1
|
Nong TAT, Le TTH, Vu VT, Nguyen MQ, Can DQH, Dong THY, Nguyen TPT, Hoang VH, Nguyen PH. Inhibitory Activity of Compounds Isolated from Ligustrum robustum (Roxb.) Against HepG2 Liver Cancer Cells: Isocubein and 4-(2-Acetoxyethyl)phenol as Potential Candidates. Chem Biodivers 2024; 21:e202401065. [PMID: 39004876 DOI: 10.1002/cbdv.202401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Many herbal species in the genus Ligustrum have been shown to contain compounds with anti-cancer biological activity. This study aimed to isolate some compounds from the leaves of Ligustrum robustum (Roxb.) Blume (L. robustum) and evaluate their effects against liver cancer cells. As a result, seven previously reported compounds (1-7) were isolated, including four lignans (1-4) and three phenolic derivatives (5-7). The structures of these compounds were determined using spectroscopic methods and comparison with reported data. All isolates were assessed for their inhibitory effects on HepG2 liver cancer cells. Screening results revealed that two compounds, isocubein (3) and 4-(2-acetoxyethyl)phenol (7), exhibited strong inhibitory activity against cell proliferation, with IC50 values of 3.1±0.9 and 4.5±14 μM, respectively. Further analyses demonstrated that both compounds could suppress the formation and development of 3D tumorspheres in terms of quantity and size. Additionally, isocubein (3) and 4-(2-acetoxyethyl)phenol (7) exhibited the ability to inhibit the migration of HepG2 cells. This study represents the first report on the inhibitory activity against HepG2 liver cancer cells of extracts and isolated compounds from L. robustum, providing valuable information for future research aiming to develop products for liver cancer treatment.
Collapse
Affiliation(s)
- Thi Anh Thu Nong
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Thanh Huong Le
- Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Van Tuan Vu
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Mai Quynh Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Dinh Quang Hung Can
- Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Hoang Yen Dong
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Phuong Thao Nguyen
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Van Hung Hoang
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Phu Hung Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| |
Collapse
|
2
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
3
|
Sevimli TS, Ghorbani A, Gakhiyeva F, Cevizlidere BD, Sevimli M. Boric Acid Alters the Expression of DNA Double Break Repair Genes in MCF-7-Derived Breast Cancer Stem Cells. Biol Trace Elem Res 2024; 202:3980-3987. [PMID: 38087035 DOI: 10.1007/s12011-023-03987-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 07/18/2024]
Abstract
Breast cancer pathology ranks second in mortality among women worldwide due to the resistance of cancer stem cells in tumor tissue to radiotherapy and chemotherapy and their effective DNA damage response system (DDR). Targeting the expression of DNA double-strand break (DSB) repair genes in breast cancer stem cells (BC-SCs) is essential for facilitating their elimination with conventional therapies. This study aims to investigate the effects of boric acid (BA) on the expression of DNA DSB repair genes in BC-SCs, which has not been studied in the literature before. BS-SCs were isolated by the MACS method and characterized by flow cytometry. The effects of BA on BC-SCs' DNA DSB repair genes were deciphered by cell viability assay, inverted microscopy, and RT-qPCR. While the expression of the BRCA1 and BRCA2 was upregulated, the expression of the ATM (p < 0.001), RAD51 (p < 0.001), and KU70 (p < 0.001) was downregulated in dose-treated BC-SCs (p < 0.001) to the qPCR results. Consequently, BA affects some of the DNA DSB repair genes of breast cancer stem cells. Findings from this study could provide new insights into the potential therapeutic application of BA in BC-SC elimination and cancer intervention.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey.
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey.
| | - Aynaz Ghorbani
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Fidan Gakhiyeva
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Bahar Demir Cevizlidere
- Department of Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Eskişehir Osmangazi University, Eskisehir, 26040, Turkey
| |
Collapse
|
4
|
Bi Y, Zhang L, Song Y, Sun L, Mulholland MW, Yin Y, Zhang W. Rspo2-LGR4 exacerbates hepatocellular carcinoma progression via activation of Wnt/β-catenin signaling pathway. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:352-365. [PMID: 37437654 PMCID: PMC10863972 DOI: 10.1016/j.gastrohep.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND The leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4) plays an important role in stem cell differentiation, organ development and cancer. Whether LGR4 affects the progression of hepatocellular carcinoma (HCC) remains unknown. This study aimed to reveal the role of LGR4 in HCC. METHODS Clinical samples of HCC were collected to assess the expression of LGR4 and its correlation with patients' clinical characteristics. The expression level of LGR4 in HCC cells was altered by pharmacological and genetic methods, and the role of LGR4 in HCC progression was analyzed by in vivo and in vitro assays. HCC was induced by diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) in wild-type and LGR4 deficient mice, the effect of LGR4 on HCC was examined by histopathological evaluation and biochemical assays. RESULTS LGR4 expression was up-regulated in HCC samples, and its expression level was positively correlated with tumor size, microvascular invasion (MVI), TNM stage and pathological differentiation grade of HCC patients. In the mouse HCC model induced by DEN+CCl4, knockdown of LGR4 effectively inhibited the progression of HCC. Silencing of LGR4 inhibited the proliferation, migration, invasion, stem cell-like properties and Warburg effect of HCC cells. These phenotypes were promoted by R-spondin2 (Rspo2), an endogenous ligand for LGR4. Rspo2 markedly increased the nuclear translocation of β-catenin, whereas IWR-1, an inhibitor of Wnt/β-catenin signaling, reversed its effect. Deficiency of LGR4 significantly reduced the nuclear translocation of β-catenin and the expression of its downstream target genes cyclinD1 and c-Myc. CONCLUSIONS LGR4 promotes HCC progression via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yanghui Bi
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liping Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yan Song
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijun Sun
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China.
| | - Weizhen Zhang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Luu N, Zhang S, Lam RHW, Chen W. Mechanical Constraints in Tumor Guide Emergent Spatial Patterns of Glioblastoma Cancer Stem Cells. MECHANOBIOLOGY IN MEDICINE 2024; 2:100027. [PMID: 38770108 PMCID: PMC11105673 DOI: 10.1016/j.mbm.2023.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The mechanical constraints in the overcrowding glioblastoma (GBM) microenvironment have been implicated in the regulation of tumor heterogeneity and disease progression. Especially, such mechanical cues can alter cellular DNA transcription and give rise to a subpopulation of tumor cells called cancer stem cells (CSCs). These CSCs with stem-like properties are critical drivers of tumorigenesis, metastasis, and treatment resistance. Yet, the biophysical and molecular machinery underlying the emergence of CSCs in tumor remained unexplored. This work employed a two-dimensional micropatterned multicellular model to examine the impact of mechanical constraints arisen from geometric confinement on the emergence and spatial patterning of CSCs in GBM tumor. Our study identified distinct spatial distributions of GBM CSCs in different geometric patterns, where CSCs mostly emerged in the peripheral regions. The spatial pattern of CSCs was found to correspond to the gradients of mechanical stresses resulted from the interplay between the cell-ECM and cell-cell interactions within the confined environment. Further mechanistic study highlighted a Piezo1-RhoA-focal adhesion signaling axis in regulating GBM cell mechanosensing and the subsequent CSC phenotypic transformation. These findings provide new insights into the biophysical origin of the unique spatial pattern of CSCs in GBM tumor and offer potential avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ngoc Luu
- Department of Biomedical Engineering, New York University, Brooklyn, NY, USA
| | - Shuhao Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, Brooklyn, NY, USA
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, USA
| |
Collapse
|
6
|
Zhao Q, Zong H, Zhu P, Su C, Tang W, Chen Z, Jin S. Crosstalk between colorectal CSCs and immune cells in tumorigenesis, and strategies for targeting colorectal CSCs. Exp Hematol Oncol 2024; 13:6. [PMID: 38254219 PMCID: PMC10802076 DOI: 10.1186/s40164-024-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemotherapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are characterized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the integration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive microenvironment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Zong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chang Su
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jing‑ba Road, Zhengzhou, 450014, China.
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Liu F, Zheng J, Yang G, Pan L, Xie Y, Chen S, Tuo J, Su J, Ou X, Liu R. Unraveling the enigma of B cells in diffuse large B-cell lymphoma: unveiling cancer stem cell-like B cell subpopulation at single-cell resolution. Front Immunol 2023; 14:1310292. [PMID: 38149239 PMCID: PMC10750418 DOI: 10.3389/fimmu.2023.1310292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) represents the most prevalent form of aggressive non-Hodgkin lymphoma. Despite receiving standard treatment, a subset of patients undergoes refractory or recurrent cases, wherein the involvement of cancer stem cells (CSCs) could be significant. Methods We comprehensively characterized B cell subpopulations using single-cell RNA sequencing data from three DLBCL samples and one normal lymph tissue. The CopyKat R package was employed to assess the malignancy of B cell subpopulations based on chromosomal copy number variations. CIBERSORTx software was utilized to estimate the proportions of B cell subpopulations in 230 DLBCL tissues. Furthermore, we employed the pySCENIC to identify key transcription factors that regulate the functionality of B cell subpopulations. By employing CellphoneDB, we elucidated the interplay among tumor microenvironment components within the B cell subpopulations. Finally, we validated our findings through immunofluorescence experiments. Results Our analysis revealed a specific cancer stem cell-like B cell subpopulation exhibiting self-renewal and multilineage differentiation capabilities based on the exploration of B cell subpopulations in DLBCL and normal lymph tissues at the single-cell level. Notably, a high infiltration of cancer stem cell-like B cells correlated with a poor prognosis, potentially due to immune evasion mediated by low expression of major histocompatibility complex molecules. Furthermore, we identified key transcription factor regulatory networks regulated by HMGB3, SAP30, and E2F8, which likely played crucial roles in the functional characterization of the cancer stem cell-like B cell subpopulation. The existence of cancer stem cell-like B cells in DLBCL was validated through immunofluorescent staining. Finally, cell communication between B cells and tumor-infiltrating T cell subgroups provided further insights into the functional characterization of the cancer stem cell-like B cell subpopulation. Conclusions Our research provides a systematic description of a specific cancer stem cell-like B cell subpopulation associated with a poor prognosis in DLBCL. This study enhances our understanding of CSCs and identifies potential therapeutic targets for refractory or recurrent DLBCL patients.
Collapse
Affiliation(s)
- Fengling Liu
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Zheng
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Gaohui Yang
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Pan
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanni Xie
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siyu Chen
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinwei Tuo
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinxia Su
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuyi Ou
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongrong Liu
- Department of Hematology, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Liu Q, Guo Z, Li G, Zhang Y, Liu X, Li B, Wang J, Li X. Cancer stem cells and their niche in cancer progression and therapy. Cancer Cell Int 2023; 23:305. [PMID: 38041196 PMCID: PMC10693166 DOI: 10.1186/s12935-023-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
High recurrence and metastasis rates and poor prognoses are the major challenges of current cancer therapy. Mounting evidence suggests that cancer stem cells (CSCs) play an important role in cancer development, chemoradiotherapy resistance, recurrence, and metastasis. Therefore, targeted CSC therapy has become a new strategy for solving the problems of cancer metastasis and recurrence. Since the properties of CSCs are regulated by the specific tumour microenvironment, the so-called CSC niche, which targets crosstalk between CSCs and their niches, is vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. In this review, we aim to highlight the factors within the CSC niche that have important roles in regulating CSC properties, including the extracellular matrix (ECM), stromal cells (e.g., associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and mesenchymal stem cells (MSCs)), and physiological changes (e.g., inflammation, hypoxia, and angiogenesis). We also discuss recent progress regarding therapies targeting CSCs and their niche to elucidate developments of more effective therapeutic strategies to eliminate cancer.
Collapse
Affiliation(s)
- Qiuping Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Zongliang Guo
- Department of General Surgery, Shanxi Province Cancer Hospital, Affiliated of Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Guoyin Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Yunxia Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Bing Li
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China
| | - Jinping Wang
- Department of Ultrasound, Shanxi Province People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Xiaoyan Li
- Department of blood transfusion, Shanxi Provincial People's Hospital, Taiyuan, 030032, Shanxi, China.
- Department of central laboratory, Shanxi Provincial People's Hospital, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
9
|
Fernandes Q, Therachiyil L, Khan AQ, Bedhiafi T, Korashy HM, Bhat AA, Uddin S. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. Eur J Pharm Sci 2023; 191:106586. [PMID: 37729956 DOI: 10.1016/j.ejps.2023.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Cancer remains one of the leading causes of mortality worldwide, presenting a significant healthcare challenge owing to the limited efficacy of current treatments. The application of nanotechnology in cancer treatment leverages the unique optical, magnetic, and electrical attributes of nanomaterials to engineer innovative, targeted therapies. Specifically, manipulating nanomaterials allows for enhanced drug loading efficiency, improved bioavailability, and targeted delivery systems, reducing the non-specific cytotoxic effects characteristic of conventional chemotherapies. Furthermore, recent advances in nanotechnology have demonstrated encouraging results in specifically targeting CSCs, a key development considering the role of these cells in disease recurrence and resistance to treatment. Despite these breakthroughs, the clinical approval rates of nano-drugs have not kept pace with research advances, pointing to existing obstacles that must be addressed. In conclusion, nanotechnology presents a novel, powerful tool in the fight against cancer, particularly in targeting the elusive and treatment-resistant CSCs. This comprehensive review delves into the intricacies of nanotherapy, explicitly targeting cancer stem cells, their markers, and associated signaling pathways.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, Qatar University, Doha, Qatar; Translational Cancer Research Facility, Hamad Medical Corporation, National Center for Cancer Care and Research, PO. Box 3050, Doha, Qatar
| | - Lubna Therachiyil
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Abdul Q Khan
- Academic Health System, Hamad Medical Corporation, Translational Research Institute, Doha 3050, Qatar
| | - Takwa Bedhiafi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- College of Medicine, Qatar University, Doha, Qatar; Academic Health System, Hamad Medical Corporation, Dermatology Institute, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602, India.
| |
Collapse
|
10
|
Zhang W, Zhou R, Liu X, You L, Chen C, Ye X, Liu J, Liang Y. Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review). Int J Oncol 2023; 63:126. [PMID: 37711063 PMCID: PMC10609468 DOI: 10.3892/ijo.2023.5574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer stem cells (CSCs) constitute a specific subset of cells found within tumors that are responsible for initiating, advancing and resisting traditional cancer treatments. M2 macrophages, also known as alternatively activated macrophages, contribute to the development and progression of cancer through their involvement in promoting angiogenesis, suppressing the immune system, supporting tumor growth and facilitating metastasis. Exosomes, tiny vesicles released by cells, play a crucial role in intercellular communications and have been shown to be associated with cancer development and progression by influencing the immune response; thus, they may serve as markers for diagnosis and prognosis. Currently, investigating the impact of exosomes derived from M2 macrophages on the maintenance of CSCs is a crucial area of research with the aim of developing novel therapeutic strategies to target this process and improve outcomes for individuals with cancer. Understanding the biological functions of exosomes derived from M2 macrophages and their involvement in cancer may lead to the formulation of novel diagnostic tools and treatments for this disease. By targeting M2 macrophages and the exosomes they secrete, promising prospects emerge for cancer treatment, given their substantial contribution to cancer development and progression. Further research is required to fully grasp the intricate interactions between CSCs, M2 macrophages and exosomes in cancer, and to identify fresh targets for cancer therapy. The present review explores the pivotal roles played by exosomes derived from M2 cells in maintaining the stem‑like properties of cancer cells.
Collapse
Affiliation(s)
- Weiqiong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Ruiping Zhou
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Xin Liu
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Lin You
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Chang Chen
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Xiaoling Ye
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Jie Liu
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Youde Liang
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
- Department of Stomatology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518081, P.R. China
| |
Collapse
|
11
|
Zhu P, Liu B, Fan Z. Noncoding RNAs in tumorigenesis and tumor therapy. FUNDAMENTAL RESEARCH 2023; 3:692-706. [PMID: 38933287 PMCID: PMC11197782 DOI: 10.1016/j.fmre.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2024] Open
Abstract
Tumorigenesis is a complicated process in which numerous modulators are involved in different ways. Previous studies have focused primarily on tumor-associated protein-coding genes such as oncogenes and tumor suppressor genes, as well as their associated oncogenic pathways. However, noncoding RNAs (ncRNAs), rising stars in diverse physiological and pathological processes, have recently emerged as additional modulators in tumorigenesis. In this review, we focus on two typical kinds of ncRNAs: long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). We describe the molecular patterns of ncRNAs and focus on the roles of ncRNAs in cancer stem cells (CSCs), tumor cells, and tumor environmental cells. CSCs are a small subset of tumor cells and are generally considered to be cells that initiate tumorigenesis, and dozens of ncRNAs have been defined as critical modulators in CSC maintenance and oncogenesis. Moreover, ncRNAs are widely involved in oncogenetic processes, including sustaining proliferation, resisting cell death, genome instability, metabolic disorders, immune escape and metastasis. We also discuss the potential applications of ncRNAs in tumor diagnosis and therapy. The progress in ncRNA research greatly improves our understanding of ncRNAs in oncogenesis and provides new potential targets for future tumor therapy.
Collapse
Affiliation(s)
- Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Benyu Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Zisis V, Giannakopoulos NN, Schmitter M, Poulopoulos A, Andreadis D. Cancer Stem Cells' Biomarker ALDH1&2 Increased Expression in Erosive Oral Lichen Planus Compared to Oral Leukoplakia. Cureus 2023; 15:e44278. [PMID: 37772212 PMCID: PMC10532032 DOI: 10.7759/cureus.44278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION ALDH1&2 has been considered an oral cancer stem cell (CSC) marker. Oral carcinogenesis is a process that usually passes through oral potentially malignant disorders (OPMD). Oral lichen planus (OLP) consists of immune-related chronic disorders that have been included in the OPMDs due to their possible transformation into oral cancer. The aim of this study was to investigate the early presence of ALDH1&2 in OLP compared to early oral leukoplakias (OL), especially mildly and non-dysplastic OL. MATERIALS AND METHODS The study type is experimental, and the study design is characterized as semiquantitative research which belongs to the branch of experimental research. The study sample consisted of paraffin-embedded OLP biopsy samples from the archives of the Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece, during the period 2009-2019. The study sample contained 24 cases of OLP (14 erosive and 10 reticular) and 30 cases of OL (16 cases of moderately and severely dysplastic OL and 14 cases of mildly and non-dysplastic OL). The CSC-related biomarker ALDH1&2 was examined using semiquantitative immunohistochemistry (monoclonal antibody sc-166362, Santa Cruz Biotechnology, Dallas, Texas, USA, 1:100). ALDH1&2 expression was evaluated through a scale of 1 to 3 depending on the percentage of positive epithelial cells and was compared to normal epithelium as well as cases of OL (the most prominent OPMD). The statistical analysis was performed with the Pearson chi-square test and the significance level was set at p≤0.05. RESULTS The cytoplasmic staining of ALDH1&2 was observed mostly in the epithelial cells of the basal layer of the epithelium of OLP. Overall, this expression was significantly increased compared to normal epithelium. In addition, statistically significantly higher expression of ALDH1&2 was observed in the erosive form of OLP. Interestingly, this OLP positivity was higher compared to mild and non-dysplastic leukoplakias (p<0.001). CONCLUSIONS ALDH1&2 is a confirmed CSC marker that was found to be clearly increased in OLP and characteristically in erosive OLP epithelium for the first time. Noteworthy, it was more prominent in erosive OLP rather than in mildly and non-dysplastic OL. Whether this pattern of expression raises the red flag of an early epithelial "CSC" phenotype in OLP or that ALDH1&2 expression indicates a response to the OLP inflammatory process requires further investigation.
Collapse
Affiliation(s)
- Vasileios Zisis
- Prosthodontics, Julius-Maximilians-Universität, Würzburg, DEU
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Marc Schmitter
- Prosthodontics, Julius-Maximilians-Universität, Würzburg, DEU
| | | | - Dimitrios Andreadis
- Oral Medicine/Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
13
|
Li L, Ni R, Zheng D, Chen L. Eradicating the tumor "seeds": nanomedicines-based therapies against cancer stem cells. Daru 2023; 31:83-94. [PMID: 36971921 PMCID: PMC10238364 DOI: 10.1007/s40199-023-00456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/05/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES Cancer stem cells (CSCs), a small subpopulation of cells with high tumorigenesis and strong intrinsic drug resistance, exhibit self-renewal and differentiation abilities. CSCs play a crucial role in tumor progression, drug resistance, recurrence and metastasis,and conventional therapy is not enough to eradicate them. Therefore, developing novel therapies targeting CSCs to increase drug sensitivity and preventing relapse is essential. The objective of this review is to present nanotherapies that target and eradicate the tumor "seeds". EVIDENCE ACQUISITION Evidence was collected and sorted from the literature ranging from 2000 to 2022, using appropriate keywords and key phrases as search terms within scientific databases such as Web of Science, PubMed and Google Scholar. RESULTS Nanoparticle drug delivery systems have been successfully applied to gain longer circulation time, more precise targeting capability and better stability during cancer treatment. Nanotechnology-based strategies that have been used to target CSCs, include (1) encapsulating small molecular drugs and genes by nanotechnology, (2) targeting CSC signaling pathways, (3) utilizing nanocarriers targeting for specific markers of CSCs, (4) improving photothermal/ photodynamic therapy (PTT/PDT), 5)targeting the metabolism of CSCs and 6) enhancing nanomedicine-aided immunotherapy. CONCLUSION This review summarizes the biological hallmarks and markers of CSCs, and the nanotechnology-based therapies to kill them. Nanoparticle drug delivery systems are appropriate means for delivering drugs to tumors through enhanced permeability and retention (EPR) effect. Furthermore, surface modification with special ligands or antibodies improves the recognition and uptake of tumor cells or CSCs. It is expected that this review can offer insights into features of CSCs and the exploration of targeting nanodrug delivery systems.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Dan Zheng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, 401147, Chongqing, China.
| |
Collapse
|
14
|
Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep 2023:10.1007/s12015-023-10529-x. [PMID: 37129728 DOI: 10.1007/s12015-023-10529-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The term "cancer stem cells" (CSCs) refers to cancer cells that exhibit traits parallel to normal stem cells, namely the potential to give rise to every type of cell identified in a tumor microenvironment. It has been found that CSCs usually develops from other neoplastic cells or non-cancerous somatic cells by acquiring stemness and malignant characteristics through particular genetic modifications. A trivial number of CSCs, identified in solid and liquid cancer, can give rise to an entire tumor population with aggressive anticancer drug resistance, metastasis, and invasiveness. Besides, cancer stem cells manipulate their intrinsic and extrinsic features, regulate the metabolic pattern of the cell, adjust efflux-influx efficiency, modulate different signaling pathways, block apoptotic signals, and cause genetic and epigenetic alterations to retain their pluripotency and ability of self-renewal. Notably, to keep the cancer stem cells' ability to become malignant cells, mesenchymal stem cells, tumor-associated fibroblasts, immune cells, etc., interact with one another. Furthermore, CSCs are characterized by the expression of particular molecular markers that carry significant diagnostic and prognostic significance. Because of this, scientific research on CSCs is becoming increasingly imperative, intending to understand the traits and behavior of cancer stem cells and create more potent anticancer therapeutics to fight cancer at the CSC level. In this review, we aimed to elucidate the critical role of CSCs in the onset and spread of cancer and the characteristics of CSCs that promote severe resistance to targeted therapy.
Collapse
Affiliation(s)
- Tahsin Nairuz
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
15
|
Ghorbani Z, Heidari M, Jafarinia M, Rohani M, Akbari A. Transcriptional Regulation of the Colorectal Cancer Stem Cell Markers, Nanog and Oct4, Induced by a Thermodynamic-Based Therapy Approach. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:848-856. [PMID: 37551178 PMCID: PMC10404326 DOI: 10.18502/ijph.v52i4.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/10/2022] [Indexed: 08/09/2023]
Abstract
Background Cancer stem cells (CSC), as responsible issues to cancer development and progression, play a crucial role in tumorigenesis, recurrence, metastasis, and chemoresistance. Both hyperthermia and photodynamic therapy (PDT) may be effective for cancer treatment, particularly when combined with other therapeutic approaches. This study aimed to evaluate the effect of hyperthermia combined with PDT on colorectal CSC and the gene expression of the CSC markers, presenting a more effective approach for cancer therapy. Methods The study was conducted in the Pasteur institute of Iran, Tehran, Iran in 2018. We evaluated the anticancer role of hyperthermia, Gold nanoparticles coated with curcumin (Cur-GNPs) in PDT and combination of the two approaches on cell viability and the expression of CSC markers, Nanog and Oct4 in colorectal cancer cell line HT-29. The cytotoxicity effect of Cur-GNPs against the cells was assessed in vitro. The cell viability was assessed using MTT assay, and the expression analysis of the CSC genes was evaluated using a q-real-time PCR. Results Cell viability was decreased by PDT (P=0.015) and the combination therapy (P=0.006) but not by hyperthermia alone (P=0.4), compared to control. Also, the expression of CSC markers, Nanog and Oct4 was shown to significantly down-regulate in all hyperthermia, PDT and combination groups. Conclusion Hyperthermia combined with PDT was indicated to be more efficient in eliminating tumors than hyperthermia or PDT alone.
Collapse
Affiliation(s)
- Zakieh Ghorbani
- Department of Molecular Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mansour Heidari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Jafarinia
- Department of Molecular Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ardalan Khales S, Forghanifard MM, Abbaszadegan MR, Hosseini SE. EZH2 deregulates BMP, Hedgehog, and Hippo cell signaling pathways in esophageal squamous cell carcinoma. Adv Med Sci 2023; 68:21-30. [PMID: 36403545 DOI: 10.1016/j.advms.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Cell signaling pathways play central roles in cellular stemness state, and aberrant activation of these cascades is attributed to the severity of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to determine the potential impact of enhancer of zeste homolog 2 (EZH2) gene on different cell signaling pathways including bone morphogenesis protein (BMP), Hedgehog, and Hippo in ESCC, and to illuminate EZH2-mediated gene regulatory networks in this aggressive malignancy. MATERIALS AND METHODS EZH2 silencing was performed in two ESCC lines, KYSE-30 and YM-1, followed by gene expression analysis of BMP, Hedgehog, and Hippo signaling using RT-qPCR. EZH2 enforced expression was induced in both cell lines and gene expression of the pathways was evaluated in parallel. The contribution of EZH2 in epithelial-mesenchymal transition (EMT) and cell migration were also evaluated. RESULTS EZH2 downregulation decreased expression of the vital components of the Hedgehog and Hippo signaling, while EZH2 upregulation significantly increased its levels in both ESCC cell lines. The expression of BMP target genes was either reduced in EZH2-expressing cells or increased in EZH2-silencing cells. Enforced expression of EZH2 stimulated downregulation of epithelial markers and upregulation of mesenchymal markers in KYSE-30 and YM-1 cells. Significant downregulation of mesenchymal markers was detected following the silencing of EZH2 in the cells. Knocking down EZH2 decreased migration, while enforced expression of EZH2 increased migration in both ESCC lines. CONCLUSIONS These results may support the promoting role of EZH2 in ESCC tumorigenesis through the recruitment of important cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Seyed Ebrahim Hosseini
- Department of Biology, Faculty of Sciences, Zand Institute of Higher Education, Shiraz, Iran
| |
Collapse
|
17
|
Eid RA, Alaa Edeen M, Shedid EM, Kamal ASS, Warda MM, Mamdouh F, Khedr SA, Soltan MA, Jeon HW, Zaki MSA, Kim B. Targeting Cancer Stem Cells as the Key Driver of Carcinogenesis and Therapeutic Resistance. Int J Mol Sci 2023; 24:ijms24021786. [PMID: 36675306 PMCID: PMC9861138 DOI: 10.3390/ijms24021786] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
The emerging concept of cancer stem cells (CSCs) as the key driver behind carcinogenesis, progression, and diversity has displaced the prior model of a tumor composed of cells with similar subsequently acquired mutations and an equivalent capacity for renewal, invasion, and metastasis. This significant change has shifted the research focus toward targeting CSCs to eradicate cancer. CSCs may be characterized using cell surface markers. They are defined by their capacity to self-renew and differentiate, resist conventional therapies, and generate new tumors following repeated transplantation in xenografted mice. CSCs' functional capabilities are governed by various intracellular and extracellular variables such as pluripotency-related transcription factors, internal signaling pathways, and external stimuli. Numerous natural compounds and synthetic chemicals have been investigated for their ability to disrupt these regulatory components and inhibit stemness and terminal differentiation in CSCs, hence achieving clinical implications. However, no cancer treatment focuses on the biological consequences of these drugs on CSCs, and their functions have been established. This article provides a biomedical discussion of cancer at the time along with an overview of CSCs and their origin, features, characterization, isolation techniques, signaling pathways, and novel targeted therapeutic approaches. Additionally, we highlighted the factors endorsed as controlling or helping to promote stemness in CSCs. Our objective was to encourage future studies on these prospective treatments to develop a framework for their application as single or combined therapeutics to eradicate various forms of cancer.
Collapse
Affiliation(s)
- Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
| | - Muhammad Alaa Edeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.A.E.); (B.K.)
| | - Eslam M. Shedid
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Al Shaimaa S. Kamal
- Biotechnology Department, Faculty of Agriculture, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Mona M. Warda
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Farag Mamdouh
- Biotechnology Division, Zoology Department, Faculty of Science, Benha University, Al Qalyubia Governorate, Banha 13511, Egypt
| | - Sohila A. Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia 41611, Egypt
| | - Hee Won Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.A.E.); (B.K.)
| |
Collapse
|
18
|
Quiroz Reyes AG, Lozano Sepulveda SA, Martinez-Acuña N, Islas JF, Gonzalez PD, Heredia Torres TG, Perez JR, Garza Treviño EN. Cancer Stem Cell and Hepatic Stellate Cells in Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231163677. [PMID: 36938618 PMCID: PMC10028642 DOI: 10.1177/15330338231163677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer. It is highly lethal and has high recurrence. Death among HCC patients occur mainly due to tumor progression, recurrence, metastasis, and chemoresistance. Cancer stem cells (CSCs) are cell subpopulations within the tumor that promote invasion, recurrence, metastasis, and drug resistance. Hepatic stellate cells (HSCs) are important components of the tumor microenvironment (TME) responsible for primary secretory ECM proteins during liver injury and inflammation. These cells promote fibrogenesis, infiltrate the tumor stroma, and contribute to HCC development. Interactions between HSC and CSC and their microenvironment help promote carcinogenesis through different mechanisms. This review summarizes the roles of CSCs and HSCs in establishing the TME in primary liver tumors and describes their involvement in HCC chemoresistance.
Collapse
Affiliation(s)
- Adriana G Quiroz Reyes
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Sonia A Lozano Sepulveda
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Natalia Martinez-Acuña
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Jose F Islas
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Paulina Delgado Gonzalez
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Tania Guadalupe Heredia Torres
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Jorge Roacho Perez
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Elsa N Garza Treviño
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
19
|
Osum M, Kalkan R. Cancer Stem Cells and Their Therapeutic Usage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:69-85. [PMID: 36689167 DOI: 10.1007/5584_2022_758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cancer stem cells (CSC) have unique characteristics which include self-renewal, multi-directional differentiation capacity, quiescence/dormancy, and tumor-forming capability. These characteristics are referred to as the "stemness" properties. Tumor microenvironment contributes to CSC survival, function, and remaining them in an undifferentiated state. CSCs can form malignant tumors with heterogeneous phenotypes mediated by the tumor microenvironment. Therefore, the crosstalk between CSCs and tumor microenvironment can modulate tumor heterogeneity. CSCs play a crucial role in several biological processes, epithelial-mesenchymal transition (EMT), autophagy, and cellular stress response. In this chapter, we focused characteristics of cancer stem cells, reprogramming strategies cells into CSCs, and then we highlighted the contribution of CSCs to therapy resistance and cancer relapse and their potential of therapeutic targeting of CSCs.
Collapse
Affiliation(s)
- Meryem Osum
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Cyprus Health and Social Sciences University, Guzelyurt, Cyprus.
| |
Collapse
|
20
|
The Role of Cancer Stem Cells and Their Extracellular Vesicles in the Modulation of the Antitumor Immunity. Int J Mol Sci 2022; 24:ijms24010395. [PMID: 36613838 PMCID: PMC9820747 DOI: 10.3390/ijms24010395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are a population of tumor cells that share similar properties to normal stem cells. CSCs are able to promote tumor progression and recurrence due to their resistance to chemotherapy and ability to stimulate angiogenesis and differentiate into non-CSCs. Cancer stem cells can also create a significant immunosuppressive environment around themselves by suppressing the activity of effector immune cells and recruiting cells that support tumor escape from immune response. The immunosuppressive effect of CSCs can be mediated by receptors located on their surface, as well as by secreted molecules, which transfer immunosuppressive signals to the cells of tumor microenvironment. In this article, the ability of CSCs to regulate the antitumor immune response and a contribution of CSC-derived EVs into the avoidance of the immune response are discussed.
Collapse
|
21
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
22
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
23
|
Cancer Stem Cell Formation Induced and Regulated by Extracellular ATP and Stanniocalcin-1 in Human Lung Cancer Cells and Tumors. Int J Mol Sci 2022; 23:ijms232314770. [PMID: 36499099 PMCID: PMC9740946 DOI: 10.3390/ijms232314770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) are closely associated with metastasis and epithelial mesenchymal transition (EMT). We previously reported that extracellular ATP (eATP) induces and regulates EMT in cancer cells. We recently found that the gene stanniocalcin 1 (STC1) is significantly upregulated by eATP in human non-small lung cancer (NSCLC) A549 cells; however, the relationships among eATP, CSCs, and STC1 were largely unknown. In this study, we performed gene knockdown and knockout, and a wide variety of functional assays to determine if and how eATP and STC1 induce CSCs in NSCLC A549 and H1299 cells. Our data show that, in both cultured cells and tumors, eATP increased the number of CSCs in the cancer cell population and upregulated CSC-related genes and protein markers. STC1 deletion led to drastically slower cell and tumor growth, reduced intracellular ATP levels and CSC markers, and metabolically shifted STC1-deficient cells from an energetic state to a quiescent state. These findings indicate that eATP induces and regulates CSCs at transcriptional, translational, and metabolic levels, and these activities are mediated through STC1 via mitochondria-associated ATP synthesis. These novel findings offer insights into eATP-induced CSCs and identify new targets for inhibiting CSCs.
Collapse
|
24
|
Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022; 18:2209-2233. [PMID: 35876959 PMCID: PMC9489588 DOI: 10.1007/s12015-022-10426-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
The physiological state of the tumor microenvironment (TME) plays a central role in cancer development due to multiple universal features that transcend heterogeneity and niche specifications, like promoting cancer progression and metastasis. As a result of their preponderant involvement in tumor growth and maintenance through several microsystemic alterations, including hypoxia, oxidative stress, and acidosis, TMEs make for ideal targets in both diagnostic and therapeutic ventures. Correspondingly, methodologies to target TMEs have been investigated this past decade as stratagems of significant potential in the genre of focused cancer treatment. Within targeted oncotherapy, nanomedical derivates-nanocarriers (NCs) especially-have emerged to present notable prospects in enhancing targeting specificity. Yet, one major issue in the application of NCs in microenvironmental directed therapy is that TMEs are too broad a spectrum of targeting possibilities for these carriers to be effectively employed. However, cancer stem cells (CSCs) might portend a solution to the above conundrum: aside from being quite heavily invested in tumorigenesis and therapeutic resistance, CSCs also show self-renewal and fluid clonogenic properties that often define specific TME niches. Further scrutiny of the relationship between CSCs and TMEs also points towards mechanisms that underly tumoral characteristics of metastasis, malignancy, and even resistance. This review summarizes recent advances in NC-enabled targeting of CSCs for more holistic strikes against TMEs and discusses both the current challenges that hinder the clinical application of these strategies as well as the avenues that can further CSC-targeting initiatives. Central role of CSCs in regulation of cellular components within the TME.
Collapse
Affiliation(s)
- Aadya Nayak
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
25
|
Altieri R, Broggi G, Certo F, Pacella D, Cammarata G, Maione M, Garozzo M, Barbagallo D, Purrello M, Caltabiano R, Magro G, Barbagallo G. Anatomical distribution of cancer stem cells between enhancing nodule and FLAIR hyperintensity in supratentorial glioblastoma: time to recalibrate the surgical target? Neurosurg Rev 2022; 45:3709-3716. [PMID: 36171505 DOI: 10.1007/s10143-022-01863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022]
Abstract
It is ge nerally accepted that glioblastoma (GBM) arise from cancer stem cells (CSC); however, there is little evidence on their anatomical distribution. We investigated the expression and distribution of SOX-2-positive and CD133-positive CSCs both in the enhancing nodule (EN) of GBM and in the FLAIR hyperintensity zones on a surgical, histopathological series of 33 GBMs. The inclusion criterion was the intraoperative sampling of different tumor regions individualized, thanks to neuronavigation and positivity to intraoperative fluorescence with the use of 5-aminolevulinic acid (5-ALA). Thirty-three patients (20 males and 13 females with a mean age at diagnosis of 56 years) met the inclusion criterion. A total of 109 histological samples were evaluated, 52 for ENs and 57 for FLAIR hyperintensity zone. Considering the quantitative distribution of levels of intensity of staining (IS), ES (extent score), and immunoreactivity score (IRS), no difference was found between ENs and FLAIR regions for both the SOX-2 biomarker (respectively, IS p = 0.851, ES p = 0.561, IRS p = 1.000) and the CD133 biomarker (IS p = 0.653, ES p = 0.409, IRS p = 0.881). This evidence suggests to recalibrate the target of surgery for FLAIRECTOMY and 5-ALA could improve the possibility to achieve this goal.
Collapse
Affiliation(s)
- Roberto Altieri
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy.
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy.
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Daniela Pacella
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giacomo Cammarata
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Massimiliano Maione
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Marco Garozzo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
| | - Davide Barbagallo
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Michele Purrello
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences - Section of Biology and Genetics Giovanni Sichel, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Viale Carlo Azeglio CIampi, 1, 95121, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Redox-Regulation in Cancer Stem Cells. Biomedicines 2022; 10:biomedicines10102413. [PMID: 36289675 PMCID: PMC9598867 DOI: 10.3390/biomedicines10102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of slowly dividing cells with tumor-initiating ability. They can self-renew and differentiate into all the distinct cell populations within a tumor. CSCs are naturally resistant to chemotherapy or radiotherapy. CSCs, thus, can repopulate a tumor after therapy and are responsible for recurrence of disease. Stemness manifests itself through, among other things, the expression of stem cell markers, the ability to induce sphere formation and tumor growth in vivo, and resistance to chemotherapeutics and irradiation. Stemness is maintained by keeping levels of reactive oxygen species (ROS) low, which is achieved by enhanced activity of antioxidant pathways. Here, cellular sources of ROS, antioxidant pathways employed by CSCs, and underlying mechanisms to overcome resistance are discussed.
Collapse
|
27
|
Huang W, Wen F, Gu P, Liu J, Xia Y, Li Y, Zhou J, Song S, Ruan S, Gu S, Chen X, Shu P. The inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du decoction on the drug resistance of gastric cancer stem cells based on ABC transporters. Chin Med 2022; 17:93. [PMID: 35941687 PMCID: PMC9361523 DOI: 10.1186/s13020-022-00647-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 01/12/2023] Open
Abstract
Background The drug resistance of tumor stem cells is an obstacle in gastric cancer (GC) treatment and the high expression of ABC transporters is a classic reason for drug resistance. This study aimed to construct a reliable GC drug-resistant stem cell model and explore the inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du medicated serum (YQHY) on the drug resistance of GC stem cells based on ABC transporters. Methods The tumor stemness biomarker CD44 was primary identification from WGCNA. The magnetic-activated cell sorting (MACS) method was used to separate CD44( +)BGC823/5-Fu (BGC823/5–Fu-CSCs) cells and the stemness characteristics were verified from multiple dimensions. Then, the drug resistance index and expression of ABC transporter genes MDR1 and MRP1 were detected in CD44(−)/CD44(+) cells. The inhibition and apoptosis rates of the cells administrated with YQHY or/and 5-Fu were calculated to confirm that YQHY can suppress the drug resistance of BGC823/5-Fu-CSCs. Afterwards, the effects of YQHY on the expression of MDR1 and MRP1 and the activation of the PI3K/Akt/Nrf2 pathway were observed. Finally, under the administration of IGF-1 (the activator of PI3K/Akt pathway) and Nrf2 siRNA, the mechanism of YQHY on reversing the drug resistance of BGC823/5–Fu-CSCs through inhibiting the expression of MDR1 and MRP1 via PI3K/Akt/Nrf2 was verified. Results CD44 was a reliable GC stemness biomarker and can be applied to construct the drug-resistant GC stem cell model CD44(+)BGC823/5-Fu. The growth rate, cell proliferation index, soft agar colony formation, expression of stemness specific genes and tumorigenesis ability of CD44(+)BGC823/5-Fu cells were significantly higher than those of CD44(−)BGC823/5-Fu cells. BGC823/5–Fu-CSCs exhibited strong drug resistance to 5-Fu and high expression of ABC transporter genes MDR1 and MRP1 compared to CD44(-) cells. YQHY increased the inhibition and apoptosis rates to efficiently inhibit the drug resistance of BGC823/5–Fu-CSCs. Meanwhile, it suppressed the expression of MDR1 and MRP1 and restrained the activation of PI3K/Akt/Nrf2 signaling pathway. Finally, it was found that IGF-1 partially restored the activation of PI3K/Akt/Nrf2 pathway, alleviated the inhibition of MDR1 and MRP1, blocked the proliferation-inhibitory and apoptosis-promotion effects. YQHY and si-Nrf2 synergistically suppressed the MDR1/MRP1 expression and the drug resistance of BGC823/5–Fu-CSCs. Conclusions CD44 was a reliable GC stemness biomarker, and the high expression of ABC transporter genes MDR1 and MRP1 was an important feature of drug-resistant stem cells. YQHY inhibited the MDR1 and MRP1 expression via PI3K/Akt/Nrf2 pathway, thus reversing the drug resistance of BGC823/5–Fu-CSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00647-y.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Wen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peixing Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiatong Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Xia
- Department of Respiratory, Wujin Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Ye Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiayu Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siyuan Song
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ruan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suping Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoxue Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China.,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Shu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210000, Jiangsu, China. .,First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
28
|
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:850-872. [PMID: 36627897 PMCID: PMC9771762 DOI: 10.20517/cdr.2022.20] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Breast cancer in the era of integrating “Omics” approaches. Oncogenesis 2022; 11:17. [PMID: 35422484 PMCID: PMC9010455 DOI: 10.1038/s41389-022-00393-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Worldwide, breast cancer is the leading cause of cancer-related deaths in women. Breast cancer is a heterogeneous disease characterized by different clinical outcomes in terms of pathological features, response to therapies, and long-term patient survival. Thus, the heterogeneity found in this cancer led to the concept that breast cancer is not a single disease, being very heterogeneous both at the molecular and clinical level, and rather represents a group of distinct neoplastic diseases of the breast and its cells. Indubitably, in the past decades we witnessed a significant development of innovative therapeutic approaches, including targeted and immunotherapies, leading to impressive results in terms of increased survival for breast cancer patients. However, these multimodal treatments fail to prevent recurrence and metastasis. Therefore, it is urgent to improve our understanding of breast tumor and metastasis biology. Over the past few years, high-throughput “omics” technologies through the identification of novel biomarkers and molecular profiling have shown their great potential in generating new insights in the study of breast cancer, also improving diagnosis, prognosis and prediction of response to treatment. In this review, we discuss how the implementation of “omics” strategies and their integration may lead to a better comprehension of the mechanisms underlying breast cancer. In particular, with the aim to investigate the correlation between different “omics” datasets and to define the new important key pathway and upstream regulators in breast cancer, we applied a new integrative meta-analysis method to combine the results obtained from genomics, proteomics and metabolomics approaches in different revised studies.
Collapse
|
31
|
Arjmand B, Hamidpour SK, Alavi-Moghadam S, Yavari H, Shahbazbadr A, Tavirani MR, Gilany K, Larijani B. Molecular Docking as a Therapeutic Approach for Targeting Cancer Stem Cell Metabolic Processes. Front Pharmacol 2022; 13:768556. [PMID: 35264950 PMCID: PMC8899123 DOI: 10.3389/fphar.2022.768556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulation of cells which have been demonstrated in a variety of cancer models and involved in cancer initiation, progression, and development. Indeed, CSCs which seem to form a small percentage of tumor cells, display resembling characteristics to natural stem cells such as self-renewal, survival, differentiation, proliferation, and quiescence. Moreover, they have some characteristics that eventually can demonstrate the heterogeneity of cancer cells and tumor progression. On the other hand, another aspect of CSCs that has been recognized as a central concern facing cancer patients is resistance to mainstays of cancer treatment such as chemotherapy and radiation. Owing to these details and the stated stemness capabilities, these immature progenitors of cancerous cells can constantly persist after different therapies and cause tumor regrowth or metastasis. Further, in both normal development and malignancy, cellular metabolism and stemness are intricately linked and CSCs dominant metabolic phenotype changes across tumor entities, patients, and tumor subclones. Hence, CSCs can be determined as one of the factors that correlate to the failure of common therapeutic approaches in cancer treatment. In this context, researchers are searching out new alternative or complementary therapies such as targeted methods to fight against cancer. Molecular docking is one of the computational modeling methods that has a new promise in cancer cell targeting through drug designing and discovering programs. In a simple definition, molecular docking methods are used to determine the metabolic interaction between two molecules and find the best orientation of a ligand to its molecular target with minimal free energy in the formation of a stable complex. As a comprehensive approach, this computational drug design method can be thought more cost-effective and time-saving compare to other conventional methods in cancer treatment. In addition, increasing productivity and quality in pharmaceutical research can be another advantage of this molecular modeling method. Therefore, in recent years, it can be concluded that molecular docking can be considered as one of the novel strategies at the forefront of the cancer battle via targeting cancer stem cell metabolic processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Yavari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ainaz Shahbazbadr
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| |
Collapse
|
32
|
Sumbly V, Landry I. Understanding pancreatic cancer stem cells and their role in carcinogenesis: a narrative review. Stem Cell Investig 2022; 9:1. [PMID: 35242873 PMCID: PMC8832159 DOI: 10.21037/sci-2021-067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/14/2022] [Indexed: 08/13/2023]
Abstract
OBJECTIVE The purpose of this review article is to describe the pathogenesis of pancreatic cancer and to better understand the role of abnormal stem cells in the development of pancreatic cancer. BACKGROUND Pancreatic cancer is a highly fatal disease that is caused by the uncontrolled proliferation of pancreatic exocrine or neuroendocrine glands. It is believed that pancreatic cancers arise from a small population of abnormal cancer stem cells (CSCs) that promote tumorigenesis, tumor metastasis and therapeutic resistance. The molecular markers CD133, CXCR4, DCLK1, c-MET, ABCG2 and Lgr5 are routinely used to detected and observe the behaviours of pancreatic cancer stem cells (PCSCs). METHODS A comprehensive search was performed on PubMed, Google Scholar, Scopus, Clinicaltrials.gov and Web of Science using related keywords. Articles focusing on PCSCs and pancreatic cancer pathogenesis, biochemistry and clinical trials were selected. CONCLUSIONS Although very little is known about the exact cause of pancreatic cancer, PCSCs seem to play an important role in carcinogenesis. Mutated biochemical cascades include Sonic Hedgehog, K-RAS-JNK, DLL4/Notch and Nodal/Activin. Several clinical trials are trying to determine if the transplantation of hematopoietic stem cell or peripheral stem cells could be useful for the treatment of such an aggressive tumor.
Collapse
Affiliation(s)
- Vikram Sumbly
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/NYC Health & Hospitals|Queens, Jamaica, NY, USA
| | - Ian Landry
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/NYC Health & Hospitals|Queens, Jamaica, NY, USA
| |
Collapse
|
33
|
Al-Kaabi M, Noel K, Al-Rubai AJ. Evaluation of immunohistochemical expression of stem cell markers (NANOG and CD133) in normal, hyperplastic, and malignant endometrium. J Med Life 2022; 15:117-123. [PMID: 35186145 PMCID: PMC8852636 DOI: 10.25122/jml-2021-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
Cancer stem cells (CSC) are a potential cause for recurrence, metastasis, and resistance of tumors to different therapeutic modalities like hormonal radiotherapy and chemotherapy. We investigated two CSC markers (NANOG and CD 133) in normal, hyperplastic endometrium and endometrial carcinoma. A total of 93 formalin-fixed paraffin-embedded tissue blocks were used for immunohistochemical expression of NANOG and CD133 markers. NANOG expression was detected in 88.37% of endometrial carcinoma cases compared to 15% of the normal proliferative endometrium and 60% of hyperplasia cases. In endometrial carcinoma, high NANOG expression was significantly correlated with high grade, deep myometrial invasion, lymph node metastasis, and high stage with p-values (0.009, 0.005, 0.014, and 0.003, respectively). CD133 was positive in 76.74% of endometrial carcinoma cases, and it showed a significant correlation with deep myometrial invasion, positive lymph node, positive lymphovascular invasion, and high stage (p-values 0.003, 0.001, 0.003, and 0.013, respectively). Normal endometrium showed less expression of CD133 (only 5%) than hyperplasia and endometrial carcinoma with a statistically highly significant difference (p less than 0.0001). Hyperplastic cases with atypia expressed higher CD133 than those without atypia (6 out of 12 versus 3 out of 18). However, this difference was not statistically significant (p-value 0.111). The cancer stem cell markers NANOG and CD 133 are expressed in a high percentage in endometrial carcinoma compared to normal and hyperplasia and their expression is positively correlated with the aggressive behavior of the tumor. High expression of these two markers in apparently normal tissue around the tumor and in hyperplastic conditions with atypia suggests the possibility to use NANOG and CD133 expression as a diagnostic marker distinguishing dysplasia from reactive atypia. Therefore, inhibition of these markers can be a promising method to stop the progression of early cancers.
Collapse
Affiliation(s)
- Methaq Al-Kaabi
- Pathology and Forensic Medicine Department, College of Medicine, Mustansiriyah University, Baghdad, Iraq,* Corresponding Author: Methaq Al-Kaabi, Pathology and Forensic Medicine Department, College of Medicine, Mustansiriyah University, Baghdad, Iraq. E-mail:
| | - Khalida Noel
- Anatomy, Histology and Embryology Department, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Abdal-jabbar Al-Rubai
- Anatomy, Histology and Embryology Department, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
34
|
Novoa Díaz MB, Carriere PM, Martín MJ, Calvo N, Gentili C. Involvement of parathyroid hormone-related peptide in the aggressive phenotype of colorectal cancer cells. World J Gastroenterol 2021; 27:7025-7040. [PMID: 34887626 PMCID: PMC8613645 DOI: 10.3748/wjg.v27.i41.7025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/26/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of mortality from malignant diseases worldwide. In general terms, CRC presents high heterogeneity due to the influence of different genetic and environmental factors; also, the neoplastic cells are strongly influenced by the extracellular matrix and several surrounding cells, known together as the tumor microenvironment (TME). Bidirectional communication takes place between the tumor and the TME through the release of autocrine and paracrine factors. Parathyroid hormone-related peptide (PTHrP) is a cytokine secreted by a wide variety of tissues and is able to regulate several cellular functions both in physiological as well as in pathological processes. It exerts its effects as a paracrine/autocrine factor, although its mode of action is mainly paracrine. It has been shown that this peptide is expressed by several tumors and that the tumor secretion of PTHrP is responsible for the malignant humoral hypercalcemia. Eight years ago, when our research group started studying PTHrP effects in the experimental models derived from intestinal tumors, the literature available at the time addressing the effects of PTHrP on colorectal tumors was limited, and no articles had been published regarding to the paracrine action of PTHrP in CRC cells. Based on this and on our previous findings regarding the role of PTH in CRC cells, our purpose in recent years has been to explore the role of PTHrP in CRC. We analyzed the behavior of CRC cells treated with exogenous PTHrP, focalizing in the study of the following events: Survival, cell cycle progression and proliferation, migration, chemoresistance, tumor-associated angiogenesis, epithelial to mesenchymal transition program and other events also associated with invasion, such us the induction of cancer stem cells features. This work summarizes the major findings obtained by our investigation group using in vitro and in vivo CRC models that evidence the participation of PTHrP in the acquisition of an aggressive phenotype of CRC cells and the molecular mechanisms involved in these processes. Recently, we found that this cytokine induces this malignant behavior not only by its direct action on these intestinal cells but also through its influence on cells derived from TME, promoting a communication between CRC cells and surrounding cells that contributes to the molecular and morphological changes observed in CRC cells. These investigations establish the basis for our next studies in order to address the clinical applicability of our findings. Recognizing the factors and mechanisms that promote invasion in CRC cells, evasion to the cytotoxic effects of current CRC therapies and thus metastasis is decisive for the identification of new markers with the potential to improve early diagnosis and/or to predict prognosis, to predetermine drug resistance and to provide treatment guidelines that include targeted therapies for this disease.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Matías Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - María Julia Martín
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS)- INQUISUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Natalia Calvo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)- INBIOSUR (CONICET-UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
35
|
MYH9 is crucial for stem cell-like properties in non-small cell lung cancer by activating mTOR signaling. Cell Death Discov 2021; 7:282. [PMID: 34635641 PMCID: PMC8505404 DOI: 10.1038/s41420-021-00681-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
The fatality rate of non-small cell lung cancer (NSCLC) has been high due to the existence of cancer stem cells (CSCs). Non-muscle myosin heavy chain 9 (MYH9) can promote the progression of various tumors, but its effect on the stem cell-like characteristics of lung cancer cells (LCCs) has not been clarified. Our research found that the stemness characteristics of LCCs were significantly enhanced by the overexpression of MYH9, and the knockout of MYH9 had the opposite effects. The in vivo with inhibitor blebbistatin further confirmed the effect of MYH9 on the stem cell-like behavior of LCCs. Furthermore, western blotting showed that the expression level of CSCs markers (CD44, SOX2, Nanog, CD133, and OCT4) was also regulated by MYH9. Mechanistic studies have shown that MYH9 regulates stem cell-like features of LCCs by regulating the mTOR signaling pathway, which was supported by sphere formation experiments after LCCs were treated with inhibitors Rapamycin and CHIR-99021. Importantly, high expression of MYH9 in lung cancer is positively correlated with poor clinical prognosis and is an independent risk factor for patients with NSCLC.
Collapse
|
36
|
Wan Kamarul Zaman WS, Nurul AA, Nordin F. Stem Cells and Cancer Stem Cells: The Jekyll and Hyde Scenario and Their Implications in Stem Cell Therapy. Biomedicines 2021; 9:biomedicines9091245. [PMID: 34572431 PMCID: PMC8468168 DOI: 10.3390/biomedicines9091245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
"Jekyll and Hyde" refers to persons with an unpredictably dual personality, who are battling between good and evil within themselves In this regard, even cells consist of good and evil counterparts. Normal stem cells (NSCs) and cancer stem cells (CSCs) are two types of cells that share some similar characteristics but have distinct functions that play a major role in physiological and pathophysiological development. In reality, NSCs such as the adult and embryonic stem cells, are the good cells and the ultimate treatment used in cell therapy. CSCs are the corrupted cells that are a subpopulation of cancer cells within the cancer microenvironment that grow into a massive tumour or malignancy that needs to be treated. Hence, understanding the connection between NSCs and CSCs is important not just in cancer development but also in their therapeutic implication, which is the focus of this review.
Collapse
Affiliation(s)
- Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Asma Abdullah Nurul
- School of Health Science, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre, UKM, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
37
|
Chhabra R, Rockfield S, Guergues J, Nadeau OW, Hill R, Stevens SM, Nanjundan M. Global miRNA/proteomic analyses identify miRNAs at 14q32 and 3p21, which contribute to features of chronic iron-exposed fallopian tube epithelial cells. Sci Rep 2021; 11:6270. [PMID: 33737539 PMCID: PMC7973504 DOI: 10.1038/s41598-021-85342-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Malignant transformation of fallopian tube secretory epithelial cells (FTSECs) is a key contributing event to the development of high-grade serous ovarian carcinoma (HGSOC). Our recent findings implicate oncogenic transformative events in chronic iron-exposed FTSECs, including increased expression of oncogenic mediators, increased telomerase transcripts, and increased growth/migratory potential. Herein, we extend these studies by implementing an integrated transcriptomic and mass spectrometry-based proteomics approach to identify global miRNA and protein alterations, for which we also investigate a subset of these targets to iron-induced functional alterations. Proteomic analysis identified > 4500 proteins, of which 243 targets were differentially expressed. Sixty-five differentially expressed miRNAs were identified, of which 35 were associated with the “top” proteomic molecules (> fourfold change) identified by Ingenuity Pathway Analysis. Twenty of these 35 miRNAs are at the 14q32 locus (encoding a cluster of 54 miRNAs) with potential to be regulated by DNA methylation and histone deacetylation. At 14q32, miR-432-5p and miR-127-3p were ~ 100-fold downregulated whereas miR-138-5p was 16-fold downregulated at 3p21 in chronic iron-exposed FTSECs. Combinatorial treatment with methyltransferase and deacetylation inhibitors reversed expression of these miRNAs, suggesting chronic iron exposure alters miRNA expression via epigenetic alterations. In addition, PAX8, an important target in HGSOC and a potential miRNA target (from IPA) was epigenetically deregulated in iron-exposed FTSECs. However, both PAX8 and ALDH1A2 (another IPA-predicted target) were experimentally identified to be independently regulated by these miRNAs although TERT RNA was partially regulated by miR-138-5p. Interestingly, overexpression of miR-432-5p diminished cell numbers induced by long-term iron exposure in FTSECs. Collectively, our global profiling approaches uncovered patterns of miRNA and proteomic alterations that may be regulated by genome-wide epigenetic alterations and contribute to functional alterations induced by chronic iron exposure in FTSECs. This study may provide a platform to identify future biomarkers for early ovarian cancer detection and new targets for therapy.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stephanie Rockfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer Guergues
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Owen W Nadeau
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Robert Hill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.,Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT, 05446, USA
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
38
|
Zhang X, Ma Z, Song E, Xu T. Islet organoid as a promising model for diabetes. Protein Cell 2021; 13:239-257. [PMID: 33751396 PMCID: PMC7943334 DOI: 10.1007/s13238-021-00831-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development in vitro and provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an in vitro human organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (Bioland Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
39
|
Targeting Oncoimmune Drivers of Cancer Metastasis. Cancers (Basel) 2021; 13:cancers13030554. [PMID: 33535613 PMCID: PMC7867187 DOI: 10.3390/cancers13030554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Residual metastasis is a major cause of cancer-associated death. Recent advances in understanding the molecular basis of the epithelial-mesenchymal transition (EMT) and the related cancer stem cells (CSCs) have revealed the landscapes of cancer metastasis and are promising contributions to clinical treatments. However, this rarely leads to practical advances in the management of cancer in clinical settings, and thus cancer metastasis is still a threat to patients. The reason for this may be the heterogeneity and complexity caused by the evolutional transformation of tumor cells through interactions with the host environment, which is composed of numerous components, including stromal cells, vascular cells, and immune cells. The reciprocal evolution further raises the possibility of successful tumor escape, resulting in a fatal prognosis for patients. To disrupt the vicious spiral of tumor-immunity aggravation, it is important to understand the entire metastatic process and the practical implementations. Here, we provide an overview of the molecular and cellular links between tumors' biological properties and host immunity, mainly focusing on EMT and CSCs, and we also highlight therapeutic agents targeting the oncoimmune determinants driving cancer metastasis toward better practical use in the treatment of cancer patients.
Collapse
|
40
|
MicroRNA-107 inhibits proliferation and invasion of laryngeal squamous cell carcinoma cells by targeting CACNA2D1 in vitro. Anticancer Drugs 2021; 31:260-271. [PMID: 31725046 PMCID: PMC7028296 DOI: 10.1097/cad.0000000000000865] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our previous studies have confirmed that α2δ1 has the potential to function as a cancer stem cell marker, and CACNA2D1 is the coding gene of α2δ1. But it is unclear how microRNAs regulate the expression of the CACNA2D1 gene in laryngeal cancer cells. We detected the expressions of α2δ1 protein, microRNA-107, and CACNA2D1 in 40 pairs of laryngeal cancer tissues and adjacent normal tissues. Laryngeal squamous cell carcinoma cells, TU212 and TU686, were cultured and transfected in the blank control group, the agomiR negative control group, the agomiR-107 group, the antagomiR negative control group, or the antagomiR-107 group, and the dual-luciferase reporter assay was employed to assess the regulatory effect of microRNA-107 on CACNA2D1. Then, the effects of microRNA-107 on the biological function of laryngeal squamous cell carcinoma cells were detected by qRT-PCR, Western blot, MTT, cell migration/invasion assay, and cell colony-formation assay. Our data suggested that the protein level of α2δ1, encoded by CACNA2D1, in laryngeal carcinoma tissues was higher than that in adjacent normal tissues, while the expression of microRNA-107 was significantly decreased in laryngeal carcinoma tissues. The dual-luciferase reporter gene assay confirmed that microRNA-107 bound to the 3′-UTR two positions (202-209, 902-908) of CACNA2D1 mRNA. Moreover, the expression of CACNA2D1 and α2δ1 protein were significantly decreased in TU212 and TU686 cells transfected with microRNA-107 expression vectors (P < 0.05), and proliferation, clone formation, migration, and invasion of these cells were also reduced. Furthermore, after knocking down microRNA-107, exactly opposite results were obtained. Overexpression of microRNA-107 can inhibit the proliferation and invasion of laryngeal carcinoma cells in vitro.
Collapse
|
41
|
Piña-Sánchez P, Chávez-González A, Ruiz-Tachiquín M, Vadillo E, Monroy-García A, Montesinos JJ, Grajales R, Gutiérrez de la Barrera M, Mayani H. Cancer Biology, Epidemiology, and Treatment in the 21st Century: Current Status and Future Challenges From a Biomedical Perspective. Cancer Control 2021; 28:10732748211038735. [PMID: 34565215 PMCID: PMC8481752 DOI: 10.1177/10732748211038735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since the second half of the 20th century, our knowledge about the biology of cancer has made extraordinary progress. Today, we understand cancer at the genomic and epigenomic levels, and we have identified the cell that starts neoplastic transformation and characterized the mechanisms for the invasion of other tissues. This knowledge has allowed novel drugs to be designed that act on specific molecular targets, the immune system to be trained and manipulated to increase its efficiency, and ever more effective therapeutic strategies to be developed. Nevertheless, we are still far from winning the war against cancer, and thus biomedical research in oncology must continue to be a global priority. Likewise, there is a need to reduce unequal access to medical services and improve prevention programs, especially in countries with a low human development index.
Collapse
Affiliation(s)
- Patricia Piña-Sánchez
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | | | - Martha Ruiz-Tachiquín
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Alberto Monroy-García
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Juan José Montesinos
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Rocío Grajales
- Department of Medical Oncology, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Marcos Gutiérrez de la Barrera
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
- Clinical Research Division, Oncology Hospital, Mexican Institute of Social Security, Mexico
| | - Hector Mayani
- Oncology Research Unit, Oncology Hospital, Mexican Institute of Social Security, Mexico
| |
Collapse
|
42
|
Kumar S, Behera A, Saha P, Kumar Srivastava A. The role of Krüppel-like factor 8 in cancer biology: Current research and its clinical relevance. Biochem Pharmacol 2020; 183:114351. [PMID: 33253644 DOI: 10.1016/j.bcp.2020.114351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide, ranked second after heart disease. Despite recent advancements in diagnosis and treatment, there are still numerous problems associated with cancer progression, disease recurrence, and therapeutic resistance that are partially explored. Several studies have recently revealed that Krüppel-like factor 8 (KLF8) regulates transcription of genes linked with diverse biological processes, including proliferation, epithelial to mesenchymal transition (EMT), migration, invasion, and inflammation. KLF8 is expressed ubiquitously in mammalian cells, and its aberrant expression has been manifested with several cancer types. Earlier studies demonstrated the crucial role of KLF8 in DNA repair and resistance to apoptosis in numerous cancer types. Hence, studying the function of KLF8 from the perspective of cancer progression and therapy resistance would help develop a new therapeutic avenue. In this review, we summarize the clinical relevance of KLF8 expression in various malignancies, focusing on recent updates in EMT, cellular signaling, and cancer stem cells. We also address the contribution of KLF8 in development, DNA repair, chemoresistance, and its clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Abhijeet Behera
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| |
Collapse
|
43
|
Lu Q, Gao J, Tang S, Li Z, Wang X, Deng C, Hu J, Tao Y, Wang Q. Integrated RNA Sequencing and Single-Cell Mass Cytometry Reveal a Novel Role of LncRNA HOXA-AS2 in Tumorigenesis and Stemness of Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:10901-10916. [PMID: 33149607 PMCID: PMC7602917 DOI: 10.2147/ott.s272717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play critical roles in the development of many cancer types. However, the changes of lncRNAs expression profiles in hepatocarcinogenesis remain largely unknown. Therefore, the purpose of this study was to identify the clinical significance, oncogenic functions, and potential mechanism of cancer-related lncRNAs in hepatocellular carcinoma (HCC). Materials and Methods An in vitro hepatocellular carcinoma model was established via oncogene-mediated transformation with a combination of three genetic alterations, including hTERT overexpression, inactivation of P53, and KRAS activation. Changes of biological function and transcriptome profile in these cell lines were determined by colony formation assay, MTT assay, wound-healing scratch assay, xenograft nude mice model, mass cytometry and RNA sequencing (RNA-Seq). Furthermore, 116 HCC tissues and its corresponding normal tumor-adjacent tissues were explored to validate the results of cell lines. Finally, RNA sequencing, single-cell mass cytometry and fluorescence-activated cell sorter were applied to evaluate the potential association between the expression of lncRNA and the stemness of HCC. Results LncRNA HOXA-AS2 was aberrantly upregulated and it may be involved in the regulation of cancer stem cells during oncogenic transformation. Consistently, lncRNA HOXA-AS2 expression was significantly upregulated in HCC and its higher expression positively correlated with poor prognosis and stem cell-related functions. Moreover, a specific cancer stem cell subpopulation with EPCAM+, C-MYC+ and CK19+ may exist in higher HOXA-AS2 expression HCC patients. Conclusion LncRNA HOXA-AS2 plays pivotal roles in the occurrence and progression of HCC, which may act as a therapeutic target for prognostic biomarker in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qinchen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Jiamin Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Shaomei Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Zhijian Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Caiwang Deng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Jiaxin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| | - Qiuyan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, People's Republic of China.,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning 530021, People's Republic of China
| |
Collapse
|
44
|
Khosravi A, Jafari SM, Asadi J. Knockdown of TAZ decrease the cancer stem properties of ESCC cell line YM-1 by modulation of Nanog, OCT-4 and SOX2. Gene 2020; 769:145207. [PMID: 33031893 DOI: 10.1016/j.gene.2020.145207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells are a rare population in tumors with high metastatic potential and resistance to treatment. Recent strategies in cancer treatment have focused on targeting important signaling pathways that have an important role in maintaining CSC populations. TAZ (transcriptional co-activator with PDZ-binding motif) is a key downstream of the Hippo pathway which plays a fundamental role in the survival of CSCs from different origins, however, no data on the role of TAZ in esophageal cancer are available. Our findings showed that esophageal CSCs enriched from the YM-1 cell line have stemness properties. We found that TAZ was strongly expressed in esophageal CSCs and knockdown of TAZ in esophageal CSCs results in reduced colony formation and cell migration. Moreover, this data indicated that TAZ knockdown reduces the expression of SOX-2, OCT-4, and Nanong in esophageal CSCs. Taken together, the results of the current study suggested that TAZ has a crucial role in the biology of esophageal CSCs.
Collapse
Affiliation(s)
- Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
45
|
Aravindan N, Somasundaram DB, Herman TS, Aravindan S. Significance of hematopoietic surface antigen CD34 in neuroblastoma prognosis and the genetic landscape of CD34-expressing neuroblastoma CSCs. Cell Biol Toxicol 2020; 37:461-478. [PMID: 32979173 DOI: 10.1007/s10565-020-09557-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
High-risk neuroblastoma (HR-NB) is branded with hematogenous metastasis, relapses, and dismal long-term survival. Intensification of consolidation therapy with tandem/triple autologous stem cell (SC) rescue (with bone marrow [BM]/peripheral blood [PB] CD34+ selection) after myeloablative chemotherapy has improved long-term survival. However, the benefit is limited by the indication of NB cells in CD34+ PBSCs, CD34 expression in NB cells, and the risk of reinfusing NB cancer stem cells (NB CSCs) that could lead to post-transplant relapse. We investigated the association of CD34 surface expression (92 patients) with NB evolution/clinical outcomes. CD34 gene-level status in NB was assessed through RNA-Seq data mining (18 cohorts, n, 3324). Genetic landscape of CD34-expressing NB CSCs (CD133+CD34+) was compared with CD34- CSCs (CD133+CD34-). RNA-seq data revealed equivocal association patterns of CD34 expression with patient survival. Our immunohistochemistry data revealed definite, but rare (mean, 0.73%; range 0.00-7.87%; median, 0.20%) CD34 positivity in NB. CD34+ significantly associated with MYCN amplification (p, 0.003), advanced disease stage (p, 0.016), and progressive disease (PD, p < 0.0009) after clinical therapy. A general high-is-worse tendency was observed in patients with relapsed disease. High CD34+ correlated with poor survival in patients with N-MYC-amplified HR-NB. Gene expression analysis of CD34+-NB CSCs identified significant up (4631) and downmodulation (4678) of genes compared with NB CSCs that lack CD34. IPA recognized the modulation of crucial signaling elements (EMT, stemness maintenance, differentiation, inflammation, clonal expansion, drug resistance, metastasis) that orchestrate NB disease evolution in CD34+ CSCs compared with CD34- CSCs. While the function of CD34 in NB evolution requires further in-depth investigation, careful consideration should be exercised for autologous stem cell rescue with CD34+ selection in NB patients. Graphical abstract.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA. .,Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Anesthesiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|
46
|
Yao H, Sun L, Li J, Zhou X, Li R, Shao R, Zhang Y, Li L. A Novel Therapeutic siRNA Nanoparticle Designed for Dual-Targeting CD44 and Gli1 of Gastric Cancer Stem Cells. Int J Nanomedicine 2020; 15:7013-7034. [PMID: 33061365 PMCID: PMC7522319 DOI: 10.2147/ijn.s260163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Gastric cancer stem cells (CSCs) are important for the initiation, growth, recurrence, and metastasis of gastric cancer, due to their chemo-resistance and indefinite proliferation. Herein, to eliminate gastric CSCs, we developed novel CSC-targeting glioma-associated oncogene homolog 1 (Gli1) small interfering RNA (siRNA) nanoparticles that are specifically guided by a di-stearoyl-phosphatidyl-ethanolamine- hyaluronic-acid (DSPE-HA) single-point conjugate, as an intrinsic ligand of the CD44 receptor. We refer to these as targeting Gli1 siRNA nanoparticles. Methods We used the reductive amination reaction method for attaching amine groups of DSPE to aldehydic group of hyaluronic acid (HA) at the reducing end, to synthesize the DSPE-HA single-point conjugate. Next, targeting Gli1 siRNA nanoparticles were prepared using the layer-by-layer assembly method. We characterized the stem cellular features of targeting Gli1 siRNA nanoparticles, including their targeting efficiency, self-renewal capacity, the migration and invasion capacity of gastric CSCs, and the penetration ability of 3D tumor spheroids. Next, we evaluated the therapeutic efficacy of the targeting Gli1 siRNA nanoparticles by using in vivo relapsed tumor models of gastric CSCs. Results Compared with the multipoint conjugates, DSPE-HA single-point conjugates on the surface of nanoparticles showed significantly higher binding affinities with CD44. The targeting Gli1 siRNA nanoparticles significantly decreased Gli1 protein expression, inhibited CSC tumor spheroid and colony formation, and suppressed cell migration and invasion. Furthermore, in vivo imaging demonstrated that targeting Gli1 siRNA nanoparticles accumulated in tumor tissues, showing significant antitumor recurrence efficacy in vivo. Conclusion In summary, our targeting Gli1 siRNA nanoparticles significantly inhibited CSC malignancy features by specifically blocking Hedgehog (Hh) signaling both in vitro and in vivo, suggesting that this novel siRNA delivery system that specifically eliminates gastric CSCs provides a promising targeted therapeutic strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| | - Lan Sun
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Jingcao Li
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Xiaofei Zhou
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| | - Rui Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| | - Yingge Zhang
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, People's Republic of China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100050, People's Republic of China
| |
Collapse
|
47
|
Liu YX, Li QZ, Cao YN, Zhang LQ. Identification of key genes and important histone modifications in hepatocellular carcinoma. Comput Struct Biotechnol J 2020; 18:2657-2669. [PMID: 33033585 PMCID: PMC7533298 DOI: 10.1016/j.csbj.2020.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world. It has been reported that HCC is closely related to the changes of histone modifications. However, finding histone modification patterns in key genes which related to HCC is still an important task. In our study, the patterns of 11 kinds of histone modifications in the promoter regions for the different types of genes were analyzed by hierarchical screening for hepatocyte (normal) cell line and HepG2 (tumor) cell line. The important histone modifications and their key modification regions in different types of genes were found. The results indicate that these important genes may play a pivotal role in the occurrence of HCC. By analyzing the differences of histone modifications and gene expression levels for these important genes between the two cell lines, we found that the signals of H3K4me3, H3K27ac, H3K9ac, and H3K4me2 in HCC are significantly stronger. The changed regions of important histone modifications in 17 key genes were also identified. For example, the H3K4me3 signals increased 150 times in regions (−1500, −500) bp and (0, 1000) bp of ARHGAP5 in tumor cell line than in normal cell line. Finally, a prognostic risk scoring model was constructed, and the effects of key genes on the prognosis of HCC were verified by the survival analysis. Our results may provide a more precise potential therapeutic targets for identifying key genes and histone modifications in HCC as new biomarkers.
Collapse
Key Words
- Biomarkers
- DHLEG, Different highly and lowly expressed genes
- Gene expression
- H2AFZ, H2A histone family member Z
- H3K27ac, Histone H3 acetylated at lysine 27
- H3K27me3, Histone H3 trimethylated at lysine 27
- H3K36me3, Histone H3 trimethylated at lysine 36
- H3K4me1, Histone H3 monomethylated at lysine 4
- H3K4me2, Histone H3 dimethylated at lysine 4
- H3K4me3, Histone H3 trimethylated at lysine 4
- H3K79me2, Histone H3 dimethylated at lysine 79
- H3K9ac, Histone H3 acetylated at lysine 9
- H3K9me3, Histone H3 trimethylated at lysine 9
- H4K20me1, Histone H4 monomethylated at lysine 20
- HCC, Hepatocellular carcinoma
- Histone modification signals
- NH, The genes are highly expressed in normal cell line but not in tumor cell line
- NH-TL, The genes are highly expressed in normal cell line and lowly expressed in tumor cell line
- NL, The genes are lowly expressed in normal cell line but not in tumor cell line
- NL-TH, The genes are lowly expressed in normal cell line and highly expressed in tumor cell line
- ONCO, Oncogenes
- Oncogenes
- TH, The genes are highly expressed in tumor cell line but not in normal cell line
- TL, The genes are lowly expressed in tumor cell line but not in normal cell line
- TSG, Tumor suppressor genes
- Tumor suppressor genes
Collapse
Affiliation(s)
- Yu-Xian Liu
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Qian-Zhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.,The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yan-Ni Cao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Lu-Qiang Zhang
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
48
|
Kyriazi AA, Papiris E, Kitsos Kalyvianakis K, Sakellaris G, Baritaki S. Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. Int J Mol Sci 2020; 21:ijms21186658. [PMID: 32932969 PMCID: PMC7556003 DOI: 10.3390/ijms21186658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of cancer stem cells (CSCs) as initiators of carcinogenesis has revolutionized the era of cancer research and our perception for the disease treatment options. Additional CSC features, including self-renewal and migratory and invasive capabilities, have further justified these cells as putative diagnostic, prognostic, and therapeutic targets. Given the CSC plasticity, the identification of CSC-related biomarkers has been a serious burden in CSC characterization and therapeutic targeting. Over the past decades, a compelling amount of evidence has demonstrated critical regulatory functions of non-coding RNAs (ncRNAs) on the exclusive features of CSCs. We now know that ncRNAs may interfere with signaling pathways, vital for CSC phenotype maintenance, such as Notch, Wnt, and Hedgehog. Here, we discuss the multifaceted contribution of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as representative ncRNA classes, in sustaining the CSC-like traits, as well as the underlying molecular mechanisms of their action in various CSC types. We further discuss the use of CSC-related ncRNAs as putative biomarkers of high diagnostic, prognostic, and therapeutic value.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Efstathios Papiris
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Konstantinos Kitsos Kalyvianakis
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - George Sakellaris
- Surgery Unit, University General Hospital, 71500 Heraklion (PAGNH), Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
- Correspondence: ; Tel.: +30-2810394727
| |
Collapse
|
49
|
Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). JOURNAL OF TRANSLATIONAL SCIENCE 2020; 6:341. [PMID: 35330670 PMCID: PMC8941648 DOI: 10.15761/jts.1000341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Human cancers emerge from cancer stem cells (CSCs), which are resistant to cancer chemotherapeutic agents, radiation, and cell death. Moreover, autophagy provides the cytoprotective effect which contributes to drug resistance in these cells. Furthermore, much evidence shows that CSCs cause tumor initiation, progression, metastasis, and cancer recurrence. Various signaling pathways including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin as well as the CSC markers maintain CSC properties. Several mechanisms including overexpression of ABC multidrug resistance transporters, a deficiency in mitochondrial-mediated apoptosis, upregulation of c-FLIP, overexpression of anti-apoptotic Bcl-2 family members and inhibitors of apoptosis proteins (IAPs), and PI3K/AKT signaling contribute to enhancing resistance to chemotherapeutic drugs and cell death induction in CSCs in various cancers. Studying such pathways may help provide detailed understanding of CSC mechanisms of resistance to chemotherapeutic agents and apoptosis and may lead to the development of effective therapeutics to eradicate CSCs.
Collapse
Affiliation(s)
- Ahmad R Safa
- Correspondence to: Ahmad R. Safa, Department of Pharmacology and Toxicology, 635 Barnhill, Dr. MS A416, Indiana University School of Medicine, Indianapolis, IN, USA,
| |
Collapse
|
50
|
Koh EY, You JE, Jung SH, Kim PH. Biological Functions and Identification of Novel Biomarker Expressed on the Surface of Breast Cancer-Derived Cancer Stem Cells via Proteomic Analysis. Mol Cells 2020; 43:384-396. [PMID: 32235022 PMCID: PMC7191048 DOI: 10.14348/molcells.2020.2230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is one of the most common life-threatening malignancies and the top cause of cancer deaths in women. Although many conventional therapies exist for its treatment, breast cancer still has many handicaps to overcome. Cancer stem cells (CSCs) are a well-known cause of tumor recurrences due to the ability of CSCs for self-renewal and differentiation into cell subpopulations, similar to stem cells. To fully treat breast cancer, a strategy for the treatment of both cancer cells and CSCs is required. However, current strategies for the eradication of CSCs are non-specific and have low efficacy. Therefore, surface biomarkers to selectively treat CSCs need to be developed. Here, 34 out of 641 surface biomarkers on CSCs were identified by proteomic analysis between the human breast adenocarcinoma cell line MCF-7 and MCF-7-derived CSCs. Among them, carcinoembryonic antigen-related cell adhesion molecules 6 (CEACAM6 or CD66c), a member of the CEA family, was selected as a novel biomarker on the CSC surface. This biomarker was then experimentally validated and evaluated for use as a CSC-specific marker. Its biological effects were assessed by treating breast cancer stem cells (BCSCs) with short hairpin (sh)-RNA under oxidative cellular conditions. This study is the first to evaluate the biological function of CD66c as a novel biomarker on the surface of CSCs. This marker is available as a moiety for use in the development of targeted therapeutic agents against CSCs.
Collapse
Affiliation(s)
- Eun-Young Koh
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Ji-Eun You
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Se-Hwa Jung
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| | - Pyung-Hwan Kim
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea
| |
Collapse
|