1
|
Zhang G, Ichikawa K, Iitani K, Iwasaki Y, Mitsubayashi K. A handheld biofluorometric system for acetone detection in exhaled breath condensates. Analyst 2025; 150:505-512. [PMID: 39745085 DOI: 10.1039/d4an01281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As a marker of human metabolism, acetone is important for lipid metabolism monitoring and early detection of diabetes. In this study, we developed a handheld biosensor for acetone based on fluorescence detection by utilizing the enzymatic reaction of secondary alcohol dehydrogenase (S-ADH) with β-nicotinamide adenine dinucleotide (NADH, λex = 340 nm, λem = 490 nm). In the reaction, NADH is oxidized when acetone is reduced to 2-propanol by S-ADH, and the acetone concentration can be measured by detecting the amount of NADH consumed in this reaction. First, we constructed a compact and light-weight fluorometric NADH detection system (209 g for the sensing system and 342 g for the PC), which worked using battery power. Then, sensor characteristics were evaluated after optimization of the working conditions. The developed system was able to quantify acetone in a range of 510 nM-1 mM within 1 minute. The developed battery-operated acetone biosensor demonstrated its ability to measure the acetone concentration in the exhaled breath condensate of 10 healthy subjects at rest (23.4 ± 15.1 μM) and after 16 h of fasting (37.7 ± 14.7 μM) and it distinguished the results with significant differences (p = 0.011). With the advantages of handheld portability, and high levels of sensitivity and selectivity, this sensor is expected to be widely used in clinical diagnosis and wearable biochemical sensors in the future.
Collapse
Affiliation(s)
- Geng Zhang
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Kenta Ichikawa
- Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kenta Iitani
- Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasuhiko Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Kohji Mitsubayashi
- Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
- Department of Biomedical Devices and Instrumentation, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
2
|
Brinkman P, Wilde M, Ahmed W, Wang R, van der Schee M, Abuhelal S, Schaber C, Cunoosamy D, Clarke GW, Maitland-van der Zee AH, Dahlén SE, Siddiqui S, Fowler SJ. Fulfilling the Promise of Breathomics: Considerations for the Discovery and Validation of Exhaled Volatile Biomarkers. Am J Respir Crit Care Med 2024; 210:1079-1090. [PMID: 38889337 PMCID: PMC11544359 DOI: 10.1164/rccm.202305-0868tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
The exhaled breath represents an ideal matrix for noninvasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review, we specifically address volatile organic compounds in the breath, with a view toward fulfilling the promise of these as actionable biomarkers, in particular, for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.
Collapse
Affiliation(s)
- Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Michael Wilde
- School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ran Wang
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Shahd Abuhelal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Chad Schaber
- Owlstone Medical Ltd., Cambridge, United Kingdom
| | | | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Anke-Hilse Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Sven-Erik Dahlén
- The Department of Medicine Huddinge and the Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; and
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Fowler
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
3
|
Litra D, Chiriac M, Ababii N, Lupan O. Acetone Sensors Based on Al-Coated and Ni-Doped Copper Oxide Nanocrystalline Thin Films. SENSORS (BASEL, SWITZERLAND) 2024; 24:6550. [PMID: 39460030 PMCID: PMC11511153 DOI: 10.3390/s24206550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Acetone detection is of significant importance in various industries, from cosmetics to pharmaceuticals, bioengineering, and paints. Sensor manufacturing involves the use of different semiconductor materials as well as different metals for doping and functionalization, allowing them to achieve advanced or unique properties in different sensor applications. In the healthcare field, these sensors play a crucial role in the non-invasive diagnosis of various diseases, offering a potential way to monitor metabolic conditions by analyzing respiration. This article presents the synthesis method, using chemical solutions and rapid thermal annealing technology, to obtain Al-functionalized and Ni-doped copper oxide (Al/CuO:Ni) nanostructured thin films for biosensors. The nanocrystalline thin films are subjected to a thorough characterization, with examination of the morphological properties by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. The results reveal notable changes in the surface morphology and structure following different treatments, providing insight into the mechanism of function and selectivity of these nanostructures for gases and volatile compounds. The study highlights the high selectivity of developed Al/CuO:Ni nanostructures towards acetone vapors at different concentrations from 1 ppm to 1000 ppm. Gas sensitivity is evaluated over a range of operating temperatures, indicating optimum performance at 300 °C and 350 °C with the maximum sensor signal (S) response obtained being 45% and 50%, respectively, to 50 ppm gas concentration. This work shows the high potential of developed technology for obtaining Al/CuO:Ni nanostructured thin films as next-generation materials for improving the sensitivity and selectivity of acetone sensors for practical applications as breath detectors in biomedical diagnostics, in particular for diabetes monitoring. It also emphasizes the importance of these sensors in ensuring industrial safety by preventing adverse health and environmental effects of exposure to acetone.
Collapse
Affiliation(s)
- Dinu Litra
- Center for Nanotechnology and Nanosensors, Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Moldova; (D.L.); (M.C.); (N.A.)
- Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Moldova
| | - Maxim Chiriac
- Center for Nanotechnology and Nanosensors, Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Moldova; (D.L.); (M.C.); (N.A.)
- Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Moldova
| | - Nicolai Ababii
- Center for Nanotechnology and Nanosensors, Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Moldova; (D.L.); (M.C.); (N.A.)
- Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Moldova
| | - Oleg Lupan
- Center for Nanotechnology and Nanosensors, Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Moldova; (D.L.); (M.C.); (N.A.)
- Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, 168 Stefan cel Mare Av., MD-2004 Chisinau, Moldova
- Department of Physics, University of Central Florida, Orlando, FL 32816-2385, USA
- Functional Nanomaterials, Department for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
4
|
Chen T, Jin M, Chen L, Cai XX, Huang Y, Shen K, Li Y, Chen X, Chen L. Rapid detection of depression by volatile organic compounds from exhalation. J Breath Res 2024; 18:046013. [PMID: 39317233 DOI: 10.1088/1752-7163/ad7eef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Depression is a pervasive and often undetected mental health condition, which poses significant challenges for early diagnosis due to its silent and subtle nature. To evaluate exhaled volatile organic compounds (VOCs) as non-invasive biomarkers for the detection of depression using a virtual surface acoustic wave sensors array (VSAW-SA). A total of 245 participants were recruited from the Hangzhou Community Health Service Center, including 38 individuals diagnosed with depression and 207 control subjects. Breath samples were collected from all participants and subjected to analysis using VSAW-SA. Univariate and multivariate analyses were employed to assess the relationship between VOCs and depression. The findings revealed that the responses of virtual sensor ID 14, 44, 59, and 176, which corresponded respectively to ethanol, trichloroethylene or isoleucine, octanoic acid or lysine, and an unidentified compound, were sensitive to depression. Taking into account potential confounders, these sensor responses were utilized to calculate a depression detection indicator. It has a sensitivity of 81.6% and a specificity of 81.6%, with an area under the curve of 0.870 (95% CI = 0.816-0.923). Conclusions: exhaled VOCs as non-invasive biomarkers of depression could be detected by a VSAW-SA. Large-scale cohort studies should be conducted to confirm the potential ability of the VSAW-SA to diagnose depression.
Collapse
Affiliation(s)
- Tao Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
- Jianqiao Community Health Service Center, Shangcheng District, Hangzhou 310021, People's Republic of China
| | - Mengqi Jin
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Liqing Chen
- Jianqiao Community Health Service Center, Shangcheng District, Hangzhou 310021, People's Republic of China
| | - Xi Xuan Cai
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Yilin Huang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Keqing Shen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| | - Yi Li
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Hangzhou Zillion M&C Technology Co., Ltd, Hangzhou 310051, People's Republic of China
| | - Xing Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Liying Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, People's Republic of China
| |
Collapse
|
5
|
Di Gilio A, Palmisani J, Nisi M, Pizzillo V, Fiorentino M, Rotella S, Mastrofilippo N, Gesualdo L, de Gennaro G. Breath Analysis: Identification of Potential Volatile Biomarkers for Non-Invasive Diagnosis of Chronic Kidney Disease (CKD). Molecules 2024; 29:4686. [PMID: 39407614 PMCID: PMC11477747 DOI: 10.3390/molecules29194686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Recently, volatile organic compound (VOC) determination in exhaled breath has seen growing interest due to its promising potential in early diagnosis of several pathological conditions, including chronic kidney disease (CKD). Therefore, this study aimed to identify the breath VOC pattern providing an accurate, reproducible and fast CKD diagnosis at early stages of disease. A cross-sectional observational study was carried out, enrolling a total of 30 subjects matched for age and gender. More specifically, the breath samples were collected from (a) 10 patients with end-stage kidney disease (ESKD) before undergoing hemodialysis treatment (DIAL); (b) 10 patients with mild-moderate CKD (G) including 3 patients in stage G2 with mild albuminuria, and 7 patients in stage G3 and (c) 10 healthy controls (CTRL). For each volunteer, an end-tidal exhaled breath sample and an ambient air sample (AA) were collected at the same time on two sorbent tubes by an automated sampling system and analyzed by Thermal Desorption-Gas Chromatography-Mass Spectrometry. A total of 110 VOCs were detected in breath samples but only 42 showed significatively different levels with respect to AA. Nonparametric tests, such as Wilcoxon/Kruskal-Wallis tests, allowed us to identify the most weighting variables able to discriminate between AA, DIAL, G and CTRL breath samples. A promising multivariate data mining approach incorporating only selected variables (showing p-values lower than 0.05), such as nonanal, pentane, acetophenone, pentanone, undecane, butanedione, ethyl hexanol and benzene, was developed and cross-validated, providing a prediction accuracy equal to 87% and 100% in identifying patients with both mild-moderate CKD (G) and ESKD (DIAL), respectively.
Collapse
Affiliation(s)
- Alessia Di Gilio
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| | - Jolanda Palmisani
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| | - Marirosa Nisi
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| | - Valentina Pizzillo
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRE-J), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Stefania Rotella
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRE-J), University of Bari Aldo Moro, 70121 Bari, Italy
| | | | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRE-J), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Gianluigi de Gennaro
- Department of Bioscience, Biotechnologies and Environment, University of Bari, 70126 Bari, Italy
- Apulian Breath Analysis Center (CeRBA), IRCCS Giovanni Paolo II, 70124 Bari, Italy
| |
Collapse
|
6
|
Czippelová B, Nováková S, Šarlinová M, Baranovičová E, Urbanová A, Turianiková Z, Krohová JČ, Halašová E, Škovierová H. Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS). J Breath Res 2024; 18:036004. [PMID: 38701772 DOI: 10.1088/1752-7163/ad4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec®device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.
Collapse
Affiliation(s)
- Barbora Czippelová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Slavomíra Nováková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Miroslava Šarlinová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Eva Baranovičová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | | | - Zuzana Turianiková
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Jana Čerňanová Krohová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Erika Halašová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| | - Henrieta Škovierová
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Martin, Slovakia
| |
Collapse
|
7
|
Martínez-Moral MP, Tena MT, Martín-Carnicero A, Martínez A. Highly sensitive serum volatolomic biomarkers for pancreatic cancer diagnosis. Clin Chim Acta 2024; 557:117895. [PMID: 38561063 DOI: 10.1016/j.cca.2024.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The discovery of new diagnostic tools for the early detection of diseases with poor prognosis such as pancreatic adenocarcinoma (PAC) is of high importance. The results from a control-case study (20 PAC patients, 19 healthy controls) for the search of new biomarkers of pancreatic cancer based in differences in the serum volatolome are presented in this work. Volatolomics were performed following a non-targeted HS-SPME-GC/MS approach, and a total of 433 volatile organic compounds (VOCs) was detected in the human serum samples. Of these, 125 VOC indexes showed a significant variation when controls and patients were compared (p-value < 0.05). Bonferroni corrected p-values < 0.05 were found for 40 features. PCA analysis showed the control-PAC discrimination capability of VOCs in serum, and PLS-DA was performed to select the best candidate biomarkers for the diagnosis of PAC. For the 40 selected VOCs, calculated areas under the curve (AUC) ranged from 0.98 to 0.85, and 11 of them were successfully validated using an independent set of samples (5 PAC patients, 5 healthy controls). Four of the proposed PAC biomarkers were identified as toluene, 2-ethyl-1-hexanol, pentylbenzene, and butoxymethylbenzene. Combinations of the identified PAC biomarkers were tested and showed AUC > 0.90, with the more promising candidate being butoxymethylbenzene (AUC = 0.98).
Collapse
Affiliation(s)
- María-Pilar Martínez-Moral
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/ Piqueras 98, 26006 Logroño, Spain; Department of Chemistry, University of La Rioja, C/ Madre de Dios 51, 26006 Logroño, Spain.
| | - María Teresa Tena
- Department of Chemistry, University of La Rioja, C/ Madre de Dios 51, 26006 Logroño, Spain.
| | - Alfonso Martín-Carnicero
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/ Piqueras 98, 26006 Logroño, Spain; Medical Oncology Department, Hospital San Pedro, C/Piqueras 98, 26006 Logroño, Spain.
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), C/ Piqueras 98, 26006 Logroño, Spain.
| |
Collapse
|
8
|
Mathur A, Mehta V, Obulareddy VT, Kumar P. Narrative review on artificially intelligent olfaction in halitosis. J Oral Maxillofac Pathol 2024; 28:275-283. [PMID: 39157836 PMCID: PMC11329069 DOI: 10.4103/jomfp.jomfp_448_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 08/20/2024] Open
Abstract
Halitosis, commonly known as oral malodor, is a multifactorial health concern that significantly impacts the psychological and social well-being of individuals. It is the third most frequent reason for individuals to seek dental treatment, after dental caries and periodontal diseases. For an in-depth exploration of the topic of halitosis, an extensive literature review was conducted. The review focused on articles published in peer-reviewed journals and only those written in the English language were considered. The search for relevant literature began by employing subject headings such as 'halitosis, oral malodor, volatile sulfur compounds, artificial intelligence, and olfaction' in databases such as PubMed/Medline, Scopus, Google Scholar, Web of Science, and EMBASE. Additionally, a thorough hand search of references was conducted to ensure the comprehensiveness of the review. After amalgamating the search outcomes, a comprehensive analysis revealed the existence of precisely 134 full-text articles that bore relevance to the study. Abstracts and editorial letters were excluded from this study, and almost 50% of the full-text articles were deemed immaterial to dental practice. Out of the remaining articles, precisely 54 full-text articles were employed in this review. As primary healthcare providers, dentists are responsible for diagnosing and treating oral issues that may contribute to the development of halitosis. To effectively manage this condition, dentists must educate their patients about the underlying causes of halitosis, as well as proper oral hygiene practices such as tongue cleaning, flossing, and selecting appropriate mouthwash and toothpaste. This narrative review summarises all possible AI olfaction in halitosis.
Collapse
Affiliation(s)
- Ankita Mathur
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Vini Mehta
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | | | | |
Collapse
|
9
|
Hossain MA, Toufique M, Smrity DY, Kibria MG. Testing the validity of Wagner's law in four income groups: A dynamic panel data analysis. Heliyon 2024; 10:e24317. [PMID: 38298634 PMCID: PMC10827764 DOI: 10.1016/j.heliyon.2024.e24317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/16/2023] [Accepted: 01/07/2024] [Indexed: 02/02/2024] Open
Abstract
This study endeavors to examine the validity of Wagner's Law, which has received considerable attention in recent years. We develop a panel dataset of 20 countries, taking five countries from each income group defined by the World Bank, for the 1991-2018 periods. Five different versions of the law are tested using this dataset. We add further depth to the model by involve the government's revenue and the volume of trade as independent variables. We inquire into the subsistence of cross-sectional dependence. To determine the order of integration, we conduct LLC, IPS, and CADF tests. The results show that the dataset has I (0) and I (1) series, and no series is found to be of I (2). Then we perform the panel ARDL test, and calculate PMG and DFE estimates. We use the Hausman test to choose among the estimates. In each version of the law, the error correction term indicates the presence of both long-term associations within the variables and an economic convergence process. However, we find no evidence to support the law for any version. Additionally, we conduct the panel cointegration tests, such as Westerlund, Pedroni and Kao. These cointegration tests generate results accordant with the ARDL findings.
Collapse
Affiliation(s)
- Md. Akter Hossain
- Department of Economics, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - M.M.K. Toufique
- Department of Economics, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Dilruba Yesmin Smrity
- Department of Economics, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Md. Golam Kibria
- Department of Economics, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| |
Collapse
|
10
|
Moura PC, Raposo M, Vassilenko V. Breath biomarkers in Non-Carcinogenic diseases. Clin Chim Acta 2024; 552:117692. [PMID: 38065379 DOI: 10.1016/j.cca.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The analysis of volatile organic compounds (VOCs) from human matrices like breath, perspiration, and urine has received increasing attention from academic and medical researchers worldwide. These biological-borne VOCs molecules have characteristics that can be directly related to physiologic and pathophysiologic metabolic processes. In this work, gathers a total of 292 analytes that have been identified as potential biomarkers for the diagnosis of various non-carcinogenic diseases. Herein we review the advances in VOCs with a focus on breath biomarkers and their potential role as minimally invasive tools to improve diagnosis prognosis and therapeutic monitoring.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516, Caparica, Portugal.
| |
Collapse
|
11
|
Marzoog BA. Volatilome is Inflammasome- and Lipidome-dependent in Ischemic Heart Disease. Curr Cardiol Rev 2024; 20:e190724232038. [PMID: 39039680 PMCID: PMC11440324 DOI: 10.2174/011573403x302934240715113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Ischemic heart disease (IHD) is a pathology of global interest because it is widespread and has high morbidity and mortality. IHD pathophysiology involves local and systemic changes, including lipidomic, proteomic, and inflammasome changes in serum plasma. The modulation in these metabolites is viable in the pre-IHD, during the IHD period, and after management of IHD in all forms, including lifestyle changes and pharmacological and surgical interventions. Therefore, these biochemical markers (metabolite changes; lipidome, inflammasome, proteome) can be used for early prevention, treatment strategy, assessment of the patient's response to the treatment, diagnosis, and determination of prognosis. Lipidomic changes are associated with the severity of inflammation and disorder in the lipidome component, and correlation is related to disturbance of inflammasome components. Main inflammasome biomarkers that are associated with coronary artery disease progression include IL-1β, Nucleotide-binding oligomerization domain- like receptor family pyrin domain containing 3 (NLRP3), and caspase-1. Meanwhile, the main lipidome biomarkers related to coronary artery disease development involve plasmalogen lipids, lysophosphatidylethanolamine (LPE), and phosphatidylethanolamine (PE). The hypothesis of this paper is that the changes in the volatile organic compounds associated with inflammasome and lipidome changes in patients with coronary artery disease are various and depend on the severity and risk factor for death from cardiovascular disease in the time span of 10 years. In this paper, we explore the potential origin and pathway in which the lipidome and or inflammasome molecules could be excreted in the exhaled air in the form of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
12
|
Kistenev YV, Borisov AV, Zasedatel VS, Spirina LV. Diabetes noninvasive diagnostics and monitoring through volatile biomarkers analysis in the exhaled breath using optical absorption spectroscopy. JOURNAL OF BIOPHOTONICS 2023; 16:e202300198. [PMID: 37643222 DOI: 10.1002/jbio.202300198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The review is aimed on the analysis the abilities of noninvasive diagnostics and monitoring of diabetes mellitus (DM) and DM-associated complications through volatile molecular biomarkers detection in the exhaled breath. The specific biochemical reactions in the body of DM patients and their associations with volatile molecular biomarkers in the breath are considered. The applications of optical spectroscopy methods, including UV, IR, and terahertz spectroscopy for DM-associated volatile molecular biomarkers measurements, are described. The applications of similar technique combined with machine learning methods in DM diagnostics using the profile of DM-associated volatile molecular biomarkers in exhaled air or "pattern-recognition" approach are discussed.
Collapse
Affiliation(s)
- Yury V Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory for Remote Sensing of the Environment, V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia
| | - Alexey V Borisov
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Vyacheslav S Zasedatel
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Liudmila V Spirina
- Division of Biochemistry and Molecular Biology, Siberian State Medical University, Tomsk, Russia
- Laboratory of Tumor Biochemistry, Cancer Research Institute, National Research Medical Center, Tomsk, Russia
| |
Collapse
|
13
|
Fujiki Y, Tanaka T, Yakabe K, Seki N, Akiyama M, Uchida K, Kim YG. Hydrogen gas and the gut microbiota are potential biomarkers for the development of experimental colitis in mice. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 5:e3. [PMID: 39290658 PMCID: PMC11406375 DOI: 10.1017/gmb.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 09/19/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease characterised by repeated relapses and remissions and a high recurrence rate even after symptom resolution. The primary method for IBD diagnosis is endoscopy; however, this method is expensive, invasive, and cumbersome to use serially. Therefore, more convenient and non-invasive methods for IBD diagnosis are needed. In this study, we aimed to identify biological gas markers for the development of gut inflammation. Using dextran sulphate sodium (DSS)-induced colitis mouse models, five biological gases were analysed to identify predictive markers for the development of gut inflammation. Additionally, the correlation between the changes in gas composition, gut microbiota, and inflammatory markers was assessed. The hydrogen (H2) level was found to be negatively correlated with the level of lipocalin-2 (LCN2), a gut inflammation biomarker, and weight loss due to DSS-induced colitis. Furthermore, gut microbes belonging to the Rikenellaceae and Akkermansiaceae families were positively correlated with LCN2 levels and weight loss, whereas Tannerellaceae abundance was negatively correlated with LCN2 level and weight loss and positively correlated with H2 levels. This study provides new insights for IBD diagnosis; the H2 levels in biological gases are a potential biomarker for intestinal inflammation, and specific gut microbes are associated with H2 level changes.
Collapse
Affiliation(s)
- Yuta Fujiki
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Takahisa Tanaka
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kyosuke Yakabe
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Natsumi Seki
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Masahiro Akiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Ken Uchida
- Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
14
|
Zhang H, Yang Y, Jiang Y, Zhang M, Xu Z, Wang X, Jiang J. Mass Spectrometry Analysis for Clinical Applications: A Review. Crit Rev Anal Chem 2023; 55:213-232. [PMID: 37910438 DOI: 10.1080/10408347.2023.2274039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Mass spectrometry (MS) has become an attractive analytical method in clinical analysis due to its comprehensive advantages of high sensitivity, high specificity and high throughput. Separation techniques coupled MS detection (e.g., LC-MS/MS) have shown unique advantages over immunoassay and have developed as golden criterion for many clinical applications. This review summarizes the characteristics and applications of MS, and emphasizes the high efficiency of MS in clinical research. In addition, this review also put forward further prospects for the future of mass spectrometry technology, including the introduction of miniature MS instruments, point-of-care detection and high-throughput analysis, to achieve better development of MS technology in various fields of clinical application. Moreover, as ambient ionization mass spectrometry (AIMS) requires little or no sample pretreatment and improves the flux of MS, this review also summarizes its potential applications in clinic.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Yali Yang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Zhilong Xu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, P. R. China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P. R. China
| |
Collapse
|
15
|
Li Y, Wei X, Zhou Y, Wang J, You R. Research progress of electronic nose technology in exhaled breath disease analysis. MICROSYSTEMS & NANOENGINEERING 2023; 9:129. [PMID: 37829158 PMCID: PMC10564766 DOI: 10.1038/s41378-023-00594-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/14/2023]
Abstract
Exhaled breath analysis has attracted considerable attention as a noninvasive and portable health diagnosis method due to numerous advantages, such as convenience, safety, simplicity, and avoidance of discomfort. Based on many studies, exhaled breath analysis is a promising medical detection technology capable of diagnosing different diseases by analyzing the concentration, type and other characteristics of specific gases. In the existing gas analysis technology, the electronic nose (eNose) analysis method has great advantages of high sensitivity, rapid response, real-time monitoring, ease of use and portability. Herein, this review is intended to provide an overview of the application of human exhaled breath components in disease diagnosis, existing breath testing technologies and the development and research status of electronic nose technology. In the electronic nose technology section, the three aspects of sensors, algorithms and existing systems are summarized in detail. Moreover, the related challenges and limitations involved in the abovementioned technologies are also discussed. Finally, the conclusion and perspective of eNose technology are presented.
Collapse
Affiliation(s)
- Ying Li
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Xiangyang Wei
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Yumeng Zhou
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Jing Wang
- School of Electronics and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China
| | - Rui You
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, 100192 China
| |
Collapse
|
16
|
Banga I, Paul A, Poudyal DC, Muthukumar S, Prasad S. Recent Advances in Gas Detection Methodologies with a Special Focus on Environmental Sensing and Health Monitoring Applications─A Critical Review. ACS Sens 2023; 8:3307-3319. [PMID: 37540230 DOI: 10.1021/acssensors.3c00959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
With the expansion of the Internet-of-Things (IoT), the use of gas sensors in the field of wearable technology, smart devices, and smart homes has increased manifold. These gas sensors have two key applications─one is the detection of gases present in the environment and the other is the detection of Volatile Organic Compounds (VOCs) that are found in the breath. In this review, we focus systematically on the advancements in the field of various spectroscopic methods such as mass spectrometry-based analysis and point-of-care approach to detect VOCs and gases for environmental monitoring and disease diagnosis. Additionally, we highlight the development of smart sensors that work on the principle of electrochemical detection and provide examples of the same through an extensive literature review. At the end of this review, we highlight various challenges and future perspectives.
Collapse
Affiliation(s)
- Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Anirban Paul
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Durgasha C Poudyal
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- EnLiSense LLC, 1813 Audubon Pondway, Allen, Texas 75013, United States
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- EnLiSense LLC, 1813 Audubon Pondway, Allen, Texas 75013, United States
| |
Collapse
|
17
|
Lagopati N, Valamvanos TF, Proutsou V, Karachalios K, Pippa N, Gatou MA, Vagena IA, Cela S, Pavlatou EA, Gazouli M, Efstathopoulos E. The Role of Nano-Sensors in Breath Analysis for Early and Non-Invasive Disease Diagnosis. CHEMOSENSORS 2023; 11:317. [DOI: 10.3390/chemosensors11060317] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Early-stage, precise disease diagnosis and treatment has been a crucial topic of scientific discussion since time immemorial. When these factors are combined with experience and scientific knowledge, they can benefit not only the patient, but also, by extension, the entire health system. The development of rapidly growing novel technologies allows for accurate diagnosis and treatment of disease. Nanomedicine can contribute to exhaled breath analysis (EBA) for disease diagnosis, providing nanomaterials and improving sensing performance and detection sensitivity. Through EBA, gas-based nano-sensors might be applied for the detection of various essential diseases, since some of their metabolic products are detectable and measurable in the exhaled breath. The design and development of innovative nanomaterial-based sensor devices for the detection of specific biomarkers in breath samples has emerged as a promising research field for the non-invasive accurate diagnosis of several diseases. EBA would be an inexpensive and widely available commercial tool that could also be used as a disease self-test kit. Thus, it could guide patients to the proper specialty, bypassing those expensive tests, resulting, hence, in earlier diagnosis, treatment, and thus a better quality of life. In this review, some of the most prevalent types of sensors used in breath-sample analysis are presented in parallel with the common diseases that might be diagnosed through EBA, highlighting the impact of incorporating new technological achievements in the clinical routine.
Collapse
Affiliation(s)
- Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Theodoros-Filippos Valamvanos
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Vaia Proutsou
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Konstantinos Karachalios
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Smaragda Cela
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Medical Physics Unit, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Efstathios Efstathopoulos
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| |
Collapse
|
18
|
Issitt T, Reilly M, Sweeney ST, Brackenbury WJ, Redeker KR. GC/MS analysis of hypoxic volatile metabolic markers in the MDA-MB-231 breast cancer cell line. Front Mol Biosci 2023; 10:1178269. [PMID: 37251079 PMCID: PMC10210155 DOI: 10.3389/fmolb.2023.1178269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hypoxia in disease describes persistent low oxygen conditions, observed in a range of pathologies, including cancer. In the discovery of biomarkers in biological models, pathophysiological traits present a source of translatable metabolic products for the diagnosis of disease in humans. Part of the metabolome is represented by its volatile, gaseous fraction; the volatilome. Human volatile profiles, such as those found in breath, are able to diagnose disease, however accurate volatile biomarker discovery is required to target reliable biomarkers to develop new diagnostic tools. Using custom chambers to control oxygen levels and facilitate headspace sampling, the MDA-MB-231 breast cancer cell line was exposed to hypoxia (1% oxygen) for 24 h. The maintenance of hypoxic conditions in the system was successfully validated over this time period. Targeted and untargeted gas chromatography mass spectrometry approaches revealed four significantly altered volatile organic compounds when compared to control cells. Three compounds were actively consumed by cells: methyl chloride, acetone and n-Hexane. Cells under hypoxia also produced significant amounts of styrene. This work presents a novel methodology for identification of volatile metabolisms under controlled gas conditions with novel observations of volatile metabolisms by breast cancer cells.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Matthew Reilly
- Department of Biology, University of York, York, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J. Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | |
Collapse
|
19
|
Sharma A, Kumar R, Varadwaj P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol Diagn Ther 2023; 27:321-347. [PMID: 36729362 PMCID: PMC9893210 DOI: 10.1007/s40291-023-00640-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Collapse
Affiliation(s)
- Anju Sharma
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pritish Varadwaj
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
20
|
Bhandari MP, Polaka I, Vangravs R, Mezmale L, Veliks V, Kirshners A, Mochalski P, Dias-Neto E, Leja M. Volatile Markers for Cancer in Exhaled Breath-Could They Be the Signature of the Gut Microbiota? Molecules 2023; 28:molecules28083488. [PMID: 37110724 PMCID: PMC10141340 DOI: 10.3390/molecules28083488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
It has been shown that the gut microbiota plays a central role in human health and disease. A wide range of volatile metabolites present in exhaled breath have been linked with gut microbiota and proposed as a non-invasive marker for monitoring pathological conditions. The aim of this study was to examine the possible correlation between volatile organic compounds (VOCs) in exhaled breath and the fecal microbiome by multivariate statistical analysis in gastric cancer patients (n = 16) and healthy controls (n = 33). Shotgun metagenomic sequencing was used to characterize the fecal microbiota. Breath-VOC profiles in the same participants were identified by an untargeted gas chromatography-mass spectrometry (GC-MS) technique. A multivariate statistical approach involving a canonical correlation analysis (CCA) and sparse principal component analysis identified the significant relationship between the breath VOCs and fecal microbiota. This relation was found to differ between gastric cancer patients and healthy controls. In 16 cancer cases, 14 distinct metabolites identified from the breath belonging to hydrocarbons, alcohols, aromatics, ketones, ethers, and organosulfur compounds were highly correlated with 33 fecal bacterial taxa (correlation of 0.891, p-value 0.045), whereas in 33 healthy controls, 7 volatile metabolites belonging to alcohols, aldehydes, esters, phenols, and benzamide derivatives correlated with 17 bacterial taxa (correlation of 0.871, p-value 0.0007). This study suggested that the correlation between fecal microbiota and breath VOCs was effective in identifying exhaled volatile metabolites and the functional effects of microbiome, thus helping to understand cancer-related changes and improving the survival and life expectancy in gastric cancer patients.
Collapse
Affiliation(s)
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Arnis Kirshners
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Digestive Diseases Center GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|
21
|
Xu T, Wang J, Tan J, Huang T, Han G, Li Y, Yu H, Zhou J, Xu M. Gas chromatography-mass spectrometry pilot study to identify volatile organic compound biomarkers of childhood obesity with dyslipidemia in exhaled breath. J Transl Int Med 2023; 11:81-89. [DOI: 10.2478/jtim-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Abstract
Objectives
Childhood obesity affects multiple organs in the body and is associated with both significant morbidity and ultimately premature mortality. Childhood obesity, especially dyslipidemia, can lead to early atherosclerosis and premature cardiovascular disease (CVD) in adulthood. The detection of exhaled volatile organic compounds (VOCs) in the breath offers the opportunity for the discovery of novel disease-specific biomarkers. This study aimed to identify VOCs that correlate with childhood obesity accompanied by dyslipidemia.
Methods
A total of 82 overweight or obese children between the ages of 8 and 12 years were recruited from the exercise on obesity adolescents in Peking (EXCITING) study (NCT04984005). The breath VOCs of the participants were measured by gas chromatography-mass spectrometry (GC-MS). The classification was performed using principal component analysis (PCA) of the relative abundance of VOCs. The difference between the obese and overweight groups with or without dyslipidemia was analyzed.
Results
Among the 82 children, 25 were overweight, of whom 10 had dyslipidemia. The other 57 children were obese, and 17 of them had dyslipidemia. Obese children with dyslipidemia had higher triglycerides and elevated non–high-density lipoprotein-cholesterol compared to overweight children without dyslipidemia. We confirmed 13 compounds based on database well matches (average score > 80) for mass spectra and refractive index. These 13 VOCs were grouped into three chemical functional groups: saturated hydrocarbons, aromatic hydrocarbons and unsaturated aldehydes. For obese children with dyslipidemia, the PCA scatter plot of the three chemical groups was obviously separated from the other groups. Some of the candidates, including heptadecane, naphthalene, and cis-6-nonnenol, were significantly higher in obese children with dyslipidemia than in overweight groups with or without dyslipidemia.
Conclusion
A suite of VOCs from three chemical function groups, saturated hydrocarbons, aromatic hydrocarbons, and unsaturated aldehydes, were separated in the obese children with dyslipidemia. Heptadecane, naphthalene, and cis-6-nonenol were significantly elevated in obese children with dyslipidemia. Our findings underscore the potential value of the candidate VOCs for future risk categorization.
Collapse
|
22
|
Salehifar N, Holtmann P, Hungund AP, Dinani HS, Gerald RE, Huang J. Calculations of adsorption-dependent refractive indices of metal-organic frameworks for gas sensing applications. OPTICS EXPRESS 2023; 31:7947-7965. [PMID: 36859915 PMCID: PMC10018789 DOI: 10.1364/oe.478427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Detection of volatile organic compounds (VOCs) is one of the most challenging tasks in modelling breath analyzers because of their low concentrations (parts-per-billion (ppb) to parts-per-million (ppm)) in breath and the high humidity levels in exhaled breaths. The refractive index is one of the crucial optical properties of metal-organic frameworks (MOFs), which is changeable via the variation of gas species and concentrations that can be utilized as gas detectors. Herein, for the first time, we used Lorentz-Lorentz, Maxwell-Ga, and Bruggeman effective medium approximation (EMA) equations to compute the percentage change in the index of refraction (Δn%) of ZIF-7, ZIF-8, ZIF-90, MIL-101(Cr) and HKUST-1 upon exposure to ethanol at various partial pressures. We also determined the enhancement factors of the mentioned MOFs to assess the storage capability of MOFs and the biosensors' selectivity through guest-host interactions, especially, at low guest concentrations.
Collapse
Affiliation(s)
- Nahideh Salehifar
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 141 Emerson Electric Co. Hall, 301 W. 16th., Rolla, Missouri 65409, USA
| | - Peter Holtmann
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 141 Emerson Electric Co. Hall, 301 W. 16th., Rolla, Missouri 65409, USA
| | - Abhishek Prakash Hungund
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 141 Emerson Electric Co. Hall, 301 W. 16th., Rolla, Missouri 65409, USA
| | - Homayoon Soleimani Dinani
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 141 Emerson Electric Co. Hall, 301 W. 16th., Rolla, Missouri 65409, USA
| | - Rex E. Gerald
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 141 Emerson Electric Co. Hall, 301 W. 16th., Rolla, Missouri 65409, USA
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 141 Emerson Electric Co. Hall, 301 W. 16th., Rolla, Missouri 65409, USA
| |
Collapse
|
23
|
P H, Rangarajan M, Pandya HJ. Breath VOC analysis and machine learning approaches for disease screening: a review. J Breath Res 2023; 17. [PMID: 36634360 DOI: 10.1088/1752-7163/acb283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Early disease detection is often correlated with a reduction in mortality rate and improved prognosis. Currently, techniques like biopsy and imaging that are used to screen chronic diseases are invasive, costly or inaccessible to a large population. Thus, a non-invasive disease screening technology is the need of the hour. Existing non-invasive methods like gas chromatography-mass spectrometry, selected-ion flow-tube mass spectrometry, and proton transfer reaction-mass-spectrometry are expensive. These techniques necessitate experienced operators, making them unsuitable for a large population. Various non-invasive sources are available for disease detection, of which exhaled breath is preferred as it contains different volatile organic compounds (VOCs) that reflect the biochemical reactions in the human body. Disease screening by exhaled breath VOC analysis can revolutionize the healthcare industry. This review focuses on exhaled breath VOC biomarkers for screening various diseases with a particular emphasis on liver diseases and head and neck cancer as examples of diseases related to metabolic disorders and diseases unrelated to metabolic disorders, respectively. Single sensor and sensor array-based (Electronic Nose) approaches for exhaled breath VOC detection are briefly described, along with the machine learning techniques used for pattern recognition.
Collapse
Affiliation(s)
- Haripriya P
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Madhavan Rangarajan
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India.,Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
24
|
Grootveld M, Page G, Bhogadia M, Hunwin K, Edgar M. Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part III: Implementations for the Diagnosis of Non-Cancerous Disorders, Both Oral and Systemic. Metabolites 2023; 13:metabo13010066. [PMID: 36676991 PMCID: PMC9864626 DOI: 10.3390/metabo13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
This communication represents Part III of our series of reports based on the applications of human saliva as a useful and conveniently collectable medium for the discovery, identification and monitoring of biomarkers, which are of some merit for the diagnosis of human diseases. Such biomarkers, or others reflecting the dysfunction of specific disease-associated metabolic pathways, may also be employed for the prognostic pathological tracking of these diseases. Part I of this series set the experimental and logistical groundwork for this report, and the preceding paper, Part II, featured the applications of newly developed metabolomics technologies to the diagnosis and severity grading of human cancer conditions, both oral and systemic. Clearly, there are many benefits, both scientific and economic, associated with the donation of human saliva samples (usually as whole mouth saliva) from humans consenting to and participating in investigations focused on the discovery of biomolecular markers of diseases. These include usually non-invasive collection protocols, relatively low cost when compared against blood sample collection, and no requirement for clinical supervision during collection episodes. This paper is centred on the employment and value of 'state-of-the-art' metabolomics technologies to the diagnosis and prognosis of a wide range of non-cancerous human diseases. Firstly, these include common oral diseases such as periodontal diseases (from type 1 (gingivitis) to type 4 (advanced periodontitis)), and dental caries. Secondly, a wide range of extra-oral (systemic) conditions are covered, most notably diabetes types 1 and 2, cardiovascular and neurological diseases, and Sjögren's syndrome, along with a series of viral infections, e.g., pharyngitis, influenza, HIV and COVID-19. Since the authors' major research interests lie in the area of the principles and applications of NMR-linked metabolomics techniques, many, but not all, of the studies reviewed were conducted using these technologies, with special attention being given to recommended protocols for their operation and management, for example, satisfactory experimental model designs; sample collection and laboratory processing techniques; the selection of sample-specific NMR pulse sequences for saliva analysis; and strategies available for the confirmation of resonance assignments for both endogenous and exogenous molecules in this biofluid. This article also features an original case study, which is focussed on the use of NMR-based salivary metabolomics techniques to provide some key biomarkers for the diagnosis of pharyngitis, and an example of how to 'police' such studies and to recognise participants who perceive that they actually have this disorder but do not from their metabolic profiles and multivariate analysis pattern-based clusterings. The biochemical and clinical significance of these multidimensional metabolomics investigations are discussed in detail.
Collapse
|
25
|
Capman NSS, Zhen XV, Nelson JT, Chaganti VRSK, Finc RC, Lyden MJ, Williams TL, Freking M, Sherwood GJ, Bühlmann P, Hogan CJ, Koester SJ. Machine Learning-Based Rapid Detection of Volatile Organic Compounds in a Graphene Electronic Nose. ACS NANO 2022; 16:19567-19583. [PMID: 36367841 DOI: 10.1021/acsnano.2c10240] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapid detection of volatile organic compounds (VOCs) is growing in importance in many sectors. Noninvasive medical diagnoses may be based upon particular combinations of VOCs in human breath; detecting VOCs emitted from environmental hazards such as fungal growth could prevent illness; and waste could be reduced through monitoring of gases produced during food storage. Electronic noses have been applied to such problems, however, a common limitation is in improving selectivity. Graphene is an adaptable material that can be functionalized with many chemical receptors. Here, we use this versatility to demonstrate selective and rapid detection of multiple VOCs at varying concentrations with graphene-based variable capacitor (varactor) arrays. Each array contains 108 sensors functionalized with 36 chemical receptors for cross-selectivity. Multiplexer data acquisition from 108 sensors is accomplished in tens of seconds. While this rapid measurement reduces the signal magnitude, classification using supervised machine learning (Bootstrap Aggregated Random Forest) shows excellent results of 98% accuracy between 5 analytes (ethanol, hexanal, methyl ethyl ketone, toluene, and octane) at 4 concentrations each. With the addition of 1-octene, an analyte highly similar in structure to octane, an accuracy of 89% is achieved. These results demonstrate the important role of the choice of analysis method, particularly in the presence of noisy data. This is an important step toward fully utilizing graphene-based sensor arrays for rapid gas sensing applications from environmental monitoring to disease detection in human breath.
Collapse
Affiliation(s)
- Nyssa S S Capman
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, Minnesota 55455, United States
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Xue V Zhen
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Justin T Nelson
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - V R Saran Kumar Chaganti
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, Minnesota 55455, United States
| | - Raia C Finc
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Michael J Lyden
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Thomas L Williams
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Mike Freking
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Gregory J Sherwood
- Boston Scientific, 4100 Hamline Avenue North, St. Paul, Minnesota 55112, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| | - Steven J Koester
- Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Tien CH, Lee KL, Tao CC, Lin ZQ, Lin ZH, Chen LC. Two-Dimensional (PEA) 2PbBr 4 Perovskites Sensors for Highly Sensitive Ethanol Vapor Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:8155. [PMID: 36365851 PMCID: PMC9658801 DOI: 10.3390/s22218155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) perovskite have been widely researched for solar cells, light-emitting diodes, photodetectors because of their excellent environmental stability and optoelectronic properties in comparison to three-dimensional (3D) perovskite. In this study, we demonstrate the high response of 2D-(PEA)2PbBr4 perovskite of the horizontal vapor sensor was outstandingly more superior than 3D-MAPbBr3 perovskite. 2D transverse perovskite layer have the large surface-to-volume ratio and reactive surface, with the charge transfer mechanism, which was suitable for vapor sensing and trapping. Thus, 2D perovskite vapor sensors demonstrate the champion current response ratio R of 107.32 under the ethanol vapors, which was much faster than 3D perovskite (R = 2.92).
Collapse
Affiliation(s)
- Ching-Ho Tien
- Department of Electronic Engineering, Lunghwa University of Science and Technology, Taoyuan 33306, Taiwan
| | - Kuan-Lin Lee
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chun-Cheng Tao
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Zhan-Qi Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Zi-Hao Lin
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Lung-Chien Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| |
Collapse
|
27
|
Issitt T, Sweeney ST, Brackenbury WJ, Redeker KR. Sampling and Analysis of Low-Molecular-Weight Volatile Metabolites in Cellular Headspace and Mouse Breath. Metabolites 2022; 12:599. [PMID: 35888722 PMCID: PMC9315489 DOI: 10.3390/metabo12070599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Volatile compounds, abundant in breath, can be used to accurately diagnose and monitor a range of medical conditions. This offers a noninvasive, low-cost approach with screening applications; however, the uptake of this diagnostic approach has been limited by conflicting published outcomes. Most published reports rely on large scale screening of the public, at single time points and without reference to ambient air. Here, we present a novel approach to volatile sampling from cellular headspace and mouse breath that incorporates multi-time-point analysis and ambient air subtraction revealing compound flux as an effective proxy of active metabolism. This approach to investigating breath volatiles offers a new avenue for disease biomarker discovery and diagnosis. Using gas chromatography mass spectrometry (GC/MS), we focus on low molecular weight, metabolic substrate/by-product compounds and demonstrate that this noninvasive technique is sensitive (reproducible at ~1 µg cellular protein, or ~500,000 cells) and capable of precisely determining cell type, status and treatment. Isolated cellular models represent components of larger mammalian systems, and we show that stress- and pathology-indicative compounds are detectable in mice, supporting further investigation using this methodology as a tool to identify volatile targets in human patients.
Collapse
Affiliation(s)
- Theo Issitt
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Sean T. Sweeney
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - William J. Brackenbury
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Kelly R. Redeker
- Department of Biology, University of York, York YO10 5DD, UK; (T.I.); (S.T.S.); (W.J.B.)
| |
Collapse
|
28
|
CNT biodevices for early liver cancer diagnosis based on biomarkers detection- a promising platform. J Mol Graph Model 2022; 114:108208. [DOI: 10.1016/j.jmgm.2022.108208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/19/2023]
|
29
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
30
|
A pilot study for the prediction of liver function related scores using breath biomarkers and machine learning. Sci Rep 2022; 12:2032. [PMID: 35132067 PMCID: PMC8821604 DOI: 10.1038/s41598-022-05808-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Volatile organic compounds (VOCs) present in exhaled breath can help in analysing biochemical processes in the human body. Liver diseases can be traced using VOCs as biomarkers for physiological and pathophysiological conditions. In this work, we propose non-invasive and quick breath monitoring approach for early detection and progress monitoring of liver diseases using Isoprene, Limonene, and Dimethyl sulphide (DMS) as potential biomarkers. A pilot study is performed to design a dataset that includes the biomarkers concentration analysed from the breath sample before and after study subjects performed an exercise. A machine learning approach is applied for the prediction of scores for liver function diagnosis. Four regression methods are performed to predict the clinical scores using breath biomarkers data as features set by the machine learning techniques. A significant difference was observed for isoprene concentration (p < 0.01) and for DMS concentration (p < 0.0001) between liver patients and healthy subject's breath sample. The R-square value between actual clinical score and predicted clinical score is found to be 0.78, 0.82, and 0.85 for CTP score, APRI score, and MELD score, respectively. Our results have shown a promising result with significant different breath profiles between liver patients and healthy volunteers. The use of machine learning for the prediction of scores is found very promising for use of breath biomarkers for liver function diagnosis.
Collapse
|
31
|
Issitt T, Wiggins L, Veysey M, Sweeney S, Brackenbury W, Redeker K. Volatile compounds in human breath: critical review and meta-analysis. J Breath Res 2022; 16. [PMID: 35120340 DOI: 10.1088/1752-7163/ac5230] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Volatile compounds contained in human breath reflect the inner workings of the body. A large number of studies have been published that link individual components of breath to disease, but diagnostic applications remain limited, in part due to inconsistent and conflicting identification of breath biomarkers. New approaches are therefore required to identify effective biomarker targets. Here, volatile organic compounds have been identified in the literature from four metabolically and physiologically distinct diseases and grouped into chemical functional groups (e.g. - methylated hydrocarbons or aldehydes; based on known metabolic and enzymatic pathways) to support biomarker discovery and provide new insight on existing data. Using this functional grouping approach, principal component analysis doubled explanatory capacity from 19.1% to 38% relative to single individual compound approaches. Random forest and linear discriminant analysis reveal 93% classification accuracy for cancer. This review and meta-analysis provides insight for future research design by identifying volatile functional groups associated with disease. By incorporating our understanding of the complexities of the human body, along with accounting for variability in methodological and analytical approaches, this work demonstrates that a suite of targeted, functional volatile biomarkers, rather than individual biomarker compounds, will improve accuracy and success in diagnostic research and application.
Collapse
Affiliation(s)
- Theo Issitt
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Laura Wiggins
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Martin Veysey
- The University of Newcastle, School of Medicine & Public Health, Callaghan, New South Wales, 2308, AUSTRALIA
| | - Sean Sweeney
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - William Brackenbury
- Biology, University of York, University of York, York, York, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Kelly Redeker
- Biology, University of York, Biology Dept. University of York, York, York, North Yorkshire, YO10 5DD, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
32
|
Xue Y, Thalmayer AS, Zeising S, Fischer G, Lübke M. Commercial and Scientific Solutions for Blood Glucose Monitoring-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:425. [PMID: 35062385 PMCID: PMC8780031 DOI: 10.3390/s22020425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022]
Abstract
Diabetes is a chronic and, according to the state of the art, an incurable disease. Therefore, to treat diabetes, regular blood glucose monitoring is crucial since it is mandatory to mitigate the risk and incidence of hyperglycemia and hypoglycemia. Nowadays, it is common to use blood glucose meters or continuous glucose monitoring via stinging the skin, which is classified as invasive monitoring. In recent decades, non-invasive monitoring has been regarded as a dominant research field. In this paper, electrochemical and electromagnetic non-invasive blood glucose monitoring approaches will be discussed. Thereby, scientific sensor systems are compared to commercial devices by validating the sensor principle and investigating their performance utilizing the Clarke error grid. Additionally, the opportunities to enhance the overall accuracy and stability of non-invasive glucose sensing and even predict blood glucose development to avoid hyperglycemia and hypoglycemia using post-processing and sensor fusion are presented. Overall, the scientific approaches show a comparable accuracy in the Clarke error grid to that of the commercial ones. However, they are in different stages of development and, therefore, need improvement regarding parameter optimization, temperature dependency, or testing with blood under real conditions. Moreover, the size of scientific sensing solutions must be further reduced for a wearable monitoring system.
Collapse
Affiliation(s)
| | | | | | - Georg Fischer
- Institute for Electronics Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 9, 91058 Erlangen, Germany; (Y.X.); (A.S.T.); (S.Z.)
| | - Maximilian Lübke
- Institute for Electronics Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 9, 91058 Erlangen, Germany; (Y.X.); (A.S.T.); (S.Z.)
| |
Collapse
|
33
|
Gbaoui L, Fachet M, Lüno M, Meyer-Lotz G, Frodl T, Hoeschen C. Breathomics profiling of metabolic pathways affected by major depression: Possibilities and limitations. Front Psychiatry 2022; 13:1061326. [PMID: 36590606 PMCID: PMC9795849 DOI: 10.3389/fpsyt.2022.1061326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the most common psychiatric disorders with multifactorial etiologies. Metabolomics has recently emerged as a particularly potential quantitative tool that provides a multi-parametric signature specific to several mechanisms underlying the heterogeneous pathophysiology of MDD. The main purpose of the present study was to investigate possibilities and limitations of breath-based metabolomics, breathomics patterns to discriminate MDD patients from healthy controls (HCs) and identify the altered metabolic pathways in MDD. METHODS Breath samples were collected in Tedlar bags at awakening, 30 and 60 min after awakening from 26 patients with MDD and 25 HCs. The non-targeted breathomics analysis was carried out by proton transfer reaction mass spectrometry. The univariate analysis was first performed by T-test to rank potential biomarkers. The metabolomic pathway analysis and hierarchical clustering analysis (HCA) were performed to group the significant metabolites involved in the same metabolic pathways or networks. Moreover, a support vector machine (SVM) predictive model was built to identify the potential metabolites in the altered pathways and clusters. The accuracy of the SVM model was evaluated by receiver operating characteristics (ROC) analysis. RESULTS A total of 23 differential exhaled breath metabolites were significantly altered in patients with MDD compared with HCs and mapped in five significant metabolic pathways including aminoacyl-tRNA biosynthesis (p = 0.0055), branched chain amino acids valine, leucine and isoleucine biosynthesis (p = 0.0060), glycolysis and gluconeogenesis (p = 0.0067), nicotinate and nicotinamide metabolism (p = 0.0213) and pyruvate metabolism (p = 0.0440). Moreover, the SVM predictive model showed that butylamine (p = 0.0005, pFDR=0.0006), 3-methylpyridine (p = 0.0002, pFDR = 0.0012), endogenous aliphatic ethanol isotope (p = 0.0073, pFDR = 0.0174), valeric acid (p = 0.005, pFDR = 0.0162) and isoprene (p = 0.038, pFDR = 0.045) were potential metabolites within identified clusters with HCA and altered pathways, and discriminated between patients with MDD and non-depressed ones with high sensitivity (0.88), specificity (0.96) and area under curve of ROC (0.96). CONCLUSION According to the results of this study, the non-targeted breathomics analysis with high-throughput sensitive analytical technologies coupled to advanced computational tools approaches offer completely new insights into peripheral biochemical changes in MDD.
Collapse
Affiliation(s)
- Laila Gbaoui
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| | - Melanie Fachet
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| | - Marian Lüno
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Gabriele Meyer-Lotz
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Thomas Frodl
- Department for Psychiatry and Psychotherapy, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Christoph Hoeschen
- Chair of Medical Systems Technology, Institute for Medical Technology, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
34
|
Karunagaran M, Ramani P, Gheena S, Abilasha R, Hannah R. Volatile Organic Compounds in Human Breath. Indian J Dent Res 2022; 33:100-104. [PMID: 35946254 DOI: 10.4103/ijdr.ijdr_493_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A comprehensive analysis of volatile organic compounds (VOCs) from the exhaled breath sample is termed as breathomics. Breath samples are a complex mixture composed of a multitude of VOCs and other molecules. The analysis of total VOCs in exhaled breath provides a promising tool for the diagnosis of many diseases because it enables the observation of biochemical processes in the body in a non-invasive way. VOCs are produced in various physiological and pathophysiological conditions thus making it a potential biomarker for several diseases.
Collapse
Affiliation(s)
- Monika Karunagaran
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| | - S Gheena
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| | - R Abilasha
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| | - R Hannah
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
35
|
Dixit K, Fardindoost S, Ravishankara A, Tasnim N, Hoorfar M. Exhaled Breath Analysis for Diabetes Diagnosis and Monitoring: Relevance, Challenges and Possibilities. BIOSENSORS 2021; 11:476. [PMID: 34940233 PMCID: PMC8699302 DOI: 10.3390/bios11120476] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 05/15/2023]
Abstract
With the global population prevalence of diabetes surpassing 463 million cases in 2019 and diabetes leading to millions of deaths each year, there is a critical need for feasible, rapid, and non-invasive methodologies for continuous blood glucose monitoring in contrast to the current procedures that are either invasive, complicated, or expensive. Breath analysis is a viable methodology for non-invasive diabetes management owing to its potential for multiple disease diagnoses, the nominal requirement of sample processing, and immense sample accessibility; however, the development of functional commercial sensors is challenging due to the low concentration of volatile organic compounds (VOCs) present in exhaled breath and the confounding factors influencing the exhaled breath profile. Given the complexity of the topic and the skyrocketing spread of diabetes, a multifarious review of exhaled breath analysis for diabetes monitoring is essential to track the technological progress in the field and comprehend the obstacles in developing a breath analysis-based diabetes management system. In this review, we consolidate the relevance of exhaled breath analysis through a critical assessment of current technologies and recent advancements in sensing methods to address the shortcomings associated with blood glucose monitoring. We provide a detailed assessment of the intricacies involved in the development of non-invasive diabetes monitoring devices. In addition, we spotlight the need to consider breath biomarker clusters as opposed to standalone biomarkers for the clinical applicability of exhaled breath monitoring. We present potential VOC clusters suitable for diabetes management and highlight the recent buildout of breath sensing methodologies, focusing on novel sensing materials and transduction mechanisms. Finally, we portray a multifaceted comparison of exhaled breath analysis for diabetes monitoring and highlight remaining challenges on the path to realizing breath analysis as a non-invasive healthcare approach.
Collapse
Affiliation(s)
- Kaushiki Dixit
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
| | - Somayeh Fardindoost
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
| | - Adithya Ravishankara
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
| | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
- Faculty of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (S.F.); (A.R.); (N.T.)
- Faculty of Engineering and Computer Science, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
36
|
van den Brink W, Bloem R, Ananth A, Kanagasabapathi T, Amelink A, Bouwman J, Gelinck G, van Veen S, Boorsma A, Wopereis S. Digital Resilience Biomarkers for Personalized Health Maintenance and Disease Prevention. Front Digit Health 2021; 2:614670. [PMID: 34713076 PMCID: PMC8521930 DOI: 10.3389/fdgth.2020.614670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Health maintenance and disease prevention strategies become increasingly prioritized with increasing health and economic burden of chronic, lifestyle-related diseases. A key element in these strategies is the empowerment of individuals to control their health. Self-measurement plays an essential role in achieving such empowerment. Digital measurements have the advantage of being measured non-invasively, passively, continuously, and in a real-world context. An important question is whether such measurement can sensitively measure subtle disbalances in the progression toward disease, as well as the subtle effects of, for example, nutritional improvement. The concept of resilience biomarkers, defined as the dynamic evaluation of the biological response to an external challenge, has been identified as a viable strategy to measure these subtle effects. In this review, we explore the potential of integrating this concept with digital physiological measurements to come to digital resilience biomarkers. Additionally, we discuss the potential of wearable, non-invasive, and continuous measurement of molecular biomarkers. These types of innovative measurements may, in the future, also serve as a digital resilience biomarker to provide even more insight into the personal biological dynamics of an individual. Altogether, digital resilience biomarkers are envisioned to allow for the measurement of subtle effects of health maintenance and disease prevention strategies in a real-world context and thereby give personalized feedback to improve health.
Collapse
Affiliation(s)
- Willem van den Brink
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robbert Bloem
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Adithya Ananth
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Thiru Kanagasabapathi
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Arjen Amelink
- Department of Optics, Netherlands Organization for Applied Scientific Research (TNO), Delft, Netherlands
| | - Jildau Bouwman
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Gerwin Gelinck
- Holst Center, Netherlands Organization for Applied Scientific Research (TNO), Eindhoven, Netherlands
| | - Sjaak van Veen
- Department of Environmental Modeling Sensing and Analysis, Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Andre Boorsma
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
37
|
Zhang J, Tian Y, Luo Z, Qian C, Li W, Duan Y. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J Breath Res 2021; 15. [PMID: 34610588 DOI: 10.1088/1752-7163/ac2cde] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a common malignancy, being the fifth most frequently diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Diagnosis of gastric cancer at the early stage is critical to effectively improve the survival rate. However, a substantial proportion of patients with gastric cancer in the early stages lack specific symptoms or are asymptomatic. Moreover, the imaging techniques currently used for gastric cancer screening, such as computed tomography and barium examination, are usually radioactive and have low sensitivity and specificity. Even though endoscopy has high accuracy for gastric cancer screening, its application is limited by the invasiveness of the technique. Breath analysis is an economic, effective, easy to perform, non-invasive detection method, and has no undesirable side effects on subjects. Extensive worldwide research has been conducted on breath volatile organic compounds (VOCs), which reveals its prospect as a potential method for gastric cancer detection. Many interesting results have been obtained and innovative methods have been introduced in this subject; hence, an extensive review would be beneficial. By providing a comprehensive list of breath VOCs identified by gastric cancer would promote further research in this field. This review summarizes the commonly used technologies for exhaled breath analysis, focusing on the application of analytical instruments in the detection of breath VOCs in gastric cancers, and the alterations in the profile of breath biomarkers in gastric cancer patients are discussed as well.
Collapse
Affiliation(s)
- Jing Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
38
|
Hermawan A, Amrillah T, Riapanitra A, Ong W, Yin S. Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breath-Based Biomarker Diagnosis. Adv Healthc Mater 2021; 10:e2100970. [PMID: 34318999 DOI: 10.1002/adhm.202100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
Collapse
Affiliation(s)
- Angga Hermawan
- Faculty of Textile Science and Technology Shinshu University 3‐15‐1 Tokida Ueda Nagano 386‐8567 Japan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| | - Tahta Amrillah
- Department of Nanotechnology Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Anung Riapanitra
- Department of Chemistry Faculty of Mathematics and Natural Science Jenderal Soedirman University Purwokerto 53122 Indonesia
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| |
Collapse
|
39
|
Kalidoss R, Kothalam R, Manikandan A, Jaganathan SK, Khan A, Asiri AM. Socio-economic demands and challenges for non-invasive disease diagnosis through a portable breathalyzer by the incorporation of 2D nanosheets and SMO nanocomposites. RSC Adv 2021; 11:21216-21234. [PMID: 35478818 PMCID: PMC9034087 DOI: 10.1039/d1ra02554f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials. The trace level selective detection of volatile organic compounds (VOCs) in breath facilitates the study of physiological disorder and real-time health monitoring. This review focuses on advancements in chemiresistive gas sensor technology for biomarker detection associated with different diseases. Emphasis is placed on selective biomarker detection by semiconducting metal oxide (SMO) nanostructures, 2-dimensional nanomaterials (2DMs) and nanocomposites through various optimization strategies and sensing mechanisms. Their synergistic properties for incorporation in a portable breathalyzer have been elucidated. Furthermore, the socio-economic demands of a breathalyzer in terms of recent establishment of startups globally and challenges of a breathalyzer are critically reviewed. This initiative is aimed at highlighting the challenges and scope for improvement to realize a high performance chemiresistive gas sensor for non-invasive disease diagnosis. Breath analysis for non-invasive clinical diagnostics and treatment progression has penetrated the research community owing to the technological developments in novel sensing nanomaterials.![]()
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India +91-9840-959832
| | - Radhakrishnan Kothalam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| | - A Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India.,Centre for Nanoscience and Nanotechnology, Bharath Institute of Higher Education and Research Selaiyur Tamil Nadu 600 073 India
| | - Saravana Kumar Jaganathan
- Bionanotechnology Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam.,Department of Engineering, Faculty of Science and Engineering, University of Hull HU6 7RX UK
| | - Anish Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
40
|
Wang W, Zhou W, Wang S, Huang J, Le Y, Nie S, Wang W, Guo Q. Accuracy of breath test for diabetes mellitus diagnosis: a systematic review and meta-analysis. BMJ Open Diabetes Res Care 2021; 9:9/1/e002174. [PMID: 34031142 PMCID: PMC8149324 DOI: 10.1136/bmjdrc-2021-002174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 11/05/2022] Open
Abstract
The review aimed to investigate the accuracy of breath tests in the diagnosis of diabetes mellitus, identify exhaled volatile organic compounds with the most evidence as potential biomarkers, and summarize prospects and challenges in diabetic breath tests. Databases including Medline, PubMed, EMBASE, Cochrane Library and Science Citation Index Expanded were searched. Human studies describing diabetic breath analysis with more than 10 subjects as controls and patients were included. Population demographics, breath test conditions, biomarkers, analytical techniques and diagnostic accuracy were extracted. Quality assessment was performed with the Standards for Reporting Diagnostic Accuracy and a modified QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2). Forty-four research with 2699 patients with diabetes were included for qualitative data analysis and 14 eligible studies were used for meta-analysis. Pooled analysis of type 2 diabetes breath test exhibited sensitivity of 91.8% (95% CI 83.6% to 96.1%), specificity of 92.1% (95% CI 88.4% to 94.7%) and area under the curve (AUC) of 0.96 (95% CI 0.94 to 0.97). Isotopic carbon dioxide (CO2) showed the best diagnostic accuracy with pooled sensitivity of 0.949 (95% CI 0.870 to 0.981), specificity of 0.946 (95% CI 0.891 to 0.975) and AUC of 0.98 (95% CI 0.97 to 0.99). As the most widely reported biomarker, acetone showed moderate diagnostic accuracy with pooled sensitivity of 0.638 (95% CI 0.511 to 0.748), specificity of 0.801 (95% CI 0.691 to 0.878) and AUC of 0.79 (95% CI 0.75 to 0.82). Our results indicate that breath test is a promising approach with acceptable diagnostic accuracy for diabetes mellitus and isotopic CO2 is the optimal breath biomarker. Even so, further validation and standardization in subject control, breath sampling and analysis are still required.
Collapse
Affiliation(s)
- Wenting Wang
- Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenzhao Zhou
- Department of Biology and Chemistry, Zhejiang Institute of Metrology, Hangzhou, China
| | - Sheng Wang
- Department of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jinyu Huang
- Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanna Le
- Hangzhou Medical Association, Hangzhou, China
| | - Shijiao Nie
- Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijue Wang
- School of Humanities and Management, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qing Guo
- Department of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Humanities and Management, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Zohar O, Khatib M, Omar R, Vishinkin R, Broza YY, Haick H. Biointerfaced sensors for biodiagnostics. VIEW 2021. [DOI: 10.1002/viw.20200172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Orr Zohar
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Muhammad Khatib
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Rawan Omar
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Rotem Vishinkin
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Yoav Y. Broza
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
| | - Hossam Haick
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute Technion–Israel Institute of Technology Haifa Israel
- School of Advanced Materials and Nanotechnology Xidian University Xi'an Shaanxi P. R. China
| |
Collapse
|
42
|
Chen X, Muhammad KG, Madeeha C, Fu W, Xu L, Hu Y, Liu J, Ying K, Chen L, Yurievna GO. Calculated indices of volatile organic compounds (VOCs) in exhalation for lung cancer screening and early detection. Lung Cancer 2021; 154:197-205. [PMID: 33653598 DOI: 10.1016/j.lungcan.2021.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breath analysis is a promising noninvasive technique that offers a wide range of opportunities to facilitate early diagnosis of lung cancer (LC). METHOD Exhaled breath samples of 352 subjects including 160 with lung cancer (LC), 70 with benign pulmonary nodule (BPN) and 122 healthy controls (HC) were analyzed through thermal desorption coupled with gas chromatography-mass spectrometry (TD-GC-MS) to obtain the metabolic information from volatile organic compounds (VOCs). Statistical classification models were used to find diagnostic clusters of VOCs for the discrimination of HC, BPN and LC patients' early and advanced stages, as well as subtypes of LC. Receiver operator characteristics (ROC) curves with 5-fold validations were used to evaluate the accuracy of these models. RESULTS The analysis revealed that 20, 19, 19, and 20 VOCs discriminated LC from HC, LC from BPN, histology and LC stages respectively. The calculated diagnostic indices showed a large area under the curve (AUC) to distinguish HC from LC (AUC: 0.987, 95 % confidence interval (CI): 0.976-0.997), BPN from LC (AUC: 0.809, 95 % CI: 0.758-0.860), NSCLC from SCLC (AUC: 0.939, 95 % CI: 0.875-0.995) and Stage III from stage III-IV (AUC: 0.827, 95 % CI: 0.768-0.886). The comparison between the high-risk groups (BPN and HC smokers) and early stages LC resulted in the AUC of 0.756 (95 %CI: 0.681-0.817) for BPN vs. early stage LC and AUC of 0.986 (95 % CI: 0.972-0.994) for HC smoker vs. early stage LC. CONCLUSION Volatome of breath of the LC patients was significantly different from that of both BPN patients and HC and showed an ability of distinguishing early from advance stage LC and NSCLC from SCLC. We conclude that the volatome has a potential to help improve early diagnosis of LC.
Collapse
Affiliation(s)
- Xing Chen
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kanhar Ghulam Muhammad
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Channa Madeeha
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wei Fu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Linxin Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yanjie Hu
- Zhejiang Sir Run Run Shaw Hospital, Department of Medicine, Zhejiang University, Hangzhou, China.
| | - Jun Liu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kejing Ying
- Zhejiang Sir Run Run Shaw Hospital, Department of Medicine, Zhejiang University, Hangzhou, China.
| | - Liying Chen
- Zhejiang Sir Run Run Shaw Hospital, Department of Medicine, Zhejiang University, Hangzhou, China.
| | - Gorlova Olga Yurievna
- Department of Medicine Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
43
|
Neyrinck AM, Rodriguez J, Zhang Z, Seethaler B, Mailleux F, Vercammen J, Bindels LB, Cani PD, Nazare JA, Maquet V, Laville M, Bischoff SC, Walter J, Delzenne NM. Noninvasive monitoring of fibre fermentation in healthy volunteers by analyzing breath volatile metabolites: lessons from the FiberTAG intervention study. Gut Microbes 2021; 13:1-16. [PMID: 33461385 PMCID: PMC7833774 DOI: 10.1080/19490976.2020.1862028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 02/04/2023] Open
Abstract
The fermentation of dietary fibre (DF) leads to the production of bioactive metabolites, the most volatile ones being excreted in the breath. The aim of this study was to analyze the profile of exhaled breath volatile metabolites (BVM) and gastrointestinal symptoms in healthy volunteers after a single ingestion of maltodextrin (placebo) versus chitin-glucan (CG), an insoluble DF previously shown to be fermented into short-chain fatty acids (SCFA) by the human microbiota in vitro. Maltodextrin (4.5 g at day 0) or CG (4.5 g at day 2) were added to a standardized breakfast in fasting healthy volunteers (n = 15). BVM were measured using selected ion flow tube mass spectrometry (SIFT-MS) throughout the day. A single ingestion of 4.5 g CG did not induce significant gastrointestinal discomfort. Untargeted metabolomics analysis of breath highlighted that 13 MS-fragments (among 408 obtained from ionizations of breath) discriminated CG versus maltodextrin acute intake in the posprandial state. The targeted analysis revealed that CG increased exhaled butyrate and 5 other BVM - including the microbial metabolites 2,3-butanedione and 3-hydroxybutanone - with a peak observed 6 h after CG intake. Correlation analyses with fecal microbiota (Illumina 16S rRNA sequencing) spotlighted Mitsuokella as a potential genus responsible for the presence of butyric acid, triethylamine and 3-hydroxybutanone in the breath. In conclusion, measuring BMV in the breath reveals the microbial signature of the fermentation of DF after a single ingestion. This protocol allows to analyze the time-course of released bioactive metabolites that could be proposed as new biomarkers of DF fermentation, potentially linked to their biological properties. Trial registration: Clinical Trials NCT03494491. Registered 11 April 2018 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03494491.
Collapse
Affiliation(s)
- Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Zhengxiao Zhang
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Florence Mailleux
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Joeri Vercammen
- Interscience, Louvain-la-Neuve, Belgium
- Engineering, Industrial Catalysis and Adsorption Technology (INCAT), Ghent University, Ghent, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Julie-Anne Nazare
- Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, Lyon, France
| | | | - Martine Laville
- Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, Lyon, France
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science and Department of Biological Sciences, University of Alberta, Edmonton, Canada
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork – National University of Ireland, Cork, Ireland
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
44
|
Mass Spectrometry-based Metabolomics in Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:509-531. [PMID: 33834448 DOI: 10.1007/978-981-33-6064-8_19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metabolomics is the systematic study of metabolite profiles of complex biological systems, and involves the systematic identification and quantification of metabolites. Metabolism is integrated with all biochemical reactions in biological systems; thus metabolite profiles provide collective information on biochemical processes induced by genetic or environmental perturbations. Transcriptomes or proteomes may not be functionally active and not always reflect phenotypic variations. The metabolome, however, consists of the biomolecules closest to the phenotype of living organisms, and is often called the molecular phenotype of biological systems. Thus, metabolome alterations can easily result in disease states, providing important clues to understand pathophysiological mechanisms contributing to various biomedical symptoms. The metabolome and metabolomics have been emphasized in translational research related to biomarker discovery, drug target discovery, drug responses, and disease mechanisms. This review describes the basic concepts, workflows, and applications of mass spectrometry-based metabolomics in translational research.
Collapse
|
45
|
Sánchez-Vicente C, Santos JP, Lozano J, Sayago I, Sanjurjo JL, Azabal A, Ruiz-Valdepeñas S. Graphene-Doped Tin Oxide Nanofibers and Nanoribbons as Gas Sensors to Detect Biomarkers of Different Diseases through the Breath. SENSORS 2020; 20:s20247223. [PMID: 33348560 PMCID: PMC7767173 DOI: 10.3390/s20247223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
This work presents the development of tin oxide nanofibers (NFs) and nanoribbons (NRs) sensors with graphene as a dopant for the detection of volatile organic compounds (VOCs) corresponding to different chronic diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis or diabetes). This research aims to determine the ability of these sensors to differentiate between gas samples corresponding to healthy people and patients with a disease. The nanostructures were grown by electrospinning and deposited on silicon substrates with micro-heaters integrated. The morphology of NFs and NRs was characterized by Scanning Electron Microscopy (SEM). A gas line was assembled and programmed to measure a wide range of gases (ethanol, acetone, NO and CO) at different concentrations simulating human breath conditions. Measurements were made in the presence and absence of humidity to evaluate its effect. The sensors were able to differentiate between the concentrations corresponding to a healthy person and a patient with one of the selected diseases. These were sensitive to biomarkers such as acetone and ethanol at low operating temperatures (with responses above 35%). Furthermore, CO and NO response was at high temperatures (above 5%). The sensors had a rapid response, with times of 50 s and recovery periods of about 10 min.
Collapse
Affiliation(s)
- Carlos Sánchez-Vicente
- Institute of Physics Technology and Information (CSIC), 28006 Madrid, Spain; (J.P.S.); (I.S.); (J.L.S.)
- Up Devices and Technologies, 28021 Madrid, Spain; (A.A.); (S.R.-V.)
- Correspondence:
| | - José Pedro Santos
- Institute of Physics Technology and Information (CSIC), 28006 Madrid, Spain; (J.P.S.); (I.S.); (J.L.S.)
| | - Jesús Lozano
- Industrial Engineering School, University of Extremadura, 06006 Badajoz, Spain;
| | - Isabel Sayago
- Institute of Physics Technology and Information (CSIC), 28006 Madrid, Spain; (J.P.S.); (I.S.); (J.L.S.)
| | - José Luis Sanjurjo
- Institute of Physics Technology and Information (CSIC), 28006 Madrid, Spain; (J.P.S.); (I.S.); (J.L.S.)
| | - Alfredo Azabal
- Up Devices and Technologies, 28021 Madrid, Spain; (A.A.); (S.R.-V.)
| | | |
Collapse
|
46
|
A ppm Ethanol Sensor Based on Fabry-Perot Interferometric Surface Stress Transducer at Room Temperature. SENSORS 2020; 20:s20236868. [PMID: 33266348 PMCID: PMC7731219 DOI: 10.3390/s20236868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Disease screening by exhaled breath diagnosis is less burdensome for patients, and various devices have been developed as promising diagnostic methods. We developed a microelectromechanical system (MEMS) optical interferometric surface stress sensor to detect volatile ethanol gas at room temperature (26~27 °C) with high sensitivity. A sub-micron air gap in the optical interferometric sensor reduces interference orders, leading to increased spectral response associated with nanomechanical deflection caused by ethanol adsorption. The sub-micron cavity was embedded in a substrate using a transfer technique of parylene-C nanosheet. The sensor with a 0.4 µm gap shows a linear stable reaction, with small standard deviations, even at low ethanol gas concentrations of 5–110 ppm and a reversible reaction to the gas concentration change. Furthermore, the possibility of detecting sub-ppm ethanol concentration by optimizing the diameter and thickness of the deformable membrane is suggested. Compared with conventional MEMS surface stress gas sensors, the proposed optical interferometric sensor demonstrated high-sensitivity gas detection with exceeding the detection limit by two orders of magnitude while reducing the sensing area.
Collapse
|
47
|
Kalidoss R, Surya VJ, Sivalingam Y. Recent Progress in Graphene Derivatives/Metal Oxides Binary Nanocomposites Based Chemi-resistive Sensors for Disease Diagnosis by Breath Analysis. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411017999201125203955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
The scientific and clinical interest of breath analysis for non-invasive disease diagnosis has been focused by the scientific community over the past decade. This was due to the exhalation of prominent volatile organic compounds (VOCs) corresponding to the metabolic activities in the body and their concentration variation. To identify these biomarkers, various analytical techniques have been used in the past and the threshold concentration was established between a healthy and diseased state. Subsequently, various nanomaterials-based gas sensors were explored for their demand in quantifying these biomarkers for real-time, low cost and portable breathalyzers along with the essential sensor performances.
Methods::
We focus on the classification of graphene derivatives and their composites’ gas sensing efficiency for the application in the development of breathalyzers. The review begins with the feasibility of the application of nanomaterial gas sensors for healthcare applications. Then, we systematically report the gas sensing performance of various graphene derivatives/semiconductor metal oxides (SMO) binary nanocomposites and their optimizing strategies in selective detection of biomarkers specific to diseases. Finally, we provide insights on the challenges, opportunity and future research directions for the development of breathalyzers using other graphene derivatives/SMO binary nanocomposites.
Results::
On the basis of these analyses, graphene and its derivatives/metal oxides based binary nanocomposites have been a choice for gas sensing material owing to their high electrical conductivity and extraordinary thickness-dependent physicochemical properties. Moreover, the presence of oxygen vacancies in SMO does not only alter the conductivity but also accelerates the carrier transport rate and influence the adsorption behavior of target analyte on the sensing materials. Hence researchers are exploring the search of ultrathin graphene and metal oxide counterpart for high sensing performances.
Conclusion::
Their impressive properties compared to their bulk counterpart have been uncovered towards sensitive and selective detection of biomarkers for its use in portable breathalyzers.
Collapse
Affiliation(s)
- Ramji Kalidoss
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research, Selaiyur, 600073, Tamil Nadu,, India
| | - Velappa Jayaraman Surya
- Department of Physics and Nanotechnology, Novel, Advanced, and Applied Materials (NAAM) Laboratory, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu,, India
| | - Yuvaraj Sivalingam
- Department of Physics and Nanotechnology, Laboratory for Sensors, Energy and Electronic Devices (Lab SEED), SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu 603203,, India
| |
Collapse
|
48
|
Hancock G, Sharma S, Galpin M, Lunn D, Megson C, Peverall R, Richmond G, Ritchie GAD, Owen KR. The correlation between breath acetone and blood betahydroxybutyrate in individuals with type 1 diabetes. J Breath Res 2020; 15:017101. [PMID: 33027776 DOI: 10.1088/1752-7163/abbf37] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ketone testing is an important element of the self-management of illness in type 1 diabetes. The aim of the present study was to see if a breath test for acetone could be used to predict quantitatively the levels of the ketone betahydroxybutyrate in the blood of those with type 1 diabetes, and thus be used as an alternative to capillary testing for ketones. Simultaneous capillary ketones and breath acetone were measured in 72 individuals with type 1 diabetes attending a diabetes clinic and on 9 individuals admitted to hospital with diabetic ketoacidosis. Capillary blood measurements ranged from 0.1 mmol l-1 (the lower limit of the ketone monitor) to over 7 mmol l-1, with breath acetone varying between 0.25 and 474 parts per million by volume. The two variables were found to be correlated and allowed modelling to be carried out which separated breath acetone levels into three categories corresponding to normal, elevated and 'at risk' levels of blood ketones. The results on this limited set of participants suggest that a breath acetone test could be a simple, non-invasive substitute for capillary ketone measurement in type 1 diabetes.
Collapse
Affiliation(s)
- Gus Hancock
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Banik GD, Mizaikoff B. Exhaled breath analysis using cavity-enhanced optical techniques: a review. J Breath Res 2020; 14:043001. [PMID: 32969348 DOI: 10.1088/1752-7163/abaf07] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cavity-enhanced absorption spectroscopies (CEAS) have gained importance in a wide range of applications in molecular spectroscopy. The development of optical sensors based on the CEAS techniques coupled with the continuous wave or pulsed laser sources operating in the mid-infrared or near-infrared spectral regime uniquely offers molecularly selective and ultra-sensitive detection of trace species in complex matrices including exhaled human breath. In this review, we discussed recent applications of CEAS for analyzing trace constituents within the exhaled breath matrix facilitating the non-invasive assessment of human health status. Next to a brief discussion on the mechanisms of formation of trace components found in the exhaled breath matrix related to particular disease states, existing challenges in CEAS and future development towards non-invasive clinical diagnostics will be discussed.
Collapse
Affiliation(s)
- Gourab D Banik
- Institute of Analytical and Bioanalytical Chemistry, Ulm University Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
50
|
Dumitras DC, Petrus M, Bratu AM, Popa C. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review. Molecules 2020; 25:E1728. [PMID: 32283766 PMCID: PMC7180475 DOI: 10.3390/molecules25071728] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
In this review, applications of near-infrared photoacoustic spectroscopy are presented as an opportunity to evaluate human respiration because the measurement of breath is fast, intact and simple to implement. Recently, analytical methods for measuring biomarkers in exhaled air have been extensively developed. With laser-based photoacoustic spectroscopy, volatile organic compounds can be identified with high sensitivity, at a high rate, and with very good selectivity. The literature review has shown the applicability of near-infrared photoacoustic spectroscopy to one of the problems of the real world, i.e., human health. In addition, the review will consider and explore different breath sampling methods for human respiration analysis.
Collapse
Affiliation(s)
- Dan C. Dumitras
- University “Politehnica” of Bucharest, Physics Department, Faculty of Applied Sciences, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Mioara Petrus
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| | - Ana-Maria Bratu
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| | - Cristina Popa
- National Institute for Laser, Plasma and Radiation Physics, Laser Department, 409 Atomistilor St., PO Box MG 36, 077125 Magurele, Romania; (M.P.); (A.-M.B.); (C.P.)
| |
Collapse
|