1
|
Sun H, Ding S, Wang B, Huang J, Guo H. Palladium-catalyzed [3 + 2] cycloaddition of 4-vinyl-4-butyrolactones with sulfamate-derived cyclic imines: construction of sulfamate-fused pyrrolidines. Org Biomol Chem 2024; 23:90-93. [PMID: 39530223 DOI: 10.1039/d4ob01611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The palladium-catalyzed [3 + 2] decarboxylative cycloaddition of 4-vinyl-4-butyrolactones with sulfamate-derived cyclic imines has been developed, providing the sulfamate-fused pyrrolidine derivatives in high yields with good diastereoselectivities. The scale-up reaction and further derivation of the product worked well, demonstrating the potential application of the current reaction in organic synthesis. A plausible reaction mechanism was also proposed.
Collapse
Affiliation(s)
- Honghao Sun
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Siyuan Ding
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiaxing Huang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
2
|
Guo Y, Pernal K. Spinless formulation of linearized adiabatic connection approximation and its comparison with the second order N-electron valence state perturbation theory. Faraday Discuss 2024; 254:332-358. [PMID: 39114978 DOI: 10.1039/d4fd00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The adiabatic connection (AC) approximation, along with its linearized variant AC0, was introduced as a method of obtaining dynamic correlation energy. When using a complete active space self-consistent field (CASSCF) wave function as a reference, the AC0 approximation is considered one of the most efficient multi-reference perturbation theories. It only involves the use of 1st- and 2nd-order reduced density matrices. However, some numerical results have indicated that the excitation energies predicted by AC0 are not as reliable as those from the second-order N-electron valence state perturbation theory (NEVPT2). In this study, we develop a spinless formulation of AC0 based on the Dyall Hamiltonian and provide a detailed comparison between AC0 and NEVPT2 approaches. We demonstrate the components within the correlation energy expressions that are common to both methods and those unique to either AC0 or NEVPT2. We investigate the role of the terms exclusive to NEVPT2 and explore the possibility of enhancing AC0's performance in this regard.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland.
| |
Collapse
|
3
|
Boominathan T, Singh I, Krishna JS, Perinbanathan S, Arbaaz SM, Latha S, Karthikeyan S, Desikan R, Rao CVSB, Sivaramakrishna A. New recyclable and functionalized chitosan-based polyurethane foams for effective and incessant removal of Orange II (OII) and Rhodamine B (RhB) dyes from water. Int J Biol Macromol 2024; 279:134999. [PMID: 39214230 DOI: 10.1016/j.ijbiomac.2024.134999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The development of new efficient materials for the removal of water-soluble toxic organic dyes has been one of the focused research areas in the recent past. There is a strong demand for the new materials as most of the reported techniques/materials suffer from serious limitations. In this regard, a series of flexible chitosan-based task-specific polyurethane foams (PUCS-GP, PUCS-CA-GP, PUCS-TA-GP, and PUCS-GA-GP) associated with naturally available hydroxycarboxylic acids was developed. The basis for the preparation of these task-specific and functionalized PU foams is to possess amine groups for trapping the anionic dyes (example: Orange II denoted as OII) and carboxylic acid groups for attracting the cationic dyes (example: Rhodamine B denoted as RhB) under specified pH conditions. Batch adsorption experiments were conducted to assess and improve various parametric conditions. The experimental results revealed that the adsorption kinetics closely agree with the pseudo-second-order model having a maximum sorption capacity of 38.3 mg/g at pH 3 for OII on PUCS-GP and 48.4 mg/g at pH 6 for RhB on PUCS-CA-GP. Furthermore, the adsorption process was described by isotherms, kinetic equations and thermodynamic parameters (ΔG°, ΔH° and ΔS°). Notably, the regeneration of OII and RhB dyes from the exhausted PUCS-GP and PUCS-CA-GP materials was effectively accomplished. The recovered PUCS-GP shows >90 % OII and PUCS-CA-GP displays >70 % RhB removal efficiency even after twelve adsorption-desorption processes under mild conditions, demonstrating excellent recyclability/durability. The advantages of these functionalized foam materials are facile preparation, high adsorption capacity, good reusability, and very efficient removal of organic dyes from wastewater streams.
Collapse
Affiliation(s)
- T Boominathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Indresh Singh
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - J S Krishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - S Perinbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - S Muhammad Arbaaz
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Srinivasan Latha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sambantham Karthikeyan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Rajagopal Desikan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - C V S Brahmananda Rao
- Fuel Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Nivetha N, Don Hamid J, Simha N A, Devegowda D, Ramu R, Velmathi S. Natural product-inspired [3 + 2] cycloaddition-based spirooxindoles as dual anticancer agents: synthesis, characterization, and biological evaluation by in vitro and in silico methods. RSC Med Chem 2024:d4md00634h. [PMID: 39416974 PMCID: PMC11474387 DOI: 10.1039/d4md00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Breast and colorectal cancers are the most common tumors, with high recurrence and low survival rates. We designed and synthesized a series of spirooxindole pyrrolidinyl derivatives, which were further evaluated for anti-proliferative activity using MDA-MB-468 and HCT 15 cell lines. The best inhibitor of this class, compound 6f, showed a very good inhibition potency, both on the MDA-MB-468 and HCT 15 cells as confirmed by molecular docking and molecular dynamic studies that predicted its binding mode into the active site of the targets. In summary, this study provided a new anti-proliferative derivative 6f which is worthy of further research.
Collapse
Affiliation(s)
- Narayanasamy Nivetha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology Tiruchirappalli 620015 Tamil Nadu India
| | - Jevid Don Hamid
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology Tiruchirappalli 620015 Tamil Nadu India
| | - Akshaya Simha N
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research Mysuru 570015 Karnataka India
| | - Devanand Devegowda
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research Mysuru 570015 Karnataka India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research Mysuru 570015 Karnataka India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology Tiruchirappalli 620015 Tamil Nadu India
| |
Collapse
|
5
|
Ma H, Zhou X, Zhang Z, Weng Z, Li G, Zhou Y, Yao Y. AI-Driven Design of Cell-Penetrating Peptides for Therapeutic Biotechnology. Int J Pept Res Ther 2024; 30:69. [DOI: 10.1007/s10989-024-10654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 01/05/2025]
|
6
|
Aftab H, Ullah S, Khan A, Al-Rashida M, Islam T, Alshammari A, Albekairi NA, Taslimi P, Al-Harrasi A, Shafiq Z, Alghamdi S. Synthesis, in vitro biological evaluation and in silico studies of novel pyrrolidine derived thiosemicarbazones as dihydrofolate reductase inhibitors. RSC Adv 2024; 14:31409-31421. [PMID: 39380649 PMCID: PMC11460214 DOI: 10.1039/d4ra05071a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Dihydrofolate reductase (DHFR) is a crucial enzyme involved in folate metabolism and serves as a prime target for anticancer and antimicrobial therapies. In this study, a series of 4-pyrrolidine-based thiosemicarbazones were synthesized and evaluated for their DHFR inhibitory activity. The synthesis involved a multistep procedure starting from readily available starting materials, leading to the formation of diverse thiosemicarbazone 5(a-r) derivatives. These compounds were then subjected to in vitro assays to evaluate their inhibitory potential against DHFR enzyme. The synthesized compounds 5(a-r) exhibited potent inhibition with IC50 values in the range of 12.37 ± 0.48 μM to 54.10 ± 0.72 μM. Among all the derivatives 5d displayed highest inhibitory activity. Furthermore, molecular docking and ADME studies were performed to understand the binding interactions between the synthesized compounds and the active site of DHFR. The in vitro and in silico data were correlated to identify compounds with promising inhibitory activity and favorable binding modes. This comprehensive study provides insights into the structure-activity relationships of 4-pyrrolidine-based thiosemicarbazones as DHFR inhibitors, offering potential candidates for further optimization towards the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Hina Aftab
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University) Lahore Pakistan
| | - Talha Islam
- Department of Chemistry, Forman Christian College (A Chartered University) Lahore Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post bezBox 2455 Riyadh 11451 Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University Post bezBox 2455 Riyadh 11451 Saudi Arabia
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University 74100 Bartin Turkey
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa P.O. Box 33, PC 616, Birkat Al Mauz Nizwa Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan-60800 Pakistan
| | - Saeed Alghamdi
- Department of Pharmacy, Riyadh Security Forces Hospital, Ministry of Interior Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Ding N, Zhou F, Li G, Shen H, Bai L, Su J. Quantum dots for bone tissue engineering. Mater Today Bio 2024; 28:101167. [PMID: 39205871 PMCID: PMC11350444 DOI: 10.1016/j.mtbio.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
In confronting the global prevalence of bone-related disorders, bone tissue engineering (BTE) has developed into a critical discipline, seeking innovative materials to revolutionize treatment paradigms. Quantum dots (QDs), nanoscale semiconductor particles with tunable optical properties, are at the cutting edge of improving bone regeneration. This comprehensive review delves into the multifaceted roles that QDs play within the realm of BTE, emphasizing their potential to not only revolutionize imaging but also to osteogenesis, drug delivery, antimicrobial strategies and phototherapy. The customizable nature of QDs, attributed to their size-dependent optical and electronic properties, has been leveraged to develop precise imaging modalities, enabling the visualization of bone growth and scaffold integration at an unprecedented resolution. Their nanoscopic scale facilitates targeted drug delivery systems, ensuring the localized release of therapeutics. QDs also possess the potential to combat infections at bone defect sites, preventing and improving bacterial infections. Additionally, they can be used in phototherapy to stimulate important bone repair processes and work well with the immune system to improve the overall healing environment. In combination with current trendy artificial intelligence (AI) technology, the development of bone organoids can also be combined with QDs. While QDs demonstrate considerable promise in BTE, the transition from laboratory research to clinical application is fraught with challenges. Concerns regarding the biocompatibility, long-term stability of QDs within the biological environment, and the cost-effectiveness of their production pose significant hurdles to their clinical adoption. This review summarizes the potential of QDs in BTE and highlights the challenges that lie ahead. By overcoming these obstacles, more effective, efficient, and personalized bone regeneration strategies will emerge, offering new hope for patients suffering from debilitating bone diseases.
Collapse
Affiliation(s)
- Ning Ding
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Mondal S, Krishna B, Roy S, Dey N. Discerning toxic nerve gas agents via a distinguishable 'turn-on' fluorescence response: multi-stimuli responsive quinoline derivatives in action. Analyst 2024; 149:3097-3107. [PMID: 38713504 DOI: 10.1039/d4an00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We have successfully synthesized quinoline derivatives that exhibit easy scalability and responsiveness to multiple stimuli. These derivatives are capable of forming self-assembled nanoscopic aggregates in an aqueous medium. Consequently, when placed in an aqueous environment, we observe dual fluorescence originating from both twisted intramolecular charge transfer and aggregation-induced emission. The introduction of nerve gas agents, such as diethyl chlorophosphate (DClP) or diethylcyanophosphate (DCNP), to the probe molecules facilitates the charge-transfer process, resulting in a red-shift in absorption maxima. Notably, when operating in fluorescence mode, both of these analytes produce distinct output signals, making them easily distinguishable. DCNP generates a blue fluorescence, while the addition of DClP yields cyan fluorescence. Our mechanistic investigation reveals that the initial step involves phosphorylation of the quinoline nitrogen end. However, in the case of DCNP, the released cyanide ion subsequently attacks the carbonyl carbon centre, forming a cyanohydrin derivative. The response to these target analytes appears to be influenced by the nucleophilicity of the quinoline nitrogen end and the electrophilic nature of the carbonyl unit.
Collapse
Affiliation(s)
- Sourav Mondal
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad-500078, Telangana, India.
| | - Bandarupalli Krishna
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad-500078, Telangana, India.
- Adama India Pvt. Ltd, Genome Valley, Hyderabad 500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad-500078, Telangana, India.
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad-500078, Telangana, India.
| |
Collapse
|
10
|
Chowdhury MG, Kalmegh V, Kapoor S, Kamble V, Shard A. Imidazopyrimidine: from a relatively exotic scaffold to an evolving structural motif in drug discovery. RSC Med Chem 2024; 15:1488-1507. [PMID: 38784469 PMCID: PMC11110759 DOI: 10.1039/d3md00718a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/10/2024] [Indexed: 05/25/2024] Open
Abstract
Nitrogen-fused heterocycles are of immense importance in modern drug discovery and development. Among them, imidazopyrimidine is a highly versatile scaffold with vast pharmacological utility. These compounds demonstrate a broad spectrum of pharmacological actions, including antiviral, antifungal, anti-inflammatory, and anticancer. Their adaptable structure allows for extensive structural modifications, which can be utilized for optimizing pharmacological effects via structure-activity relationship (SAR) studies. Additionally, imidazopyrimidine derivatives are particularly noteworthy for their ability to target specific molecular entities, such as protein kinases, which are crucial components of various cellular signaling pathways associated with multiple diseases. Despite the evident importance of imidazopyrimidines in drug discovery, there is a notable lack of a comprehensive review that outlines their role in this field. This review highlights the ongoing interest and investment in exploring the therapeutic potential of imidazopyrimidine compounds, underscoring their pivotal role in shaping the future of drug discovery and clinical medicine.
Collapse
Affiliation(s)
- Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat-382355 India
| | - Vaishnavi Kalmegh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat-382355 India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat-382355 India
| | - Vaishnavi Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat-382355 India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A) Opposite Airforce Station, Palaj Gandhinagar Gujarat-382355 India
| |
Collapse
|
11
|
Ray R, Pal S, Das S, Jana NR. Direct Membrane Penetration and Cytosolic Delivery of Nanoparticles via Electrostatically Bound Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15819-15831. [PMID: 38517139 DOI: 10.1021/acsami.3c18750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Nanoparticles usually enter cells through energy-dependent endocytosis that involves their cytosolic entry via biomembrane-coated endosomes. In contrast, direct translocation of nanoparticles with straight access to cytosol/subcellular components without any membrane coating is limited to very selective conditions/approaches. Here we show that nanoparticles can switch from energy-dependent endocytosis to energy-independent direct membrane penetration once an amphiphile is electrostatically bound to their surface. Compared to endocytotic uptake, this direct cell translocation is faster and nanoparticles are distributed inside the cytosol without any lysosomal trafficking. We found that this direct cell translocation option is sensitive to the charges of both the nanoparticles and the amphiphile. We propose that an electrostatically bound amphiphile induces temporary opening of the cell membrane, which allows direct cell translocation of nanoparticles. This approach can be adapted for efficient subcellular targeting of nanoparticles and nanoparticle-based drug delivery application, bypassing the endosomal trapping and lysosomal degradation.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Pal
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Soumi Das
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Xu X, Zhu YK, Dai CM, Xu J, Jian J. Synthesis and characterization of azaborepin radicals in solid neon through boron-mediated C-N bond cleavage of pyridine. Phys Chem Chem Phys 2024; 26:11048-11055. [PMID: 38528841 DOI: 10.1039/d4cp00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The reactivity of pyridine is a complex topic due to its unique electronic structure. The reactions of atomic boron with pyridine molecules in solid neon have been investigated using matrix isolation infrared absorption spectroscopy. Three products (marked as A, B, and C) were observed and characterized through 10B, D and 15N isotopic substitution pyridine regents as well as quantum chemical calculations. In the reaction, the ground-state boron atom can attack the lone pair electrons of the nitrogen atom in the pyridine molecule, resulting in the formation of a 1-boropyridinyl radical (A). Alternatively, addition to the aromatic π-system of pyridine can occur in a [1,4] type, leading to the formation of a B[η2(1,4)-C5H5N] complex (B). Under UV-visible light (280 < λ < 580 nm) irradiation, these two compounds can further undergo photo-isomerization to form BN-embedded seven-membered azaborepin compounds (C). The observation of species A, B, and the subsequent photo-isomerization to species C is consistent with theoretical predictions, indicating that these reactions are kinetically favorable. This research provides valuable insights into the future design and synthesis of corresponding BN heterocyclic derivatives.
Collapse
Affiliation(s)
- Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Yi-Kang Zhu
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| | - Chuan-Ming Dai
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| |
Collapse
|
13
|
Ruan F, Fang H, Chen F, Xie X, He M, Wang R, Lu J, Wu Z, Liu J, Guo F, Sun W, Shao D. Leveraging Radiation-triggered Metal Prodrug Activation Through Nanosurface Energy Transfer for Directed Radio-chemo-immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202317943. [PMID: 38078895 DOI: 10.1002/anie.202317943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 12/30/2023]
Abstract
Metal-based drugs currently dominate the field of chemotherapeutic agents; however, achieving the controlled activation of metal prodrugs remains a substantial challenge. Here, we propose a universal strategy for the radiation-triggered activation of metal prodrugs via nanosurface energy transfer (NSET). The core-shell nanoplatform (Ru-GNC) is composed of gold nanoclusters (GNC) and ruthenium (Ru)-containing organic-inorganic hybrid coatings. Upon X-ray irradiation, chemotherapeutic Ru (II) complexes were released in a controlled manner through a unique NSET process involving the transfer of photoelectron energy from the radiation-excited Ru-GNCs to the Ru-containing hybrid layer. In contrast to the traditional radiation-triggered activation of prodrugs, such an NSET-based system ensures that the reactive species in the tumor microenvironment are present in sufficient quantity and are not easily quenched. Additionally, ultrasmall Ru-GNCs preferably target mitochondria and profoundly disrupt the respiratory chain upon irradiation, leading to radiosensitization by generating abundant reactive oxygen species. Consequently, Ru-GNC-directed radiochemotherapy induces immunogenic cell death, resulting in significant therapeutic outcomes when combined with the programmed cell death-ligand 1 (PD-L1) checkpoint blockade. This NSET strategy represents a breakthrough in designing radiation-triggered nanoplatforms for metal-prodrug-mediated cancer treatment in an efficient and controllable manner.
Collapse
Affiliation(s)
- Feixia Ruan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hui Fang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Junna Lu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Ziping Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jiali Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Feng Guo
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
14
|
Qin ZY, Gao S, Zou Y, Liu Z, Wang JB, Houk KN, Arnold FH. Biocatalytic Construction of Chiral Pyrrolidines and Indolines via Intramolecular C(sp 3)-H Amination. ACS CENTRAL SCIENCE 2023; 9:2333-2338. [PMID: 38161360 PMCID: PMC10755850 DOI: 10.1021/acscentsci.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Nature harnesses exquisite enzymatic cascades to construct N-heterocycles and further uses these building blocks to assemble the molecules of life. Here we report an enzymatic platform to construct important chiral N-heterocyclic products, pyrrolidines and indolines, via abiological intramolecular C(sp3)-H amination of organic azides. Directed evolution of cytochrome P411 (a P450 enzyme with serine as the heme-ligating residue) yielded variant P411-PYS-5149, capable of catalyzing the insertion of alkyl nitrene into C(sp3)-H bonds to build pyrrolidine derivatives with good enantioselectivity and catalytic efficiency. Further evolution of activity on aryl azide substrates yielded variant P411-INS-5151 that catalyzes intramolecular C(sp3)-H amination to afford chiral indolines. In addition, we show that these enzymatic aminations can be coupled with a P411-based carbene transferase or a tryptophan synthase to generate an α-amino lactone or a noncanonical amino acid, respectively, underscoring the power of new-to-nature biocatalysis in complexity-building chemical synthesis.
Collapse
Affiliation(s)
- Zi-Yang Qin
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Shilong Gao
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Yike Zou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Zhen Liu
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - James B. Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Kendall N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Mohkam M, Sadraeian M, Lauto A, Gholami A, Nabavizadeh SH, Esmaeilzadeh H, Alyasin S. Exploring the potential and safety of quantum dots in allergy diagnostics. MICROSYSTEMS & NANOENGINEERING 2023; 9:145. [PMID: 38025887 PMCID: PMC10656439 DOI: 10.1038/s41378-023-00608-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 12/01/2023]
Abstract
Biomedical investigations in nanotherapeutics and nanomedicine have recently intensified in pursuit of new therapies with improved efficacy. Quantum dots (QDs) are promising nanomaterials that possess a wide array of advantageous properties, including electronic properties, optical properties, and engineered biocompatibility under physiological conditions. Due to these characteristics, QDs are mainly used for biomedical labeling and theranostic (therapeutic-diagnostic) agents. QDs can be functionalized with ligands to facilitate their interaction with the immune system, specific IgE, and effector cell receptors. However, undesirable side effects such as hypersensitivity and toxicity may occur, requiring further assessment. This review systematically summarizes the potential uses of QDs in the allergy field. An overview of the definition and development of QDs is provided, along with the applications of QDs in allergy studies, including the detection of allergen-specific IgE (sIgE), food allergens, and sIgE in cellular tests. The potential treatment of allergies with QDs is also described, highlighting the toxicity and biocompatibility of these nanodevices. Finally, we discuss the current findings on the immunotoxicity of QDs. Several favorable points regarding the use of QDs for allergy diagnosis and treatment are noted.
Collapse
Affiliation(s)
- Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Antonio Lauto
- School of Science, University of Western Sydney, Campbelltown, NSW 2560 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hesamodin Nabavizadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Esmaeilzadeh
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Allergy and Clinical Immunology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Boopathy LK, Gopal T, Roy A, Kalari Kandy RR, Arumugam MK. Recent trends in macromolecule-conjugated hybrid quantum dots for cancer theranostic applications. RSC Adv 2023; 13:18760-18774. [PMID: 37346950 PMCID: PMC10281231 DOI: 10.1039/d3ra02673f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
Quantum dots (QDs) are small nanoparticles with semiconductor properties ranging from 2 to 10 nanometers comprising 10-50 atoms. The single wavelength excitation character of QDs makes it more significant, as it can excite multiple particles in a confined surface simultaneously by narrow emission. QDs are more photostable than traditional organic dyes; however, when injected into tissues, whole animals, or ionic solutions, there is a significant loss of fluorescence. HQD-based probes conjugated with cancer-specific ligands, antibodies, or peptides are used in clinical diagnosis. It is more precise and reliable than standard immunohistochemistry (IHC) at minimal protein expression levels. Advanced clinical studies use photodynamic therapy (PDT) with fluorescence imaging to effectively identify and treat cancer. Recent studies revealed that a combination of unique characteristics of QDs, including their fluorescence capacity and abnormal expression of miRNA in cancer cells, were used for the detection and monitoring progression of cancer. In this review, we have highlighted the unique properties of QDs and the theranostic behavior of various macromolecule-conjugated HQDs leading to cancer treatment.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Molecular Research Laboratory, Meenakshi Medical College Hospital and Research Institute, MAHER Kanchipuram 631552 Tamil Nadu India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai-600077 Tamil Nadu India
| | - Rakhee Rathnam Kalari Kandy
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland Baltimore-21201 MD USA
| | - Madan Kumar Arumugam
- Cancer Biology Laboratory, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +91-9942110146
| |
Collapse
|
17
|
Mohammadi H, Azami SM, Rafii-Tabar H. Density functional theory computation of the intermolecular interactions of Al 2@C 24 and Al 2@Mg 12O 12 semiconducting quantum dots conjugated with the glycine tripeptide. RSC Adv 2023; 13:9824-9837. [PMID: 36998517 PMCID: PMC10043880 DOI: 10.1039/d3ra01154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The nature of intermolecular forces within semiconductor quantum dot systems can determine various physicochemical properties, as well as their functions, in nanomedical applications. The purpose of this study has been to investigate the nature of the intermolecular forces operating between Al2@C24 and Al2@Mg12O12 semiconducting quantum dots and the glycine tripeptide (GlyGlyGly), and also consider whether permanent electric dipole-dipole interactions play a significant role vis-à-vis these molecular systems. The energy computations, including the Keesom and the total electronic interactions and the energy decomposition, together with the quantum topology analyses were performed. Our results demonstrate that no significant correlation is found between the magnitude and orientation of the electrical dipole moments, and the interaction energy of the Al2@C24 and Al2@Mg12O12 with GlyGlyGly tripeptide. The Pearson correlation coefficient test revealed a very weak correlation between the quantum and the Keesom interaction energies. Apart from the quantum topology analyses, the energy decomposition consideration confirmed that the dominant share of the interaction energies was associated with the electrostatic interactions, yet both the steric and the quantum effects also made appreciable contributions. We conclude that, beside the electrical dipole-dipole interactions, other prominent intermolecular forces, such as the polarization attraction, the hydrogen bond, and the van der Waals interactions can also influence the interaction energy of the system. The findings of this study can be utilized in several areas in the field of nanobiomedicine, including the rational design of cell-penetrating and intracellular drug delivery systems using semiconducting quantum dots functionalized with a peptide.
Collapse
Affiliation(s)
- Hadi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - S M Azami
- Department of Chemistry, Faculty of Sciences, Yasouj University Yasouj Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- The Physics Branch of the Academy of Sciences of Iran Tehran Iran
| |
Collapse
|
18
|
Saharkhiz S, Zarepour A, Zarrabi A. A new theranostic pH-responsive niosome formulation for Doxorubicin delivery and bio-imaging against breast cancer. Int J Pharm 2023; 637:122845. [PMID: 36958608 DOI: 10.1016/j.ijpharm.2023.122845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
As one of the newest generations of nanoplatforms, smart nanotheranostics have attracted signifivant attentions for medical applications, especially in oncology and cancer treatment. Indeed, their capability to provide treatment and diagnosis simultaneously leads to reduce time and side effects along with improving the performance. This study aims to introduce a novel smart nano-platform composed of doxorubicin-loaded pH-responsive stealth niosomes containing CdSe/ZnS Quantum dots as an imaging agent. Drug loaded nano-platform was fabricated via thin-film hydration method and then evaluated using different physicochemical tests. The entrapment efficiency and release profile of doxorubicin were assessed at three different pH (4, 6.5, and 7.4). Biological features and imaging ability of the nanoparticles were also evaluated by MTT assay, apoptosis assay, and fluorescence microscopy. Results showed that the fabricated nanoparticles were round-shaped, with a mean size of about 100±10 nm, -2 mV surface charge, and about 87% entrapment efficiency. The drug release profile presented a pH-responsive behavior (80, 60, and 40% drug release in pH 4, 6.5, and 7.4, respectively). The bio-activity assessments showed nearly 55% cytotoxicity effects via inducing cell apoptosis. Besides, the uptake of samples by the cells was confirmed through fluorescence imaging. Based on the results, this new nanoformulation could be considered as a candidate for future cancer theranostic applications.
Collapse
Affiliation(s)
- Shaghayegh Saharkhiz
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
19
|
Sharma B, Verma A, Saini S, Kumar U. Tris[(3-salicylideneimino)ethyl]amine an effective ATRP ligand for the copolymerization of n-butyl acrylate and 1-octene. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
20
|
Gong J, Jin Z, Chen H, He J, Zhang Y, Yang X. Super-resolution fluorescence microscopic imaging in pathogenesis and drug treatment of neurological disease. Adv Drug Deliv Rev 2023; 196:114791. [PMID: 37004939 DOI: 10.1016/j.addr.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Since super-resolution fluorescence microscopic technology breaks the diffraction limit that has existed for a long time in optical imaging, it can observe the process of synapses formed between nerve cells and the protein aggregation related to neurological disease. Thus, super-resolution fluorescence microscopic imaging has significantly impacted several industries, including drug development and pathogenesis research, and it is anticipated that it will significantly alter the future of life science research. Here, we focus on several typical super-resolution fluorescence microscopic technologies, introducing their benefits and drawbacks, as well as applications in several common neurological diseases, in the hope that their services will be expanded and improved in the pathogenesis and drug treatment of neurological diseases.
Collapse
|
21
|
Gholinejad M, Khosravi F, Sansano JM, Vishnuraj R, Pullithadathil B. Bimetallic AuNi Nanoparticles Supported on Mesoporous MgO as Catalyst for Sonogashira-Hagihara Cross-Coupling Reaction. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Singh A, Barman P, Gogoi HP. Influence of Steric and Electronic Effects in Structure‐Activity Relationships of Schiff Base Ligands: Green Synthesis, Characterization, DFT/TD‐DFT Calculations, Molecular Docking and Biological Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202204043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anmol Singh
- Department of Chemistry National Institute of Technology Silchar Assam India- 788010
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam India- 788010
| | - Himadri Priya Gogoi
- Department of Chemistry National Institute of Technology Silchar Assam India- 788010
| |
Collapse
|
23
|
Zhang L, Tian Y, Li M, Wang M, Wu S, Jiang Z, Wang Q, Wang W. Peptide nano 'bead-grafting' for SDT-facilitated immune checkpoints blocking. Chem Sci 2022; 13:14052-14062. [PMID: 36540822 PMCID: PMC9728588 DOI: 10.1039/d2sc02728c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/13/2022] [Indexed: 09/21/2023] Open
Abstract
Combination therapies based on immune checkpoint blockade (ICB) are currently the mainstay of cancer treatment, in which the synergetic delivery of multiple drugs is the essential step. Although nanoparticle drugs (NPDs) show satisfactory anticancer effects, the promotion of active co-delivery of NPDs is premature, since the processes are usually difficult to predict and control. Targeting peptide self-assemblies have been widely used as carriers for small-molecular drugs, but remain elusive for NPDs. We describe here peptide-based nano 'bead-grafting' for the active delivery of quantum-dot NPDs through a co-assembly method. Based on a 'de novo' design, we used a 'one-bead-one-compound (OBOC)' combinatorial chemical screening method to select a peptide RT with high affinity for the immune checkpoint CD47, which could also form biocompatible nanofibers and efficiently trap Ag2S quantum dots along the self-assembly path. This system can combine ICB therapy and sonodynamic therapy (SDT) to effectively inhibit tumor growth. Moreover, the tumor antigen produced by SDT can activate the adaptive immune system, which enhances the anti-tumor immune response of the ICB and shows efficient inhibition of both primary and distant tumors. This study provides a new strategy for the active control and delivery of NPDs and a new option for ICB therapy with immune checkpoints that are highly susceptible to systemic side effects.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Yuwei Tian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Mengzhen Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Shang Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University Guangzhou 510632 China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 PR China
| |
Collapse
|
24
|
Mohammed MKA, Singh S, Al-Mousoi AK, Pandey R, Madan J, Dastan D, Ravi G. Improving the potential of ethyl acetate green anti-solvent to fabricate efficient and stable perovskite solar cells. RSC Adv 2022; 12:32611-32618. [PMID: 36425701 PMCID: PMC9661485 DOI: 10.1039/d2ra05454j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/27/2022] [Indexed: 09/16/2023] Open
Abstract
Until now, in all state-of-the-art efficient perovskite solar cells (PSCs), during the fabrication process of the perovskite layer, highly toxic anti-solvents such as toluene, chlorobenzene, and diethyl ether have been used. This is highly concerning and urgently needs to be considered by laboratories and institutes to protect the health of researchers and employees working towards safe PSC fabrication. Green anti-solvents are usually used along with low-performance PSCs. The current study solves the ineptitude of the typical ethyl acetate green anti-solvent by adding a potassium thiocyanate (KSCN) material to it. The KSCN additive causes delay in the perovskite growing process. It guarantees the formation of larger perovskite domains during fabrication. The enlarged perovskite domains reduce the bulk and surface trap density in the perovskite. It enables lower trap-facilitated charge recombination along with efficient charge extraction in PSCs. Overall, the developed method results in a champion performance of 17.12% for PSCs, higher than the 13.78% recorded for control PSCs. The enlarged perovskite domains warrant lower humidity interaction paths with the perovskite composition, indicating higher stability in PSCs.
Collapse
Affiliation(s)
- Mustafa K A Mohammed
- Radiological Techniques Department, Al-Mustaqbal University College 51001 Hillah Babylon Iraq
| | - Sangeeta Singh
- Microelectronics Lab, National Institute of Technology Patna 800005 India
| | - Ali K Al-Mousoi
- Department of Radiology and Ultrasonography Techniques, College of Medical Techniques, Al-Farahidi University Baghdad Iraq
| | - Rahul Pandey
- VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University 140417 Punjab India
| | - Jaya Madan
- VLSI Centre of Excellence, Chitkara University Institute of Engineering and Technology, Chitkara University 140417 Punjab India
| | - Davoud Dastan
- Department of Materials Science and Engineering, Cornell University Ithaca NY 14850 USA
| | - G Ravi
- Department of Physics, Alagappa University Karaikudi 630003 Tamil Nadu India
| |
Collapse
|
25
|
Dhanalakshmi M, Das K, Pandya M, Shah S, Gadnayak A, Dave S, Das J. Artificial Neural Network-Based Study Predicts GS-441524 as a Potential Inhibitor of SARS-CoV-2 Activator Protein Furin: a Polypharmacology Approach. Appl Biochem Biotechnol 2022; 194:4511-4529. [PMID: 35507249 PMCID: PMC9066385 DOI: 10.1007/s12010-022-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Furin, a pro-protein convertase, plays a significant role as a biological scissor in bacterial, viral, and even mammalian substrates which in turn decides the fate of many viral and bacterial infections along with the numerous ailments caused by cancer, diabetes, inflammations, and neurological disorders. In the wake of the current pandemic caused by the virus SARS-CoV-2, furin has become the center of attraction for researchers as the spike protein contains a polybasic furin cleavage site. In the present work, we have searched for novel inhibitors against this interesting human target from FDA-approved antiviral. To enhance the selection of new inhibitors, we employed Kohonen's artificial neural network-based self-organizing maps for ligand-based virtual screening. Promising results were obtained which can help in drug repurposing and network pharmacology studies can address the errors generated due to promiscuity/polypharmacology. We found 15 existing FDA antiviral drugs having the potential to inhibit furin. Among these, six compounds have targets on important human proteins (LDLR, FCGR1A, PCK1, TLR7, DNA, and PNP). The role of these 15 drugs inhibiting furin can be established by studying further on patients infected with number of viruses including SARS-CoV-2. Here we propose two promising candidate FDA drugs GS-441524 and Grazoprevir (MK-5172) for repurposing as inhibitors of furin. The best results were observed with GS-441524.
Collapse
Affiliation(s)
- M Dhanalakshmi
- Research and Development Centre, Bharathiar University, Marudhamalai Rd, Coimbatore, Tamil Nadu, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Medha Pandya
- The KPES Science College, Maharaja krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India
| | - Sejal Shah
- Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - Ayushman Gadnayak
- Centre for Genomics & Biomedical Informatics, IMS and SUM Hospital, Siksha "O" Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sushma Dave
- Department of Applied Sciences, JIET, Jodhpur, Rajasthan, India.
| | | |
Collapse
|
26
|
Jiang Q, Zhao L, Shi L, Guan S, Huang W, Xue X, Yang H, Jiang L, Jiang B. pH‐responsive amine‐based fluorescent polymers with on–off switchable and concentration‐dependent fluorescence behaviors. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Liang Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Lingyue Shi
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Shuyi Guan
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering Changzhou University Changzhou China
| |
Collapse
|
27
|
Singh A, Gogoi HP, Barman P, Das A, Pandey P. Tetracoordinated ONNO donor purine based Schiff base and its metal complexes: Synthesis, characterization, DNA binding, theoretical studies, and bioactivities. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anmol Singh
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Himadri Priya Gogoi
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Ankita Das
- Department of Microbiology Assam University Silchar Assam India
| | - Piyush Pandey
- Department of Microbiology Assam University Silchar Assam India
| |
Collapse
|
28
|
Yashwantrao G, Shetty P, Maleikal PJ, Badani P, Saha S. Dehydrative Substitution Reaction in Water for the Preparation of Unsymmetrically Substituted Triarylmethanes: Synthesis, Aggregation‐Enhanced Emission, and Mechanofluorochromism. Chempluschem 2022; 87:e202200150. [DOI: 10.1002/cplu.202200150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Gauravi Yashwantrao
- ICT Mumbai: Institute of Chemical Technology Speciality Chemicals Technology INDIA
| | - Prapti Shetty
- Institute of Chemical Technology Speciality Chemicals Technology INDIA
| | | | - Purav Badani
- University of Mumbai - Kalina Campus Chemistry INDIA
| | - Satyajit Saha
- Institute of Chemical Technology, Mumbai Department of Dyestuff Technology Nathelal parekh Marg400019India 400019 Matunga, 2010 INDIA
| |
Collapse
|
29
|
Dai J, Wang J, Yang X, Xu Z, Ruan G. Examining the Cellular Transport Pathway of Fusogenic Quantum Dots Conjugated With Tat Peptide. Front Bioeng Biotechnol 2022; 10:831379. [PMID: 35694230 PMCID: PMC9184739 DOI: 10.3389/fbioe.2022.831379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the underlying transport mechanism of biological delivery is important for developing delivery technologies for pharmaceuticals, imaging agents, and nanomaterials. Recently reported by our group, SDots are a novel class of nanoparticle delivery systems with distinct biointerface features and excellent fusogenic capabilities (i.e., strong ability to interact with the hydrophobic portions of biomembranes). In this study, we investigate the cellular transport mechanism of SDots conjugated with Tat peptide (SDots-Tat) by live-cell spinning-disk confocal microscopy combined with molecular biology methods. Mechanistic studies were conducted on the following stages of cellular transport of SDots-Tat in HeLa cells: cellular entry, endosomal escape, nucleus entry, and intranuclear transport. A key finding is that, after escaping endosomes, SDots-Tat enter the cell nucleus via an importin β-independent pathway, bypassing the usual nucleus entry mechanism used by Tat. This finding implies a new approach to overcome the nucleus membrane barrier for designing biological delivery technologies.
Collapse
Affiliation(s)
- Jie Dai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Jun Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Xuan Yang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Nanobiotechnology and Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Zixing Xu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.,Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Nanobiotechnology and Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Shenzhen Research Institute of Nanjing University, Nanjing, China.,Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Wang K, Li Y, Chen R, Sun A, Wang Z, Zhao Y, Wang M, Sheng S. Substrate‐Controlled Regioselectivity Switch in a Three‐Component 1,3‐Dipolar Cycloaddition Reaction to Access 3,3′‐Pyrrolidinyl‐Spirooxindoles Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kai‐Kai Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
- Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 People's Republic of China
| | - Yan‐Li Li
- Medical College Xinxiang University Xinxiang 453000 People's Republic of China
| | - Rong‐Xiang Chen
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ai‐Li Sun
- Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 People's Republic of China
| | - Zhan‐Yong Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ying‐Chao Zhao
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ming‐Yue Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Shi Sheng
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| |
Collapse
|
31
|
Kumar R, Yadav N, Jain H, Deswal N, Upadhyay RK, Leekha A, Verma AK, Kareem A, Chikati R, Kumar LS. Microwave‐Assisted Synthesis of 4‐Aryl‐1,4‐dihydropyridines as Potent Anticancer Agent and Their
In‐Silico Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rakesh Kumar
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Neha Yadav
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Harshita Jain
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | - Nidhi Deswal
- Bioorganic Laboratory Department of Chemistry University of Delhi Delhi 110007 India
| | | | - Ankita Leekha
- Nano Biotech Laboratory Department of Zoology Kirori Mal College University of Delhi Delhi 110007 India
| | - Anita Kamra Verma
- Nano Biotech Laboratory Department of Zoology Kirori Mal College University of Delhi Delhi 110007 India
| | | | - Rajasekhar Chikati
- Department of Biochemistry Yogivemana University Kadpa- 516005 Andhra Pradesh India
| | | |
Collapse
|
32
|
Prabha K, Satheeshkumar R, Nasif V, Saranya J, Sayin K, Natarajan J, Chandrasekar C, Rajendra Prasad KJ. Synthesis, In Vitro Cytotoxicity, and DFT Studies of Novel 2‐Amino Substituted Benzonaphthyridines as PDK1 Inhibitors. ChemistrySelect 2022. [DOI: 10.1002/slct.202200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kolandaivel Prabha
- Department of Chemistry K. S. Rangasamy College of Technology Tiruchengode 637215, Tamil Nadu India
| | - Rajendran Satheeshkumar
- Departamento de Química Orgánica Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile 702843 Santiago Chile
| | - Vesim Nasif
- Department of Chemistry, Faculty of Science Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Jayapalan Saranya
- Department of Bioinformatics School of Life Sciences Pondicherry University Puducherry 605014 India
| | - Koray Sayin
- Department of Chemistry, Faculty of Science Sivas Cumhuriyet University 58140 Sivas Turkey
| | - Jeyakumar Natarajan
- Department of Bioinformatics Bharathiar University, Coimbatore 641046 Tamil Nadu India
| | - Chinnarasu Chandrasekar
- Department of Chemistry K. S. Rangasamy College of Technology Tiruchengode 637215, Tamil Nadu India
| | | |
Collapse
|
33
|
Singh A, Gogoi HP, Barman P, Guha AK. Novel Thioether Schiff base Transition metal complexes: Design, Synthesis, Characterization, Molecular docking, Computational, Biological, and Catalytic Studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anmol Singh
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Himadri Priya Gogoi
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam India
| | | |
Collapse
|
34
|
Devi P, Singh K, Dabas P. Synthesis of Co+2, Ni+2, Cu+2, and Zn+2 complexes of Schiff base 5-methyl-3-((3,5-dichlorosalicylidene) amino)-pyrazole, spectral, and biological studies. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2035726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Priyanka Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Kiran Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Pooja Dabas
- Department of Microbiology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
35
|
Zhu T, Cao L, Zhou Z, Guo H, Ge M, Dong WF, Li L. Ultra-bright carbon quantum dots for rapid cell staining. Analyst 2022; 147:2558-2566. [DOI: 10.1039/d2an00325b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A schematic illustration of the synthesis of G-CDs and cell imaging under one-photon and two-photon conditions.
Collapse
Affiliation(s)
- Tongtong Zhu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, P. R. China
| | - Lei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, P. R. China
| | - Zhenqiao Zhou
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, P. R. China
| | - Hanzhou Guo
- Changchun Guoke Medical Engineer and Technology Development Co., Ltd, Changchun 13003, China
| | - Mingfeng Ge
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, P. R. China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, P. R. China
| | - Li Li
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, P. R. China
| |
Collapse
|
36
|
Jiang Q, Zhao L, Du Y, Huang W, Xue X, Yang H, Jiang L, Jiang Q, Jiang B. Synthesis of thermoresponsive nonconjugated fluorescent branched poly(ether amide)s via oxa-Michael addition polymerization. Polym Chem 2022. [DOI: 10.1039/d1py01437d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Novel thermoresponsive nonconjugated fluorescent branched poly(ether amide)s with tunable LCST via t-BuP2-catalyzed oxa-Michael addition polymerization of N,N′-methylenebis(acrylamide) with triols.
Collapse
Affiliation(s)
- Qimin Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Liang Zhao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Yongzhuang Du
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Wenyan Huang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Xiaoqiang Xue
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Hongjun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Li Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
| | - Qilin Jiang
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK EH9 3FJ
| | - Bibiao Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China 213164
- Changzhou University Huaide College, Jingjiang, Jiangsu, P. R. China 214500
| |
Collapse
|
37
|
Shirzaei F, Shaterian HR. One‐Pot Synthesis of New Chromeno[
1,6
]naphthyridine Derivatives Catalyzed by a Basic Ionic Liquid, [HO‐CH
2
‐CH
2
‐NH
3
+
][HCOO
−
]. ChemistrySelect 2021. [DOI: 10.1002/slct.202103091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Farhad Shirzaei
- Department of Chemistry Faculty of Sciences University of Sistan and Baluchestan, PO Box 98135–674 Zahedan Iran
| | - Hamid Reza Shaterian
- Department of Chemistry Faculty of Sciences University of Sistan and Baluchestan, PO Box 98135–674 Zahedan Iran
| |
Collapse
|
38
|
Liang P, Mao L, Dong Y, Zhao Z, Sun Q, Mazhar M, Ma Y, Yang S, Ren W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021; 13:2070. [PMID: 34959351 PMCID: PMC8704010 DOI: 10.3390/pharmaceutics13122070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yanli Dong
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China;
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
39
|
Usman M, Iqbal N, Noor T, Zaman N, Asghar A, Abdelnaby MM, Galadima A, Helal A. Advanced strategies in Metal-Organic Frameworks for CO 2 Capture and Separation. CHEM REC 2021; 22:e202100230. [PMID: 34757694 DOI: 10.1002/tcr.202100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Naseem Iqbal
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Neelam Zaman
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahmoud M Abdelnaby
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Ahmad Galadima
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
40
|
Maddahfar M, Wen S, Hosseinpour Mashkani SM, Zhang L, Shimoni O, Stenzel M, Zhou J, Fazekas de St Groth B, Jin D. Stable and Highly Efficient Antibody-Nanoparticles Conjugation. Bioconjug Chem 2021; 32:1146-1155. [PMID: 34011146 DOI: 10.1021/acs.bioconjchem.1c00192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functional ligands and polymers have frequently been used to yield target-specific bio-nanoconjugates. Herein, we provide a systematic insight into the effect of the chain length of poly(oligo (ethylene glycol) methyl ether acrylate) (POEGMEA) containing polyethylene glycol on the colloidal stability and antibody-conjugation efficiency of nanoparticles. We employed Reversible Addition-Fragmentation Chain Transfer (RAFT) to design diblock copolymers composed of 7 monoacryloxyethyl phosphate (MAEP) units and 6, 13, 35, or 55 OEGMEA units. We find that when the POEGMEA chain is short, the polymer cannot effectively stabilize the nanoparticles, and when the POEGMEA chain is long, the nanoparticles cannot be efficiently conjugated to antibody. In other words, the majority of the carboxylic groups in larger POEGMEA chains are inaccessible to further chemical modification. We demonstrate that the polymer containing 13 OEGMEA units can effectively bind up to 64% of the antibody molecules, while the binding efficiency drops to 50% and 0% for the polymer containing 35 and 55 OEGMEA units. Moreover, flow cytometry assay statistically shows that about 9% of the coupled antibody retained its activity to recognize B220 biomarkers on the B cells. This work suggests a library of stabile, specific, and bioactive lanthanide-doped nanoconjugates for flow cytometry and mass cytometry application.
Collapse
Affiliation(s)
- Mahnaz Maddahfar
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Ramaciotti Facility for Human Systems Biology and Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lin Zhang
- School of Chemistry/Cluster for Advanced Macromolecular Design (CAMD) University of New South Wales Kensington, Sydney, New South Wales 2052, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Martina Stenzel
- School of Chemistry/Cluster for Advanced Macromolecular Design (CAMD) University of New South Wales Kensington, Sydney, New South Wales 2052, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology and Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|