and food products and can be transmitted to the human population. The infection caused by L.M. is called listeriosis and is common in pregnant women, immune-deficient patients, and older adults. Based on the released statistics, listeriosis has a high rate of hospitalization and mortality; thus, rapid and timely detection of food contamination and listeriosis cases is necessary. During the last few decades, biosensors have been used for the detection and monitoring of varied bacteria species. These devices are detection platforms with great sensitivity and low detection limits. Among different types of biosensors, electrochemical biosensors have a high capability to circumvent several drawbacks associated with the application of conventional laboratory techniques. In this review article, different electrochemical biosensor types used for the detection of listeriosis were discussed in terms of actuators, bioreceptors, specific working electrodes, and signal amplification. We hope that this review will facilitate researchers to access a complete and comprehensive template for pathogen detection based on the different formats of electrochemical biosensors.
Collapse
Affiliation(s)
- Leila Mehrannia
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-14733, Iran
| | | | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy 58167-53464, Iran
| | - Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| |
Collapse
|
25
|
Boguś MI, Wrońska AK, Kaczmarek A, Drozdowski M, Laskowski Z, Myczka A, Cybulska A, Gołębiowski M, Chwir-Gołębiowska A, Siecińska L, Mokijewska E. A comprehensive analysis of chemical and biological pollutants (natural and anthropogenic origin) of soil and dandelion (Taraxacum officinale) samples. PLoS One 2023; 18:e0280810. [PMID: 36662824 PMCID: PMC9858760 DOI: 10.1371/journal.pone.0280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023] Open
Abstract
A range of analytical methods (GC-MS, LC-MS, voltammetry, microbiological and microscopic techniques, PCR) was used to assay a range of potential chemical and biological contaminants in soil and dandelion samples. The results provide the first comprehensive safety analysis of dandelion as a herbal product. Samples were collected from three different sites in Poland where the local population collects dandelion plants for their own consumption: Rudenka (a mountain meadow in the European Ecological Network of Natura 2000 protection area, free of agrotechnical treatments for over 30 years), Warszawa 1 (dense single-family housing with heavy traffic), and Warszawa 2 (recreation area with heavy traffic near a coal-fired heat and power plant). The assays of heavy metals and other chemical pollutants (PAHs, PCBs, dioxins, pesticides, mycotoxins) confirm that all collected soil and dandelion samples were chemically pure; however, 95 species of pathogenic bacteria were detected, including "carnivorous" Vibrio vulnificus, zoonotic Pasteurella pneumotropica, Pasteurella canis, Staphylococcus pseudintermedius, Staphylococcus lentus and Francisella tularensis as well as 14 species of pathogenic fungi and one protozoan parasite (Giardia intestinalis). The discovery of septicemia agents V. vulnificus, Fusobacterium mortiferum and Rahnella aquatilis in the soil surrounding dandelion roots and in the flowers, G. intestinalis in dandelion leaves and roots samples, all collected in Warsaw, is highly disturbing. This finding underlines the need for increased caution when collecting dandelion in densely populated areas with a large population of pets. Thorough washing of the harvested plants is necessary before using them for consumption, especially in the case of making salads from fresh dandelion leaves, which is becoming increasingly popular among people leading healthy and an environmentally friendly lifestyle.
Collapse
Affiliation(s)
- Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
- BIOMIBO, Warszawa, Poland
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Mikołaj Drozdowski
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Zdzisław Laskowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Myczka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Aleksandra Cybulska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Marek Gołębiowski
- Department of Environmental Analysis, Laboratory of Analysis of Natural Compounds, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | | |
Collapse
|
26
|
Echeverri D, Orozco J. Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules 2022; 27:8533. [PMID: 36500624 PMCID: PMC9736010 DOI: 10.3390/molecules27238533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Glycan-based electrochemical biosensors are emerging as analytical tools for determining multiple molecular targets relevant to diagnosing infectious diseases and detecting cancer biomarkers. These biosensors allow for the detection of target analytes at ultra-low concentrations, which is mandatory for early disease diagnosis. Nanostructure-decorated platforms have been demonstrated to enhance the analytical performance of electrochemical biosensors. In addition, glycans anchored to electrode platforms as bioreceptors exhibit high specificity toward biomarker detection. Both attributes offer a synergy that allows ultrasensitive detection of molecular targets of clinical interest. In this context, we review recent advances in electrochemical glycobiosensors for detecting infectious diseases and cancer biomarkers focused on colorectal cancer. We also describe general aspects of structural glycobiology, definitions, and classification of electrochemical biosensors and discuss relevant works on electrochemical glycobiosensors in the last ten years. Finally, we summarize the advances in electrochemical glycobiosensors and comment on some challenges and limitations needed to advance toward real clinical applications of these devices.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N°52–20, Medellin 050010, Colombia
| |
Collapse
|
27
|
Cetó X, Pérez S, Prieto-Simón B. Fundamentals and application of voltammetric electronic tongues in quantitative analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
2D Materials towards sensing technology: From fundamentals to applications. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Soni I, Kumar P, Kudur Jayaprakash G. Recent advancements in the synthesis and electrocatalytic activity of two-dimensional metal–organic framework with bimetallic nodes for energy-related applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Corva M, Blanc N, Bondue CJ, Tschulik K. Differential Tafel Analysis: A Quick and Robust Tool to Inspect and Benchmark Charge Transfer in Electrocatalysis. ACS Catal 2022; 12:13805-13812. [DOI: 10.1021/acscatal.2c03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Corva
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum44780, Germany
| | - Niclas Blanc
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum44780, Germany
| | - Christoph J. Bondue
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum44780, Germany
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum44780, Germany
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, Düsseldorf40237, Germany
| |
Collapse
|
31
|
Patella B, Vincenzo SD, Zanca C, Bollaci L, Ferraro M, Giuffrè MR, Cipollina C, Bruno MG, Aiello G, Russo M, Inguanta R, Pace E. Electrochemical Quantification of H 2O 2 Released by Airway Cells Growing in Different Culture Media. MICROMACHINES 2022; 13:1762. [PMID: 36296115 PMCID: PMC9611932 DOI: 10.3390/mi13101762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/30/2023]
Abstract
Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham's F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrodeposition. To reduce the electrode fouling by the medium, the effect of dilution was investigated using diluted (50% v/v in PBS) and undiluted media. With the same aim, two electrochemical techniques were employed, chronoamperometry (CH) and linear scan voltammetry (LSV). The influence of different interfering species and the effect of the operating temperature of 37 °C were also studied in order to simulate the operation of the sensor in the culture plate. The LSV technique made the sensor adaptable to undiluted media because the test time is short, compared with the CH technique, reducing the electrode fouling. The long-term stability of the sensors was also evaluated by testing different storage conditions. By storing the electrode at 4 °C, the sensor performance was not reduced for up to 21 days. The sensors were validated measuring H2O2 released by two different human bronchial epithelial cell lines (A549, 16HBE) and human primary bronchial epithelial cells (PBEC) grown in RPMI, MEM and BEGM/DMEM media. To confirm the results obtained with the sensor, the release of reactive oxygen species was also evaluated with a standard flow cytometry technique. The results obtained with the two techniques were very similar. Thus, the LSV technique permits using the proposed sensor for an effective oxidative stress quantification in different culture media and without dilution.
Collapse
Affiliation(s)
- Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Serena Di Vincenzo
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Claudio Zanca
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luciano Bollaci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Maria Ferraro
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| | | | - Chiara Cipollina
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Ri.MED Foundation, 90146 Palermo, Italy
| | | | - Giuseppe Aiello
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | | | | | - Elisabetta Pace
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| |
Collapse
|
32
|
Fang Y, Chang H, Li J, Li Z, Zhang D. Recent Advances in Metal Nanocomposite-Based Electrochemical (Bio)Sensors for Pharmaceutical Analysis. Crit Rev Anal Chem 2022; 54:1680-1706. [PMID: 36201181 DOI: 10.1080/10408347.2022.2128633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Rising rates of drug abuse and pharmaceutical pollution throughout the world as a consequence of increased drug production and utilization pose a serious risk to public health and to environmental integrity. It is thus critical that reliable analytical approaches to detecting drugs and their metabolites in a range of sample matrices be developed. Recent advances in the design of nanomaterial-based electrochemical sensors and biosensors have enabled promising new approaches to pharmaceutical analysis. In particular, the development of a range of novel metal nanocomposites with enhanced catalytic properties has provided a wealth of opportunities for the design of rapid and reliable platforms for the detection of specific pharmaceutical compounds. The present review provides a comprehensive overview of representative metal nanocomposites with synergistic properties and their recent (2017-2022) application in the context of electrochemical sensing as a means of detecting specific antibiotic, tuberculostatic, analgesic, antineoplastic, antipsychotic, and antihypertensive drugs. In discussing these applications, we further explore a variety of testing-related principles, fabrication approaches, characterization techniques, and parameters associated with the sensitivity and selectivity of these sensor platforms before surveying the future outlook regarding the fabrication of next-generation (bio)sensor platforms for use in pharmaceutical analysis.
Collapse
Affiliation(s)
- Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, PR China
| |
Collapse
|
33
|
Development of an electrochemical sensor based on porous molecularly imprinted polymer via photopolymerization for detection of somatostatin in pharmaceuticals and human serum. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Veerakumar P, Hung ST, Hung PQ, Lin KC. Review of the Design of Ruthenium-Based Nanomaterials and Their Sensing Applications in Electrochemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8523-8550. [PMID: 35793416 DOI: 10.1021/acs.jafc.2c01856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this review, ruthenium nanoparticles (Ru NPs)-based functional nanomaterials have attractive electrocatalytic characteristics and they offer considerable potential in a number of fields. Ru-based binary or multimetallic NPs are widely utilized for electrode modification because of their unique electrocatalytic properties, enhanced surface-area-to-volume ratio, and synergistic effect between two metals provides as an effective improved electrode sensor. This perspective review suggests the current research and development of Ru-based nanomaterials as a platform for electrochemical (EC) sensing of harmful substances, biomolecules, insecticides, pharmaceuticals, and environmental pollutants. The advantages and limitations of mono-, bi-, and multimetallic Ru-based nanocomposites for EC sensors are discussed. Besides, the relevant EC properties and analyte sensing approaches are also presented. On the basis of these insights, we highlighted recent results for synthesizing techniques and EC environmental pollutant sensors from the perspectives of diverse supports, including graphene, carbon nanotubes, silica, semiconductors, metal sulfides, and polymers. Finally, this work overviews the modern improvements in the utilization of Ru-based nanocomposites on the basis for electroanalytical sensors as well as suggestions for the field's future development.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Tung Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Pei-Qi Hung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
35
|
Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114655. [PMID: 35131704 DOI: 10.1016/j.jenvman.2022.114655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 μg/L, 2.8 μg/L, 1 μg/L, 0.13 μg/L, 6.0 × 10-5 μg/L, and 4.141 × 10-7 μg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.
Collapse
Affiliation(s)
- Shafali Garg
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - Pankaj Kumar
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - George W Greene
- Deakin University, Institute for Frontier Materials, Burwood, Melbourne, Victoria, Australia
| | - Vandana Mishra
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India
| | - Dror Avisar
- Tel Aviv University, School for Environmental and Earth Sciences, Water Research Center, Tel Aviv, Israel
| | - Radhey Shyam Sharma
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India.
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi, United Arab Emirates; Khalifa University, Research and Innovation Center on CO(2) and Hydrogen, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
36
|
A cell-compatible phenolphthalein-aminophenol scaffold for Al3+sensing assisted by CHEF phenomenon. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
38
|
Shand H, Dutta S, Rajakumar S, James Paulraj S, Mandal AK, KT RD, Ghorai S. New Age Detection of Viruses: The Nano-Biosensors. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.814550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viruses and their related diseases have always posed a significant hazard to humans. The current pandemic caused by the Covid-19 (SARS-CoV-2) virus is the latest illustration of what this tiny organism can do to humanity at large, putting everything on the brink of collapse. So it is reasonable that early diagnosis of infection from viruses remains a crucial step to prevent such human suffering. Many traditional methods are already in use for detecting viruses, including molecular approaches, serological methods, direct virus culture methods, and so on. Such traditional methods though are brilliant at some stages but are not devoid of drawbacks. To overcome the limits of conventional procedures, new techniques have been developed which tried to eradicate the demerits of the former procedures. Biosensors have come up with a lot of promises in terms of detecting viruses and diseases connected with them. The development of various types of such biosensors such as Affinity-based nano-biosensors, Nanoisland affinity-based biosensors, Graphene affinity-based biosensors, Nanowires based biosensors, Optical nano biosensors, Fiber optic nano-biosensors, Surface Plasmon Resonance (SPR) based optical nano-biosensors, Total internal reflection fluorescence, Surface-Enhanced Raman Scattering (SERS), Electrochemical nano-biosensors had helped us in the rapid and sensitive detection of viruses. Aid to these nanosensors, viral detection now becomes very sensitive, rapid and cost has come down to a significant low. In this review, an attempt has been made to compile all of the different nano-biosensors and their applications. Due attention is given to the fact that the reader gets the grasp of the concept with much ease.
Collapse
|
39
|
Ustabasi G, yilmaz I, Ozcan M, Cetinkaya E. Simultaneous, Selective and Highly Sensitive Voltammetric Determination of Lead, Cadmium, and Zinc via Modified Pencil Graphite Electrodes. ELECTROANAL 2022. [DOI: 10.1002/elan.202100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - ismail yilmaz
- Istanbul Teknik Universitesi Fen-Edebiyat Fakultesi TURKEY
| | | | | |
Collapse
|
40
|
Doménech-Carbó MT, Doménech-Carbó A. Spot tests: past and present. CHEMTEXTS 2022; 8:4. [PMID: 34976574 PMCID: PMC8710564 DOI: 10.1007/s40828-021-00152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
Microchemistry, i.e., the chemistry performed at the scale of a microgram or less, has its roots in the late eighteenth and early nineteenth centuries. In the first half of the twentieth century a wide range of spot tests have been developed. For didactic reasons, they are still part of the curriculum of chemistry students. However, they are even highly important for applied analyses in conservation of cultural heritage, food science, forensic science, clinical and pharmacological sciences, geochemistry, and environmental sciences. Modern pregnancy tests, virus tests, etc. are the most recent examples of sophisticated spot tests. The present ChemTexts contribution aims to provide an overview of the past and present of this analytical methodology.
Collapse
Affiliation(s)
- María Teresa Doménech-Carbó
- Institut de Restauració del Patrimoni, Universitat Politècnica de València, Camí de Vera 14, 46022 Valencia, Spain
| | - Antonio Doménech-Carbó
- Departament de Química Analítica, Universitat de València. Dr. Moliner, 50, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
41
|
Kaya SI, Cetinkaya A, Ozkan SA. Carbon Nanomaterial-Based Drug Sensing Platforms Using State-of-the-
Art Electroanalytical Techniques. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200802024629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Currently, nanotechnology and nanomaterials are considered as the most popular and outstanding
research subjects in scientific fields ranging from environmental studies to drug analysis. Carbon nanomaterials such as
carbon nanotubes, graphene, carbon nanofibers etc. and non-carbon nanomaterials such as quantum dots, metal
nanoparticles, nanorods etc. are widely used in electrochemical drug analysis for sensor development. Main aim of drug
analysis with sensors is developing fast, easy to use and sensitive methods. Electroanalytical techniques such as
voltammetry, potentiometry, amperometry etc. which measure electrical parameters such as current or potential in an
electrochemical cell are considered economical, highly sensitive and versatile techniques.
Methods:
Most recent researches and studies about electrochemical analysis of drugs with carbon-based nanomaterials were
analyzed. Books and review articles about this topic were reviewed.
Results:
The most significant carbon-based nanomaterials and electroanalytical techniques were explained in detail. In
addition to this; recent applications of electrochemical techniques with carbon nanomaterials in drug analysis was expressed
comprehensively. Recent researches about electrochemical applications of carbon-based nanomaterials in drug sensing were
given in a table.
Conclusion:
Nanotechnology provides opportunities to create functional materials, devices and systems using
nanomaterials with advantageous features such as high surface area, improved electrode kinetics and higher catalytic
activity. Electrochemistry is widely used in drug analysis for pharmaceutical and medical purposes. Carbon nanomaterials
based electrochemical sensors are one of the most preferred methods for drug analysis with high sensitivity, low cost and
rapid detection.
Collapse
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
42
|
Badmus SO, Amusa HK, Oyehan TA, Saleh TA. Environmental risks and toxicity of surfactants: overview of analysis, assessment, and remediation techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62085-62104. [PMID: 34590224 PMCID: PMC8480275 DOI: 10.1007/s11356-021-16483-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 05/08/2023]
Abstract
This work comprehensively reviewed the toxicity and risks of various surfactants and their degraded products in the environmental matrices, various analytical procedures, and remediation methods for these surfactants. The findings revealed that the elevated concentration of surfactants and their degraded products disrupt microbial dynamics and their important biogeochemical processes, hinder plant-surviving processes and their ecological niche, and retard the human organic and systemic functionalities. The enormous adverse effects of surfactants on health and the environment necessitate the need to develop, select, and advance the various analytical and assessment techniques to achieve effective identification and quantification of several surfactants in different environmental matrices. Considering the presence of surfactants in trace concentration and environmental matrices, excellent analysis can only be achieved with appropriate extraction, purification, and preconcentration. Despite these pre-treatment procedures, the chromatographic technique is the preferred analytical technique considering its advancement and shortcomings of other techniques. In the literature, the choice or selection of remediation techniques for surfactants depends largely on eco-friendliness, cost-implications, energy requirements, regeneration potential, and generated sludge composition and volume. Hence, the applications of foam fractionation, electrochemical advanced oxidation processes, thermophilic aerobic membranes reactors, and advanced adsorbents are impressive in the clean-up of the surfactants in the environment. This article presents a compendium of knowledge on environmental toxicity and risks, analytical techniques, and remediation methods of surfactants as a guide for policymakers and researchers.
Collapse
Affiliation(s)
- Suaibu O Badmus
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Hussein K Amusa
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Tajudeen A Oyehan
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
43
|
Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. SENSORS 2021; 21:s21196578. [PMID: 34640898 PMCID: PMC8512860 DOI: 10.3390/s21196578] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is a powerful technique used for the analysis of interfacial properties related to bio-recognition events occurring at the electrode surface, such as antibody–antigen recognition, substrate–enzyme interaction, or whole cell capturing. Thus, EIS could be exploited in several important biomedical diagnosis and environmental applications. However, the EIS is one of the most complex electrochemical methods, therefore, this review introduced the basic concepts and the theoretical background of the impedimetric technique along with the state of the art of the impedimetric biosensors and the impact of nanomaterials on the EIS performance. The use of nanomaterials such as nanoparticles, nanotubes, nanowires, and nanocomposites provided catalytic activity, enhanced sensing elements immobilization, promoted faster electron transfer, and increased reliability and accuracy of the reported EIS sensors. Thus, the EIS was used for the effective quantitative and qualitative detections of pathogens, DNA, cancer-associated biomarkers, etc. Through this review article, intensive literature review is provided to highlight the impact of nanomaterials on enhancing the analytical features of impedimetric biosensors.
Collapse
|
44
|
Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Crit Rev Anal Chem 2021; 53:253-288. [PMID: 34565248 DOI: 10.1080/10408347.2021.1950521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy metal pollution has gained global attention due to its high toxicity and non-biodegradability, even at a low level of exposure. Therefore, the development of a disposable electrode that is sensitive, simple, portable, rapid, and cost-effective as the sensor platform in electrochemical heavy metal detection is vital. Disposable electrodes have been modified with nanomaterials so that excellent electrochemical properties can be obtained. This review highlights the recent progress in the development of numerous types of disposable electrodes modified with nanomaterials for electrochemical heavy metal detection. The disposable electrodes made from carbon-based, glass-based, and paper-based electrodes are reviewed. In particular, the analytical performance, fabrication technique, and integration design of disposable electrodes modified with metal (such as gold, tin and bismuth), carbon (such as carbon nanotube and graphene), and metal oxide (such as iron oxide and zinc oxide) nanomaterials are summarized. In addition, the role of the nanomaterials in improving the electrochemical performance of the modified disposable electrodes is discussed. Finally, the current challenges and future prospect of the disposable electrode modified with nanomaterials are summarized.
Collapse
Affiliation(s)
- Noorhashimah Mohamad Nor
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Nurul Hidayah Ramli
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hemalatha Poobalan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Kai Qi Tan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Khairunisak Abdul Razak
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.,NanoBiotechnology Research & Innovation (NanoBRI), Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
45
|
Ahamed A, Ge L, Zhao K, Veksha A, Bobacka J, Lisak G. Environmental footprint of voltammetric sensors based on screen-printed electrodes: An assessment towards "green" sensor manufacturing. CHEMOSPHERE 2021; 278:130462. [PMID: 33845436 DOI: 10.1016/j.chemosphere.2021.130462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Voltammetric sensors based on screen-printed electrodes (SPEs) await diverse applications in environmental monitoring, food, agricultural and biomedical analysis. However, due to the single-use and disposable characteristics of SPEs and the scale of measurements performed, their environmental impacts should be considered. A life cycle assessment was conducted to evaluate the environmental footprint of SPEs manufactured using various substrate materials (SMs: cotton textile, HDPE plastic, Kraft paper, graphic paper, glass, and ceramic) and electrode materials (EMs: platinum, gold, silver, copper, carbon black, and carbon nanotubes (CNTs)). The greatest environmental impact was observed when cotton textile was used as SM. HDPE plastic demonstrated the least impact (13 out of 19 categories), followed by ceramic, glass and paper. However, considering the end-of-life scenarios and release of microplastics into the environment, ceramic, glass or paper could be the most suitable options for SMs. Amongst the EMs, the replacement of metals, especially noble metals, by carbon-based EMs greatly reduces the environmental footprint of SPEs. Compared with other materials, carbon black was the least impactful on the environment. On the other hand, copper and waste-derived CNTs (WCNTs) showed low impacts except for terrestrial ecotoxicity and human toxicity (non-cancer) potentials. In comparison to commercial CNTs (CCNTs), WCNTs demonstrated lower environmental footprint and comparable voltammetric performance in heavy metal detections, justifying the substitution of CCNTs with WCNTs in commercial applications. In conclusion, a combination of carbon black or WCNTs EMs with ceramic, glass or paper SMs represents the most environmentally friendly SPE configurations for voltammetric sensor arrangement.
Collapse
Affiliation(s)
- Ashiq Ahamed
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Turku/Åbo, Finland
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Ke Zhao
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Turku/Åbo, Finland
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
46
|
Biranje A, Azmi N, Tiwari A, Chaskar A. Quantum Dots Based Fluorescent Probe for the Selective Detection of Heavy Metal Ions. J Fluoresc 2021; 31:1241-1250. [PMID: 34181146 DOI: 10.1007/s10895-021-02755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Heavy metal ions are one of the primary causes of environmental pollution. A marshal effect of heavy metal ions is a paramount ultimatum to humans, aquatic animals and other organisms present in nature. Multitude arrays of materials have been proclaimed for sensing of heavy metal ions and also many methodologies are applied for heavy metal ion sensing. Due to their toxicity and non-biodegradability, it is required to be perceived immediately prior to its manifestation of harmful effects. Quantum Dots (QDs) are zero-dimensional nanomaterial particles and owing to their distinctive optical and electronic properties, they are utilized as nanosensors. QDs have enriched fluorescence properties which includes broad excitation spectrum, narrow emission spectrum and photostability. QDs offer eclectic and sensitive detection of heavy metal ions due to presence of discrete capping agents and different functional groups present on the surface of the QDs. These capping layers and functional groups attune the sensing capability of the QDs, which leverages the interactions of QDs with various analytes by different mechanisms. This review, comprising of papers from 2011 to 2020,focuses on heavy metal ions sensing potential of various quantum dots and its applicability as a nanosensor for on field heavy metal ions detection in water. Quantum Dots (QDs) based Heavy Metal Detection.
Collapse
Affiliation(s)
- Akshaya Biranje
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India
| | - Namrah Azmi
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India
| | - Abhishekh Tiwari
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India.
| | - Atul Chaskar
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Vidyanagari, Kalina, Santacruz (East), Mumbai, 400098, India.
| |
Collapse
|
47
|
Garg M, Gupta A, Sharma AL, Singh S. Advancements in 2D Materials Based Biosensors for Oxidative Stress Biomarkers. ACS APPLIED BIO MATERIALS 2021; 4:5944-5960. [DOI: 10.1021/acsabm.1c00625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mayank Garg
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arushi Gupta
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit L. Sharma
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Singh
- CSIR- Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
48
|
Kesavan G, Chen S. Manganese oxide anchored on carbon modified halloysite nanotubes: An electrochemical platform for the determination of chloramphenicol. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Oghli AH, Soleymanpour A. Pencil graphite electrode modified with nitrogen-doped graphene and molecular imprinted polyacrylamide/sol-gel as an ultrasensitive electrochemical sensor for the determination of fexofenadine in biological media. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Nelis JLD, Migliorelli D, Mühlebach L, Generelli S, Stewart L, Elliott CT, Campbell K. Highly sensitive electrochemical detection of the marine toxins okadaic acid and domoic acid with carbon black modified screen printed electrodes. Talanta 2021; 228:122215. [PMID: 33773701 DOI: 10.1016/j.talanta.2021.122215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
A novel electrochemical immunosensor for the detection of the important marine biotoxins domoic acid (DA) and okadaic acid (OA) was developed. The sensors used carbon black modified screen-printed electrodes (CB-SPE) obtained using a high-throughput method. The electrochemical performance and stability of CB modified SPEs and bare carbon SPEs (c-SPEs) were compared using cyclic voltammetry and electrochemical impedance spectroscopy. CB-SPEs showed improved long-term (at least six months) stability and electro-catalytic properties compared with c-SPEs. The CB-SPEs were bio-functionalized with DA or OA protein-conjugates and used to develop two indirect competitive immunosensors using differential pulse voltammetry (DPV). The DPV signals obtained for the OA and DA immunosensors fitted well to four-parameter dose-response curves (R2 > 0.98) and showed excellent LODs (LOD = 1.7 ng mL-1 for DA in buffer; LOD = 1.9 ng mL-1 for DA in mussel extract; LOD = 0.15 ng mL-1 for OA in buffer; LOD = 0.18 ng mL-1 for OA in mussel extract). No significant interference of the naturally co-occurring marine toxins saxitoxin, tetrodotoxin and OA was detected for the DA immunosensor. Similarly, for the OA immunosensor saxitoxin, tetrodotoxin and DA did not cross-react and very limited interference was observed for the dinophysis toxins DTX-1, DTX-2 and DTX-3 (OA congeners). Moreover, both immunosensors remained stable after at least 25 days of storage at 4 °C. This work demonstrates the potential of affordable, mass-produced nanomaterial-modified SPEs for marine toxin detection in shellfish.
Collapse
Affiliation(s)
- Joost L D Nelis
- Institute for Global Food Security, Queen's University, Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | | | - Lea Mühlebach
- CSEM SA, Bahnhofstrasse 1, 7302, Landquart, Switzerland
| | | | - Linda Stewart
- Institute for Global Food Security, Queen's University, Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Christopher T Elliott
- Institute for Global Food Security, Queen's University, Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Katrina Campbell
- Institute for Global Food Security, Queen's University, Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|